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Abstract An ability to induce new bone formation at a re-
quired site would represent a considerable advance in bone
repair and tissue engineering. It has been shown that the
healing of critical-size bone defects in rats can be augmented
by extracts of Saos-2 cells. These human osteosarcoma cells
uniquely contain a bone-inducing activity, whereas other hu-
man osteosarcoma cells, e.g., U-2 OS cells, cannot replicate
the osteoinductive capacity. To understand the necessary
components of the Saos-2 bone-inducing activity, this study
compared osteoinductive Saos-2 cells with non-osteoinductive
U-2 OS cells with respect to the synthesis of bone morphoge-
netic proteins (BMPs)-1, -2, -3, -4, -5, -6, and -7 and the non-
collagenous matrix proteins bone sialoprotein (BSP),
osteonectin (ON), osteopontin (OPN), and osteocalcin (OC).
The main differences were abundant synthesis of BMP-1/
tolloid, BMP-3, -4, and BSP by Saos-2 cells, but absence or
reduced synthesis in U-2 OS cells. BMP-2 and -7 were present
in low amounts in both cell types, while BMP-5 and -6 were
more abundant in U-2 OS cells, suggesting that these BMPs
were of lesser importance for the osteoinductivity of Saos-2
cells. However, a relatively high expression of BMP-3 and -4,
together with BMP-1/tolloid, may be important for the
osteoinductive capacity of Saos-2 cells. The inability of U2-OS
cells to induce bone, despite expressing most of the BMPs,
may be due to an insufficiency of tolloid, BMP-3 or -4, BSP,
and/or other unknown factors. A better understanding of the
necessary components of the Saos-2 cell bone-inducing agent
may, in future, lead to clinically useful Saos-2 cell products for
bone repair and tissue engineering.
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Introduction

There has been considerable interest in factors that in-
duce new bone formation, ever since the discovery that
ectopic bone could be induced in muscle tissue after the
implantation of cultured human amniotic cells [1] or
demineralized bone matrix [2]. The importance of the
bone morphogenetic proteins (BMPs), members of the
transforming growth factor-f§ superfamily [3], has been
well established. BMPs are synthesized as precursor
forms, which are then cleaved at the carboxy-terminal
regions to yield mature proteins of around 130 amino
acids. Active BMPs are dimers, either homodimers or
heterodimers, of two different BMPs. These dimers
bind to one of two types of serine/threonine kinase
receptor [4,5] located in the plasma membrane, which
results in intracellular signaling by Smad proteins, ulti-
mately leading to changes in the transcription of specific
target genes [6].

All BMPs, except BMP-1, have a high amino-acid
sequence identity in the carboxy-terminal region, shar-
ing a conserved pattern of seven cysteine residues [3].
Based on this structural similarity, BMPs fall into
several groups, which may also reflect their functional
similarities. BMP-2 and -4 are 92% identical in the 7-
cysteine region and have almost identical functions, in
that either or both can initiate the commitment of mes-
enchymal cells to osteogenic-chondrogenic precursor
cells [7,8]. BMP-5, -6, and -7 share an 89% amino-acid
sequence identity. BMP-3 and -3b form another group.
BMP-1 and its spliced variant, tolloid, are not members
of the TGF-f superfamily, but have procollagen C-
proteinase activity [9]. Nevertheless, BMP-1/tolloid
may be important for BMP-induced bone formation,
because they can activate BMPs [10,11].

With the availability of recombinant human BMPs,
several BMPs have been used to enhance bone regen-
eration in animal models, especially BMP-2 and -7 (OP-
1) (reviewed in reference [12]). However, recombinant
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BMPs are still expensive, and 10 to 1000-fold higher
concentrations of recombinant than of native BMPs are
required to produce the same osteoinductive effect
[13,14]. In addition, there are considerable variations in
the responses to BMPs, depending on the species in
which BMPs are implanted, the implantation site, and
the type of BMP implant [14-16].

