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Abstract 

In the last decades the chemical engineering scientific research community has largely addressed the design-for-
operability problem. Such an interest responds to the fact that the operability quality of a process is determined by 
design, becoming evident the convenience of considering operability issues in early design stages rather than later 
when the impact of modifications is less effective and more expensive. The necessity of integrating design and 
operability is dictated by the increasing complexity of the processes as result of progressively stringent economic, 
quality, safety and environmental constraints. Although the design-for-operability problem concerns to practically 
every technical discipline, it has achieved a particular identity within the chemical engineering field due to the 
economic magnitude of the involved processes. The work on design and analysis for operability in chemical 
engineering is really vast and a complete review in terms of papers is beyond the scope of this contribution. Instead, 
two major approaches will be addressed and those papers that in our belief had the most significance to the 
development of the field will be described in some detail.  
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Resumen 

En las últimas décadas, la comunidad científica de ingeniería química ha abordado intensamente el problema de 
diseño-para-operabilidad. Tal interés responde al hecho de que la calidad operativa de un proceso esta determinada 
por diseño, resultando evidente la conveniencia de considerar aspectos operativos en las etapas tempranas del diseño 
y no luego, cuando el impacto de las modificaciones es menos efectivo y más costoso. La necesidad de integrar 
diseño y operabilidad esta dictada por la creciente complejidad de los procesos como resultado de las cada vez 
mayores restricciones económicas, de calidad de seguridad y medioambientales. Aunque el problema de diseño para 
operabilidad concierne a prácticamente toda disciplina, ha adquirido una identidad particular dentro de la ingeniería 
química debido a la magnitud económica de los procesos involucrados. El trabajo sobre diseño y análisis para 
operabilidad es realmente vasto y una revisión completa en términos de artículos supera los alcances de este trabajo. 
En su lugar, se discutirán los dos enfoques principales y aquellos artículos que en nuestra opinión han tenido mayor 
impacto  para el desarrollo de la disciplina serán descriptos con cierto detalle. 
 
Palabras clave: diseño, operabilidad, interacción. 
 
1. Introduction 

In this section, the basics of Process 
Design and Process Operability are 
introduced and the importance of their 
interaction stressed. Current philosophies to 
design-for-operability are also described and 
future trends within the chemical engineering 
discipline identified. A brief outline of the 
vision from industry of the design-for-

operability problem along the last decades is 
also presented in order to illustrate the 
practitioners point of view. 
 
1.1 Chemical process design 

Engineering has to do with the 
production of goods that are beneficial to 
mankind. In chemical engineering the goal is 
the manufacturing of chemical products from 

*Autor para correspondencia: E-mail: abandoni@plapiqui.edu.ar
Tel: (54) 291 486 1700, Fax: (54) 291 486 1600 

AMIDIQ



Blanco and Bandoni / Revista Mexicana de Ingeniería Química  Vol. 3  (2004)   85-108 

 86

raw materials by means of chemical 
processes. A chemical process project 
roughly verifies the following stages:  
 

1. Novel Commercially Attractive 
Commodity Identification 

2. Abstract Description of the Process  
3. Process Design 
4. Plant Construction 
5. Start-up and Commissioning 
6. Plant Operation 
7. Debottlenecking 
8. Decommissioning 

 
Process design is perhaps the most 

challenging stage from an intellectual point 
of view since design problems are usually 
under-defined; i.e., very little information is 
available from the Abstract Description stage 
(perhaps just chemical reaction related data) 
in order to precisely define the design 
problem. Therefore design problems become 
very open-ended.  

Natural goals of process design are 
economic optimality and satisfactory 
operational features of the resulting design, 
among others. In order to meet the desired 
goals and to cope with the lack of 
information, the most intuitive way to 
address such a complex task is to provide the 
missing information on an engineering basis, 
and to evaluate the generated process for 
economic optimality and operability. If the 
resulting design is not satisfactory, 
improvements are introduced and re-
evaluation performed. This iterative refining 
procedure, known as sequential process 
design, is carried out until a satisfactory 
design is achieved. Fig. 1 roughly sketches 
this process design procedure. Such an 
approach to chemical process design is 
justifiably considered to be a rather artistic 
activity. It has even been nicely compared by 
Douglas (1988) with the process of 
developing a painting by a painter. 

There exists, however, a strong trend to 
automate the design process and to tackle it 

as an algorithmic activity rather than an 
artistic activity, relying on the availability of 
computational power. Since the goals of 
process design are economic optimality and 
satisfactory operability features, it seems 
reasonable to mathematically pose the 
process design problem as an optimization 
problem, giving rise to the so called 
optimization approaches to process design 
(Biegler et al., 1997). 

This is an algorithmic process design 
philosophy (in opposition to the sequential 
process design approach in Fig. 1), whose 
mathematical formulation for continuous 
plants is that of problem (P1) in Section 3 of 
this article. The solution of problem (P1) 
provides the optimal process topology, the 
optimal process design and the optimal 
operating point for the expected value of the 
objective function, and at the same time 
satisfies the feasibility constraints over the 
whole time horizon. Problem (P1) is a 
multiple-objective semi-infinite-dimensional, 
mixed-integer, dynamic optimization 
problem. Such a formulation is very 
ambitious from both, modeling and resolution 
points of view and attempts to solve even 
simplified versions of this problem have only 
recently appeared. 

Current practice in process design, is 
probably a certain degree of combination of 
both approaches: knowledge based “artistic” 
skills of the designer in order to perform an 
early screening of alternatives to significantly 
reduce the combinatorial problem (Fig.1) and 
algorithmic optimization techniques 
(simplified versions of ambitious problem 
(P1)) to search among a still large number of 
alternatives but based on more detailed 
mathematical models. It is our belief, 
however, that process design evolves to be a 
completely automated (algorithmic) activity, 
strongly dependent on problem 
representation, modeling, and solution 
strategies. There exists a necessity; a “driving 
force” for automation as societies become 
more complex.  
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Fig.1: Sequential process design procedure. 
 

