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Abstract 

This paper presents the optimal control policy of an industrial low-density polyethylene (LDPE) plant. Based on a dynamic 
model of the whole plant, optimal feed profiles are determined to minimize the transient states generated during the switching 
between different steady states. This industrial process produces LDPE by high-pressure polymerization of ethylene in a tubular 
reactor. The plant produces different final products. The model consists of two parts, the first one corresponds to the reactor and 
the second to the rest of the plant. The process has many time delays that are also incorporated into the optimization model. The 
resulting differential algebraic equation (DAE) plant model includes over 500 equations. The continuous state and control 
variables are discretized by applying orthogonal collocation on finite elements. The resulting NLP is solved with a reduced space 
interior point algorithm. The paper studies two cases of switching among different polymer grades determining the optimal butane 
flow rates, in order to minimize the time to reach the steady state operation corresponding to the desired new product quality. 
© 2000 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

The production of  LDPE is a typical process where 
unsteady states are part of the normal operation of  the 
plant. To obtain low-density polyethylene (LDPE) of  
different grades, in addition to the normal disturbances 
of any process, programmed variations are originated 
when operators change product specifications by 
switching between different steady states. Off specifica- 
tion products could be decreased if the plant operators 
would use profiles for the manipulated variables that 
are obtained through an optimization procedure. Dif- 
ferent optimization objectives could be used, where a 
common performance criterion is the difference be- 
tween the current profile and the new desired steady 
state. To deal with this type of problem in a systematic 
way, it is necessary to develop and optimize an ade- 
quate dynamic model for the process with the right 
objective function. 

In this work, we develop a dynamic model for the 
entire plant based on a reformulation of  a simplified 
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nonlinear model for the plant (Schbib, Tonelli, Brignole 
& Romagnoli, 1992), and a dynamic version of  a 
rigorous steady-state reactor model by Brandolin, La- 
cunza, Urgin and Capiati (1996). The model is posed as 
a dynamic optimization problem to obtain optimal 
profiles for manipulated variables. The dynamic opti- 
mization problem is transformed into a nonlinear pro- 
gramming problem (NLP) by collocation on finite 
elements, and the resulting NLP problem is solved with 
a novel, recently developed interior point strategy ap- 
plied in the reduced space. 

In the next section, we present a brief description of 
the LDPE process and a detailed explanation of the 
process models. Section 3 describes the solution proce- 
dure, while results are presented in Section 4. Conclu- 
sions and future directions are described in Section 5. 

2. LDPE process description and model 

The industrial process under study (Fig. 1) produces 
90 000 tons/year of  LDPE by high-pressure polymer- 
ization of ethylene in a tubular reactor, using oxygen 
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and peroxide initiators. The fresh ethylene feed is mixed 
with a purified low-pressure recycle stream, oxygen and 
butane, and then compressed until about 250 bars in a 
multi-stage primary compressor. This stream is mixed 
with the high-pressure recycle, further compressed in a 
hypercompressor up to the reaction pressure of around 
2000 bars, and continuously fed to a jacketed tubular 
reactor, where the ethylene is partially polymerized 
producing polyethylene of different grades. Two addi- 
tional feeds of organic peroxide are allocated at two 
different axial positions, producing two reaction zones 
with sharp temperature and conversion increases. 

The mixture from the reactor output is expanded in a 
letdown valve and fed to a series of high-low pressure 
separators where the polymer is obtained. The ethylene 
is cooled and dewaxed prior to being recycled. The 
polymer is obtained from the low-pressure separator 
and fed into an extruder to be pelleted, cooled and 
finally sent to storage. 

Normal plant operation requires changes from one 
steady state to another to switch among different final 
products. This can be accomplished by changing the 
butane feed flow rate and/or the purge flow rate from 
the precompressor. These changes generate distur- 
bances that keep the product out of specifications dur- 
ing the transient states. 

2.1. Plant model  

The plant model includes four components: ethylene 
( j  = 1), butane ( j  = 2), methane ( j  = 3) and impurities 
( j  = 4). During the usual plant operation the equipment 
temperature and pressure are strictly controlled. There- 
fore their variations are not significant. For this reason, 
the moment and energy balances were not taken into 
account in the mathematical model proposed. Based on 
the realistic assumption that the dynamics of the total 
mass balances is much faster than that of the compo- 
nent mass balances, constant equipment holdups are 
considered. 