The question of which combination of BMPs, possi-
bly interacting with other factors, is required for consis-
tent and repeatable bone induction is not yet solved. To
identify the optimal combination of BMPs required for
efficient bone induction, the present study utilized the
fact that devitalized cells, extracts, or secretions from
one type of osteosarcoma cell, the Saos-2 cell line, are
uniquely capable of inducing new bone formation when
implanted subcutaneously in Nu/Nu mice [17-19]. On
the other hand, U-2 OS and TES85 human osteosarcoma
cells, and UMR-109 and ROS 17/2.8 rat osteosarcoma
cells were not osteoinductive when tested in parallel
with Saos-2 cells [17,18]. The bone-inducing capacity
was also found in secretions of Saos-2 cells in condi-
tioned culture media [19,20]. Bone formation, induced
by implants of Saos-2 cell products, recapitulated skel-
etal embryonic development in the same manner as
the implantation of demineralized bone matrix, with
cartilage arising at 7 days post-implantation from a
blastema-like aggregation of mesenchymal osteopro-
genitor cells, and with trabecular bone and marrow re-
placing the cartilage by 14 days [17]. After 3 to 4 weeks,
the osteoinductive stimulus was exhausted. Resorption
exceeded formation, and the induced bone was com-
pletely resorbed after about 10 weeks, unless measures
were taken to replenish the osteoinductive stimulus or
to inhibit osteoclastic activity [21].

We hypothesized that osteoinductive Saos-2 cells
differentially expressed an optimal admixture of
BMPs and other factors when compared with non-
osteoinductive U2-OS cells. Previous studies compared
the gene expression of BMP-1 through -7, as well as
TGFp1, in Saos-2 versus U2-OS cells [22]. Both types of
cells expressed significant mRNA levels of BMP-2, -4,
and -6, and TGF-B1. The non-osteoinductive U-2 OS
cells also expressed BMP-5 and -7, whereas the Saos-2
cells expressed higher levels of BMP-1 and -3 mRNAs.
The absence of osteoinductivity in U-2 OS, despite the
expression of several BMPs, could have resulted either
from a lack of translation of selective mRNAs into BMP
proteins, or from the lack of processing of the pro-
peptides into the active proteins. Therefore, in the
present study, Western blot protein analyses were car-
ried out on Saos-2 versus U-2 OS cells to determine
whether BMP synthesis followed gene expression, and
to assess relative levels of protein expression. We also
analyzed relative BMP protein levels in the subcellular,
particulate retentate fraction of Saos-2 conditioned

media. Proteins extracted from these microsome-sized
Saos-2 media particles, which are retained by a 0.45-um
filter (hence the name, “retentate”), had recently been
shown to exhibit greater osteoinductive ability per mil-
ligram of protein than did freeze-dried Saos-2 cells or
conditioned media filtrate proteins [19]. In addition, we
compared levels of the non-collagenous matrix proteins
bone sialoprotein (BSP), osteonectin (ON), osteocalcin
(OC), and osteopontin (OPN) in Saos-2 cells and
retentate versus U-2 OS cells.

Our results show that Saos-2 cells and retentate ex-
ceeded U2-OS cells in synthesized amounts of BMP-1/
tolloid, BMP-3, and BMP-4, and BSP, while U-2 OS
cells appeared to contain higher levels of BMP-5 and -6.
Extracts from the particulate retentate fraction of Saos-
2 cell-conditioned media consistently showed higher
levels of BMP-1/tolloid, BMP-3 and BMP-4, and BSP,
than did either Saos-2 or U-2 OS whole cell lysates.
These differences may account for the selective ability
of Saos-2 cells and media to induce ectopic bone.

Materials and methods

Cell culture

Saos-2 and U-2 OS cells were grown in Dulbecco’s mini-
mal essential medium (DMEM) or McCoy’s 5SA me-
dium (for U-2 OS cells), plus 10% fetal calf serum [17].
At confluence, the cultures were washed once in Hank’s
balanced salt solution (BSS) and then maintained on
serum-free medium for 48h before harvest. Confluent
Saos-2 and U-2 OS cells were harvested and lysed by
scraping with rubber policemen, then lyophilized, and
stored at —20°C prior to bioassay.

