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Abstract

Process flexibility and design under uncertainty have been researched extensively in the literature. Problem formulations for
flexibility include nested optimization problems and these can often be refined by substituting the optimality conditions for these
nested problems. However, these reformulations are highly constrained and can be expensive to solve. In this paper we extend
algorithms to solve these reformulated NLP problem under uncertainty by introducing two contributions to this approach. These
are the use of a Constraint Aggregation function (KS function) and Smoothing Functions. We begin with basic properties of KS
function. Next, we review a class of parametric smooth functions, used to replace the complementarity conditions of the KKT
conditions with a well-behaved, smoothed nonlinear equality constraint. In this paper we apply the previous strategies to two
specific problems: i) the’worst case algorithm’, that assesses design under uncertainty and, ii) the flexibility index and feasibility
test formulations. In the first case, two new algorithms are derived, one of them being single level optimization problem. Next
using similar ideas, both flexibility index and feasibility test are reformulated leading to a single non linear programming problem
instead of a mixed integer non linear programming one. The new formulations are demonstrated on five different example
problems where a CPU time reduction of more than 70 and 80% is demonstrated. © 2000 Elsevier Science Ireland Ltd. All rights
reserved.
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1. Introduction

Optimization under uncertainty has been discussed
widely in the literature (see Grossmann & Sargent,
1978; Grossmann, Halemane & Swaney, 1983; Swaney
& Grossmann, 1985a,b; Ostrovsky, Volin, Barit &
Senyavin, 1994; Bandoni Romagnoli & Barton, 1994;
Walsh & Perkins, 1996). Here, variations in the operat-
ing conditions (e.g. feed flow and concentration, cata-
lytic activity, equipment fouling) and uncertainties in
process models for equipment design, indicate that
nominal conditions are no longer sufficient to design a
process. As a result, process synthesis should also sat-
isfy operating restrictions in spite of disturbances and
design uncertainties. To do this, economics and oper-
ability must be integrated at the synthesis stage. One
way to tackle this problem is to ensure that the worst
case occurrences of uncertainty still lead to feasible

plants. Several approaches have been developed in the
literature to handle this problem. Swaney and Gross-
mann (1985a) introduced a flexibility index that defines
the maximum variations in the uncertain parameters,
for which the process constraints can be satisfied. Here,
in addition to design variables, control variables can
also be adjusted to meet these constraints.

Bandoni et al. (1994) proposed a worst case al-
gorithm where the maximum variation of the uncertain
parameters is determined for process feasibility. This is
performed using a two-level optimization strategy.
First, the control vector is determined at an operational
point from an optimization problem for a fixed set of
uncertain parameters. This set is then extended by
finding the worst constraint violations over the entire
domain of uncertain parameters. This approach re-
quires the solution of NLPs at two optimization levels
and can lead to a large computational cost for process
design problems. This study extends this approach
through an aggregation of the constraint functions.
Two types of aggregation are considered: the KS func-
tion (Kreisselmeier & Steinhauser, 1983) and smoothing
functions (Chen & Mangasarian, 1996).
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While the original worst case (OWC) formulation
requires a two level optimization strategy, introducing
the KS function to aggregate the optimization problems
of the inner level leads to a single, inner level optimiza-
tion problem. This strategy is called KSWC. One addi-
tional approach is then presented which further
reformulate the inner and outer level optimization
problems to obtain a single level problem formulation.
Here the KKT conditions are formulated with the help
of a Smoothing Function to replace the complementary
conditions. Next, using these ideas, the OWC approach
is modified to develop a strategy based on a single
optimization problem for this algorithm (formulation
SLWC).

The paper is structured as follows. In the next section
we introduce the KS function and develop some of its
basic properties. In Section 3 a class of smoothing
functions is reviewed which are obtained by the double
integration of a probability distribution function, and
their use to replace complementary condition of a
general NLP is also shown. In Section 4 we present the
formulation of the original worst case algorithm and
the proposed reformulations. Section 5 then presents
our new formulations for the feasibility test and flexibil-
ity index of Grossmann and coworkers. Several exam-
ples are presented in Sections 4 and 5. Section 6
summarizes and concludes the paper.

2. The KS function

This section develops an aggregation technique for
inequality constraints. Due to Kreisselmeier and Stein-
hauser (KS), this approach can be applied to a set of
inequality constraints, g(x)50, that appear in a non-
linear programming problem (NLP). A number of defi-
nitions and properties for this function can be stated as
follows:

2.1. Definition

The KS function, generates an evolving curve for the
relations, y=gj(x), j=1,…, J, Rn�R. It is assumed

that each function is continuous on x, but not necessar-
ily continuously differentiable. The KS function can be
expressed by the following two equivalent forms:

KS(gj)=
1
r

ln
�%

J

j

exp(rgj)
n

(1)

KS(gj)=M+
1
r

ln
�%

J

j

exp(r(gj−M))
n

(2)

Expression (2) is recommended if (1) generates very
large values for the exponential term. The parameter r
is defined by the user and M is a non-negative scalar.
Some errors can be produced in the numerical compu-
tations if the value of M in (2) is much larger than the
maximum value taken by the functions gj. For example,
if the difference between the maximum gj and M take a
value of approximately 50, the maximum individual
exponential term exp(gmax−M) in the summation of
(2) is about 2×10−22. Depending on the machine
precision, the exponential summation in (2) could be
taken as zero, producing an undefined log operation.
To avoid these numerical difficulties we define M as:

M:max(gj) for j=1,…, J

In this way, a larger value for r can be adopted without
too much risk of overflow or underflow in the summa-
tion. The new expression for (2) would be:

KS(gj)=gmax+
1
r

ln
�%

J

j

exp(r(gj−gmax))
n

(3)

Taking the limit of (3) for r going to infinity, the KS
function becomes equal to gmax. In other words, the
parameter r determines the way the KS function covers
the functions gj. Fig. 1 shows an example of KS for a
set of functions of a single variable. The function KS
can also be seen as a differentiable function similar to
the nondifferentiable selective functions of the form
max(gj) that are available in many high level program-
ming languages.

The derivatives of KS with respect to x, can also be
obtained for both alternative expressions (1) and (2) of
KS:

9xKS=
%
J

j

exp(rgj)9xgj

%
J

j

exp(rgj)

9xKS=9xgmax+
%
J

j

exp(r(gj−gmax))(9xgj−9xgmax)

%
J

j

exp(r(gj−gmax))

=
%
J

j

exp(rgj)9xgj

%
J

j

exp(rgj)

Fig. 1. Overestimation of a set of inequality constraints gj.
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2.2. Properties of the KS function

In this section we develop some basic properties
of the KS function that are useful to understand its
ability to work as a differentiable overestimator of a
set of functions and to formulate the optimality condi-
tions of optimization problems involving the KS func-
tion.