Each process unit of the flowsheet was represented as 
a continuous stirred tank (CST). The continuity equa- 
tion for the j th  component is: 

d ( V p w  y) 
d~--~-- - Fw{  - Fw j j = 1...4 (1) 

where: V =  equipment volume (m3), F =  mass flowrate 
(kg/h), p = gas density (kg/m3), w~ = inlet weight com- 
position of the j th  component, w J = outlet weight com- 
position of the j th component. 
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Fig. 1. LDPE process flowsheet. 
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Another aspect of this process is the presence of 
several time delays. In a previous study (Cervantes, 
Tonelli, Bandoni & Biegler, 1998) a first order Pad6 
approximation in the space of state variables was used 
to model the delays and incorporated in the plant 
model. In this work, a different and tighter method is 
applied for the time delay prediction. Here time delays 
are directly incorporated into the plant model by as- 
signing to each one a tube of length L, where a plug 
flow is assumed. The resulting component material 
balances for these tubes are as follows: 

aw: F ~w -i 

st a -O 
aw: 
- - ( L ) = 0 ;  wY(z, O)= wd 
Oz 

(2) 

These equations are discretized using a backward dif- 
ference equation in z, with N = 10 intervals. Based on a 
dynamic analysis of the process behavior, the many 
delays present in the whole plant were lumped into only 
six time delays, but retaining the global dynamic plant 
behavior by an appropriate selection of their location. 

2.2. Reactor model 

The dynamic model for the reactor was built on the 
basis of a previous rigorous steady-state model (Bran- 
dolin et al., 1996). The rigorous model considers multi- 
ple monomer feeds and multiple injections of initiators 
and chain transfer agents at different locations through 
the axial length, along with realistic jacket flux 
configurations. 

For this work, several simplifying assumptions were 
applied to convert the former steady-state model to a 
dynamic model suitable for optimization purposes. In 
the context of the dynamic optimization of the whole 
plant, the main quantities to be provided by the model 
were conversion, temperature, component compositions 
and number average molecular weight (Mn). This last 
quantity represents the average mass of monomer in- 
corporated into each mole of polymer product. It was 
ensured that the same steady-state condition is obtained 
when the dynamic model is run from time zero to 
infinity, and when the non-linear algebraic equations 
resulting from eliminating the time derivatives are 
solved. The reactions that only affect molecular proper- 
ties other than Mn were not considered at this stage of 
the work. The final selected kinetic mechanism was: 
Peroxide (/:) initiation 

fj kdjo 
/: ~ 2R(0); j = l , 2  

Oxygen initiation 
ko 

O2 ÷ M ~ 2  R(0) 
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R(x) + M ~ R ( x  + l) 
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Termination by combination 

ktc 
R(x) + R(y) ~ P ( x  + y) 

Thermal degradation 

R(x + 1)~-~'P(x) + R(O) 

Chain transfer to butane 

ktrs 
R(x) + S ~ P(x) + R(O) 

where P(x) and R(x) are polymer and radical 
molecules which contain 'x' monomer units. The oxy- 
gen and peroxide initiators are injected to the reactor 
and consumed totally there. Radicals are generated and 
consumed only in the reactor. As a consequence these 
three species are considered only in the reactor model. 

The reactor was divided in six jacket sections. The 
first section is used to preheat the reaction mixture. In 
the second section radicals generated by oxygen propa- 
gate. Two peroxide initiators are injected at the third 
and fifth sections generating two reaction zones, respec- 
tively. The fourth and sixth sections are used for cool- 
ing purposes. Each of these sections is modeled as a PF 
reactor. We used uniform global heat transfer coeffi- 
cients (U), specific heat (Cp), density (p), jacket tem- 
perature (Tj), and jacket pressure at each section. No 
balances for the jacket side were necessary. To simplify 
pressure calculations on the reaction side we used infor- 
mation from the rigorous model to propose a linear 
variation of pressure along the reactor. Eqs. (3)-(11) 
are applied for each one of the jacket sections (k = 1, 6) 
in which the reactor was divided: the dimensional vari- 
ables were converted to a proper dimensionless form. 
Then, to incorporate the model into the optimization 
framework, the space coordinate z was discretized using 
backward finite differences. This discretization was not 
uniform; shorter intervals were taken after initiator 
injections since the rate of change of the variables 
increases significantly. 
Temperature equation 