Serum-free Saos-2 cell-conditioned medium was
passed through 0.45-um pore-size filters after precen-
trifugation at 1000 RPM for 20min to remove and
discard large cell fragments. Microsome-sized cell frag-
ments retained by 0.45-um filters (“retentate”) were
extracted into 6M urea for 7 days at 4°C. The extract
was dialyzed against H,O to remove urea, and lyo-
philized prior to storage at —20°C. The proteins of the
“retentate” had previously been shown to be more
osteoinductive per milligram of protein than were Saos-
2 whole cell lysates [19].

Bioassay for osteoinduction

Ten-milligram pellets of freeze-dried, fragmented Saos-
2 cells or U-2 OS cells were implanted subcutaneously
for 14 days in Nu/Nu mice to bioassay osteoinductive
ability, as previously described [17]. To construct media
protein implants for bioassay, 1-3mg of sample protein
was mixed with 2mg of purified bovine collagen in 40ul
of 0.01N HCI. After the mixing, and the addition of
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300ul of 0.1M, pH 7, sodium phosphate buffer to reach
a neutral pH, the samples were lyophilized, compressed
into tablet form in a tuberculin syringe, and stored at
—20°C until implantation into Nu/Nu mice. All implants
were placed subcutaneously, adjacent to the latissimus
dorsi muscles of the backs of anesthetized Nu/Nu
mice (Charles River Laboratories, Boston, MA, USA)
and the skin was closed by stainless steel staples. The
Animal Care and Use protocol used (ACUPY4-
06-0100) was reviewed and approved by the Kansas
University Medical Center (KUMC) Institutional
Animal Care and Use Committee.

At 14 days, the Nu/Nu mice were anesthetized with
ether and Killed by cervical dislocation. The implants
were removed and bisected, and one-half of each im-
plant was fixed for 24 to 48h in 10% phosphate-buffered
formalin, embedded in paraffin, sectioned, and stained
by conventional histologic methods, with or without
acid decalcification. Light-microscopic sections were
evaluated for the presence of cartilage, bone, and mar-
row. The other half of the implant was homogenized
in deoxycholate for the measurement of protein [23]
and alkaline phosphatase. The latter was assayed by
measuring the rate of release of inorganic phosphate
from p-nitrophenylphosphate at room temperature,
spectrophotometrically at 410nm [24].

Western blotting for BMPs and non-collagenous
matrix proteins

Freeze-dried, fragmented Saos-2 cells, U-2 OS cells, or
Saos-2 media retentate (labeled S-R) were dissolved in
1ug protein/ul sample buffer (0.06M Tris-HCI, pH 6.8,
containing 10% glycerol, 2% sodium dodecylsulfate
(SDS), 5% 2-mercaptoethanol, and 0.5% bromphenol
blue) and heated at 95°C to denature. Samples, 15 to
30ug each, were then electrophoresed at 200V (25-
50mA) for 30min in SDS running buffer (25mM Tris,
pH 8.3, 190mM glycine, and 0.1% SDS), using 12%
Biorad (Richmond, CA, USA) precast minigels and
electrophoretically transferred at 100V (200-250mA)
to nitrocellulose membranes in transfer buffer (25mM
Tris base, pH 8.3, 190mM glycine, 0.1% SDS, and 20%
methanol). After three washes in TBS-Tween-20 buffer
(10mM Tris, pH 8.0, 0.15M NacCl, 0.005% Tween-20)
(TBS-T), the membranes were blocked with 10% non-
fat milk in TBS-T, washed in TBS-T, incubated in pri-
mary antibody for 1h (at the dilutions indicated below),
washed again in TBS-T, incubated in secondary anti-
body labeled with horseradish peroxidase (HRP) for
20min to 1h, and washed again in TBS-T. The bound
HRP was immunodetected by enhanced chemilumines-
cence (ECL), using reagents and procedures obtained
from Amersham Life-Science. The following primary
antibodies were used: anti-BMP-1/tolloid rabbit anti-

