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Abstract

Several aspects of current resampling methods to assess group support are reviewed. When the characters have different prior

weights or some state transformation costs are different, the frequencies under either bootstrapping or jackknifing can be distorted,

producing either under- or overestimations of the actual group support. This is avoided by symmetric resampling, where the

probability p of increasing the weight of a character equals the probability of decreasing it. Problems with interpreting absolute

group frequencies as a measure of the support are discussed; group support does not necessarily vary with the frequency itself,

since in some cases groups with positive support may have much lower frequencies than groups with no support at all. Three

possible solutions for this problem are suggested. The first is measuring the support as the difference in frequency between the group

and its most frequent contradictory group. The second is calculating frequencies for values of p below the threshold under which the

frequency ranks the groups in the right order of support (this threshold may vary from data set to data set). The third is estimating

the support by using the slope of the frequency as a function of different (low) values of p; when p is low, groups with actual support

have negative slopes (closer to 0 when the support is higher), and groups with no support have positive slopes (larger when evidence

for and against the group is more abundant).

� 2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
One of the fundamental aspects of parsimony

analysis is the evaluation of group support. To the
extent that there is more evidence in favor of it, and

less evidence against, a group is said to be better

supported.

Jackknifing (Farris et al., 1996; Lanyon, 1985) and

bootstrapping (Felsenstein, 1985) are widely used to

measure support, but they sometimes produce illogical

results. In this paper, we discuss these problems and

explore possible solutions. Some of the proposed solu-
tions are less than ideal, but we discuss them because

they may eventually lead to better ones. The methods

described have been implemented in several computer

programs, available from P.A.G. and J.S.F.
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Terminology and conventions

Throughout the paper, Jackknifing is indicated as J

and bootstrapping as B; the jackknife frequency of

group AB under a deletion probability p is indicated as

jðAB; pÞ and its bootstrap frequency for a Poisson distri-
bution of mean m as bðAB;mÞ. For J, the resampling
strength is the probability p of deleting (or changing the

weight) of a given character; the probability of the

character retaining its original weight is q ¼ 1� p.
The exact calculation of frequencies was done by

enumerating all possible weight combinations (2n in the

case of jackknifing, 3n in the case of the symmetric re-

sampling described below) for the n characters in the
matrix. This is illustrated in Fig. 1, where each row in

the second column shows a rearrangement, as a weight

vector; the first row represents the resampled matrix

where all characters have weight 0, the second row
by Elsevier Science (USA). All rights reserved.
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Fig. 1. Example of an exact calculation of frequencies; see text for details.
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represents the matrix where all characters have weight 0

except the last one, etc. The probabilities (third column)
are easily obtained for each possible rearrangement of

the weight vector. For each rearrangement, it is neces-

sary to calculate whether the group of interest, G, is

supported by the resulting sample of characters. Define

Yi;p, as the probability of the ith rearrangement dis-
playing the group, for resampling strength p; likewise

for Xi;p, for the ith rearrangement not displaying the

group. The rearrangements are orderly generated, be-
cause each must be examined only once. Then,

jðG; pÞ ¼
P

Yi;p. For all the exact calculations of fre-
quencies, the equal symbol (¼ ) and four significant
digits are used, while the symbol ‘‘approximately equal

to’’ (�) and only two significant digits are used to denote
empirical estimations (in all cases, 10,000 replications

were used). All the examples with multistate characters

assume that the characters are nonadditive.
The consensus for each resampled data set can be

estimated by means of approximate, more superficial

searches (Farris et al., 1996). This is intended only as a

practical approximation for large data sets, since more

exhaustive analyses would be prohibitively time con-

suming. Although useful in practical terms, such a

heuristic approximation may introduce a systematic

bias, either under- or overestimating the actual group
frequency. Problems can also arise when the group fre-

quencies are calculated for each replication (as in

PAUP* and Phylip); only using the strict consensus for

each replication properly evaluates support. These

problems were pointed out by Goloboff and Farris

(2001) and by De Laet et al. (2002). In this paper, both

the exact and the empirical estimations use searches

exhaustive enough to guarantee that the correct strict
consensus tree is found in each case.
Uninformative characters (and characters irrelevant

to the monophyly of a group) can influence J and B as
they were originally proposed (Carpenter, 1996; Farris

et al., 1996; Harshman, 1994). Each of these two

methods can be corrected for the influence of irrelevant

characters by making the weight probability of each

character independent. Farris et al. (1996) were the first

to suggest this for J, and, to produce group frequencies

more comparable to those obtained under B, they pro-

posed a deletion (zero weight) probability of e�1. For B,
Harshman (1994) suggested generating the resampled

matrices by (imaginarily) adding an infinite number of

autapomorphies to the data set before resampling.

