
Letter Optics Letters 1

Characterizing d−dimensional quantum channels by
means of quantum process tomography
J. J. M. VARGA1*, L. REBÓN2, Q. PEARS STEFANO1, AND C. IEMMI1

1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
2Departamento de Física, IFLP, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina
*Corresponding author: miguel@df.uba.ar

Compiled August 11, 2018

In this work we propose a simple optical architecture,
based on phase-only programmable spatial light mod-
ulators, in order to characterize general processes on
photonic spatial quantum systems in a d > 2 Hilbert
space. We demonstrate the full reconstruction of typi-
cal noises affecting quantum computing, as amplitude
shifts, phase shifts, and depolarizing channel in dimen-
sion d = 5. We have also reconstructed simulated atmo-
spheric turbulences affecting a free-space transmission
of qudits in dimension d = 4. In each case, quantum
process tomography (QPT) was performed in order to
obtain the matrix χ that fully describe the correspond-
ing quantum channel, E . Fidelities between the states
experimentally obtained after go through the channel
and the expected ones are above 97%. © 2018 Optical Soci-

ety of America
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In order to transmit quantum information along a commu-
nication channel or to study, for example, the dynamic of a
quantum system, it is necessary to implement quantum oper-
ations on the degrees of freedom used to these purposes. A
crucial point to make progress in this direction is to have a re-
liable method to characterize quantum devices, a task that it is
possible to carry out by means of quantum process tomography
(QPT) techniques [1]. For example, the analysis of the perfor-
mance of a quantum communication channel enables to find the
best alternative to protect the information against noise or to
develop precise quantum error correction protocols [2], allowing
to improve the efficiency of the quantum communication. More
generally, QPT is a method for experimentally determining the
unknown dynamics (open or close) of a quantum system under
a large class of quantum operations including quantum algo-
rithms, quantum channels, noise processes, and measurements
[3].

Due to its favorable characteristics photonic systems raise as
a suitable platform for quantum communications. Controllable
operations on photonic quantum states has been successfully
demonstrated using the polarization degree of freedom to cod-

ified the state [4]. While these states are relatively simple to
manipulate they only allow the realization of two-level systems.
Otherwise, higher dimensional quantum states, namely qudits,
can be used to increase the quantum complexity without in-
creasing the number of particles involved. For this purpose, the
discretized transverse momentum-position of single photons
[5] has become one of the main alternatives to codify d-level
quantum systems. These photonic spatial qudits, usually called
slit states, are defined when photons are made to pass through
a complex aperture with d slits which set the qudit dimension.
They have proven to be useful for several applications in quan-
tum information science [6–8]. In this context, programmable
optical devices, as spatial light modulators (SLMs), are used
for state engineering and characterization [9, 10]. Only recently
these devices have been introduced to implement more general
quantum operations in slit qudits. In Ref. [11] Marques et. al.
used a SLM as a dissipative optical device to implement am-
plitude and dephasing damping dynamics in d = 3 and d = 4.
State transformations of qudits, encoded in the Gaussian spa-
tial modes of the photon state, was proposed in Ref. [12] and
implemented for qutrits in Ref. [13]. However, still missing an
experimental implementation of QPT for such systems. In fact,
up to our knowledge, standard QPT has been applied only to
qubit systems [14, 15].

In this letter, we present for the first time the realization of
QPT in slit qudits. To this end we propose an optical architecture
in which a phase- only SLM is used to mimic the transformation
of an initial quantum state ρin through a quantum channel E , so

that, ρin
E→ ρout = E(ρin). A second SLM is used to implement

the set of projective measurements for a complete characteriza-
tion of the final quantum state. As shown hereafter, with this
architecture we are able to apply the standard quantum process
tomography (SQPT) technique [16] for characterizing processes
in any dimension d.

The general procedure for SQPT can be summarized as fol-
low: A quantum process can be described by a completely posi-
tive linear map E . In the so-called, operator-sum representation or
Kraus decomposition, it gives the dynamics of a quantum sys-
tem by means of E(ρ) = ∑k EkρE†

k , where Ek are operators
from the space of d × d density matrices in itself, and satisfy
the relation ∑k EkE†

k ≤ 1̂. It can be written equivalently as

E(ρ) = ∑m,n χmn AmρA†
n , where {Ai}d2−1

i=0 is a fix basis of oper-
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ators. Thus, E can be completely described by a d2 × d2 complex
matrix χ, once the operators Ai’s are chosen. Experimentally, the
states {ρ0, ρ1, ..., ρd2−1}, forming a basis for the space of density
matrices, are prepared and the unknown process E is applied.
The output state E(ρi) is determined, for each input ρi, by quan-
tum state tomography (QST). Since E is linear, the measurement
results {E(ρ0), E(ρ1), ..., E(ρd2−1)} are enough to find the action
of the process on any state ρ, i.e., after linear algebraic calcu-
lations, the matrix χ is obtained from the set of experimental
data.