ST(z, 
St t)(k) 

1 t ST(z, t) 
= p(k)Cp(k)~ - v(k)p(k)Cp(k) ~ (k) 

+ ( - kp(z,t)wS(z,t)(k)w'(z, t)P(k)( - AH) 
\ MW m 

(3) 

Propagation E t h y l e n e  (w 1) balance 
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aw l(z, o(k )~Wl_~z , t) t ) (k)  = _ 

- kp(z,t)w8(z, t) p(k)w1(z,t) 

_ ko(z ' t)wS(z, ,)'\11 P(k) 1 ' 1 ~  w l(z, t) 
Mwox 

Butane (w 2) balance 

aw2(z, v(k) aW2_~ z, t) 
St tl(k) = - 

--ktrs(Z, t)wS(z, t)p(k)wZ(z, t) 

Oxygen (w 5) balance 

awS(z' 5~z St t ) (k)= - °(k)aw , t )  

--ko(z, t)w5(z, t) 1"1 P(k )°l wl(z, t ) -  
MWox 

Radical (w 8) balances 

(4) 

(5) 

; ( / c )  

MWm 
(6) 

v(k).~wS(z, t) 2 . 1 
0 = - az ~- ~ 2fj kdj W 7,.,Mwin 

j = l  J 

+ ko(z, t)w5(z, t) m P(k) mMwl~ wl( z, t )M1 m 

- ktc(z,t)wS(z, t)2p (k) (7) 

Global polymer (w 6) balance 

aW6(Z' 6~Z' 
St t)(k) = °(klOW t) - 1-0.5ktc(z, t)w8(z, t)2p (k) 

. , p ( k )  8. -b ktrs(Z, t)w2(z, t)Z-7-- w tz, t) 
IVIW s 

-~-ktdt(Z , t)W8(Z, t) (8) 

Peroxide (w 7) balances 
1 - -  

0 = - v(k)~W7'~(/' + kdj(z, t)w7"J(z, t) j = 1, 2 (9) t) 

The initial and boundary conditions may be expressed 
as~ 

t = 0 wJ(z, 0) = wd(z); T(z, O) = To(z ) (10) 

z = 0  wJ(O,t)=wd(z); T(O,t)=Tz= o (11) 

where j = 1, 2, 5...8. 

3. Dynamic optimization problem 

In this type of plant, a common practice to infer the 
final product quality is to measure the composition of  
butane in the low-pressure recycle stream. Therefore, as 
a performance criterion for the dynamic optimization 
problem, we selected the deviation of this variable 
respect to the desired set point. 

In order to account for the minimum switching time 
between two steady states, the time weighted integral 
error function was selected to be used as the objective 
function. As the manipulated variable, the butane feed 
and the purge stream profiles are used. 

In Eq. (12) z is the vector of  differential variables, y 
is the vector of  algebraic variables and u is the control 
variable which represents the butane feed to the plant. 

• set 2 mm Xbu -- X bu) 

s.t. DAE model 

z(t = O )  = z ° 
ZI ~ z  ~ z u 

y<_y<_y~ 
ul ~ u ~ u  u 

dt 

(3-11) 

(12) 

Adding a new differential variable to the problem we 
can write it in Mayer form, where the objective func- 
tion becomes 

min Znew(tS) (13) 

The continuous state and control variables are dis- 
cretized by applying orthogonal collocation on finite 
elements and the resulting NLP is solved with a decom- 
posed barrier (or interior point) algorithm. In the re- 
mainder of  this section we briefly present the basic 
characteristics of  this approach. 

3.1. Discretization 

The continuous dynamic optimization problem is 
discretized by applying collocation on finite elements. 
We use a monomial basis representation for the differ- 
ential profiles. 

ncol I t  --  t i 1"~ dz 
z ( t ) = Z i - - l ' ~ - ( t - - t i - - 1 )  E O q l ~ ) " ~ J , q  (14) 

q=l  \ ni / u ~  

where Z;_l = value of  the differential variable at the 
beginning of element i, h i= length of element i, dz/ 
dtcq = value of its first derivative in element i at the 
collocation point q, and 12q = a polynomial of  order 
ncol. 