body (1:1000), a polyclonal antibody from Dr. Paul
Reynolds, University of Rochester (New York); anti-
BMP-2 (W 12), anti-BMP-3 (W 22) and anti-BMP-7 (W
32) (1:100), polyclonal antibodies provided by Dr. I.K.
Moutsatsos, Genetics Institute; anti-BMP-4 (1:100) a
monoclonal IgG antibody from Dr. K. Masuhara,
Osaka University [25]; anti-BMP-5 (1:100), a
polyclonal antibody from Santa Cruz Biotechnology,
Santa Cruz, California; anti-BMP-6 (1:250), a
polyclonal antibody for the precursor form of BMP-6,
provided by Dr. S. Gitelman, University of California,
San Francisco [26]; and anti-BSP, ON, OPN, and OC,
polyclonal antibodies provided by Dr. Larry W. Fisher,
National Institutes of Health (NIH), National Institute
of Dental and Craniofacial Research (NIDCR) [27].

Fluorescence immunohistochemistry for BMPs

Cultured monolayer cells were rinsed with phosphate-
buffered saline (PBS), then fixed in 60% cold acetone
for Smin and air-dried at room temperature (RT). The
cells were blocked with normal goat serum for 20min at
37°C. After being thoroughly washed in PBS, the cells
were incubated with a 1:200 dilution of fluorescein
isothiocyanate (FITC)-conjugated goat anti-rabbit or
anti-mouse immunoglobulin, as a secondary antibody,
for 1h at RT. The cells were then washed thoroughly,
mounted in 90% glycerol and 10% PBS solution, and
viewed with a fluorescence microscope. As controls,
cells were treated with non-immune goat, rabbit, or
mouse serum, or with the secondary antibody alone.

Immunohistochemistry for BMPs

Paraffin sections from 4% paraformaldehyde-fixed
7-day old implants of freeze-dried Saos-2 cells were
deparaffinized in xylene, rehydrated in 95% ethanol,
and permeabilized in 0.3% Triton-X100. Endogenous
peroxidase was inhibited by incubation in 3% hydrogen
peroxide. The sections were then blocked with Dako
(Carpinteria, CA, USA) blocking solution, reacted with
appropriate dilutions of primary antibody overnight in a
humidified chamber, and incubated in Dako link solu-
tion. Secondary antibody, labeled with streptavidin per-
oxidase was applied for 15min, followed by Dako
3,3'-diaminobenzidine chromogen solution, washing in
distilled water, and counterstaining with 0.5% toliudine
blue in 10% ethanol.

Results

Bone-inducing effects of Saos-2 cell products

Seven days after the in-vivo implantation of devitalized
Saos-2 cell fragments, positive BMP-4 immunostaining
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was still present in the Saos-2 cell debris (on the left
in Fig. 1A). After 14 days, an ossicle of new bone
had formed in the muscle (Fig. 1B), and BMP-4 was
present in responding host mesenchymal cells undergo-
ing chondro-osseous differentiation (Fig. 1B). No
staining was seen in negative controls (Fig. 1C).

Synthesis of BMP-2 in both Saos-2 and U-2 OS cells,
but diminished BMP-3 and absence of BMP-4 in
U-2 OS cells

Moderate levels of BMP-2, at an expected molecular
weight (Mr) of 18kDa [28], were observed in the Saos
media retentate (S-R), Saos-2 cells (S), and U-2 OS (U)
cells, at about equal intensities (Fig. 2A). High levels of
BMP-3, at an expected Mr of 16 to 18kDa [29], were
detectable in Western blots in Saos-2 cells, and in-
creased amounts were present in the “retentate” (Fig.
2B). Although some BMP-3 was present in U-2 OS
cells, the levels were low, and several bands appeared
on the Western blots, suggesting alternatively spliced
products (Fig. 2B). BMP-4, at an expected Mr of 17 to
18kDa [25], appeared as two bands, at approximately 17
to 18kDa, with an especially strong 18-kDa band in the
Saos-2 media retentate, and just a trace in Saos-2 cells
(Fig. 2C, Fig. 4C). BMP-4 protein was not detected at all
in U-2 OS cells.

