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In this work a novel semianalytical procedure to calculate the exact scattering behavior of complex
particles made of intersecting spheres in the Rayleigh-Gans approximation is presented. Pickering
emulsions, Janus particles, and lock and key particle colloids are particular cases of particles built from
intersecting spheres. The proposed methodology is based on the decomposition of the complex particle
as a sum of simpler components whose scattering properties can be evaluated using a simple integral.
The procedure is developed for any number of spheres that intersect in pairs but it can be directly
extended to intersections that involve more than two spheres at the same time. Some examples are pre-
sented to illustrate the application of the model to: (i) the study of the sensitivity of scattering spectra to
detect complex particles from approximated model particles; (ii) the detection of different degrees of
penetration of one particle into the other; (iii) the identification of the location of the cavity in particles
that intersect with a spherical surface of contact; and (iv) the follow up of the evolution of a complex
particle from a mix of its components.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Interest in colloidal inhomogeneous particles with complex
shapes has increased considerably due to their potential applica-
tions in multiple areas of materials science [1]. This type of particle
can be used as attractive building blocks to create materials with
extraordinary properties to be applied in chemistry, applied optics,
or biology. For instance, anisotropic colloidal particles have been
shown to be very useful for controlling molecular recognition
and self-assembling processes, which are subjects of current inter-
est in materials science. Also, complex colloidal particles with con-
trolled surface structures have been used extensively in studies of
controlled formation of hierarchically structured materials due to
the wide range of sizes and materials accessible using these parti-
cles [2].

Spherical particles are in most cases the building blocks of these
complex colloids. These particles are many times organized as a
group of intersecting spheres that structure the complex colloidal
unit. The number of spheres in this unit may vary from a couple
to a many of them. Also many times, the spheres that form the
complex colloid are made of different materials and for that reason
the type of intersection noted before depends on the application
and must be specified. Fig. 1 shows cross sections of two intersect-
ing spheres with different kinds of contact surfaces between them.
For instance, Pickering emulsions [3] are colloidal systems in
ll rights reserved.
which a large spherical particle is stabilized by the addition of a
large number of small ones incrusted on its surface. In this case
the spheres intersect in a form such that the small ones occupy
the intersecting volume and the large one is deformed to accept
the small ones in it, which corresponds to the intersecting spheres
of Fig. 1a. Janus particles [4] are another type of colloidal particles
that can be thought as a group of intersecting spheres. This is pos-
sible when the asymmetry is only due to the surface chemical
groups, as well as when biphasic particles such as bicompartmen-
tal particles are considered. In this last case, the type of intersec-
tion present in the particle is as in Fig. 1b. Recently, colloidal
systems that have attracted interest are the ones that follow the
lock and key principle [5], in which colloidal spheres as keys and
monodisperse colloidal particles with a spherical cavity as locks
bind spontaneously and reversibly via the depletion interaction.
The morphology of these complex colloidal particles presents
intersections also of the type shown in Fig. 1a. Other complex par-
ticles that can be described as intersections of spherical ones are
dumbbell, snowman, and raspberry particles [2,6–8].

The study of the scattering characteristics of complex colloidal
particles is an important topic related to the morphological charac-
terization of the particles and to the understanding of their optical
functional behavior. Exact scattering models of complex particles
have become available in the last few years [9]. However, these
models are difficult to implement and require, in general, lengthy
computations. A widely used alternative to the exact model is
the Rayleigh-Gans (RG) approximation [10]. This approximation
is valid for particles that present a low optical contrast with respect
to the ambient medium, and are also sufficiently small so that the
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(a) (b)

Fig. 1. Cross sections of possible spherical particle–spherical particle intersections:
(a) spherical surface of contact between the two spheres; (b) plane surface of
contact between the two spheres.

Fig. 2. Inhomogeneous Pickering-type particle composed of intersecting spheres
used to develop the model.
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phase shift between incident and scattered light is also small. The
conditions of validity for the RG approximation are always fulfilled
in X-ray scattering but are more difficult to accomplish in light
scattering.

A large variety of complex particles have been modeled in the
RG approximation. However, scattering studies of the type of par-
ticles described in the previous paragraphs are more limited. For
instance, the scattering of Pickering emulsions has been studied
very recently using a simplified version of the RG theory [11]. Exact
solutions of the RG theory have been obtained for different types of
Janus particles [12,13]. These latter results involve the numerical
evaluation of integrals of relatively complex functions. However,
there is no general methodology available in the literature for cal-
culating exactly the scattering properties of an arbitrary group of
intersecting spheres in the RG approximation.