 
1.2 Process operability 

Besides economic optimality, the final 
design should verify certain desirable 
features. Such features include adequate 
dynamic behavior, safety and 
environmentally acceptable operation and 
visual amenity among others. Particular 
emphasis should be placed on Health and 
Safety Hazards, Loss Prevention, 
Environmental Protection, Plant Location, 
Plant Layout and of course Plant Operability 
(Peters and Timmerhaus, 1991). For example, 
in order to consider Health and Safety 
Hazards, issues as exposure, fire and 
explosion sources should be identified and 
evaluated. Loss Prevention is usually 
addressed by hazard and operability studies 
(HAZOP), fault-tree analysis (FTA), failure 

mode and effect analysis (FMEA), safety 
indexes and safety audits. Environmental 
Protection should consider air and water 
pollution abatement, solid waste disposal and 
thermal and noise pollution control, based on 
local policies and international regulations, 
for example those of the Environmental and 
Protection Agency (EPA). Plant geographical 
location should be chosen according to raw 
materials and energy availability, water and 
labor supply, transportation facilities, climate, 
taxation and legal restrictions, community 
factors, etc. Proper plant layout includes 
arrangement of processing areas, storage 
areas and handling areas in efficient 
coordination. 

In particular we are interested here in 
“operable” designs. Operability is a wide and 
rather subjective concept that may be defined 
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as “the ability of the plant (together with the 
control strategy) to achieve acceptable static 
and dynamic operation”. This is a slightly 
modified version of Wolff’s definition (Wolff 
et al., 1994). In order to provide a more 
precise definition of operability, it is usually 
split into a number of properties (elements) of 
more intuitive meanings: 
 

• Stability: Condition of the steady state 
operating points of the plant to be locally 
stable. 
• Flexibility: The ability of the design 
to remain steady state feasible in the face of 
parametric and disturbance uncertainty. 
• Controllability: The ability of the 
plant to move dynamically between operating 
points in a smooth and feasible fashion, as 
result of set-point changes (often referred as 
switchability) and disturbances. 
 

Operability is therefore strongly related 
with the dynamic performance of the process.  
 
1.3 The interaction between process design 

and process operability 
 

In order to ensure satisfactory design 
features operability considerations, among 
many others as commented before, should be 
taken into account at the design stage. All 
these issues should be considered in the 
assessment stage of the sequential process 
synthesis procedure (Fig. 1), or explicitly 
included within the algorithmic process 
design formulation (P1), or somehow handled 
in a hybrid approach, in order to achieve a 
satisfactory design.  

It should be emphasized the fact that 
process operability assessment is of 
outstanding importance since the sought of 
steady state economic optimality only (as 
historically done) may lead to processes that 
are difficult or impossible to operate. Such a 
situation has been reported for example in 
Anderson (1966). In that article, the re-design 
of a poorly designed heat exchanger network, 

impossible to operate at nominal conditions, 
is described. 

Design for dynamic operability become 
particularly critical since, mainly due to 
economical reasons, modern chemical plants 
tend to be highly mass and energy integrated. 
This implies mass recycles from separation 
stages back to reaction stages in order to 
maximize raw material conversion 
throughout the whole process, and the use of 
hot streams to heat cold in order to optimize 
energy consumption ones (energy recycles). 
Mass and energy integration however, 
although desirable from an economic point of 
view is highly detrimental regarding 
operability, since the dynamics of integrated 
processes are far more involved than those of 
cascaded unit processes. Usual practice to 
cope with the difficult dynamics of plants 
with recycles is to install large buffer tanks to 
isolate sequences of units in order to allow 
the use of conventional single-unit control 
strategies. However, this practice is 
expensive in both, capital and operative costs. 
On the other hand, large material inventories 
are undesirable due to safety and 
environmental reasons, especially if 
dangerous or environmentally unfriendly 
chemicals are involved. It is also detrimental 
of the plant’s capacity to rapidly change 
product grades. These issues gave rise to the 
notion of “plantwide” control, which 
addresses the control problem of chemical 
process from a global framework, visualizing 
the plant as a whole, rather than an 
interconnection of individual process units. 

The above comments pretend to stress 
the importance of proper operability 
considerations at the early stages of the 
process design procedure in order to generate 
inherently operable processes.  

As already discussed, the process 
design procedure evolves from a synthesis-
artistic activity, Fig. 1, towards an 
algorithmic activity (problem P1). 
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In order to generate intrinsically 
operable designs from the algorithmic 
approach, operability elements should be 
explicitly included within (P1) type 
formulations. This may be described as the 
integration of process design and process 
operability in contrast with the process 
operability analysis of the sequential 
approach to process design.  

The integration between process design 
and process controllability, a particularly 
important sub-field of the integration between 
process design and process operability, has 
been widely addressed in the last decades. It 
is known that controllability, which may be 
defined as the “achievable control 
performance”, is dependent on the design 
itself rather than on the final control strategy. 
Therefore, poor control strategies are often 
able to perform acceptably on easily 
controlled processes. On the other hand, even 
complex control strategies may not be good 
enough to control poorly designed processes. 
Similar considerations can be argued 
regarding operability as an integrating 
concept.  

As well as the design/operability 
problem it can be identified the design/risk 
problem, the design/environmental problem, 
the design/plant-layout problem, etc. In fact 
they are all sub-problems of the general 
design/operability-risk-environmental-plant 
layout-etc. problem. Just partial solutions to 
the particular problems have been conceived 
up to now. Much work still remains in each 
area to achieve conclusive results and far 
more to solve the whole process design 
problem. 
 
1.4 The vision from industry 

During the last decades, several critical 
papers to current process design and control 
theory from an industrial point of view 
appeared. 

Foss (1973) identified the unique 
features of chemical processes in the 

spectrum of control problems: large 
dimensionality, strongly interactive nature, 
poorly known characteristics, high 
uncertainty and undetermined control system 
structure. The major limitations of the 
available theories: single input single output 
linear theory, non-interacting control, modal 
control and optimal control were also 
analyzed. The author also emphasized the 
issue of the determination of the control 
system structure: “An acceptable, broadly 
applicable solution to the control structure 
problem cannot be achieved by the dreaming 
up of a number of candidate configurations 
for a given process and then testing 
them.”…“Rather, the method must have its 
basis in a broadly applicable representation of 
the process dynamics and control objectives. 
It must acknowledge and address 
quantitatively problems of sparse and poor 
measurements and imprecisely known 
process characteristics”.  