The control and algebraic variables are approximated 
by 

(t- -lh y(t)  = •q (15) 
q = 1 hi ]Yi. q 

ncol ( 
u ( t ) =  E ~//q t ' - -~ - l~  (16) 

q = 1 hi / ui" q 

where Yi, q and Ui,q represent the values of  the algebraic 
and control variables, respectively, in element i at collo- 
cation point q. Here, ~/q is a Lagrange polynomial of 
order ncol. The differential variables are required to be 
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Fig. 2. Optimal control and state profiles: Case 1. 

continuous throughout the time horizon, while the con- 
trol and algebraic variables are allowed to have discon- 
tinuities at the boundaries of the elements. Fixing the 
number and the length of the elements, and the number 
of collocation points the substitution of Eqs. (14)-(16) 
into (12) leads to the following NLP. 

s.t c (x)=O (21) 
x>O 

This approach replaces the bound constraints with a 
logarithmic barrier term, which is added to the objec- 
tive function. By introducing strictly positive slack vari- 
ables, the problem can be written as 

min ~o~(x) = f i x )  - p ~, In (s') (22) 
i = 1  

s.t c (x) = 0 
s - x = 0 (23) 

where /~ > 0 is a barrier parameter. The algorithm 
solves a sequence of barrier problems (Eqs. (22) and 
(23)) for decreasing values of/1. It is clear that as/~ goes 
to zero, the solution of the barrier problem will con- 
verge to the solution of the original NLP. 

The solution of each barrier problem is obtained 
following a reduced space approach, where the overall 
step is partitioned into a range and null space compo- 
nents. For this, the variables are partitioned into m 
dependent and (n-m) independent variables. The step 
for the dependent variables is obtained by solving a 
square linear systems of equations, while the step for 
the independent variables corresponds to the solution 
of a unconstrained QP. Details of this algorithm along 
with an extensive performance evaluation are given in 
Cervantes et al. (1999). 

minf(x) (17) 4. Results 

s.t c(x) = 0 (18) 
Xt < X < X u 

where x is the vector of discretized variables 

F dzi, q 7 T 
x = Lzi---d-f- Yi, qUi, q j (19) 

3.2. Barrier method 

The NLP problem (Eqs. (17)-(19)) is solved using a 
reduced space barrier method (Cervantes, Waechter, 
Tutunca & Biegler, 1999). This method has proved to 
be very efficient for solving DAE optimization prob- 
lems, especially when the dimension of the state vari- 
ables is much larger than that of the control variables. 
The method also adds robustness to the solution proce- 
dure by performing local factorizations. 

Without loss of generality and in order to simplify 
the presentation of the algorithm the NLP problem 
(17)-(18) can be written as 

minf(x) (20) 

The above plant model leads to a system with 532 
differential-algebraic equations. To capture the dynam- 
ics of the reactor model adequately, three collocation 
points were required and up to 40 finite elements were 
needed in the discretization process. The resulting prob- 
lem was solved using our interior point algorithm run- 
ning on a Dec Alpha 500. 

We analyze two different product grade transitions 
(Cases 1 and 2), to show the capabilities of the devel- 
oped large-scale optimization model. Cases I and 2 
correspond to a decrease and to an increase in molecu- 
lar weight, respectively. We also compare the results of 
Case 1 with the ones obtained with the previous sim- 
plified model (Cervantes et al., 1998). In this model the 
reactor was treated as a black box by fixing the conver- 
sion at a value obtained from plant data. In all cases, 
we started with the same initial steady state condition 
(see Fig. 1) corresponding to a conversion of 28.5%. 

For Case 1, 35 finite elements and three collocation 
points were required in the discretization process, lead- 
ing to a nonlinear program with 73 425 variables. A 
number of 154 iterations and 4366.2 CPUs were re- 
quired to achieve convergence. 
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Fig. 2 presents the optimal profile of the fresh butane 
flow that minimize the transition time from the initial 
to a final steady state, which is characterized by a 
polymer of lower molecular weight. The other operat- 
ing process conditions remained unchanged. It is ob- 
served from the figure that the optimal profile for the 
butane flow is almost a piecewise constant function, 
consisting of taking the initial steady state flow to its 
upper bound, keeping it for 0.8 h and then lowering it 
to its final steady state value. This manipulation pro- 
duces a linear increase in the concentration of butane in 
the low pressure recycle. This leads to an increment of 
butane concentration in the reactor favoring chain 
transfer reactions. These reactions are responsible for 
the decrease in average molecular weight. The model 
also predicts a much faster reactor dynamics than that 
of the global plant, as it is usually in actual plants, as 
can be seen in Fig. 2. 
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In Case 2, we seek a transition to increase the 
molecular weight. A number of 40 finite elements and 
three collocation points were required, leading to a 
nonlinear program with 83 845 variables. The interior 
point algorithm required 126 iterations and 3728.4 
CPUs. 