In this work a rather general procedure to calculate the exact
scattering behavior of complex particles made of intersecting
spheres in the RG approximation is presented. Pickering emulsions,
Janus particles, and lock and key particle colloids are particular
cases of particles built from intersecting spheres. The proposed
methodology is based on the decomposition of the studied particle
into a group of particles in which the scattering properties of the
individual units can be evaluated using a simple integral, as done
when spherical symmetry exists. The procedure is developed for
a group of spheres that intersect as in Fig. 1a and it can be directly
used to model Pickering emulsions, lock and key particle colloids,
snowman particles, and others.
2. Theory

A group of N arbitrary scattering units located at positions given
by Rj (j = 1, . . . , N) scatters incident monochromatic light with
amplitude electric field, ES, given by [14]

ESðaÞ ¼ �E0
expðikaÞ

a

XN

j¼1

bjðqÞ expð�iq � RjÞ; ð1Þ

where vector a (jaj ¼ a) indicates the position of the detector, E0 is
the magnitude of the incident field which in this case is assumed to
be polarized perpendicular to the scattering plane, q ¼ qs � qi is the
scattering vector (jqj ¼ q ¼ 4p

k sin 1=2h), qi and qs are the propaga-
tion vectors of the incident and scattering fields, respectively,
k = 2p/k is the magnitude of the propagation vector of the incident
radiation, h is the scattering angle, k is the wavelength of the inci-
dent radiation in the medium, and bj is the scattering length of scat-
tering unit j. Note that time dependence has been omitted.

Assume that this group of N scattering units corresponds to a
complex particle composed of intersecting spheres as, for instance,
the Pickering-type particle shown in Fig. 2. In Fig. 3 a possible sche-
matic decomposition of this particle is considered, in a fashion sim-
ilar to that used in Ref. [15]. As seen, the intersections correspond
to the type described in Fig. 1a. In this example the large sphere
has a given contrast and the small ones are all of the same size
and contrast, which is different than the contrast of the large
sphere.

According to Fig. 3, the amplitude electric field can now be
written as

ESðaÞ ¼�E0
expðikaÞ

a

XNi

j¼1

bR�j
ðqÞþ brðqÞ

XNi

j¼1

expð�iq �RjÞ� ðNi�1ÞbRðqÞ
" #

;

ð2Þ

where Ni = N � 1 is the number of small spheres and the scattering
lengths of the large and small spheres are given by [10]

bRðqÞ ¼ Dq1VRFðq;RÞ; ð3Þ

brðqÞ ¼ Dq2VrFðq; rÞ; ð4Þ

with

Fðq; xÞ ¼ 3

ðqxÞ3
ðsin qx� qx cos qxÞ

" #
: ð5Þ

Here, Dq1 and Dq2 are the contrast scattering length densities
(CSLDs) of the large and small spheres, respectively; R is the radius
of the large sphere; r is the radius of the small spheres; VR ¼ 4

3 pR3;
and Vr ¼ 4

3 pr3.
Finally, following the decomposition of Fig. 3c, the bR�j

ðqÞ’s
(j = 1, . . . , Ni) are the scattering lengths of Ni irregular particles,
with each one a spherical particle of the same size and contrast
as the large sphere, with a spherical cavity in one of the different
Ni positions where the intersecting small spheres are localized. If
the plane z–y is taken as the scattering plane, the expression for
the scattering length of these particles is [10]

bR�j
ðqÞ ¼ Dq1

Z R

�R
exp i2kn sin h=2ð ÞAjðh; nÞdn; j ¼ 1; . . . ;Ni; ð6Þ

where n is the perpendicular distance from the origin of coordinates
to intersecting planes which are perpendicular to vector q, and
Ajðh; nÞ is the area of the intersection of those intersecting planes
with the volume of the j sphere with spherical cavity, for a given
value of n and h. This area, which for the case of a simple sphere
is independent of h and is given by AðnÞ ¼ pðR2 � n2Þ, cannot be
expressed as a simple function for the sphere with spherical cavity.