Harshman�s suggestion produces a weight distribution
corresponding exactly to a Poisson distribution of mean

1 (see Farris et al. in Horovitz, 1999) and is thus easily

implemented. Throughout this paper, when we refer to J

or B, we always mean the procedures modified to make
irrelevant characters uninfluential. The problems that

we point out, however, will also exist for the original

procedures.
Background

The amount of support for a group is the result of the
interaction between the characters that favor the group

and those that contradict it. However, because of

character interaction, it is often impossible to evaluate

relative amounts of favorable and contradictory evi-

dence by simply counting characters. An example is

Fig. 2, where group EFGH has positive overall support.

The only character that provides a synapomorphy for

the EFGH branch is character 1. Character 1 by itself
does not provide support for EFGH, since eliminating
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any of the other characters (which seem otherwise ir-
relevant to monophyly of EFGH) also eliminates

EFGH. The only character that contradicts EFGH is

character 1, the same character that appears as its syn-

apomorphy. Increasing the weight of character 1 causes

EFGH to become unsupported. The example of Fig. 2

shows that, for a given group, it may not be possible to

divide the characters into those that are favorable,

contradictory, or irrelevant: character 1 would fit in two
categories at the same time. In other cases, a character

that seems irrelevant to monophyly of a group must

nonetheless be included (or excluded) for the group to

have some positive support (e.g., the apparent synapo-

morphy of BC in Fig. 11 seems otherwise irrelevant to

the monophyly of EF, but whether the character is in-

cluded in the matrix determines whether the group is

present in the most parsimonious trees).
Since a direct count of the characters that actually

favor or contradict the group is not possible, essentially

all methods to measure support do so indirectly. An

example is the Bremer support and its variants, where

the support is measured by comparing the fit of the data

to optimal and suboptimal trees. The absolute (Bremer,

1988, 1994) and relative (Goloboff and Farris, 2001)

Bremer supports measure two different aspects of group
support. One aspect of the support is the absolute

amount of favorable evidence, measured by the absolute

Bremer support. The other aspect is the ratio between

favorable and contradictory evidence, measured by the

relative Bremer support. Ideally, these two quantities

should be measured separately, because they represent

two aspects of the support that can vary independently,

but in practical terms it will often be preferable to
combine them in a single value. J and B provide a single

measure.

Several interpretations of B have been advanced by

different authors (see Berry and Gascuel, 1996). A

common interpretation (Efron, 1979; Felsenstein, 1985)

is that B measures the probability of recovering a given

group if a data set for the same organisms is to be

sampled again from scratch (that is, a measure of
Fig. 2. A case where the characters in the matrix cannot be divided into

favorable, indifferent, or contradictory of a given group. The only

character that supports EFGH is the same character that contradicts it.
stability under those specific circumstances). If a data set
is to be sampled again from scratch, a supported group

may indeed be less likely to be recovered again than

some other unsupported group. Thus, neither lower

frequencies for better supported groups nor the influ-

ence of autapomorphies are necessarily a problem when

B is intended as a measure of stability (whether the as-

sumptions of the method are met and whether there is

any use for methods that predict what could happen if
systematists were to throw away all their data in the

future are different questions).

Support, however, is logically different from stability.

Stability can be defined only by reference to some fac-

tors (e.g., a group stable under addition of characters

may be very unstable under addition of taxa or under

recoding of some characters). Unlike stability, support

depends exclusively on presently available evidence
(and, of course, assumptions or theories used to inter-

pret that evidence). As first proposed explicitly by Farris

et al. (1996), resampling methods such as J or B can be

used to indirectly detect the relative amounts of favor-

able and contradictory evidence, rather than as statisti-

cal measures of confidence or stability. As discussed by

Farris et al. (1996), resampling evaluates support be-

cause the frequency with which replicates display a given
group will be determined by the relative amounts of

favorable and contradictory evidence. While some

strong statistical assumptions are necessary to interpret

J or B as confidence levels, no statistical assumptions

are necessary to interpret them as simply measuring the

observed amount of support (Farris, 2002:352). How-

ever, some possible situations (unproblematic for a

statistical interpretation) become problematic from this
perspective; for example, the measure should never in-

dicate a group contradicted by the data as ‘‘better sup-

ported’’ than a group with positive support. Since we

intend to measure support (not stability or confidence),

we propose in this paper possible ways to correct these

problems.