The KS function overestimates a set of inequalities
constraints of the form y=gj(x), with j=1,…, J. Start-
ing from the definition of KS in (1), the following
properties can be derived.

Property 1

KS(x,r)]max
j

(gj(x)),r\0

Property 2

lim
r��

KS(x,r)=max
j

(gj(x))

Property 3

KS(x,r2)]KS(x,r1)Öx such that r1\r2\0

Property 4
The definitions of the KS functions given by (1) and

(2) are equivalent for any value of M.

Property 5
The KS function (1) is insensitive to r as r becomes

large.

Property 6
The gradient of the KS function with respect to x is

independent of gmax.

Property 7
Given a convex region defined by a set of convex

inequality constraints, gj(x)50, the non-empty region
defined by S(x,r)5C1 is also a convex region for any
r\0 and C1.

Proofs of these properties are given in Appendix A.

2.3. NLP optimality conditions in terms of the KS
function

In this section we now analyze the use of the KS
function in nonlinear programs. Consider the following
two equivalent inequality constrained NLP problems,
where in (P2) the KS function has been used to aggre-
gate the j=1,…, m inequality constraints:

min
x

f(x)
s.t.

gj(x)50
(P1)

min
x

f(x)
s.t.

KS(x,r)50
(P2)

The Kuhn–Tucker first order necessary conditions for
optimality (Edgar & Himmelblau, 1988) of problem
(P1) are the following:

9L=9f(x*)+%
j

mj9gj(x*)=0 (4a)

mjgj(x*)=0 (4b)

mj]0 (4c)

gj(x*)50 (4d)

where L is the Lagrangian function defined as:

L= f(x)+%
j

mjgj(x)

On the other hand, for problem (P2), the optimality
conditions are:

9L=9f(x̄)+
< m

%
j

exp(rgj(x̄))

=%
j

exp(rgj(x̄))9gj(x̄)=

=9f(x̄)+%
j

m̄j9gj(x̄)=0

mKS(x̄,r)=0m]0

KS(x̄,r)50

where:

m̄j=m
exp(rgj(x̄))

%
k

exp(rgk(x̄))
\0

and the Lagrangian is:

L= f(x)+m
1
r

ln
�%

j

exp (rgj(x))
n

Let us consider now the following two cases:

Case 1. If KS(x̄,r)B0, then there is no constraint
violation and by Property 1 of the KS function the
following inequalities hold:

gj(x̄)5max
j

(gj(x̄))5KS(x̄,r)B0

and this means there are no active or violated
constraints.
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Case 2. If KS(x̄,r)B0, and for a r enough large
(r��), there is at least one active constraint. Separat-
ing the gj into active and inactive constraints we have:

A={ j �−o5gj(x̄)50} and

N={ j �gj(x̄)B−oB0}

where the tolerance o should be chosen such that the
following relation holds for the set of inactive
constraints

%
j�N

exp(rgj(x̄))5K

with KB1. From the assumption of KS=0 we have
�jexp(rgj(x̄))=1, and then separating this expression
by active and non active sets we have:

%
j�A

exp(rgj(x̄))+ %
j�N

exp(rgj(x̄))=1

and

%
j�A

exp(rgj(x̄))=1− %
j�N

exp(rgj(x̄))]1−K\0

At this point, two lines can be followed to demonstrate
that when KS=0, the set of inequalities in A are active.

Consider an average value for �A(�) such that m=
�A �;
Then m exp (rg̃)]1−K

and 0] g̃]
1
r

ln
�1−K

m
�

Now, for r��, from the previous expression we have
that g̃�0.

3. Smoothing functions

In this section we develop an alternative to the KS
function for simplification of the optimality conditions.
This arises from the use of smoothing functions and
their substitution into the complementary conditions.
This approach was developed by Chen and Mangasar-
ian (1996) and has been used as a continuation method
to solve general NLPs.

3.1. Definition

Here we consider the Chen and Mangasarian (1996)
approximation of the fundamental plus function
(x)+ =max{0, x}. These authors proposed a class of
parametric smoothing functions obtained by twice inte-
grating a probability density function. The operator
(x)+ =max{0, x} is written as (x)+ =Rx−�s(y)dy,
where s(x) is the unitary step function:

s(x)=
!1 x\0

0 x50

The step function can in turn be written as, s(x)=
Rx−�(y)dy where d(x) is the Dirac delta function,
which has the following properties:

d(x)]0 and
&�

−�

d(y)dy=1

Both properties indicate that by using a probabilistic
density function p(x), it is possible to smooth the Dirac
delta and its integral. This function satisfies:

p(x)]0 and
&�

−�

p(y)dy=1

To make parametric the density function, a new func-
tion is defined as:

t. (x,f)=
1
b

d
�x

b

�
where b is a positive parameter. When b goes to zero,
the limit of t. (x,b) is the Dirac delta function d(x).
Again, by means of twice integrating t. (x,b), in the first
integration an approximation of the highly non convex
sigmoidal function is obtained

ŝ(x,b)=
& x

−�

t. (x,b)dt:s(x)

and with the second integration, a differentiable ap-
proximation of the max operator is obtained.

p̂(x,b)=
& x

−�

ŝ(x,b)dt: (x)+

Following a similar development, Chen and Mangasar-
ian develop a family of smoothing functions starting
with a different density function p(x).