With the purpose of computing the Ajðh; nÞ’s for all the spheres
with spherical cavity, all possible intersections of the ‘‘intersecting
planes’’ with a generic sphere with spherical cavity must be
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Fig. 3. Decomposition of a complex particle, represented by several small spheres incrusted on the surface of a large one, into a sum of simpler components.
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considered. First, in order to simplify the notation, subscript j is
dropped from Ajðh; nÞ. Assume now, to help with the analysis, that
there are two mutually overlapping spheres of radii R and r, in the
same positions as the sphere with spherical cavity and a hypothet-
ical sphere that perfectly fits in the spherical cavity, respectively.
Thus, the result of the intersection of the intersecting plane and
the two mutually overlapping spheres is a pair of circles of radii
R r′ ′≥(a) (b) R r′ ′<

(a.1)          d R r′ ′ ′≥ +

2( , )A Rξ θ π ′=

(b.1)        d R r′ ′ ′≥ +

2( , )A Rξ θ π ′=
(a.2) R r d R r′ ′ ′ ′ ′+ > > −

2 *( , ) ( , )A R Aξ θ π ξ θ′= −

(b.2) R r d r R′ ′ ′ ′ ′+ > > −

2 *( , ) ( , )A R Aξ θ π ξ θ′= −
(a.3)          d R r′ ′ ′≤ −

2 2( , ) ( )A R rξ θ π ′ ′= −

(b.3)        d r R′ ′ ′≤ −

( , ) 0A ξ θ =
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Fig. 4. Pair of circles representing all possible kinds of intersections of the
intersecting plane and the two mutually overlapping spheres of radii R and r. The
shaded areas represent the values of Aðh; nÞ, given at the bottom of each of the
subfigures. The dotted circles correspond to the limiting values of d0 .
R0 and r0, corresponding to the intersections with the spheres of ra-
dii R and r, respectively. It is assumed here that the intersecting
plane intersects both spheres. If only the sphere with spherical cav-
ity is intersected, then Aðh; nÞ ¼ pR02. In Fig. 4 this pair of circles is
depicted for all of their relative sizes and positions. In that figure,
three variables and a function are defined: (i) r0 is the radius of
the intersected circle on the sphere of radius r; (ii) R0 is the radius
of the intersected circle on the sphere of radius R; (iii) d0 is the dis-
tance between the centers of the intersected circles; and (iv)
A�ðh; nÞ is the area of the intersection of the areas of both circles
in cases a.2 and b.2. It can be easily verified that the value of
Aðh; nÞ, which is the variable that must be calculated, is the differ-
ence between the area of the circle of radius R0 and the area of the
intersection between the areas of the circles of radii R0 and r0. At the
bottom of each subfigure of Fig. 4 the values of Aðh; nÞ are also gi-
ven. Note that in case b.3 Aðh; nÞ ¼ 0 because R0 < r0. Aðh; nÞ, which
represents the area of the intersection of the intersecting plane
with the volume of the sphere with spherical cavity, corresponds
to the shaded areas shown in Fig. 4 for each case.

In order to clarify how the values of R0, r0, and d0 are calculated,
in Fig. 5 a schematic representation of the two mutually overlap-
ping spheres of radii R and r corresponding to the case of
Fig. 4a.2 is considered. The resulting two-dimensional representa-
tion of this intersection helps to understand how, using simple
geometry, the values of R0, r0, d0, and A�ðh; nÞ can be calculated in
the following way

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

q
ð7Þ
r0 ¼ ½r2 � ðn� y0 cos h=2þ z0 sin h=2Þ2�1=2 ð8Þ
d0 ¼ ½ðz0 cos h=2þ y0 sin h=2Þ2 þ x2
0�

1=2 ð9Þ
A�ðn;hÞ ¼ r02 cos�1 d02þ r02�R02

2d0r0

 !
þR02 cos�1 d02þR02� r02

2d0R0

 !
� � �

�1
2
ð�d0 þ r0 þR0Þðd0 þ r0 �R0Þðd0 � r0 þR0Þðd0 þ r0 þR0Þ
� �1=2

;

ð10Þ

where ðx0; y0; z0Þ are the coordinates of the center of the sphere of
radius r.
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Fig. 5. Schematic representation of the two mutually overlapping spheres of radii R
and r corresponding to the case of Fig. 4a.2. The left part represents the pair of
mutually overlapping spheres as seen from the positive x direction. The right part
represents the intersection of a plane perpendicular to plane z–y and to vector q,
located at a distance n from the origin, with the pair of the left part of the figure.
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In order to compute the scattering length of the spheres with
spherical cavity the integral of Eq. (6) must evaluated numerically.
According to Fig. 4 the value of Aðh; nÞ, for a given h and n, is calcu-
lated as shown in the logical diagram of Fig. 6, where the first ques-
tion to answer is if the small sphere defining the spherical cavity is
intersected by the intersecting plane.