Comparison of BMPs-5, -6, and -7 in Saos-2 and
U-2 OS cells

BMP-5, an apparent dimer at approximately 30kDa
[30], was more intense in U-2 OS cells than in Saos-2
cells or retentate (Fig. 2D). Higher levels of the precur-
sor form of BMP-6, at an expected Mr of 69kDa [26],
were detected in U-2 OS cells. It is noteworthy that
both BMPs-5 and -6 were more abundant in the non-
osteoinductive U-2 OS cells than in Saos-2 cells. Inter-
estingly, the more osteoinductive retentate fraction
contained lower levels of BMP-5 and -6 than did the
Saos-2 cells. BMP-7, at an expected Mr of 16kDa [31],
was detected in low amounts in both Saos-2 and U2 OS
cells. Apparent dimeric BMP-7, at approximately
30kDa, was moderate in Saos-2 cells, with a trace de-
tectable in U-2 OS cells. Immunoreactive bands were
seen at unexpected molecular weights in some of the
Western blots. BMP-2 and -7 showed an additional
weak band at approximately 34kDa (Fig. 2A,F). These
may represent dimeric forms.

Relative abundance of BMP-1/tolloid in Saos-2 cells
and absence of tolloid in U-2 OS cells

BMP-1 was present, at an expected Mr of approxi-
mately 85kDa [10], in Saos-2 retentate and Saos-2 cells,

and a trace was present in U-2 OS cells (Fig. 3). Tolloid,
a 100-kDa protein which shares considerable homology
with BMP-1, with an expected Mr of approximately
100kDa [11], was absent from U-2 OS cells. Tolloid was,
however, moderate in Saos-2 cells and further enriched
in the retentate fraction of Saos-2 cell-conditioned
medium (Fig. 3).

The presence of BMP-1/tolloid protein in Saos-2
cells was confirmed by immuno-fluorescence, which
revealed BMP-1/tolloid in the cytoplasm of Saos-2 cells
(Fig. 4A). U-2 OS cells, on the other hand, did not stain
for BMP-1/tolloid (Fig. 4B). The presence of BMP-4 in
Saos-2 was also confirmed by immunofluorescence (Fig.
4C).

Table 1 compares the relative abundance of tolloid
and BMPs-1 through -7 in Saos-2 “retentate” versus
whole Saos-2 cells and U-2 OS cells. The “retentate”
fraction of Saos-2 conditioned media contained more
abundant tolloid and BMP-1 and -4 than did freeze-
dried Saos-2 cells. On the other hand, the levels of
BMP-5 and -6 were reduced in the “retentate” com-
pared with findings in freeze-dried Saos-2 cells and U-2
OS cells, in which BMP-5 and -6 were abundant. Both
Saos-2 cell media retentate and Saos-2 cells contained
more BMP-1, -3, and -4 and tolloid than did U-2
OS cells. The “retentate”, which is composed of mi-
crosome-sized vesicles and other subcellular elements,
has shown consistently higher osteoinductivity when
implanted into Nu/Nu mice [19].

Synthesis of bone sialoprotein (BSP), osteonectin
(ON), osteopontin (OPN), and osteocalcin (OC)

Saos-2-conditioned media retentate contained high
levels of BSP, at approximately 80kDa (Fig. 5) and ON
at approximately 40kDa (data not shown), versus only
trace amounts of these proteins in Saos-2 cells and U-2

Table 1. Relative abundance of bone morphogenetic proteins
(BMPs) estimated by Western blots in Saos-2 cell-conditioned
culture medium retentate (microsomal particulate fraction)
versus Saos-2 and U2-OS cells