Later, Lee and Weekman (1976) also 
described the challenging features of 
chemical processes and the limitations of 
available control theories from an industry 
standpoint. Again research is encouraged 
towards integration, “… the process design 
and control design have to be integrated so 
that the dynamics and control configuration 
could be considered in the process design 
stage. New techniques must acknowledge the 
problems of sparse and poor measurement, 
imprecise process knowledge and 
computational difficulties in parameter 
estimation ” … “High priority should be 
assigned to new techniques designed to aid 
modeling of chemical processes”.  

The necessity of integration of process 
and control system design was also identified 
and addressed by industry during the eighties 
as described for example by Sheffield (1992). 
The author comments the decision at Shell 
Oil Co. of physically locate the control team 
with the design team to allow their interaction 
from the early stages of the process design 
project. 



Blanco and Bandoni / Revista Mexicana de Ingeniería Química  Vol. 3  (2004)   85-108 

 90

Hernández et al. (1994) described the 
approach adopted by Shell Oil Co. for 
industrial control system design and posed 
challenges to the academic community. It is 
claimed in the article that up to that time, a 
procedure that treats plant economics and 
closed loop performance within the same 
framework was not available. Main tools for 
control strategy design (variable selection and 
variable pairing) and controller tuning were 
reviewed and their advantages and limitations 
for practical purposes identified. The 
development of time domain rather than 
frequency domain analysis tools is suggested 
as an area of future academic research. 

J. A. Miller from DuPont  (Miller, 
1995) gave a vision from industry on the new 
plants design issue: “One major problem 
continues to be the lack of a completely 
integrated set of computer tools which will 
support concurrent engineering design 
instead of doing almost everything serially. A 
second problem is that chemical plants, 
designed on the basis of steady-state 
operation, rarely run at steady state in 
practice and sometimes end up being very 
hard to control. Rather than trying to use 
process control to correct a poor design, we 
need better methods to evaluate the 
controllability and operability of competing 
process alternatives as early as possible in the 
design process.” 

Some contributions from industrial 
practitioners made meaningful points in the 
control research and educational areas. 
Benson and Perkins (1997) commented that 
“The academic challenge in the future is to 
match the synergy in the process design with 
that of process control to exploit each to the 
mutual benefits of the customer. The 
evidence suggests that it is rarely done at the 
moment yet it also suggests that where it is 
done the benefits are significant”.  

Ramaker et al. (1997) from Shell Oil 
Co. posed an interesting (and rather shaking) 
thought in chemical engineering control 
education: “… we feel that frequency domain 

analysis and design should be taught at a 
graduate level, maintaining the undergraduate 
curriculum as closely tied as possible to the 
time domain”. 

In the remainder of this paper, we 
review the two major approaches to design-
for-operability. In Section 2 most important 
Controllability and Resiliency (C&R) metrics 
based approaches are reviewed. Section 3 
presents the simultaneous approach for 
process and control system design, based on 
state of the art mathematical formulations and 
solution strategies for the integrated problem. 
In Section 4 some conclusions are drawn and 
future trends identified. 
 
2. C&R approaches to design-for-
operability 
 

2.1 Basics on C&R theory 

In this section, linear systems theory in 
the Laplace and frequency domains and its 
implications in operability are briefly 
reviewed. For a comprehensive analysis on 
the subject see Skogestad and Poslethwaite 
(1996). 

The dynamics of a process may be 
accurately described by a set of (generally 
non-linear) differential algebraic equations in 
the state space: 
 

),,(
dt
d

sduxfxx ==&                             (1) 

 
),,( sss duxgy =                                 (2) 

 
where u is the vector of manipulations, ys, the 
vector of outputs, x is the vector of states and 
ds, the vector of disturbances (all vectors 
represent deviation variables from some 
nominal value). Performing linearization on 
such models: 
 

sEdBuAxx ++=&                              (3) 
 

ss FdDuCxy ++=                            (4) 



Blanco and Bandoni / Revista Mexicana de Ingeniería Química  Vol. 3  (2004)   85-108 

 91

By applying Laplace transforms to (3) 
and (4) it is possible to obtain the transfer 
function representation of the system: 
 

(s)(s)(s)(s)(s) ss dGuGy d+=           (5) 
 
where 
 

DBAICG +−= −1)s((s)                    (6) 
 

FEAICG d +−= −1)s((s)                  (7) 
 

It should be remarked that state space 
and transfer function models are different 
representations of the real system. The state 
space model (3), (4) has always a transfer 
function counterpart in (5), (6) and (7) but the 
opposite is not true for improper and /or time 
delayed systems expressed as transfer 
functions. 

Most linear input-output controllability 
tools are based on appropriate scaled models 
of G(s) and Gd(s).  

“Perfect control” (not realizable in 
practice) is achieved when the output, ys, is 
able to perfectly follow a certain reference, r, 
this is ys = r. Solving for u, the 
corresponding perfect control input is: 

 

sdGGrGu d
11 −− −=                          (8) 

 
The single-input single-output (SISO) 

case is particularly insightful, and allows the 
identification of those elements that impose 
limitations to achieve “perfect control”. Let 
us consider the following SISO model: 
 

sds dGGuy +=                                  (9) 
 
where G and Gd have the general (pole-zero-
time delay) form: 
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where  zi  are the zeros of the system, pj are 
the poles of the system and τ is the time 
delay. 
 
• The poles of the system are the 

eigenvalues of the state space Jacobian 
matrix. 

• The zeros of the system may be found as 
the non-trivial (uz ≠ 0 and xz ≠ 0) solutions 
of the following generalized eigenvalue 
problem: 
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• Time delays do not have a state space 

representation.  
 