The quantity usually measured in scattering experiments is the
differential scattering cross section (DSCS), which for the studied
particle in fixed position is given by

drðqÞ
dX

¼ jESðaÞj2a2

E2
0

¼
XNi

j¼1

bR�j
ðqÞþbrðqÞ

XNi

j¼1

expð�iq �RjÞ� ðNi�1ÞbRðqÞ
�����

�����
2

:

ð11Þ
Fig. 6. Logical diagram used to calculate Aðh; nÞ for given values of n
3. Simulated results

In this section the previous theoretical results will be used to
generate the average differential scattering cross section (ADSCS)
spectra of different complex particles. The simulations are
intended to verify, first, the sensitivity of the spectra to recognize
these complex particles, by means of comparing the spectra with
those of commonly used approximations to the complex particles,
such as core–shell particles. Also the sensitivity of the spectra to
variations into some of the parameters describing the morphology
of the particles will be verified.

First, and in order to check the validity of the proposed method-
ology, the spectrum of a sphere with spherical cavity is calculated
using not only the method described here but also Monte Carlo
simulation. The sphere with spherical cavity is an adequate testing
particle in order to verify the proposed methodology because to-
gether with the sphere they are the blocks used to build all the
other particles made of intersecting spheres. For this simulation a
sphere of radius R = 10 nm with a spherical cavity of radius
r = 8 nm is used. The distance between the centers of both spheres
is equal to 10 nm. The q range selected (10�3 to 1 nm�1) corre-
sponds, for instance, to an angular range from 0.001824� to
1.839� for X-rays of wavelength k = 0.2 nm. The Monte Carlo simu-
lation is performed using the method proposed in Ref. [15], in
which the pair distribution function, P(r), can be calculated after
filling the particle with a large number of randomly located
coordinate points and counting all the distances between them.
Then, the ADSCS is calculated using

drðqÞ
dX

� �
¼ 1

4p

Z D

0
PðrÞ sinðqrÞ

qr
dr; ð12Þ

where D is the maximum distance between two points in the parti-
cle. In Fig. 7 the spectra calculated using the proposed methodology
and Monte Carlo simulation, are shown. As expected both calcula-
tions coincide at a visual level, validating the semianalytical method
proposed here. The spectrum of a sphere of radius R = 10 nm is also
included in Fig. 7 to show the effect of the cavity on the scattering
characteristics of spherical particles with spherical cavities.

The next example corresponds to the Pickering-type particle
shown in Fig. 2. This particle has Ni = 120 small spheres of radius
and h, according to the different possibilities described in Fig. 4.
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r = 4 nm incrusted into a large sphere of radius R = 31.3 nm. The
centers of the small spheres lay on the surface of the large one.
The q range selected is the same as the previous example, 10�3

to 1 nm�1. Two different ratios of the CSLDs of the particles were
selected: Dq1/Dq2 = 6 and Dq1/Dq2 = 1/6. In order to compare
with the Pickering-type particle, two other particles were consid-
ered. One is a core–shell particle with shell radius of 32.6 nm (CSLD
Dq2) and core radius of 30 nm (CSLD Dq1). The other is a decorated
particle, which is a cluster of spherical particles [16], that consist of
a sphere of 30 nm of radius (CSLD Dq1), decorated with Ni = 120
spheres of radius 4 nm (CSLD Dq2) located on the surface of the
large sphere. The dimensions of these two particles were selected
so that the total material of CSLD Dq1 and the total material of
CSLD Dq2, are the same as in the Pickering-type particle.

In Fig. 8 the DSCS spectra of these particles are shown for Dq1/
Dq2 = 6 (Fig. 8a) and Dq1/Dq2 = 1/6 (Fig. 8b). The reported spectra
of the Pickering-type and decorated particles are obtained, for each
type of particle, by averaging the spectra of 100 different particles
generated by randomly placing the small spheres with their cen-
ters on the interface of the large sphere and the surrounding med-
ium, for the Pickering-type particle, and with their centers at a
distance r from the surface of the large sphere, for the decorated
particle.