Saos-2-conditioned Saos-2 U-2 OS

media retentate cells cells
BMP-1 +++ ++ +
Tolloid ++ + -
BMP-2 + + +
BMP-3 +++ ++ +
BMP-4 +++ + -
BMP-5 + ++ +++
BMP-6 + ++ +4+
BMP-7 + + +

+++, Maximal; ++, moderate; +, trace; —, no protein
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Fig. 1. Immunohistochemical stains for bone monphogenetic
protein-4 (BMP-4) in sections from implants of freeze-dried
Saos-2 cells. A Implant after 7 days. On the left, BMP-4
staining is moderate in the devitalized Saos-2 cell debris.
Mesenchymal cells, which will undergo chondro-osseous dif-
ferentiation, at the perimeter of the Saos-2 implant (right),

Fig. 4. Immunofluorescent cytochemistry for BMP-1 and -4 in
monolayers of Saos-2 and U-2 OS cells. A Saos-2 cells, stained
for BMP-1/tolloid, show predominantly cytoplasmic fluo-

L1

also show a trace of BMP-4 staining in their cytoplasm. B
Ectopic bone and marrow formed at the perimeter of a 14-day
Saos-2 cell implant. Osteoblasts and osteocytes stain posi-
tively for BMP-4. C Nonimmune serum negative control of
14-day implant. X625

rescence. B U-2 OS cells, stained for BMP-1/tolloid, lack de-
tectable staining. C Saos-2 cells, stained for BMP-4, also show
predominantly cytoplasmic staining. X 1000
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Fig. 2. A-F Western blots for BMP-2, -3, -4, -5, -6, and -7 in
the Saos media retentate (S-R), Saos-2 cells (§), and U-2 OS
(U) cells. The expected approximate molecular weights (in
kDa) are indicated with an arrow on the right of each blot; the
numbers on the left are molecular weight markers. The great-

Table 2. Relative abundance of noncollagenous matrix
proteins, bone sialoprotein, osteonectin, osteopontin, and
osteocalcin, estimated by Western blots, in the Saos-2 cell
particulate media fraction versus Saos-2 and U-2 OS cells

Saos-2-conditioned Saos-2  U-2 OS
media retentate cells cells
Bone sialoprotein +++ + +
Osteonectin +++ - +
Osteopontin ++ ++ ++
Osteocalcin + ++ +

+++, Maximal; ++, moderate; +, trace; =, faint trace

OS cells (Table 2). OPN was detected at 60kDa in all
groups (Table 2). Only a faint trace of 8kDa OC was
visible in the Saos-2-conditioned media retentate and
U-2 OS cells a while a moderate amount of OC was
detectable in Saos-2 (Table 2).

Discussion

An important question with respect to bone repair or
bone tissue engineering is whether a combination of
BMPs will be the more cost-effective in clinical practice
than a single recombinant BMP. Although individual
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est differences between the nonosteoinductive U2-OS cells
and the Saos-2 cells were in the amounts of BMP-3, -4, -5 and
-6, with BMP-3 and -4 being particularly high in the more
osteoinductive Saos-2 culture media “retentate”

BMPs, especially recombinant BMP-2 [3,32,33] or re-
combinant BMP-7 [34], have been used successfully to
accelerate bone regeneration in large defects, the con-
centrations needed for a specific recombinant BMP are
up to 1000-fold higher than those needed for the native
BMP complex [13]. This suggests that the right combi-
nation of several BMPs might be more cost-effective for
enhancing new bone formation than individual recom-
binant human BMPs.

By comparing the differential synthesis of BMPs and
non-collagenous proteins in osteoinductive Saos-2 cells
versus non-osteoinductive U-2 OS cells, the present
study was able to identify some possible components of
the osteoinductive agent of Saos-2 cells that are rela-
tively highly synthesized by Saos-2 cells.