“Perfect control” is achieved when the 
output, ys, is able to perfectly follow a certain 
reference, r, this is ys = r. Solving for u, the 
corresponding perfect control input is: 
 

sd
11 dGGrGu −− −=                          (10) 

 
As evident, “perfect control” requires 

the inverse of G, which cannot be obtained, 
if: 

 
• G contains right-half-plane zeros (RHPZ) 

(G-1 unstable) 
• G contains time delays (G-1 contains a 

prediction) 
• G contains more poles than zeros (G-1  is 

unrealizable) 
• G is uncertain  (G-1 cannot be obtained 

exactly) 
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In order not to exceed physical 
constraints on the value of u, perfect control 
is limited by: 
 

• 1G −  large 

• d
1GG −  large 

 
Additional limitations to control are 

imposed by: 
 

• G contains right half plane poles (RHPP) 

(open loop instability) 

• dG  large (outputs move too far from 
their desired values in controller absence) 

 
From the analysis of the SISO case in 

the Laplace domain (transform function) a 
number of elements which are detrimental for 
control purposes have been identified. 
 

• RHPPs are associated with unstable 
plants and feedback control is required 
for stabilization.  

• Significant dead-times are sources of 
instability for closed-loop responses and 
advanced control systems (dead time 
compensation) are necessary for proper 
closed-loop performance. 

• Inverse response behavior, associated 
with RHPZs, also presents challenging 
features from a control point of view and 
inverse response compensation is 
required for satisfactory closed-loop 
performance. 

• The presence of uncertainty (in G and Gd) 
makes necessary the use of feedback 
control. 

 
Although the separate effects of the 

aforementioned elements are well 
understood, they occur concurrently, making 
the analysis much more difficult. For 
example, the performance of SISO systems is 
poor if the plant has a RHPP located close to 
a RHPZ. 

For the general multiple-input/multiple-
output (MIMO) case, the following 
considerations hold: 
 
• RHPZs, RHPPs and delays have directions 

associated with them introducing 
additional difficulties. 

• Time delays pose limitations on MIMO 
systems. Surprisingly, however, an 
increased time delay may sometimes 
improve the achievable performance. 

• As for SISO systems RHPZs impose poor 
control performance in the MIMO case. 

• Feedback stabilization is also necessary in 
the presence of MIMO RHPPs. 

• As in the SISO case, the performance of a 
MIMO plant with close RHPP and RHPZ 
is poor if the directions coincide. 

 
2.1.2 Non-minimum phase elements 

RHPPs, RHPZs and time delays are 
usually known as non-minimum phase 
elements. As described above, their presence 
impose severe control limitations and their 
inclusion within process design formulation 
have been considered in a number of ways as 
described later in this section. 
 
2.1.3 Singular value techniques 

Singular value techniques have been 
also applied to study the size or gain 
introduced by the linear transformation (5). 
The singular values of matrix G may be 
calculated as the square roots of the 
eigenvalues of the Hermitian matrix 
G(s)*G(s)). 

In particular, the minimum singular 
value of the steady state (zero frequency) 
transfer function matrix, G: 
 

2

2

0min min)(σ
u

Gu
G

u ≠
=  

 
Indicates how close this matrix is to 

being singular and represents the smallest 
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gain of the process among possible input 
directions. A large value of this measure 
implies that the process is resilient to 
disturbances. 

The maximum singular value of G(s), 
σmax(G(s)), (square root of the maximum 
eigenvalue of the Hermitian matrix 
G(s)*G(s)) indicates the largest gain of the 
process among possible input directions. 
 
2.1.4 Condition number 

The condition number of matrix G(s) 
characterizes model uncertainty. Perfect 
control cannot be realized in the presence of 
model uncertainty, since modeling errors in 
G(s) lead to errors in the manipulated input 
u(s) in Eq. (8). Such modeling errors are 
always present, and result from the 
linearization process, unmodelled dynamics 
and poorly known parameters. These errors 
are related by: 
 

G
G

G
u
u δ

)(γ
δ

≤  

 
Where γ(G) is the condition number of 

matrix G, defined as σmax(G)/ σmin(G). A 
small condition number indicates that model 
uncertainty does not cause large manipulated 
variable errors. 
 
2.1.5 Disturbance condition number 

The disturbance condition number, 
γd(G), is defined as:  
 

)(σ)(γ *

2

2

1

d G
d

dG
G

−

=  

 
and quantifies the effect of rejecting 
disturbances. Here, d , corresponds to a 
particular disturbance idGd

id= . A large 
value of γd(G) means that the disturbance has 
a large directional effect and produces 

therefore large actions in manipulated 
variables. 
 
2.1.6 Relative gain array 

Finally, another valuable tool related to 
operability assessment is the Relative Gain 
Array (RGA). The RGA is a square matrix, 
which implies that the number of 
manipulations and outputs is the same, say N. 
It is applied to identify those control loops 
that verify minimal interaction among the 
possible pairings (N!). The relative gain 
between an output ysi, and a manipulated 
variable uj is defined by: 
 

syjsi

ujsi
ij )u/y(

)u/y(
λ

∆∆

∆∆
=  

 
The subscript u denotes constant values 

for all manipulated variables except uj, while 
subscript y indicates that all outputs except 
ysi  are kept constant by the control loops. It 
is recommended to form control loops pairing 
controlled outputs ysi with manipulated 
variables uj such that the relative gains λij are 
positive and as close as possible to unity. 

Despite linear operability analysis 
techniques dominate the design-for-
operability approaches, they present several 
limitations (Chenery, 1997). First of all, 
linear approximations may not be reliable 
enough for the usually highly non-linear 
process systems in the face of uncertainty. 
Some of the measures assume square 
(Laplace domain) plants (same number of 
controlled and manipulated variables), which 
may be unrealistic. These indices are defined 
in the frequency domain while the 
performance requirements are established in 
the time domain and the translation may no 
be straightforward. Finally, the application of 
these tools requires the use of heuristics and 
experience in order to overcome the 
subjectivity of their definition. 
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2.1.Design for C&R approaches 

Several approaches for design-for-
controllability have been presented regarding 
non-minimum phase elements.  
Psarris and Floudas (1990) investigated the 
effect of MIMO systems with time delays, 
and proposed there a rigorous strategy to 
minimize the detrimental effects of time 
delays by performing the minimum necessary 
increases in the delays of the plant transfer 
function matrix, within the framework of 
mixed-integer linear programming (MILP). 