The experimental implementation is based on the setup
schematically shown in Fig. 1. The slit states are generated
and reconstructed after QST following the methods described in
Ref. [10]. The first part of the setup, used for state preparation,
consists of a cw 405 nm single mode laser diode whose trans-
verse spatial profile is proportional to the transverse probability
amplitude of a single-photon field. The attenuated laser beam
was spatially filtered and collimated. Thus, the beam transverse
profile impinges on SLM1 with a planar wave with approxi-
mately constant phase and amplitude distribution in the region
of interest. The required pure phase modulation was provided
by a Sony liquid crystal television panels model LCX012BL in
combination of polarizers and wave plates that provide the ad-
equate state of light polarization to reach a phase modulation
near to 2π@405 nm [17]. With this architecture, we can generate
pure spatial qudits, |ψ〉 = 1√

d ∑d−1
`=0 c`|`〉, with arbitrary complex

coefficients c` = β` e iφ` . The coefficient modulus β`, is given by
the phase modulation of the diffraction gratings displayed on
each of the d-slit regions, while the argument φ` is defined by
adding a constant phase value. The spatial filter SF2 is used to
select the first order diffracted by the mentioned gratings in such
a way that on the back focal plane of lens L2 it is obtained the
complex distribution that represents the quantum state of the de-
sired spatial qudit, |ψ〉. Even more, in Ref. [10] we proposed the
generation of mixed states by displaying in SLM1 a succession
of pure states. In that case, the statistical mixture was carried
out randomly, following a given probability distribution. In the
present work, it is the quantum process E which governs the
mixture of pure states. Then, this first SLM is used to simulate
the action of a quantum process E on each of the basis states
{ρi}d2−1

i=0 and, after filtering, what we obtain is just E(ρi).

Fig. 1. Experimental setup. O is an expander, SFi are spatial
filters, Li are lenses with a focal distance f , SLMi are spatial
light modulators, and D is a single pixel detector.

A second modulator SLM2 is placed in the front focal plane
of L2. By following the same method described previously, we
represented on it the reconstruction basis used to implement the
QST process. The first SLM (SLM1) is imaged onto the second
one (SLM2), while a spatial filter SF3 and a single pixel detec-
tor placed at the back focal plane of L3 are used to select and
measure the intensity in the center of the interference pattern
produced by the slits. This intensity is proportional to the prob-

ability of projecting the state defined by SLM1 onto the state
defined by SLM2 [9]. The projections of each of the unknown
states after process, E(ρi), are performed onto the informational
complete set of mutually unbiased bases (MUBs). Then, this set
of measurements results is all that we need to determined the
matrix χE that characterize the process E .

In order to test the performance of the setup for SQPT, we
have simulated and reconstructed five different quantum pro-
cess, which are particularly relevant in applications such as quan-
tum computing or quantum communications. We start with a
first group of processes (amplitude shifts (AS), phase shifts (PS),
amplitude-phase shifts (APS) and depolarizing channel (DC))
which are suitable models for different kind of errors in a quan-
tum computer [18]. Since their decomposition in terms of Kraus
operators are known, they can be controllably implemented in
the laboratory in an easy way. In addition, the experimental
results are straightforward to interpret and compare with the
theoretical results. As we mentioned previously, in the operator-
sum representation the input-output relation can be written as
E(ρ) = ∑k EkρE†

k . For the processes to be considered here we

can rewrite Ek as Ek=(ν, α) ≡
√

pνα Ẽ(α)
ν , where {pνα} is the set of

parameters that represent the weight of the Kraus operator Ẽ(α)
ν

(∑να pνα = 1) in the sum, and each pair (ν, α) define a different
index k. The explicit form of these operators is

Ẽ(σµ)
(α)
ν =

 1̂ , ν, α = 0,

G(α)†
ν σµ G(α)

ν , ν, α = 0, 1, ..., d− 1 , α > ν
(1)

where G(α)
ν is a 2 x d matrix with elements (G(α)

ν )i,j = δi1δjν +
δi2δjα, and σµ is one of the 2 x 2 Pauli matrices, depending on the
process (AS→ σx, PS→ σz, APS→ σy). For a DC with probabil-
ity 1− p that the system remains in the state ρ, and a probability
p that a general error occurs, the Kraus decomposition is given
by