3.2. Smoothing functions and its relation to the KS
function

Chen and Mangasarian (1996) presented three exam-
ples of smoothing functions for different density func-
tions. Below we show that one of those examples leads
to the KS function. The density function used is:

p(x)=
e−x

(1−e−x)−2

By a first integration of the function t. (x,b) defined in
the previous section, we have

ŝ(x,b)=
& x

−�

1
b

e− t/b

(1+e− t/b)2 dt=
1

(1+e−x/b)

and by a new integration of this expression ŝ(x,b) we
get:

p̂(x,b)=
& x

−�

1
b

1
(1+e− t/b)2 dt=x+b ln(1+e−x/b)
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Note that if in the previous equation we define b=1/r,
we obtain directly the KS function as introduced in
Section 2, if it is applied to the functions f1(x)=0 and
f2(x)=x as shown below:

x+
1
r

ln (1+e−rx)=
1
r

ln (1+erx)=
1
r

ln (e0+erx)

3.3. Application to nonlinear programming

Let us consider a subset of the Kuhn–Tucker condi-
tions of a NLP given by the Eqs. (4b), (4c) and (4d).

lg(x)=0
l]0

g(x)50

To overcome the difficulty associated with the solution
of the complementary condition l.g(x)=0, Clark
(1983) proposed the incorporation of binary variables
as follow:

l5Uy
−g(x)5U(1−y)

l]0
g(x)50

(5)

where U is a positive scalar. On the other hand, it is
easy to show (Chen & Mangasarian, 1996) that (5) is
equivalent to the following expression in terms of a
max{0, x}defined above (see Appendix B for an enu-
meration of cases):

l−max(0,l+g(x))=0

Now, the discontinuity in the derivative of the
max(0, x) operator, can be avoided by making use of
the smoothing functions results presented in Section
3.1. By considering l+g(x) as the argument of
smoothing function p̂(x,b), we can get

l− (l+g(x))+ =0 (6)

to replace the conditions (4b), (4c) and (4d) in 4. In this
way, we could avoid the use of the binary variables,
solving the difficulty of the complementary condition in
4 in an entirely continuous way.

4. Worst case algorithm

The problem of process flexibility and design under
uncertainty has been studied extensively in the litera-
ture of Grossmann et al. (1983), Swaney and Gross-
mann (1985a), Grossmann and Floudas (1987), Polak
(1982), Polak, Stimler and Majorisation (1988), Mayne,
Michalska and Polak (1990) and Tits (1985). One of the
simpler approaches to solve this problem is the so

called ‘worst case’ algorithm. Walsh and Perkins (1996)
reviewed these problems and discussed the usefulness of
this approach in practical situations. Bahri, Bandoni
and Romagnoli (1997), Bahri, Bandoni and Romagnoli
(1996a), Bahri, Bandoni and Romagnoli (1996b),
Figueroa, Bahri, Bandoni and Romagnoli (1996),
Sunarto, Bandoni, Barton and Romagnoli (1994) and
Bandoni et al. (1994) also attacked this problem from
an optimizing control point of view in what they call
the Back-Off problem.

In this section we present the worst case (WC) al-
gorithm to solve the general NLP problem under uncer-
tainty. First, we present the formulation, and its
solution procedure through the two level optimization
strategy used by the WC. We refer to this as the
original worst case algorithm (OWC). Later on, we
reformulate the solution strategy by introducing the KS
function presented in Section 2 to aggregate the ‘J’
optimization problems of the inner level into a single
optimization problem. This strategy is called KSWC.
Two more approaches are presented, based on formu-
lating the Karush–Kuhn–Tucker (KKT) conditions of
the inner problem and adding them to the outer level
optimization problem. This leads to a solution proce-
dure with a single level optimization strategy. The KKT
conditions are formulated with the help of the smooth-
ing functions presented in Section 3 to replace the
binary variables required to formulate the complemen-
tary conditions. Using these ideas, the previous ap-
proach, OWC, is reformulated to produce the single
level worst case SLWC strategy. Finally, we present
three applications examples and carry out a compara-
tive study of CPU time.

4.1. Problem formulation

Consider the following general NLP problem under
uncertainty:

min
z

F(x,z,uN)

s.t.

h(x,z,u)=0

g(x,z,u)50

z�{z:zL5z5zU}

u�G

(7)

where: F: objective function, z: vector of decision (opti-
mization) variables, x: vector of state variables, u:
vector of uncertain parameters, uN: vector of nominal
values of the uncertain parameters, h: vector of equality
constraints, g: vector of inequality constraints. Note
that in this problem it is assumed that well-defined
upper, lower and nominal values are available for each
uncertain parameter, that is u�G={u:uL5u5uU}.
Given that we are assuming any value of u is equally
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provable, each realization develops a different set if
inequality constraints and then, problem (7) has for-
mally an infinite number of constraints. The WC al-
gorithm finds a optimal point z*, satisfying all possible
realizations of u, if it exists. Here, we do not discuss
convexity and global optimality issues, but they are
required as in any process flexibility and design under
uncertainty problem, if the convergence must be
guaranteed.

4.2. Re6iew of the WC algorithm

The worst case algorithm (Bandoni et al., 1994),
denoted in this paper as WC algorithm, or OWC),
consists of a two level optimization strategy. At the
outer level, problem (ol-OWC) is solved for fixed values
of the uncertain parameters. At the inner level, the
feasibility of the constraints is tested around the opti-
mum point generated at the outer level. The algorithm
iterates around these two levels until no constraint
violation is possible for the current optimal point.

At the inner level, the solution of J optimization
problems is required (where J is the number of inequal-
ity constraints in problem (il-OWC)), in the space of
the uncertain parameters. The mathematical formula-
tion of these two optimization levels is as follows:
Original strategy for the WC algorithm-(OWC)

Outer level

min
z

F(z,x,uN)

s.t.

h(x,z,uN)=0

g(x,z,uN)50

h(x,z,u 6k)=0
g 6k(x,z,u 6k)50

" 6�Vk

k=1,…,K

z�Z={z�zL5z5zU}

(ol-OWC)

where k is the iteration index between both optimiza-
tion levels, K is the total iteration number, Vk is the set
containing the index of the violated constraints g 6k.
Therefore uk

n is the value of u that produces the largest
violation of constraint n in the iteration k.

Inner level

max
u

gj(x,z*,u)

s.t.

h(x,z*,u)=0

u�G={u �uLu5uU}

Â
Ã
Ã
Ì
Ã
Ã
Å

j=1,…,J (il-OWC)

where z* is the optimum found one at the outer level.

4.3. WC algorithm using the KS function (KSWC
algorithm)

The feasibility test of the WC algorithm at the inner
level consists of verifying that for the current z*, the
inequality constraints

gj(x,z*,u)50 for j=1,…, J and for u�G

are not violated. This is done by solving maximization
problems at the inner level. Using property A of KS
function, the feasibility test can be reformulated as
follows (il-KSWC):

max
j

[gj(x,z*,u)]5KS(r,gj(x,z*,u)) for j=1,…,J

then

max
u

max
j

[gj(x,z*,u)]5max
u

KS(r,gj(x,z*,u)) for

j=1,…, J

and then the entire WC algorithm can be stated as:
WC strategy using the KS function (KSWC)
Outer level

min
z

F(z,x,uN)

s.t.

h(x,z,uN)=0

g(x,z,uN)50

h(x,z,uk)=0
g 6k(x,z,uk)50

" 6�Vk

k=1,…,K

z�Z={z�zL5z5zU}

(ol-KSWC)

where k is the iteration index between both optimiza-
tion levels, K is the total iteration number, Vk is the set
containing the index of the violated constraints g 6k.