Although well-supported groups will often survive

sensitivity analyses (sensu Wheeler (1995); changing the
parameters of the analysis), this need not be so. A group

that shows up in all the parameter space may nonethe-

less be poorly supported (e.g., a group supported by 10

A! T transitions and contradicted by 9 A! T tran-

sitions). Similarly, a group with high ‘‘support’’ (in the

sense used here) may nonetheless be unstable to changes

in some parameters (e.g., a group supported by 0! 1

changes in several additive characters with some mem-
bers also having state 2 has a high ‘‘support’’ but is lost

if the character is made nonadditive). This difference

does not indicate conflict between sensitivity analysis

and measures of support. Evaluating a hypothesis re-

quires considering the evidence in the light of accepted

(‘‘background’’) knowledge or theories (see Farris, 1995;

Popper, 1972). Whether an observation is seen as



Fig. 4. A randomly generated data set (0 and 1 equiprobable for each

cell), demonstrating the problem of replacing characters with weight N

by binary characters of weight 1. The two groups in the consensus are
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corroborating or contradicting a hypothesis may itself
depend on what knowledge is taken as accepted. Con-

clusions that depend critically on accepting some prior

knowledge for which there is little basis are themselves

weakly established, and this is what sensitivity analysis

examines. In contrast, measures of support (such as J or

Bremer support) evaluate quantities more directly re-

lated to the evidence itself.

poorly supported; both have a low frequency under resampling, but

when all columns are multiplied by 10, the frequencies approach 1.
Weights and symmetry

When some of the characters have higher weights or

costs, both J and B can lead to wrong conclusions with

regard to support. Consider the case in Fig. 3, where one

character of weight N is in conflict with N characters of

weight one. Under J, the group BC will not be sup-
ported by a given resampled matrix when the first

character is eliminated ðpÞ or when no character is
eliminated ðqNþ1Þ. Thus, jðBC; pÞ ¼ 1� ðp þ qNþ1Þ; for a
sufficiently large N, jðBC; pÞ tends to q (normally set to
0.6321). Thus, when N is large, group BC will appear as

relatively well supported—but in fact the original data

do not support this group. Under B, the group CD in-

stead will appear as supported; in a given resampled
matrix, group CD will be displayed when the weight has

been increased for more than one of the (many) char-

acters supporting CD and not for the (single) character

supporting BC. The exact calculations are more difficult

in this case, but for N ¼ 10, bðCD; 1Þ � 0:52.
A possible correction for cases such as this, imple-

mented in PAUP* (Swofford, 1998), is decomposing the

characters in several variables of unit weight or cost
(including N copies for a character with weight N or

decomposing additive characters in binary variables).

This correction is inapplicable to analyses under implied

weights (since the character weights are determined

during the analysis) or to step-matrix characters (where

different transformations have different costs). A worse

problem is that it alters the results in undesirable ways.

Consider Fig. 4, which is a randomly generated data set
(0 and 1 equiprobable for each cell). The consensus tree

for that data set has two groups, both poorly supported;

bðECF; 1Þ � 0:47 and bðCF; 1Þ � 0:45. If the matrix is rean-
alyzed by including 10 copies of each character, the

groups ECF and CF appear now as strongly supported;

bðECF; 1Þ � 0:97 and bðCF; 1Þ � 0:93. It is hardly surprising
Fig. 3. A hypothetical example of character conflict.
that the decomposition fails, since (to start with) the

example of Fig. 3 showed that, for J or B,X characters of

weight N are not equivalent to N characters of weight X.

The influence of the weights or costs can be elimi-
nated if the resampling is done in such a way that the

probability of increasing the weight of the character

equals the probability of decreasing it. This also explains

the difference in the error produced in J and B. The

mean in J equals 1� p; a character has a chance p of
being deleted (downweighted) and a chance q of being

retained (upweighted relative to the mean); the asym-

metry in J is q=p, or 1.71. In B (with Poisson of mean 1),
the probability of deletion (downweighting) is 0.3679,

and the probability of weight 2 or more (upweighting

relative to the mean) is 0.2642; the asymmetry is thus

1.39. The Poisson distribution is closer to being sym-

metric than the deletion only, and this is why the devi-

ation from equal probabilities for BC and CD is less

pronounced for B. In the Poisson distribution, the

probability of downweighting is more than the proba-
bility of upweighting, while in J the opposite is true;

this is why J wrongly favors BC, and B wrongly favors

CD.