Psarris and Floudas (1991) studied the 
dynamic operability of MIMO systems with 
time delays and transmission zeros. In that 
work, a mathematical formulation that 
removes the infinite RHP transmission zeros 
by increasing the delays of the process by the 
minimum amount necessary is presented. 
Kokossis and Floudas (1994) proposed a 
systematic methodology applicable to the 
optimal design of stable processes. An 
iterative algorithmic approach was applied to 
solve the design optimization problem while 
constraining the eigenvalues of the jacobian 
matrix of the dynamic system (open loop 
poles) to lie in the left half plane of the 
complex domain. The methodology was 
applied in that article, to the synthesis of 
complex reactor networks. 

In Blanco and Bandoni (2003a), the 
problem of open-loop dynamic stability has 
been also addressed by means of eigenvalue 
optimization strategies. The proposed 
approach makes use of the direct relation 
between system dynamics and eigenvalue 
theory, in order to ensure the open loop poles 
of the system to lie in the left half of the 
complex space. Parametric and disturbance 
uncertainty is considered in that contribution 
in the framework of a multi-period 
formulation.  

Other C&R measures have been 
considered within a multiple objective design 
approach. Multiple objective optimization 
problems arise when it is necessary to deal 

with competing objectives, this is, when one 
of the objectives can be improved only at the 
expense of the others. This is rather common 
in design and it is indeed the case in design-
for-controllability. The main advantage of 
multiple objective optimization to address the 
design-for-operability problem is that the 
objectives use to have very intuitive 
meanings and the tradeoff among them can 
be clearly traced. The set of solutions that 
reflect this tradeoff among the different 
objectives is known as the non-inferior 
solution set or pareto optimal solution. 
Common practice in multiple objective 
optimization is to generate somehow the non-
inferior solution set, and then select among 
its members according to a certain decision-
maker’s preference. 

Palazoglu and Arkun (1986) is one of 
the first approaches that recognized the 
multiple objective nature of the chemical 
process design problem in order to consider 
dynamic operability characteristics besides 
steady-state feasibility and economics. For a 
given flowsheet (no structural design is 
performed), a multiple objective optimization 
problem is formulated considering an 
economic objective and a couple of 
robustness indices (singular values of the 
transfer function model) as dynamic 
operability objectives.  

Luyben and Floudas (1994) proposed a 
multiple objective optimization framework 
for the interaction of design and control. In 
their approach steady state cost and steady 
state controllability measures such as 
minimum singular value, condition number, 
disturbance condition number and relative 
gain array, were considered as the competing 
objective functions. A mixed integer 
nonlinear design optimization model (binary 
distillation column) and a nonlinear design 
optimization model (reactor-separation-
recycle system) were addressed in their 
contribution. 

Blanco and Bandoni (2003b) 
implemented eigenvalue optimization 
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techniques to cope with the controllability 
objective, namely the minimum singular 
value of the zero frequency process transfer 
function matrix, within a multiple objective 
optimization problem. In that work the 
possibilities of eigenvalue optimization were 
introduced to the chemical engineering 
community and its features shown through 
the important design-for-operability problem 
and illustrated by means of the reaction-
separation-recycle process, of outstanding 
importance in chemical engineering. 
 
3. Dynamic optimization approach to 
design-for-operability 
 

3.1. Problem formulation 

This approach considers process design 
and process operability simultaneously as one 
integrated optimization problem. This is an 
attractive approach indeed since both, 
flowsheet synthesis and operability analysis, 
are fully automated. 

Process synthesis reduces to develop a 
superstructure of process flowsheets, which 
may include the possible control schemes, 
introducing binary decision variables within 
the formulation. Satisfactory process 
controllability is ensured since the dynamics 
of the (closed-loop) system is explicitly 
considered through the set of differential 
equations, giving rise to a dynamic 
optimization problem. Steady state and 
dynamic process feasibility are also ensured 

by taken into account disturbance and 
parametric uncertainty. 

A closed-loop dynamic system can be 
described by a set of differential and 
algebraic equations (DAEs) in terms of 
continuous and discrete variables (11). 

Note that for consistence the following 
relations must verify in (11): 
 

dim {xd} = dim {hd} = dim {h0} 

dim {xa} = dim {ha} 

 
A subset of the dynamic state variables 

xd(t) are the controlled variables which have a 
desired value or set-point. Some or all u(t) are 
the variables manipulated by the controllers 
to reject disturbances and effects of uncertain 
parameters. 

Additional sets of constraints can also 
exist in the design-for-operability model (12): 
sets hd, ha and h0 represent a DAE system for 
the closed-loop dynamic model of the 
process. Equations g impose constraints on 
state variables. Interior- and end-point 
constraints (hdk, hak and gk) and static equality 
and inequalities constraints (ĥ and ĝ) when 
present, add a further level of limitation in the 
process state variables. Altogether Eqs. (11) 
and (12) constitute a constrained DAE 
system, whose input/output structure is 
roughly sketched in Fig. 2. 

 

 

d
y
z

u(t)

xd(t)

xa(t)

ν(t)  θ

inputs outputs

uncertainty

Systems
(11) and (12)

 
Fig. 2. Constrained DAE system.  
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In the design-for-operability problem it 
is in general desired to simultaneously 
optimize an amount of, usually conflicting, 
objective functions, J = (J1,…,JM), which 
involve costs, profits and product quality,  
leading to a multiple objective optimization 
problem.  

The presence of uncertainties and 
disturbances makes the formulation semi 
infinite dimensional, due to the infinite 
values that these parameters can take. Such a 
situation requires the inclusion of the 
expectation operator, E, in the formulation.  

The integrated design-for-operability 
problem can therefore be formulated as (P1). 