EDC(ρ) = (1− p)ρ +
p
3 ∑

r=x,y,z
∑
να

Ẽ(σr)
(α)
ν ρ Ẽ(σr)

(α)†
ν . (2)

Below, we show the results obtained from the experimental
characterization of these processes after maximum-likelihood
estimation, what converts the experimental data into a physical
process matrix. In Fig. 2, we can see the comparison between the
ideal (Figs. 2 (a) and 2 (b)) and the experimental (Figs. 2 (c) and 2
(d)) matrix χ of two different AS processes. The plots correspond
to an AS in dimension d = 5, with uniform probabilities pνα = 1√

11
((a) and (c)), and uniform respect to |0〉 probabilities pνα = 1√

5
δν0

((b) and (d)). As figure of merit, we can use the fidelity between
the predicted density matrices of the after-process state, F ≡

F(ρt
out, ρ

χ
out) = Tr

√√
ρt

outρ
χ
out

√
ρt

out. For a given input state ρin,

ρt
out and ρ

χ
out are obtained directly from the ideal process E , or

from the experimental matrix χ, respectively. As a representative
example, when the input state was chosen as the pure state
|ψ〉 = 1√

5 ∑4
`=0 |`〉, we have obtained F = 0.980 (F = 0.989).

Ideally, it is desirable to have F = 1. Additionally, we have
calculated F, considering as input state each one of the states
of the basis, {ρi}24

i=0. We obtained a mean value of Fm = 0.982
(Fm = 0.978) with a standard deviation std = 0.004. Similar
fidelities were obtained for PS and APS processes in d = 5.

We have simulated and characterized a quantum DC in di-
mension d = 5, for different values of the depolarizing probabil-
ity p (see Eq. 2). With p as control parameter, it is possible to set
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Fig. 2. Amplitude-shift (AS): Real part of the process matrices
χ in d = 5. Plots (a) and (b) correspond to the ideal process
matrices, in the basis defined by tensor products of the projec-
tors Pij = |i〉〈j| (i, j = 0, 1, ..., d− 1), for an uniform AS and an
uniform respect to |0〉 AS, respectively. The imaginary parts
are identically zero. Plots (c) and (d) are the corresponding
experimental matrices obtained after SQPT.

the purity of the output state, ρout, for a given input state, ρin.
In Fig. 3 we show the purity of ρout (P(ρout) ≡ Trρ2

out) when
the input state is the pure state |ψ〉 = 1√

5 ∑4
`=0 |`〉 (P(ρin) = 1).

The red line is the theoretical curve P(ρt
out) vs p, while the blue

circles correspond to the values of this relation when ρout = ρ
χ
out.

Supporting the excellent agreement, the mean value of the fi-
delity, F, over the different evolutions is Fm = 0.990 ± 0.009.

Fig. 3. Depolarizing channel (DC): Purity of the output state
ρout = EDC(ρin), as a function of the decoherence probability
p, given the input state |ψ〉 = 1√

5 ∑4
`=0 |`〉. Theoretical function

(red line), and reconstructed values after SQPT (blue circles).

Finally, we have performed the SQPT of a free - space com-
munication channel over long distances, to study the effect of
atmospheric turbulence (AT) on slit states. This topic is of great
interest for free space quantum communications, where AT af-
fects the quality of the transmitted information. By taking ad-
vantage of the modulation capabilities of programmable SLMs,
we have created stochastic masks from the superposition of nor-
mal random phase modes that follows the power laws dictated
by the Kolmogorov statistic [19]. These power laws must be
fulfilled in the amplitude of the modes and in the periodicity
in time with which they modify their random phase. This en-
sures the self-similarity condition of turbulent fluids. In order
to link the ATs simulated in the laboratory with real commu-
nicational situations, there are several empirical models that
relate the intensity with the height h above the sea level in which
communication takes place [20].

In Fig. 4 we show two different turbulence masks imple-

mented in our experiment. The gray levels represent the phase
introduced by these masks, being white for 0 radians and black
for 2π radians. The masks simulate a free path communica-
tion of distance L = 500m for the atmospherical conditions at
h = 174m (Figures 4 (a)) and h = 647m (4 (b)) above sea level, re-
spectively. Movies showing the temporal evolution of the phase
masks are provided online in Visualization 1 and 2.

Fig. 4. Turbulence masks addressed to the SLM. Case (a) corre-
sponds to a free path communication at h = 174m above sea
level (L = 500m). Case (b) corresponds to a free path commu-
nication at h = 647m above sea level. In the Visualization 1
and 2 we show the temporal evolution of these phase masks.