As it can be seen, for both contrast ratios the oscillatory spec-
trum of the core–shell particle departs distinctively from that of
the Pickering-type particle at high q values. This departure, which
is related to the presence of the small spheres instead of a homo-
geneous shell, is similar for both contrasts. The example shows
the sensitivity of the DSCS spectrum of the Pickering-type particle
to distinguish it from a commonly used approximation, the core–
shell particle.

A comparison of the spectra of the Pickering-type particle with
those of the decorated particle allows one to check the sensitivity
of the spectra of the Pickering-type particle with respect to the de-
gree of penetration of the small spheres into the large one. Also in
this case, the spectra of the Pickering-type particle show clear dif-
ferences with respect to those of the decorated particle. For Dq1/
Dq2 = 6, this is when the large sphere is dominant, the difference
is important only at high q values. However, when the small
spheres are dominant, Dq1/Dq2 = 1/6, the difference is more evi-
dent at low q.

In the following, lock and key particles made of only two inter-
secting spheres are considered. Two cases are analyzed with this
configuration using the same range of q as in the previous example.
In the first case, the radii of the intersecting spheres are 16 and
30 nm. The spheres are considered to intersect in the two possible
forms: the small one penetrating the large one and vice versa. In
both cases the center of the small sphere lays on the surface of
the large one. Also the same contrast ratios of the previous exam-
ple are taken into account: Dq1/Dq2 = 6 and Dq1/Dq2 = 1/6. In
Fig. 9, the spectra of these lock and key particles are shown in an
arbitrary scale. It can be noted that when the large sphere has
the smaller contrast there is a clear difference in the spectra be-
tween the case in which the spherical cavity is in the large sphere
and the case in which it is in the small one. When contrast is re-
versed, the form in which the spheres intersect is hardly noticeable
in the spectra. In this figure Dq is the contrast between the gray
particle and the surrounding medium.

In the second case the analysis is focused in detecting the sen-
sitivity of the spectrum to discriminate between: (i) a mixture of
lock and key particles made of two intersecting spheres, in random
positions; and (ii) a mixture of: spheres with spherical cavity in
random positions and simple spheres, which could conform the
lock and key particles. In this case the CSLDs of the large and small
spheres are taken to be the same, and their radii are taken as 30
and 22 nm. Again the small sphere lays on the surface of the large
one. The two generated spectra are shown in Fig. 10.

The spectra are calculated by averaging the spectra of the aniso-
tropic particles placed in 100 different randomly generated
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orientations. In contrast to the previous examples in which the
spectra are plotted in arbitrary relative scales, in this case the rel-
ative scales are preserved. In this form the two spectra can be visu-
alized as the initial and final stages of a dynamic process of particle
formation, which starts with a mixture of large spheres with spher-
ical cavity and small spheres, and ends with the formation of lock
and key particles as a result of the proper combination of the initial
mixture components. A noticeable change in the spectrum of the
lock and key particles with respect to that of a mix of the compo-
nents of that particle can be appreciated in Fig. 10.
4. Conclusions

The semianalytical model presented here is completely general
and allows one to generate a scattering spectrum of any combina-
tion of intersecting spheres composing a complex particle, for
which the surface of contact between the spheres is spherical.
The same methodology used to develop the model for spherical
surface of contact can be applied to the case in which the surface
of contact is not spherical. The key to the method is the decompo-
sition of the complex particle as a sum of simpler components. In
the case developed here two types of units compose the complex
particle: the sphere and the sphere with spherical cavity. The
method is not computationally expensive and then numerical ori-
entational averaging is practically possible.

The examples presented show that scattering experiments
could detect in some cases the type of complex particles described
in this work from simpler structures usually taken as approxi-
mated models of the complex particles. In some cases it was pos-
sible to detect degree of penetration of one particle into the
other, and, for particles externally equal, the location of the spher-
ical cavity. It was also shown in a particular case that, starting from
a mix of its components, it is possible to follow the evolution of a
complex particle formation, through its scattering spectra.

As far as we know, the model presented here addresses for the
first time in a rigorous manner the problem of computing the scat-
tering properties of intersecting spheres in the RG approximation.
The software used to implement the model discussed in this work
is available from the author on request.
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