Inner level

max
u

KS(x,z*,u)
s.t.

h(x,z*,u)=0
u�G={u �uL5u5uU}

(il-KSWC)

where:

KS(x,z*,u)=
1
r

ln
� %

J

j=1

exp (rgj(x,z*,u))
n

4.4. WC original algorithm as single le6el optimization
problem (SLWC algorithm)

We next consider a transformation of the two level
strategy of the worst-case algorithm into a single level
by formulating the Karush Kuhn–Tucker optimality
conditions of the inner problems (il-OWC) and includ-
ing them as constraints in the outer level. By using the
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Table 1
Variation ranges for the uncertain parameters in the four cases analyzed

Cm T1
FC1

F Tm

20.0 300.0 300.0Case I 19.55C1
F521.0

19.55Cm521.0 300.019.55C1
F521.0 300.0Case II

19.55C1
F521.0Case III 19.55Cm521.0 2955T1

F5315 300.0
19.55C1

F521.0Case IV 19.55Cm521.0 2955T1
F5315 2955Tm5315

smoothing functions from Section 3, the Karush
Kuhn–Tucker optimality conditions of a general inner
loop problem can be written as follows:

L(x, z*, u)= −gj(x, z*, u)+mTh(x, z*, u)+lLT(uL−u)

+lUT(u−uU)

and the KKT conditions are:

9xL(x, z*, u)= −9xgj(x, z*, u)+mT9xh(x, z*, u)=0
(8a)

9uL(x, z*, u)

= −9ugj(x, z*, u)+mT9uh(x, z*, u)−lL+lU=0
(8b)

lTg(x, z)=0, lLT(uL−u)=0, lUT(u−uU)=0 (8c)

l]0 lL]0, lU]0 (8d)

g(x, z)50 (8e)

Now, the set of Eqs. (8c), (8d) and (8e) can be
replaced using the results of Section 3.1 by the follow-
ing expression l−max{0, l+g(x, z)}=0 and similar
expressions for the bounds on u.

Single level WC strategy (SLWC)

min
z

F(x,z,uN)

s.t.

h(x,z,uN)=0

g(x,z,uN)50

hj(xj,z,uj)=0

gj(xj,z,uj)50

−9xgj(xj,z,uj)+m j
T9xhj(xj,z,uj)=0

−9ugj(xj,z,uj)+m j
T9uhj(xj,z,uj)−l j

L+l j
U=0

l j
L− (l j

L+u j
L−uj)+ =0

l j
U− (l j

U+uj−u
j

U)+ =0

Â
Ã
Ã
Ã
Ì
Ã
Ã
Ã
Å

j=

1,…,Jz�Z={z �zL5z5zU}

where: (�)+ =max(0, �)

4.5. Numerical results

4.5.1. Example problems
For the four worst case formulations developed in

the previous section, we consider three examples to
compare the required computational effort. Following
are the mathematical formulation of the examples. (see
Table 1)

Example 1: (Pistikopoulos, 1988)

min
z

F= (z−2)2+uN

s.t.

g1=z−u50

g2= −z−u/3+4/350

g3=z+u−450

0.55z54.0

u�G={u:15u53}

uN=2

Example 2: (Bandoni, 1987)

min
z

F=1(z1+3z2)

s.t.

g1=x1z1+x2z2−x550

g2=x3z1+x4z2−x650

h1=x1− (−4u2
1+3u2

2+3.25)=0

h2=x2− (u1+2u2−1.75)=0

h3=x3− (u2−6)=0

h4=x4− (−3u2
1+4u2

2+4u1u2−u1−1)=0

h5=x5= (3u1+u2+5.5)=0

h6=x6−10=0

05z152

05z252

u�G={u:0.55u152.5, 0.55u2

52.5, u2
1−3u1-u2+2.7550}

uN= (1.0 1.5)
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Example 3: (De Hennin & Perkins, 1991)

min F=10(F1
F C1

F+FmCm−0.3F2)−0.01Q1
r −1.0Q2

r

−0.1F1
F−0.1Fm

g1=T1−35050 K

g2=T2−35050 K

g3=Fm+F1
F−0.850 m3/s

g4=Q1
r −3050 cal/s

g5=Q2
r −2050 cal/s

g6=C2−0.350 mol/m3

h1= −k0e
−E

RT1C1V1+F1
F(C1

F−C1)=0

h2= − (DHr)k0e
−E

RT1C1V1+F1
F(T1

F−T1)−Q1
r =0

h3= −k0e
−E

RT2C2V2+F2
F(C2

F−C2)=0

h4= − (DHr)k0e
−E

RT2C2V2+F2
F(T2

F−T2)−Q2
r =0

h5=F1+Fm−F2
F=0

h6= (F1C1+FmCm)/F2
F−C2

F=0

h7= (F1T1−T1
w)/F2

F−T2
F=0

h8=UA(T1−T1
w)−Q1

r =0

h9=UA(T2−T2
w)−Q2

r =0

0.055F1
F

0.055Fm

4.6. Discussion of results

Table 2 presents the CPU times obtained for each of
the three examples considered for the four approaches
presented in Section 4. From the table, we observe that
the SLWC approach reduces the solution time to about
84% of the time required by the original OWC ap-
proach. Also note that this percentage of reduction is
quite similar for the three examples. The results also
show that instead of this constant percentage of reduc-
tion, the KSWC approach leads to different percent-
ages of reduction, depending on how many outer level
iterations are required.

Table 3 shows the influence of the number of uncer-
tain parameters on the solution time. These results
correspond to Example 3. It can be observed that in the
case of the OWC algorithm, the CPU time required is
quite similar using up to four uncertain parameters. In
the case of the KSWC approach, the increment in CPU
time from one to four uncertain parameter is given by
a jump (in this case produced when passing from two to
three uncertain parameters). This behavior is typical of
the KSWC approach, where the jumps correspond to
an additional outer level iteration required by the
algorithm.