The characterization of these channels was carried out at the
same time that we randomly varied, in time, the turbulence
masks addressed on the first SLM. We have followed a similar
procedure in Ref. [10] to see the evolution of a quantum system,
from a pure state to a final mixed state. The SQPT gives a
convergence matrix χ after a random superposition of 500 masks.
In Fig. 5 we show the comparison between the predicted density
matrices ρ

χ
out and ρt

out, for a turbulence channel, in d = 4. The
input state is |ψ〉 = |1〉 in the left panel, and |ψ〉 = 1

2 ∑3
`=0 |`〉 in

the right panel. In both cases, the process corresponds to a AT
with the parameters as that represented in Fig. 4 (a). The same
comparison is shown in Fig. 6 for the atmospherical conditions
as that represented in Fig. 4 (b).

In Fig. 5, left panel, it is noticeable the appearance of non
null populations of the elements |0〉, |2〉 and |3〉. This phe-
nomenon, called crosstalk, is common in several implemen-
tations of quantum communications. In the case of spatial states,
the reason for this crosstalk is the deviation of the photons due
to the strong phase variation on the optical path. On the other
hand, in the right panel, it is evident that the coherences of the
output state practically vanish. In fact the purity of the output
state is P = 0.26. This destruction of the coherence is due to the
randomness of the mean phase in each slit, that generates null in-
terference in the far field. In such a case, there is no information
about the pre-channel state.

The same analysis is performed in Fig. 6. Unlike the previous
case, we do not find crosstalk between the populations (left
panel). This is due to the fact that the lower intensity of the
AT does not disturb the optical path in a way that photons
impact on zones corresponding to neighboring slits. Besides,
this less intense AT, does not completely destroy the coherences
between slits. The right panel of Fig. 6 shows a gradual decay of
coherence as a function of the relative labels between the slits.
The reason for this particular behavior is that, for elements of the
spatial codification basis {|`〉}d−1

i=0 , more distant from each other,
the phase difference introduced by the AT is greater. This partial
information that survives the channel, allows us to devise a
method for recovering, after post-processing of data, the original
input state. Our proposal implies finding an inverse process
matrix Ξ, which allows recovering the pre-channel states from
the output states.
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Fig. 5. Atmospheric turbulence (AT): Predicted density matrices
theoretical, ρt

out, and reconstructed ρ
χ
out after SQPT, for a turbu-

lence channel, in d = 4. The turbulence mask corresponds to
case (a) in Fig. 4, for an input state |ψ〉 = |1〉 (left panel), and
|ψ〉 = 1

2 ∑3
`=0 |`〉 (right panel).

Fig. 6. Idem Fig. 5 for a turbulence mask corresponding to
case (b) in Fig. 4.

We have chosen as fix basis of operators, {Ai}d2−1
i=0 , the projec-

tors Pij = |i〉〈j| for i, j = 0, 1, ..., d− 1. Then, once the matrix χ
has been found by means of SQPT, it is straightforward to obtain
the inverse process matrix Ξ:

Ξ =


Ξ0 Ξ1 · · · Ξd−1

Ξd Ξd+1 · · · Ξ2d−1
...

... · · ·
...

Ξ(d−1)d Ξ(d−1)d+1 · · · Ξd2−1

 , (3)

where Ξk is a d× d matrix with elements (Ξk)i,j = χk, id+j and
i, j = 0, 1, ...d − 1. Notice that Ξ is not the inverse of χ, but a
matrix that reverses the effects of the process (ρin = Ξ ρout)

In Fig. 7 it is displayed an example of this. We have chosen
an input state |ψ〉 = 1

2 ∑3
`=0 eiφ` |`〉, with arbitrary φ`, shown in

Fig. 7 (a). After the AT-channel, the output state ρout is shown in
Fig. 7 (b). Finally, in Fig. 7 (c), it can be observed that from the
application of the matrix Ξ to the output state, it is possible to
recover the original state, intended to be communicated.

In conclusion, the proposed optical device has proved to be an
useful and flexible tool to implement QPT in high-dimensional
Hilbert spaces. We have carried out the reconstruction of noisy
processes, typically related to quantum computing, and a simu-
lation of AT, that usually affects the transmission of information
in free space. For this last case we have proposed a method
that, depending on the intensity of the turbulence, allows us to
recover the initial information.

We thank P. Mininni and P. Cobelli for helpful discussions.
This work was supported by UBACyT 20020130100727BA and
ANPCYT PICT 2014/2432.

Fig. 7. State recovery: (a) Arbitrary initial state before going
through a turbulence channel corresponding to case (b) in
Fig. 4. (b) Output state reconstructed by means of the process
matrix χ. (c) Recovered state by means of the inverse process
matrix, Ξ.
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