Formulation (P1) is a Semi Infinite 
Multiple Objective Mixed-Integer Dynamic 
Optimization problem (SIMOMIDO) which 
is very difficult to solve due to the following 
complicating issues: 

 
• Its multiple objective nature 
• Its stochastic nature 
• Its mixed integer dynamic nature 

In order to cope with these issues 
several strategies have been proposed. In the 
following, we review the classical 
approaches devised to this end. 

3.2. Multiple objective nature 

Vector J = (J1,…,JM) comprises M 
different objective functions. If there are 
several conflicting objectives in J, the most 
straightforward approach is to measure the 
objectives on a same basis by weighting 
them with appropriate factors, and set as 
objective function the weighted sum of the 
individual objectives. Alternatively, the 
multiple objective problem can be addressed 
through the ε-constrained method. This 
strategy provides a non-inferior set of 
optimal solutions known as pareto-optimal 
solution set. This approach is quite practical 
in the case of two or three conflicting 
objectives, because the tradeoff among them 
can be graphically traced. 

The ε-constrained method leads to the 
optimization of a selected objective, Jm, 
while the others are included as constraints 
of the form  Ji ≤ εl (i=1,…, M, l≠m). In order 
to develop the pareto-optimal solution set, 
several optimization runs for different values 
of parameter ε must be performed. Problem 
(P1) can therefore be reformulated as a 
single objective optimization problem, 
where J represents either a weighted sum of 
the objectives or one particular objective if 
the ε-constrained method is applied. 
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3.3. Stochastic nature 

It is difficult to find examples of 
problems in chemical engineering that do 
not include some level of uncertainty on the 
values to assign to some or all of the 
parameters of the model. There are cases 
where the uncertain parameters play a 
central role in the decision making process, 
thus it is not possible to ignore their 
character without taking the risk of 
invalidating the conclusions that may be 
drawn from the analysis. In particular, the 
design-for-operability problem becomes a 
stochastic programming problem, whose 
most general formulation is that of (P1). 

The classic approach to address the 
solution of problem (P1) regarding 

uncertainty is to remove the expectation 
operator from the objective function and 
model equations, as described below. It is 
assumed that the dynamic functional form of 
the disturbances, ν(t), are fully known and 
that can be generally expressed as 

0dzθν =)t,,,(  becoming a subset of ha. 
They are therefore removed from subsequent 
formulations. 
 
3.3.1 Objective function 

Let’s consider the definition of the 
expectation operator:  
 

{ } ∫∫
∈

Γ∈
⋅⋅=

Γ

d)P(),J(),J(E
θ

θ
θθθvθv  
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Where v={xd(tf),xa(tf),u(tf),z,d,y,tf} 
and P(.) is a probability density function. 
Despite the characterization of uncertainty 
can be addressed in different ways 
(Nemhauser et al., 1989), one of the most 
general approaches is to assign a probability 
distribution function to the uncertain 
parameters. Even with a non rigorous 
statistical base for the choice of a particular 
distribution, a “probability space” may be 
established as consisting of a number of 
scenarios, and the probability measure could 
only be a subjective measure of the 
reliability to attach to these scenarios. 
Therefore the stochastic optimization 
problem under uncertainty can be visualized 
as extensions of the deterministic 
optimization model.  

The direct resolution of the integral is 
not practical in process systems engineering, 
either because a closed (or explicit) 
definition of the function P(.) is not 
available, or there are not enough historical 
records of the process uncertainties as to 
develop probability density functions for 
each single parameter. Consequently, the 
discrete approximation through a weighted 
sum for each uncertain parameter is a more 
useful, simple and practical methodology for 
many applications:  
 

{ } ∑
=

∈
⋅≅

Q

1i

ii

Γ
),J(w),J(E θvθv

θ
 

 
Where wi is a weight factor for each 

realization i of the uncertain parameter, and 
Q is the number of considered scenarios.  

Under no further available 
information, a common assumption in 
chemical engineering is to consider that they 
follow a constant density function equal to 
one, where each single realization or 
scenario is equally probable, i.e. every 
weight factor is equal to the unity.  

The discretization approach outlined 
above is the most popular to address 
uncertainty in engineering. It is mostly 

concerned with problems that require a 
“here-and-now” decision without making 
further observations of the quantities 
modeled as random variables. This approach 
is supported in the fact that there is a rather 
important number of applications in 
engineering where can be assumed, without 
loosing too much precision in the results that 
the uncertain quantities are known, either 
because the level of uncertainty is low, or 
because it is good enough to assign only 
some discrete values for these quantities. In 
mathematical statistics, on the other hand, it 
is mostly the “wait-and-see” analysis that is 
of interest. 

A more elaborated approximation, 
assuming that independent continuos 
probability density functions are known for 
each parameter, can be determined using an 
integration scheme as proposed by 
Pistikopoulos (1988), based on a Gaussian 
quadrature formula (Carnahan et al., 1969). 
Here, the multiple integral of the expected 
value operator is approximated by a series of 
one dimensional integrals in terms of each 
single parameter at each node of the 
quadrature formula. The advantages are that 
sometimes it is possible to make the 
analytical integration for each parameter (if 
the required information is available) and it 
also provides a systematic way to choose the 
discretization points. Its major limitation is 
that the number of quadrature points grows 
very rapidly with the number of uncertain 
parameters. 

 
3.1.2 Model constraints 

A max-min-max operator is usually 
included within the constraints (feasibility 
condition), in order to remove the 
expectation operator from the model 
equations in (P1), thus leading to problem 
(P2). The max-min-max operator accounts 
for feasible operation and it should be 
interpreted as follows: for a fix process 
design and structure (d and y), algebraic and 
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dynamic operating variables (z and u(t)) can 
be selected in order to minimize the 
objective function J (when embedded in an 
optimization problem) and satisfy every 
inequality constraint over the whole time 
horizon in the face of uncertainties θ. 