Table 2
CPU times (in 1/100 s) for the three examples with the four approaches. The results reported for Example 3 correspond to two uncertain
parameters for this example (Case II)

Algorithm Example 1 Example 2 Example 3

CPU time CPU time Reduction (%)Reduction (%) CPU timeReduction (%)

98OWC –211–80–
56 73.4KSWC 50 49.0 73 8.7

83.715 33 84.484.7 13SLWC

Table 3
Comparison of solution times for the Example 3 using the four approaches and considering different number of uncertain parameters

Algorithm Case IIICase IICase I Case IV

CPU time Reduction (%) CPU time Reduction (%) CPU time Reduction (%) CPU time Reduction (%)

199.5 – 203.0OWC – 200.8 – 206.6 –
56.889.255.888.871.158.671.0KSWC 57.8

25.8 87.1 29.0 85.7 29.4 85.4SLWC 30.2 85.4
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Table 4
CPU time for increasing number of inequality constraints for Example 1a

2 constraints 3 constraintsAlgorithm 1 constraint

Reduction (%) CPU timeCPU time Reduction (%) CPU time Reduction (%)

– 74.6 –OWC 98.250.0 –
0.0 50.4 32.450.0 51.0KSWC 48.1

12.8SLWC 74.4 13.8 81.5 13.4 86.4

a The CPU times are expressed in 1/100 sec. All results were obtained with GAMS using MINOS running on a micro VAX.

Table 4 presents the influence of the inclusion of
additional constraints in Example 1, solved by the four
approaches. As can be expected, OWC requires more
CPU time for larger numbers of constraints, due to the
larger number of inner level optimization problems. In
this example, the proportional increase in the solution
time with respect to the number of constraints is due to
the similarity of the inner problem complexity. This
behavior cannot be expected in a general case.

The optimization problems in the KSWC algorithm
are smaller and then easier to solve, particularly for
problems with large number of inequality constraints.
In our experience it was quite easy to set the correct
value of the adjusting parameter r for the KSWC
algorithm. Normally a single value of r between 5 and
10 is good enough to get solution without numerical
difficulties. These range for r is also mentioned as good
enough to solve practical problems by Sobieszczanski
(1992) and Sobieszczanski, James and Riley (1987),
who have made extensive use of the KS function to
solve different optimization problems for root location
and structural sizing.

On the other hand, given that the SLWC algorithm
solves a single NLP, it is much faster getting the
solution (about 85% less CPU time is required in the
examples solved). Despite this advantage, this single
NLP is harder to solve than the individual NLPs of the
inner loop of the KSWC algorithm. Additionally to the
fact that the NLP of the SLWC is larger in size, the
main reason for this behavior is that the nonlinearity
added to the original problems because the solution
strategies, in the case of the KSWC goes to the objec-
tive function, while in the case of the SLWC goes into
the constraints. This makes harder obtaining initial
points and feasible solutions in the case of SLWC.

For highly non linear problems or with large number
of constraints the KSWC would be preferred to the
SLWC, because the reasons given above. Diaz, Ras-
panti, Bandoni and Brignole (1999) have used this
strategy to study worst case situations in a large scale
plant with thirty inequality constraints. The KSWC was
interfaced to an ad-hoc process simulator of a natural
gas plant, and the KSWC got the same solution as the
OWC algorithm in 95% lees of the CPU time. On the
other hand, if the problem is not highly non linear or

when it is known that only a few active constraints
could occurs, the SLWC could be preferred.

5. KS and smoothing function in flexibility analysis

5.1. Problem formulation and existing solution
procedures

In this section we present new solutions to the flexi-
bility test and the feasibility index developed by Gross-
mann and coworkers. They are based on the
incorporation of the KS function to reformulate the
solution strategy for solution of these two problems.
We also present a strategy, that making use of smooth-
ing functions avoid the binary variables in the previous
formulation of these problems. For the sake of clarity,
we repeat here the basic formulations for both prob-
lems. The Feasibility Test (Grossmann et al., 1983) is
defined as:

x(d)=max
u�G

min
z

max
j�J

gj(d, z, x, u)
s.t. h(d, z, x,u)=0

(9)

where x(d) is considered the feasibility degree of a
given design. If x(d)50 the operation is feasible for all
u�G, where G={u�uU]u]uL}. On the other hand, if
x(d)\0, the design will not be feasible at least for
some values of u due to the violation of at least one
constraint.

The flexibility index (Swaney & Grossmann, 1985a) is
expressed in the following way:

F=max d (10)

s.t. max
u�G(d)

min
z

max
j�J

gj(d, z, x, u)50

h(d, z, x, u)=0

G(d)={uN−dDu−5u5uN+dDu+}, d]0

where G(d) is the set of uncertain parameters defined
through the scalar variable d. This index F defines the
maximum set parameter G(F) so that a determined
design can be permanently feasible.

The solution of these two problems is generally com-
plicated because the max-min-max operator represents
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a nonlinear, nondifferentiable multilevel optimization
problem. Grossmann and coworkers proposed a solu-
tion strategy for both problems based on a decomposi-
tion into two optimization levels. In this way, the
feasibility test problem (9) was formulated as:

x(d)=max
u�G

c(d, u) (11)

s.t. c(d, u)=min
z

max
j�J

gj(d, z, x, u)
h(d, z, x, u)=0

where c(d,u) corresponds to the following nonlinear
problem:

c(d, u)=min
z, u

u (12)

s.t. gj(d, z, x, u)5u j�J
h(d, z, x, u)=0

where u is a scalar variable. Grossmann and Floudas
(1987) developed a solution procedure based on the
formulation of the Kuhn–Tucker conditions of prob-
lem (12) and included as constraints into the outer
problems. Binary variables were used to resolve the
complementary conditions. In these way, they derived
two Mixed Integer Non Linear programming formula-
tions. For the feasibility text the formulation is:

x(d)=max
z

u (13)

s.t. gj(d, z, x, u)+sj−u=0 j�J
hi(d, z, x, u)=0 i�I

%
j�J

lj=1

%
i�I

mi

(hi

(z
+ %

j�J

lj

(gj

(z
=0

%
i�I

mi

(hi

(x
+ %

j�J

lj

(gj

(x
=0

lj−yj50
sj−U(1−yj)50

lj]0, sj]0

Â
Ã
Ì
Ã
Å

j�J

%
j�J

yj5nz+1

uU]u]uL

In the same way, the flexibility index problem is formu-
lated as follows:

F=min
z

d

s.t. gj(d, z, x, u)+sj=0 j�J
hi(d, z, x, u)=0 i�I

%
j�J

lj=1

%
i�1

mi

(hi

(z
+ %

j�J

(gj

(z
=0

%
i�I

mi

(hi

(x
+ %

j�J

lj

(gj

(x
=0

lj−yj50
sj−U(1−yj)50

lj]0, sj]0

Â
Ã
Ì
Ã
Å

j�J

%
j�J

yj5nz+1

uN−dDu−5u5uN+dDu+, d]0 (14)

5.2. Reformulation by incorporating the KS function

As discussed in the first section of this paper, the KS
function overestimates a set of inequalities of the form
g(x)50. That means that for a large r, it verifies that:

KS(x, r)]max
j

(gj(x)), r\0

where x denotes the vector of variables, and the scalar
r is the adjustable parameter of the KS function.