Possible involvement of BMP-1/tolloid and BMP-2,
-3, and -4 in Saos-2 cell induction

Higher intracellular levels of BMP-1/tolloid and BMP-3
and -4 correlated with osteoinduction by Saos-2 cells.
BMP-4 was synthesized by Saos-2 cells, and its quantity
was increased in the more highly osteoinductive Saos-2
cell “retentate”, whereas this protein was not detectable
in U-2 OS cells, even though previous work had shown
that U-2 OS cells expressed the mRNAs for BMP-4
[22,35]. BMP-4 was also highly expressed by Dunn
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Fig. 3. Western blot for BMP-1/tolloid. BMP-1, at an ex-
pected molecular weight (Mr) of approximately 85kDa, and
tolloid (TLD), at approximately 100kDa [10], in Saos media
retentate (S-R), Saos-2 cells (S), and U-2 OS cells (U).
Nonosteoinductive U-2 OS cells demonstrated moderate lev-
els of BMP-1 protein, but apparently lacked tolloid, a protein
that shares considerable homology with BMP-1 [11]. Tolloid
also was strongly stained in the particulate retentate fraction
of Saos-2 cell-conditioned medium and Saos-2 cells
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Fig. 5. Western blot for bone sialoprotein (BSP). A high level
of bone sialoprotein, at an expected Mr of approximately
80kDa [71], was present in the particulate Saos-2 media
retentate (S-R). Only a trace of BSP was detected in Saos-2
cells (S), and none was detected in U-2 OS cells (U)
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murine osteosarcoma cells, which induced bone when
implanted into co-isogenic mice [36]. These findings
suggested that BMP-4 synthesis was an important com-
ponent of the osteoinductive capacity of Saos-2 cells.

BMP-2, on the other hand, was also synthesized by
the non-osteoinductive U-2 OS cells, yet this did not
confer osteoinductive capacity. In previous studies,
BMP-2 alone has been shown to be sufficient for
osteoinduction [37] and recombinant BMP-2 is the most
widely used BMP in preclinical and clinical trials
[32,33,37-42].

One possible reason for the non-osteoinductivity of
U2-0S cells may be the complete absence of tolloid and

the reduced synthesis of BMP-1 in U-2 OS cells com-
pared with Saos-2 cells. BMP-1/tolloid belong to the
astacin family of metalloproteinases [11,43,44], which
have pro-collagen C-proteinase activity [9,43], i.e., they
can cleave the pro-peptide of pro-collagens I, 11, and 11T
to yield the mature triple helix. However, the function
that is most relevant in the present context is the ability
of BMP-1/tolloid to promote the activity of some BMPs.
BMP antagonists, such as chordin and noggin, are usu-
ally synthesized together with BMP-2 or -4, and prevent
BMP-receptor interaction [45-47]. Cleavage of these
antagonists by BMP-1/tolloid can liberate the active
BMPs [48,49]. Tt is possible that the lack of osteo-
induction in U-2 OS cells in spite of the presence of
BMP-2 could be related to a lack of BMP-inhibitor
removal, due to the absence of tolloid and/or the re-
duced presence of BMP-1.

BMP-3 was present in large amounts in Saos-2 cells
and “retentate”, whereas the Western blot for BMP-3
of U-2 OS cells showed several faint bands, suggesting
differences in post-translational modification or alterna-
tively spliced products. Previous work has shown that
BMP-3 can be osteoinductive in vivo [50,51]. Also,
BMP-3 inhibited proliferation, and stimulated differen-
tiation of cultured marrow stromal cells [52]. Taken
together, these data suggest that BMP-3 synthesis by
Saos-2 may enhance osteogenic differention. However,
a recent report by Daluiski et al. [53] indicates that
BMP-3 can inhibit the osteogenic effect of BMP-2 in
cell culture, and that BMP-3 is a negative regulator of
postnatal bone density. Furthermore, a recent study by
Takao et al. [54] did not detect osteoinductive activity in
recombinant human BMP-3b. Thus, there is conflicting
evidence regarding the ability of BMP-3 to stimulate
bone formation. It is possible that BMP-3 may have
either a positive or a negative effect on bone develop-
ment, as is the case with BMP-4, depending upon the
experimental or developmental conditions. Although
BMP-4 is widely accepted to be an osteoinductive
agent, during morphogenesis, BMP-4 can promote the
apoptosis of interdigital mesenchymal cells as a part of
digital development [55], and, recently, BMP-4 has been
shown to inhibit ductal budding and branching during
morphogenesis of the prostate [56]. Thus, BMPs, such
as BMP-3, may have dual roles in bone development.