Problem (P2) is a Semi Infinite Mixed-
Integer Dynamic Optimization problem 
(SIMIDO) whose resolution is still quite 
complicate. A classic approach to address 
problem (P2) involve the following steps, 
also illustrated in Fig. 3. 
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Fix design and
control system

 Initialization

Optimal process and
control structure

(solve problem (P3))

Feasibility test
(solve problem (P4))

Optimal and operable
process and control systems

Update
critical

scenarios

Feasible

Unfeasible

Assume critical
scenarios

 
 

Fig. 3. MIDO solution strategy. 
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Step 1: Choose an initial set of scenarios for 
the uncertain parameters, θi. A critical  issue 
is how to appropriately select a finite number 
of realizations for the uncertain parameters, 
to ensure an optimal and feasible operation. 
Some approaches have been proposed 
(Halemane and Grossmann, 1983; Floudas 
and Grossmann, 1987). 
 
Step 2: Solve multiperiod problem (P3). This 
formulation is a Mixed-Integer Dynamic 
Optimization (MIDO) problem. Details about 
its solution are provided in Section 3.3. 
 
Step 3: Perform the feasibility test (P4) for 
the optimal solution found in Step 2. 

Details about the solution of the 
flexibility test are provided later in this paper 
(Section 3.4). 
 

Step 4: If χ(d,y) ≤ 0 then the system is 
feasible and the procedure terminates; 
otherwise the solution of (P4), determines a 
critical uncertain parameter realization that 
should be added to the set of current 
scenarios and the control returns to Step 2. 
This scheme proceeds until the feasibility 
condition verifies. 
 
 
 

3.4. Mixed integer dynamic nature 

As already discussed, a further 
complication in the solution of problem (P1) 
is how to address its mixed integer dynamic 
nature. This issue has to do with the 
resolution of the MIDO problem (P3) in Step 
2. 

There are two major “complications” in 
a MIDO problem: the presence of binary 
variables and the presence of differential 
variables. Therefore the different solution 
strategies that have been proposed for MIDO 
problems can be classified according to the 
way they deal with these “complicating 
variables”, as it is shown in Fig. 4. According 
to the chosen procedure, the solution of 
MIDO problems reduce to the solution of 
Dynamic Optimization (DO) problems, 
Mixed Integer Linear Programming (MILP) 
problems or Mixed Integer Non linear 
Programming (MINLP) problems (Floudas, 
1995). Furthermore, available algorithms for 
MIDO problems in each route of Fig. 4 also 
differ regarding on the algorithm applied in 
the solution of the DO and MI problems. 
Major approaches are briefly discussed 
below: 

 

 

Removal of
binary variables

Combined
approaches

Removal of
dynamic variables

Reformulation binary
vars. as continuous vars.

Decomposition
scheme

Branch and bound
strategy

Full discretization of
dynamic variables

Single DO
problem

Serie of DO
problems

DO and MILP problems
in an iterative framework

Single MINLP
problem

MIDO
problem

 
 

Fig. 4. Classification of MIDO problems according to the different solution strategies. 
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3.4.1 Removal of binary variables 

1. Binary variables reformulation. The 
approach includes the reformulation of the 
binary variables using some smoothing 
function such those proposed by Samsatli et 
al. (1998). Each single binary variable is 
approximated with some kind of continuous 
function, using an adjusting parameter to 
regulate the approximation. A limitation in 
this approach is that it is not always possible 
to obtain a full integral-value 0-1 for the 
binary variables, rendering to engineering 
problems in some applications.  
 
2. Branch and Bound (B&B) strategy. 
This approach involves the direct use of a 
B&B strategy as proposed by Androulakis 
(2000). A DO optimization problem has to be 
solved at each node of the B&B tree, where 
the binary variables are treated as continuous 
ones, using their relaxed (between 0 and 1) 
and fixed (in 0 or 1) values as constraints. 
The inconvenient with this scheme is that it is 
not adequate for large scale engineering 

problems, because of the large time 
requirements of the B&B strategy. 
 

3.4.2 Removal of differential variables 

1. Full discretization of the differential 
variables. This approach converts a  MIDO 
problem, into a large scale MINLP problem 
by complete discretization of the dynamic 
variables using orthogonal collocation on 
finite elements. The continuous variables are 
the dynamic variables of the original MIDO 
formulation plus the set of parameters 
introduced by the discretization procedure. 
The advantage of this approach is that since it 
is based on a fully equation oriented 
framework, it is more natural to handle 
general inequality constraints. The major 
limitation is that even for small MIDO 
problems, the resulting MINLP are quite 
large regarding continuous variables as 
results of the discretization process. 
 
 



Blanco and Bandoni / Revista Mexicana de Ingeniería Química  Vol. 3  (2004)   85-108 

 103

3.4.3 Combined approach 

1. The combined approach takes the 
advantages of both previous strategies. The 
MIDO problem is decomposed into a Primal 
DO problem for fix values of the binary 
variables, which are updated in a Master 
MILP problem. Both problems must be 
solved in an iterative scheme as shown in 
Fig. 5. The main difference among the 
different implementations of this strategy 
relies on the way the DO problem is solved 
and the Master problem formulated. 
 

In relation to the solution of MINLP 
problems, there exist two major approaches:  
 

• The Outer Approximation / Equality 
Relaxation / Penalty Function (OA/ER/PF) 
algorithm of Viswanathan and Grossmann 
(1990) (implemented as solver DICOPT++, 
available under the commercial modeling 
package GAMS (Brooke et al., 1992). 
• Generalized Benders Decomposition 
(GBD) (Geoffrion, 1972) which can be 
programmed in modeling languages like 
GAMS. 
 

Regarding strategies for DO problems 
there exist: 
• Complete discretization approach of the 
dynamic variables (decision and state 
variables) in order to convert the DO problem 
into a large scale Non Linear Programming 
(NLP) problem, which can be solved with 
any standard large scale NLP algorithm (like 
MINOS and CONOPT also available under 
GAMS). 
• Partial discretization approach. Here only 
the dynamic decision variables u(t) are 
parameterized, in terms of time-invariant 
parameters (“reduced space discretization” or 
“control vector parameterization”). For a 
parameterized u(t) and values for the other 
decision variables (z and d), the resulting 
DAE system is integrated to evaluate the 
profiles of the dynamic variables  using 
standard integration routines. Additionally, 

gradient information of the objective function 
and constraints with respect to decision 
variables is obtained, either by finite 
difference perturbations (brute force 
strategy), or through integration of sensitivity 
equations (Vassiliadis et al., 1994 a,b), or via 
the solution of the adjoint equations (Sullivan 
and Sargent, 1979; Pytlak, 1998; Bloss et al., 
1999). A NLP solver uses this information to 
adjust the values of the decision variables, 
and the iteration continues. Fig. 6 shows 
schematically how this strategy works. 