Although B with a Poisson of mean 1 is close to

symmetric, it is not actually so. The method could be

corrected by using a Poisson distribution with a proper

mean, such that this symmetry occurs. The symmetry

also occurs under J, when p ¼ q ¼ 0:5, but this is a very
strong resampling function; only extremely well sup-

ported groups will survive such a resampling, and the

problems pointed out in the next section become more

acute.

The required symmetry can be most easily obtained

by modifying J, so that a character could be either up-

weighted (by a given factor) or deleted with equal

probability, p. Consider first the case where a character
can only be upweighted and never deleted, with proba-

bility p. For the example in Fig. 3, the group CD will be

absent whenever the first character is upweighted ðpÞ or
when no character is upweighted ðqNþ1Þ, so that

jðCD; pÞ ¼ 1� ðp þ qNþ1Þ. The probability of obtaining
group CD in a given replicate with upweighting equals

the probability of obtaining the group BC with deletion.

If both actions are done at the same time, the effects
will cancel. Thus, p will be the same for deletion or



Fig. 5. Supported group BC has frequency below 0.5 under symmetric

resampling.
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upweighting, and q ¼ 1� 2p; when resampling a matrix,
each character has a probability 2p to be changed, and if
changed, it can be duplicated or deleted with equal

probability. We will call this method the symmetric re-

sampling, or SR; srðG; pÞ denotes the frequency of group
G when probability of up or downweighting equals p.

As in J, the frequency for a group supported by a single

uncontradicted character will be 1� p. SR can be ap-

plied to any kind of weighting scheme, such as successive
weighting (Farris, 1969), implied weighting (Goloboff,

1993), or weighting of state transformations (including

asymmetries in transformation costs).
Fig. 6. Supported group EF has frequency below 0.5 under symmetric

resampling.

Fig. 7. Supported group HI has frequency below 0.5 under symmetric

resampling. Contradicted group EFG has a higher frequency (0.1611)

than supported group HI (0.0798).
Supported groups with low frequencies

Another problem with resampling methods in general
arises when groups of low frequencies are considered

more carefully. When the search for each resampled

matrix is careful enough (and the resampling function is

symmetrical), any group with frequency above 0.5 is

certain to be supported, but the opposite is not true:

many supported groups have frequencies well below 0.5.

The frequency for actually supported groups can be

calculated, regardless of whether it is above or below
0.5, but it is nonetheless difficult to interpret those val-

ues. Examples of groups with actual support but re-

sampling frequency below 0.5 were provided by

Harshman (1994).1 An example is shown in Fig. 5; the

group BC is supported, but srðBC; 0:33Þ ¼ 0:3792; the un-
supported groups (BD, BE, etc.) have a SR frequency

(for p ¼ 0:33) of 0.0226. In general, when there are N
mutually incompatible groups each supported by the
same number of characters, each individual group can

have at the most a frequency of 1=N .
That condition does not represent the only prob-

lematic situation. Consider the case of Fig. 6, where

group EF is supported, but srðEF; 0:33Þ ¼ 0:2626. Note
that the three characters are required for the group EF

to be supported; most possible combinations of weights

between 0 and 2 (except for the original weights) will
cause EF to be absent. Also note that group EF is not

actually contradicted by any character; it is simply am-

biguously supported. An even lower frequency can

occur; for Fig. 7, group HI is supported and uncontra-

dicted, but srðHI; 0:33Þ ¼ 0:0798. This is more than a

problem of scale; for Fig. 7, contradicted group EFG

(with srðEFG; 0:33Þ ¼ 0:1611) has twice the frequency of
supported HI.
Examples such as these imply that the frequency itself

does not provide an accurate measure of degree of

support. Consider the case in Fig. 7, where group HI,

with some actual support, has srðHI; 0:33Þ ¼ 0:0798.
1 Harshman, however, did not draw any special conclusion from the

existence of groups with actual support but frequency below 0.5.
Imagine that N characters joining HI and N characters

joining GH are added to the matrix. As N becomes

larger, srðHI; 0:33Þ approaches 0.5. For HI, adding those
characters actually lowers support and increases fre-

quency.