Now, if we look at the Eq. (11) of the flexibility
analysis, it can be recognized that by incorporating the
KS function to replace the max

j
(gj(x)) the flexibility test

can be written in an equivalent form as follows:

x(d)=max
u�G

min
z

KS(d, z, x, u)

s.t. h(d, z, x, u)=0

As can be observed, the use of the KS function
allows the elimination of one of the optimization levels,
simplifying the formulation and consequently its resolu-
tion procedure as it will become clear later. The feasi-
bility function c(d, u) can now be defined as:

c(d, u)=min
z

u (15)

s.t. KS(d, z, x, u)5u
hi(d, z, x, u)=0 i�I

The Lagrangian function for this problem is

L=u+l(KS−u)+ %
i�I

mihi=0

and the corresponding Kuhn–Tucker conditions are

(L
(u

=1−l=0[l=1[KS=u (16a)

(L
(z

=
(KS
(z

+ %
i�I

mi

(hi

(z
=0 (16b)

(L
(x

=
(KS
(x

+ %
j�I

mi

(hi

(x
=0 (16c)
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As can be observed from (16a) Lagrange multiplier
corresponding to the single inequality constraint in
problem (15) is always l=1 at the optimum. This
means that the inequality constraint is always active
and KS=u. Then, the feasibility test problem (13) can
be formulated as below. However, note that the KKT
first order conditions used to derived equations (16) are
only necessary but not sufficient in the general case,
and therefore the formulation below might not be
equivalent to (15) in the general case.

Feasibility test problem with the KS function (KSFT)

max
u

KS

s.t. hi(d, z, x, u)=0, i�I

(KS
(z

+ %
i�I

mi

(hi

(z
=0

(KS
(x

+ %
i�I

mi

(hi

(x
=0

uL5u5uU

Note that this problem is just an NLP problem, as
compared with the MINLP problem of formulation
from Grossmann and Floudas (1987). The reason why
integer variables are not required is that the comple-
mentary condition of single inequality constraint of
problem (15) is always satisfied for l=1, and then no
development in terms of binary variables is required.

Following a similar derivation, the problem for the
flexibility index (14) can be reformulated also as a NLP
problem as follows:

Flexibility index problem with the KS function (KSFI)

F=min
u

d

s.t. KS=0
hi(d, z, x, u)=0, i�I

(KS
(z

+ %
i�I

mi

(hi

(z
=0

(KS
(x

+ %
i�I

mi

(hi

(x
=0

uN−dDu−5u5uN+dDu+, d]0

5.3. Incorporation of smoothing functions

Another derivation for the flexibility test and flexibil-
ity index problems can be obtained by directly using a
smoothing function to reformulate the complementary
conditions of problem (13) as follow:

sj=u−gj(d, z, x, u)
lj sj=0

lj]0, sj]0

Â
Ã
Ì
Ã
Å

Ulj−max(0, lj+gj(d, z, x, u)−u)

Now, once again the non differentiability of the
max{0, x} operator can be avoided using the smooth-
ing function as it was shown in Section 3.3. By applying
these transformations, both problems (13) and (14) can
be reformulated as the following two NLP problems:

Feasibility test problem with smoothing functions
(SFFT)

x(d)=max u

s.t. gj(d, z, x, u)−u50 j�J
hi(d, z, x, u)=0 i�I

%
j�I

lj=1

%
i�I

mi

(hi

(z
+ %

j�I

lj

(gj

(z
=0

%
i�I

mi

(hi

(x
+%

j� j

lj

(gj

(x
=0

lj− (lj+gj(d, z, x, u)−u)+ =0

uU]u]uL

where: (�)+ =max(0, �)
Flexibility index problem with smoothing function
(SFFI)

F=min
z

d

s.t. gj(d, z, x, u)50 j�J
hi(d, z, x, u)=0 i�I

%
j�J

lj=1

%
i�I

mi

(hi

(z
+ %

j�J

lj

(gj

(z
=0

%
i�I

mi

(hi

(x
+ %

j�J

lj

(gj

(x
=0

lj− (lj+gj(d, z, x, u))+ =0

uN−dDu−5u5uN+dDu+, d]0

5.4. Numerical results

5.4.1. Example problems
Example 4:

Consider the following simple example of two in-
equality constraints (see Fig. 2) with a single control
variable and a single uncertain parameter:

g1=z2−4z+u50

g2=z−u50

05u55

The numerical results reported in the literature for
this problem are the following
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Feasibility test:
x(d)=maxc(d,u)=1.0, corresponding to u=5. This
can be easily observed in Fig. 3.

Flexibility index:
For a nominal value of uN=2.5, with Du−=Du+=

2.5. The report flexibility index is F=0.6.
Table 5 presents the reduction in the solution time of

this example for both, the flexibility test and the flexi-
bility index using the original formulations from Gross-
mann and Floudas (1987) and the ones proposed in this
work

Example 5:
Consider the following heat exchanger network taken

from Grossmann and Floudas (1987). The uncertain
parameters are the input temperatures to the network,
T1, T3, T5 and T8 and the heat transfer coefficient U. In
Table 6below are the nominal values and maximum
variations allowed for these parameters.

The mathematical model for this network is the
following:

Energy balances:

Q1=1.5(T1−T2),

Q1=2.0(T4−T3),

Q2=1.0(T5−T6),

Q2=2.0(563−T4),

Q3=1.0(T6−T7),

Q3=3.0 (393−T8),

QC=1.5(T2−350),

QC=CC(320−300);

Feasibility constraints

T2−T3]DTmin,

T6−T4]DTmin,

T7−T8]DTmin,

T6−363]DTmin,

Fig. 2. Plot of the constraints of Example 4 in the space z-u.

Fig. 3. Plot of the feasibility function for Example 4.