An available commercial package to 
solve this problem is gPROMS/gOPT 
(Process Systems Enterprice Ltd., 2000). 

 
3.5.Solution of the feasibility condition 

A further important issue in the 
solution of problem (P2) is how to address 
the solution of the flexibility condition of 
problem (P4). Several strategies have been 
proposed. 

Mohideen et al. (1996) proposes a 
methodology based on the active set strategy 
of Grossmann and Floudas (1987) for solving 
problem (P4), which results in a MIDO 
problem. Its solution provides the optimal 
control action u(t) and the optimal operators’ 
manipulated variables, z. This optimal 
operating point however, might not be 
practically achieved for some operating 
conditions since, although proper control 
action, u(t), is always possible for any 
uncertainty realization,  such is not the case 
for operators’ manipulated variables, z, who 
do not know in advance the incoming 
uncertain parameters realization. 

Some authors overcome this problem 
by searching a single operating decision for 
any realization of the uncertain parameters, 
defining a scenario that does not depend on 
previous knowledge of the uncertainty 
realization. This is equivalent to say that 
there are no operating decision variables or 
that they are treated as design variables. 
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Fig. 5. Combined approach to manage the uncertainties. 
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Fig. 6. DO algorithm with partial discretization (control vector parameterization). 
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Therefore the max-min-max operator 
reduces to a single maximization operator as 
in (P4’), which constitutes the so-called 
“worst-case” approach (Walsh and Perkins, 
1996; Bahri et al., 1997): 

In general, the “worst-case” strategy 
presents a further simplification in the 
objective function: only a nominal (average or 
best known) point for the uncertain parameters 
is considered. This corresponds to the scenario 
where feasible operation despite the value of 
θ∈Γ is obtained, while the objective function 
is only evaluated relative to its nominal value. 
See Bandoni et al. (1994) for further details on 
the “worst-case” or “back-off” algorithm. 

The “worst-case” strategy is simple and 
practical in many applications, but it could 
lead to very conservative solutions. Another 
drawback is that an optimization problem 
must be solved for each inequality constraint, 
which can be time consuming for large 
models. This issue has been addressed by 
Raspanti et al. (2000), where an aggregation 
function (the KS function) that overestimates 
each single constraint is used to handle the 

whole set of inequality constraints, and 
therefore only a single optimization problem 
must be solved in Step 3 (P4’’). 

In (P4’’), ρ is an adjusting parameter. 
For larger ρ’s a tighter overestimation of the 
constraints by the KS function is achieved. 
The WC strategy in problems (P4’) and (P4’’) 
have been successfully applied to asses the 
“worst case” steady-state operation under 
uncertainty of entire chemical plants (Diaz et 
al., 2002). 

Up to date, problem (P2) with its 
different solution strategies has been applied 
to several important chemical engineering 
design-for-operability problems. For example, 
Mohideen et al. (1997) solved a single and a 
double-effect heat-integrated distillation 
column with a simple control system. Using 
fixed discrete decisions and simplifications in 
the treatment of the uncertainties, Bansal et al. 
(2000) solved a rigorous double effect system, 
while Ross et al. (2000) addressed an 
industrial distillation column. 
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Conclusions 

In this paper the two major successful 
strategies to deal with the design for 
operability problem have been discussed. 
C&R dominates the picture of operability 
assessment, making wide use of linear, 

Laplace and frequency domains indices. 
Several contributions incorporated those 
linear operability tools within the synthesis 
problem, for example as a multi objective 
optimization, which is the most intuitive step 
towards the integrative approach.  
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On the other hand, the dynamic 
optimization approach to design-for-
operability leading to a SIMOMIDO 
problem, presents very attractive features 
since it allows the explicit consideration of 
most required design issues within a very 
elegant formulation. The major drawback of 
such an approach is the inherent difficulty in 
modeling and solving the resulting complex 
programming problem. However, there exist 
strategies and commercial solvers that allow 
to address the problem, and several 
important applications have been reported in 
the literature. Future research on the field 
includes the consideration of more advanced 
control strategies like Model Predictive 
Control, within the integrated framework. 
 
Nomenclatura 
hd, ha: Sets of differential and algebraic 

equations respectively, for the process and 
control system (material and energy 
balances, definitions of actuating signals, 
etc.).  

h0:  Equations that define the set of initial 
conditions at t0 for the differential states.  

z:     Static operating degrees of freedom which 
can only verify step-like time profile 
(variables manipulated by plant operators, 
e.g. fixed flow-rates).  

d:    Static process design degrees of freedom 
(equipment dimensions, controller tuning 
parameters, etc.).  

u(t): Dynamic control degrees of freedom 
manipulated variables (mainly flow-rates). 

xd(t):  Dynamic state variables. 
xa(t):  Algebraic state variables. 
ν(t):   Disturbances. 
θ: Uncertain parameters (heat transfer 

coefficients, fouling factors, kinetic 
constants, etc.).  

y:  Integer variables (normally 0-1 binary 
variables), corresponding to discrete 
process and control decisions (the 
existence or not of a process unit or 
control loop). 

t:       Independent time variable, t∈[t0, tf]. 
t0, tf:  Initial and final time of the time horizon. 

g:    Inequalities that determine the constraints 
that the system must satisfy in order to 
achieve feasible operation in the face of 
disturbances ν(t) and uncertainties θ. They 
are normally called “path constraints” 
because they are to be verified throughout 
the whole time horizon of operation 
(design specifications, physical operating 
limits, etc.)  

hdk, hak, gk: Equalities and inequalities that 
define “interior- and end-point 
constraints” at some specific time instance 
tk (tk∈[t0, tf]). 

ĥ, ĝ: Sets of static equality and inequality 
constraints. 
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