BMP-5, -6, and -7 are unlikely to be crucial for
osteoinduction by Saos-2 cells

Although BMP-5, -6, and -7 were synthesized by Saos-2
cells, these proteins were more abundant in the non-
osteoinductive U-2 OS cells. This lack of association
between osteoinductivity and BMP-5, -6 and -7 sug-
gested that these BMPs were not required for the
osteoinductive capacity of Saos-2 cells, although their
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presence may still contribute to the formation of new
bone. The low quantities of BMP-7 in Saos-2 cells and
retentate was of particular interest, because recombi-
nant BMP-7 has previously been used to induce new
bone [57] or accelerate fracture healing [34]. In some
experimental models of osteoinduction, BMP-7 can
substitute for BMP-2/4 in their absence [31].

Significance of bone sialoprotein for osteoinduction

The media retentate fraction was also found to be an
abundant source of non-collagenous bone matrix
proteins, especially bone sialoprotein (BSP) and
osteonectin (ON) (Fig. 5 and Table 2) [58]. This new
finding is consistent with recent reports indicating that
Saos-2 cells show advanced osteoblastic differentiation,
characterized by the secretion of a phenotypic bone
matrix containing type I collagen [59], and by the re-
lease of mineral-initiating matrix vesicles [60].

Our finding of diminished BSP in U-2 OS cells,
as contrasted with strong expression by Saos-2 reten-
tate and, as previously observed, strong expression in
maturing hypertrophic chondrocytes, osteoblasts, and
odontoblasts during bone and tooth development
[61], suggests that the U-2 OS cells are less mature than
Saos-2 cells, i.e., that U-2 OS cells are not as far along
the pathway as Saos-2 cells to full osseous differentia-
tion. Bone sialoprotein (BSP) is known to promote
bone matrix mineralization [62,63]. Recently, BSP has
been linked to the promotion of osseous differentiation
and bone repair [64-66]. Thus, the above demonstration
of selective BSP expression by osteoinductive Saos-2
cell media retentate may indicate that BSP has a posi-
tive function in Saos-2 cell bone induction and bone
morphogenesis.

Optimal admixture of BMPs and other factors
for osteoinduction

The present study suggested that the combination of
BMP-1/tolloid, BMP-3 and -4, and BSP was important
for the osteoinductive capacity of Saos-2 cells. It is pos-
sible that Saos-2 cells contain other, as yet unrecog-
nized, non-BMP-related osteogenic factors or cofactors
that are required for bone induction. An example of
such a factor could be sonic hedgehog, a non-BMP pro-
tein that interacts with BMPs during embryonic devel-
opment [67], and that was shown to be capable of
initiating in-vivo bone formation without the addition
of BMP [68].

In future, it may be possible to isolate and utilize an
effective combination of BMPs and other proteins that
are present in extracts of cultured Saos-2 cells to pro-
mote the clinical healing of bone defects [69] and/or to
generate new bone for tissue engineering. There are

several advantages in using this source of the bone-
inducing agents. The Saos-2 cells can be grown in mass
culture, virtually indefinitely, to produce large quanti-
ties of an active combination of osteoinductive factors
at a fraction of the cost of the individual recombinant
proteins. Although Saos-2 cells are osteosarcoma cells,
they are non-tumorigenic and do not survive after im-
plantation into immunosuppressed hosts [70]. More-
over, living Saos-2 cells are not required or even optimal
for bone induction. Attempts to purify the osteo-
inductive activity of Saos-2 cells have so far been only
partially successful, possibly because the activity resides
not in a single factor, but in an optimal combination of
factors, which includes tolloid, BMP-1, -3, and -4, and
BSP, as well as other unknown components.
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