Three ways to solve this problem have been examined:

(1) calculating the difference in frequencies between the

group and the most frequent contradictory group, (2)
calculating the frequency for low values of p, and (3)

calculating the frequency slopes as a function of p.
Frequency differences

Groups with zero support can have a frequency up to

0.5. Consider the case where N characters support a BC
partition and N characters support a CD partition. For

a large N and any p, both srðBC; pÞ and srðCD; pÞ tend to
0.5. While for each group the frequency itself is well

above zero, the difference between srðBC; pÞ and srðCD; pÞ is
(sampling error aside) exactly zero—just like the actual

support. This suggests that what actually measures the

support is not the frequency itself, but instead the



Fig. 8. Example to demonstrate that GC values must be calculated by

counting individual instances of contradictory groups. BC is con-

tradicted in more replications than it is supported, but all the indi-

vidual groups that contradict it (BD, BE, BF, BG, and BH) have

frequencies well below the frequency of BC. Note: resampled Bremer

support (obtained by calculating the average Bremer support for each

of the resampled matrices) for group BC is )0.47.
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difference in frequency between a group and the most
frequent contradictory group. That interpretation casts

doubts on the use of the absolute frequencies as mea-

sures of support, even in the case of frequencies above

0.5. A group with frequency 0.6 will be quite poorly

supported if it is contradicted in 0.4 of the replicates,

while it will be quite strongly supported if it is never

contradicted; using just the absolute frequency will

simply not distinguish between these two situations.
We will call the difference in frequencies GC (for

‘‘Group present/Contradicted’’), and the difference in

frequencies for a given group AB under resampling

probability p will be called gcðAB; pÞ. Such a measure
varies between )1 and 1, and it can produce meaningful
evaluations of the support for all groups, not only those

with absolute frequency above 0.5. GC values of )1, 0,
and 1 indicate (respectively) maximum contradiction,
indifference, and maximum support. Consider the ex-

ample in Fig. 5: gcðBC; 0:33Þ ¼ srðBC; 0:33Þ � srðBD; 0:33Þ ¼
0:3566. For the examples in Figs. 6 and 7, since groups
EF or HI never appear contradicted in any replica-

tion, gcðEF; 0:33Þ ¼ srðEr; 0:33Þ ¼ 0:2626 and gcðHI; 0:33Þ ¼
srðHI; 0:33Þ ¼ 0:0798. Contradicted group EFG of

Fig. 7 (which had a higher frequency than HI) has

gcðEFG; 0:33Þ ¼ �0:4487.
Note that GC must count the number of occurrences

of individual cases of contradiction, not simply the

number of times that a group is contradicted. In the

example of Fig. 8 (similar to Fig. 5, but with more

characters), the group BC appears supported in �0.28 of
replicates and contradicted in �0.37. If simply the

number of times that BC is contradicted are counted,

the impression that BC is unsupported would be given.
However, each of the groups that contradicts BC (BD,

BE, BF, BG, and BH) individually appears in only

�0.07 of the cases. Even if more replicates display some
contradictory group, the (supported) group BC is re-

covered in more replicates than any of the individual

contradictory groups.2

The GC value for a group is more easily calculated

considering that the group is contradicted when the
consensus directly contradicts it (thus counting cases

where the group is unresolved in the consensus as nei-

ther favorable nor contradictory). However, the con-

sensus may display the group as unresolved even in cases

where no actual underlying tree displayed the group. An
2 In this example, the uncorrected GC values are similar to those

obtained by calculating a resampled Bremer support (i.e., the average

value of Bremer support for the group in the resampled matrices),

which produces a ‘‘negative’’ support for group BC. However, the

uncorrected GC values and resampled Bremer supports are not

equivalent. Symmetric resampling of the Bremer supports has

additional problems as measure of support: when there are NCD
apparent synapomorphies for CD and NBC for group BC, the

resampled Bremer support is simply NCD � NBC (regardless of the
ratio NCD=NBC).
example is in Fig. 9. When resampling, if the second

character dominates over the first (either because it has

been upweighted or because the first character has been

deleted), the shortest trees display ED. If instead the first

character dominates over the second, none of the pos-

sible multiple shortest trees (shown in Fig. 10) displays
group DE, but their consensus is unresolved. Thus, if