Fig. 3 shows that the optimum butane flow profile 
that leads to an increase in molecular weight must start 
at a low value for more than 2.5 h and then be raised 
to its final steady state value. This manipulation pro- 
duces a linear decrease in butane concentration at the 
low pressure recycle. Butane composition also decreases 
in the reactor making the chain transfer reaction less 
significant; the product molecular weight increases 
accordingly. 

The time delay effects on the process variables profi- 
les for both cases is evident from Figs. 2 and 3. For 
both cases, a large part of the computation times are 
taken up by calculation of the derivative information 
for the reactor and plant models. For this study, these 
were obtained by finite difference perturbations. 

Lastly, we consider the results of Cervantes et al. 
(1998) where a simplified black box reactor with fixed 
conversion was used in the plant model. Please note 
that the optimal control policies with the incorporation 
of the reactor model are very close to those with a fixed 
conversion reactor model, as shown below in Fig. 4. 

In our previous study the model with 156 differential 
equations and 64 algebraic equations was discretized 
with three collocation points on 15 finite elements, 
resulting in an NLP with 12 396 variables and 12 366 
equality constraints. The algorithm obtained an opti- 
mal solution in 81 iterations and 418.1 CPUs. 

The simplified model was run using conversion data 
from plant measurements. On the other hand, the de- 
tailed reactor model is able to predict appropriately the 
actual reactor behavior in a wide range of operating 
conditions, and consequently it improves the model 
predictive capabilities for key plant variables such as 
conversion, temperature profiles and molecular weights. 

The optimal control policies presented above led to a 
significant savings in transition times, which in the 
actual plant is about 5 h. Using the optimal profiles 
presented here we were able to reduce this transition 
time to 1.6 h. Applied at each grade transition, this 
translates to a reduction of 16.4 tons of off-spec 
product. 

5. Conclusions 

Optimal control policies are derived for grade transi- 
tion problems for a large-scale LDPE plant model. 
Using orthogonal collocation on finite elements to rep- 
resent the DAE model and a novel interior point 
method for solving the resulting nonlinear program, we 



A. Cervantes et al. / Computers and Chemical Engineering 24 (2000) 983-989 989 

obtain the solution of problems with over 80 000 vari- 
ables. Moreover, the resulting solutions lead to a reduc- 
tion in the transition time (and of off-spec LDPE product) 
of over 30%. Future work will deal with more efficient 
model formulations, accurate gradient calculations from 
the model and large-scale extensions to this plant. 

Acknowledgements 

PLAPIQUIs authors acknowledge the financial sup- 
port of CONICET and UNS. CMUs authors acknowl- 
edge a fellowship for A. Cervantes from the UNAM and 
support from the US NSF. 

References 

Brandolin, A., Lacunza, M. H., Ugrin, P. E., & Capiati, N. J. 
(1996). High pressure polymerization of ethylene. An improved 
mathematical model for industrial tubular reactors. Polym. Re- 
action Engineering, 4, 193-241. 

Cervantes, A., Tonelli, S., Bandoni, A., & Biegler, L. (1998). Opti- 
mal switching between steady-states in low density polyethylene 
plant, Paper 236g, American Institute of Chemical Engineering 
Annual Meeting. Miami, FL. 

Cervantes, A., Waechter, A., Reha, T., & Biegler, L. T. (1999). A 
reduced space interior point strategy for optimization of differ- 
ential algebraic systems, submitted for publication. 

Schbib, S., Tonelli, S., Brignole, E., & Romagnoli, J. (1992). Lin- 
earized dynamic model of an industrial low density polyethylene 
plant. Computers & Chemical Engineering, 17S, $323-$328. 