Table 5
CPU time for the flexibility studies of Example 4

MINLP NLP problemNLP problem
problem

Eq. (13) KSFT SFFI

0.61 sFeasibility test 0.57 s2.56 s
76.2– 77.7% of reduction

KSFI SFFIEq. (14)

0.58 s 0.57 s4.17 sFlexibility index
– 86.1% of reduction 86.3

Table 6
Nominal values and range of variations for uncertain parameters of
Example 5

Uncertain Low bound Nominal value Upper bound
parameter

610 650 670T1 (K)
370T3 (K) 376 390

593585570T5 (K)
308T8 (K) 310 314
0.38U (kW/m2 K) 0.40 0.42
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Table 7
CPU for the flexibility studies of example 5

MINLP NLP problem NLP problem
problem

KSFT SFFTEq. (13)

Feasibility test 6.70 s26.12 s 4.89 s
74.3– 81.3% of reduction

KSFI SFFIEq. (14)

26.36 sFlexibility index 3.06 s 2.10 s
88.4% of reduction 92.0–

T1=645.3 K

T3=375.3 K

T5=583.2 K

T8=309.8 K

U=0.402 (kW/m2 K)

A flexibility index of 0.117 means the given design,
accepts only 11.7% of the maximum variation (Du−

Du+) considered for the uncertain parameters. In this
example, the design constraint on heat exchanger C and
the operating constraints on the temperature T7 are the
limiting constraints.

Table 7 below, presents the reduction in the CPU
times for this example, using as before the original
formulation for feasibility test and flexibility index and
the two new formulations proposed in this work, based
on the KS and smoothing functions.

In order to get good approximations with the KS and
smoothing functions in the feasibility test (formulations
KSFT and KSFI) and the flexibility index (formula-
tions SFFT and SFFI), large values of r and low values
of b respectively are required. Considering that a wrong
selection of the parameters could give numerical
difficulties, we used a strategy consisting in the solution
of a series of problems, starting with a given value of
the adjusting parameter and doubling o halving it until
the final solution was obtained. The optimum of one
problem was used as the initial point for the next one.
For the formulations KSFT and KSFI, an initial value
of r=2 was used and 4 iteration were required. For
formulation SFFT and SFFI a starting value of b of
about 18 was used and 7 iterations were required. The
CPU times reported in Table 5 and Table 7correspond
to the total CPU time required for all problems.

The formulations based on the KS function (KSFT
and KSFI) are of smaller size than the formulations
based on the smoothing function (SFFT and SFFI). In
our experience, the problems with the KS are easier to
solve, in the first place because the size reason, but also
because it seems that the smoothing function adds more
nonlinearity to the problems than the KS function. The
problems with KS are much less sensitive to the initial
points. For the examples we solved, the reduction in the
CPU time obtained by the two approaches (related to
the time of the MINLP formulation), are similar.

Fig. 4 below shows how the algorithms based on the
KS function and in the smoothing functions performs
for different values of the adjusting parameter r, on the
optimal value of the feasibility function x(d)=max
c(d,u). The correct solution is x(d)=69.531. As it can
be observed, for values of r larger than 1 the correct
solution is obtained. The formulation based on the KS
function gives solutions closer to the correct one of
69.531 for small values of the adjustable parameter.

T7]323,

Q15UA1DTML1,

Q25UA2DTML2,

Q35UA3DTML3,

QC5UACDTMLC;

where: DTmin=3K.
DTML is approximated using the expression provided

by Chen (1987).

DTML=
(T1− t2)− (T2− t1)

ln
!T1− t2

T2− t1

"
$
!(T1− t2) (T2− t1) (T1− t1) (T1− t2+T2− t1)

2
"1/3

The control variable of this problem is the flow rate Cc.
The results reported in the literature are:

Feasibility test:
Results:

x(d)=69.531

T1=621.4 K

T3=384.7 K

T5=570.0 K

T8=311.0 K

U=0.38 (kW/m2 K)

A positive value for x(d), means that the operation
can not be feasible for the whole range of variation of
the uncertain parameters. In order to get feasible opera-
tion x(d)50 for the given uncertainty, the transfer
areas of the heat exchanger must be modified.

Feasibility index:
Results:

F=0.117



C.G. Raspanti et al. / Computers and Chemical Engineering 24 (2000) 2193–22092206

6. Conclusions

This paper presents new solution strategies for opti-
mization problems under uncertainty, based on the use
of a kind of aggregation function, called the KS func-
tion, and a type of smoothing function. Specifically, we
developed a new solution procedure for the worst case
algorithm and the flexibility index and feasibility test
problems. We introduced the use of the KS and
smoothing functions into the original formulations of
these problems leading to an important reduction in the
size of the problems, and consequently in the solution
time. The proposed algorithms were tested on several
examples, showing reduction in the solution time of
about 70–90%. In the case of flexibility analysis, the
important advantage of the new formulations is that
they require the solution of single NLP problems, in-
stead of a multilevel optimization strategy or the solu-
tion of a MINLP problem, as in the standard solution
procedures.

One limitation of both the KS function and the
smoothing functions is that the resulting NLPs are
generally nonconvex formulations and these are cur-
rently addressed with ‘local’ NLP solvers. As a result,
local solutions can be obtained in the flexibility analysis
even if the original feasible region is convex. Addressing
this topic will be the subject of future research. Never-
theless, these formulations were very successful in tack-
ling a number of challenging problems in flexibility
analysis in a very efficient manner.

Appendix A

To prove properties 1, 2 and 3, we first consider the
following lemma:
Lemma:
Consider a set of real valued parameters jj]0, the
following property holds:�%

j

j j
r1
n1/r 1

5
�%

j

j j
r2
n1/r 2

if r1\r2 and r1, r2\0

Proof:
Defining: j( j51 as

j( j=
jj

max
k

(jk)
=

jj

x̄
� [0, 1]

we have �j j( j
r15�jj( j

r2 because j( j
r15j( j

r2

and
��j j( j

r1
n1/r 1

5
��jj( j

r2
n1/r 1

.

Therefore, given that the maximum is equal to 1, we
have that

%
j

j( j]1 and
�%

j

j( j
r2
n1/r 1

5
�%

j

j( j
r2
n1/r 2

Finally, combining the previous deductions it can be
concluded that:�%

j

j j
r1
n1/r 1

= x̄
�%

j

j( j
r1
n1/r 1

5 x̄
�%

j

j( r2
n1/r 2

=
�%

j

j j
r2
n1/r 2

Fig. 4. x(d) as function of adjustable parameters.
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Property 1:

KS(x, r)]max
j

(gj(x)), r\0

Proof:
Considering a set of real valued parameters jj]0, j=
1,…J, the following relation holds:

%
k

jk
r]j j

r for every j jj]0

or�%
k

jk
r
n1/r

]jj

Considering now that we replace parameters jj by real
valued functions exp (gj(x)) to be used as the base
functions, we have:�%

k

exp(gj(x))r
n1/r

] exp (gj(x)) for all x, j

Taking logs of both sides of this expression, we have
that:

1
r

ln
�%

j

exp(gj(x))r
n
]gj(x)

and since exp (j)r=exp (rj) we can conclude that:

KS(x, r)=
1
r

ln
�%

j

exp(rgj(x))
n

]gj(x) for every pair x, j

Property 2:

lim
r��

KS(x, r)=max
j

(gj(x))

Proof:
Note that for r��, the �-norm of a set of jj

(j=1,…, J) can be obtained and the following relation
holds:

lim
r��

�%
j

j j
r
�1/r

=max jj
j

If now we proceed as before and the real valued
parameters jj are replaced by the real valued functions
exp (gj(x)), we have:

lim
r��

�%
j

exp(rgj(x))
�1/r

=max
j

exp(gj(x))

and then:

lim
r��

1
r

ln
�%

j

exp(rgj(x))
�

= lim
r��

KS(x, r)=max
j

(gj(x))

Property 3:

KS(x, r2)]KS(x, r1)Öx such that r1\r2\0

Proof:
From the Lemma we have:

�%
j

j j
r2
n1/r 2

]
�%

j

j j
r1
n1/r 1

; r1\r2

or�%
j

exp(r2gj(x))
n1/r

]
�%

j

exp(r1gj(x))
n1/r 1

and by taking logs of both sides we get:

1
r2

ln
�%

j

exp(r2gj(x))
n
]

1
r1

ln
�%

j

exp(r1gj(x))
n

which leaves: KS(x,r2)]KS(x,r1).

Property 4
The following development demonstrates that the defin-
itions of the KS function in Eqs. (1) and (2) are
equivalent. By simple algebraic manipulation of Eq. (2)
we get:

r(KS−M)= ln
�%

j

exp (r(gj−M))
n

and by log property

exp (r(KS−Md))=%
j

exp (r(gj−M))

or

exp (rKS) [exp (rM)]−1= [exp (rM)]−1 %
j

exp (rgj)

Finally, from this last expression we get

KS=
1
r

ln
�%

j

exp (rgj)
n

showing the equivalency of both definition of the KS
function

Property 5:
By differentiating Eq. (3) we get:

(KS
(r

=
1

r2 ln
� %

j
j"max

exp (r(gj−gmax))+1
n

+
1
r

%
j

j"max

[(gj−gmax) exp (r(gj−gmax))]

%
j

j"max

exp (r(gj−gmax))+1

Applying limit to this expression for r��, we have

lim
r��

(KS
(r

=0

what means that the KS function becomes insensitive to
r for a sufficiently large value. Moreover, it can be
proved that for sufficiently large r, KS � gmax. This
can be seen by showing that the KS function and its
derivatives tend to gmax and its derivative, respectively.
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Consider:

(KS
(gmax

=1− %
j

j"max

exp (r(gj−gmax))

,� %
j

j"max

exp (r(gj−gmax))+1
n

and applying the limit

lim
r��

(KS
(gmax

=1 [ KS=gmax

Now by taking derivatives of the KS function with
respect to the variables x, it can be seen that for
sufficiently large r, this derivative tends to the deriva-
tive of gmax. So, we have:

(KS
(xi

=
(gmax

(xi

+

%
j

j"max

��(gj

(xi

−
(gmax

(xi

�
exp (r(gj−gmax))

n
%
j

j"max

exp (r(gj−gmax))+1

and applying the limit leads to:

lim
r��

(KS
(xi

=
(gmax

(xi

Property 6:
We now consider the optimality conditions of Problem
2 (P2) and demonstrate by differentiation of 9L with
respect to x the independence of these conditions to
gmax and insensitivity to r as r becomes large. Starting
from the Lagrange function for P2, we have:

L= f(x)

+m
!

gmax+
1
r

ln
� %

j
j"max

exp [r(gj(x)−gmax)]+1
n"

and

9L=9f(x)

+m9
!

gmax+
1
r

ln
� %

j
j"max

exp [r(gj(x)−gmax)]

+1
n"

then:

(

(gmax

9L

=m
(

(gmax

Í
Ã

Ã

Á

Ä

%
j

j"max

[(9gj−9gmax) exp (r(gj−gmax))]

%
j

j"max

exp (r(gj−gmax))+1
Ì
Ã

Ã

Â

Å

=m

(−r) %
j

j"max

[(9gj−9gmax) exp (r(gj−gmax))]

� %
j

j"max

exp (r(gj−gmax))+1n

and finally:

lim
r��

(

(gmax

9L=0

Property 7:
The KS function defined in Eq. (1) is no-convex be-
cause the log expression in concave for any positive
argument. However, we note that the region defined as

1
r

ln
�%

J

j

exp (rgj(x))
n
5C1

is equivalent to the region given by the constraint

V(x, r)=%
J

j

exp (rgj(x))5 exp (rC1)

The Hessian of this constraint is given by

9xxV(x, r)=9xx
�%

J

j

exp (rgj(x))
n

=%
J

j

{exp (rgj(x))

× [r92gj(x)+r29gj(x)9gj(x)T]}

which is positive definite if at least one 92gj(x) is
positive definite. If the 92gj(x) are all positive semi-
definite, then 9xxV(x, r) is positive semidefinitive. As a
results, V(x, r) is a convex function and define a convex
region. Since this region is equivalent to the one defined
by KS(x, r)5C1 this region is convex as well, and then
providing the property.

Appendix B

Consider the following two set of conditions:

l.g(x)=0 (S1)

l]0

g(x)50

l−max(0, l+g(x))=0 (S2)

There are nine possible combinations of signs of g
and l for set S1 as shown in the second row of the table
below. Only cases 1, 2 and 7 correspond to feasible
cases. The third row of the table shows the solutions for
S2, showing that it has coincident feasible (F) and non
feasible (NF) solutions with set S1. Therefore, both sets
are equivalent.
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1 2 3 4 5 6 7 8 9

l=0 l\0 lB0 l=0 l\0 lB0 l=0 l\0 lB0
g=0 g\0 g\0 g\0g=0 gB0g=0 gB0 gB0

l−0"00+0=0 0−g"0l−l=0 l−(l+g)"0 l−0"0 0−0=0 l−(l+g)"0 l−0"0
ó ó
l−(l+g)"0 l+0"0

NF NF NF NF F NFF NFF
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