the GC difference is calculated using the strict consensus

for each replication, gcðDE; 0:33Þ ¼ 0:3333, even when

group DE is unsupported. To prevent this, the number

of occurrences of a group must be counted as cases

where the group occurs in some of the most parsimo-

nious trees for the resampled data set (and regardless of

whether the group represents a zero-length branch). If
that is done, it is seen that gcðDE; 0:33Þ ¼ 0 (group DE
occurs in 0.3333 of replicates, just like contradictory

groups CD or EF; note that in this case the sum of

frequencies of all possible groups may not add to 1). The

GC value calculated using the strict consensus, which we

will call GC0, may in practice be a good empirical ap-
proximation to the actual GC value, since it is much

more easily obtained. The GC0 values, however, are only
Fig. 9. A case where computing GC using the strict consensus for each

replication misleadingly indicates positive support for group DE.

Fig. 10. The three equally parsimonious trees for the data set of Fig. 8,

when the first character dominates over the second.



Fig. 11. Two cases where GC values are misleading. Group EF (appearing in only one of the two most parsimonious trees, shown at the right of the

consensus) is unsupported, but it has a positive GC value, for both matrices.
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estimations (under some situations, biased) of the actual

GC.

There are some cases where the GC values are mis-
leading. An example is shown in Fig. 11 (top). The

consensus does not display group EF. Group EF ap-

pears in some of the most parsimonious trees for the

data set (when C is closer to DEF than to B, optimi-

zation of the first character unambiguously indicates

state 2 as a synapomorphy of group EF), but not in all

(when C is closer to B than to DEF, state 2 of the first

character can be considered plesiomorphic within DEF,
even when E and F are placed together). In the resam-

pled data sets, the group EF may be supported or am-

biguous, but never contradicted; gcðEF; 0:33Þ ¼ 0:2233,
thus wrongly indicating that EF is supported. In this

case, EF is unsupported because of ambiguity, not be-

cause it is contradicted by some characters. If these were

the only circumstances where GC can attribute support

to unsupported groups, this would mean that the values
for actually supported groups will normally not be bi-

ased (since for actually supported groups, only actual

contradiction—which precludes this situation—would

lower the GC values). That, however, is not the case.

Modifying the example by adding some characters

(Fig. 11, bottom), the amount of evidence contradicting

EF is almost the same as the evidence favoring it, and

the consensus is still the same; unsupported EF is am-
biguous because of character conflict, but

gcðEF; 0:33Þ ¼ 0:1867.
Low resampling strengths

An alternative solution to the problem of groups with

positive support but low frequencies comes from con-
sidering the differences in frequency at low resampling

strengths—that is, when the probability p of up- or

downweighting is very low. Fig. 12 illustrates srðG; pÞ
for different values of p. By necessity, if group G is

supported, limp!0 srðG; pÞ ¼ 1, and if group G is unsup-
ported, limp!0 srðG; pÞ ¼ 0. This implies that, for any
data set, there is a resampling strength where no sup-

ported group has a frequency below 0.5, and then there
may be a given p (call it pr) below which the resampling
frequency will rank all the groups in the correct order of

support. How close pr is to 0 will depend on the data set.
If the support for some of the groups is extremely low

(but positive), pr may be very close to 0.
Using low values of p, however, has an undesirable

effect on the precision with which the estimation can be

done. Using a low p has the effect that the resampling
will not be able to discriminate differences in support

among groups with relatively high support; in practice,

if few replications are done, they will all have (estimated)

frequencies of 1. The differences in (real) frequency will

normally be very small; three groups with relatively

high, medium, and low support may have frequencies of

0.9999, 0.9995, and 0.9990. The number of replications

necessary to estimate the frequencies with such a degree
of precision may be prohibitively large. Using very low

values of p will effectively identify groups with extremely

low (but positive) support, but the groups with support

above a certain threshold will all be considered as

equivalent. In some sense, this is the opposite of what

happens under larger values of p, which cannot dis-
criminate among groups with low support; the emphasis

of the study may require evaluation of groups in one or
the other category.
Frequency slopes

Further consideration of Fig. 12 suggests that the

trajectories of the group frequencies, as a function of p,
may themselves provide information on support.
Groups with positive support always have negative

slopes; groups with no overall support (i.e., ambiguous

or contradicted) have negative or positive slopes, de-

pending on the value of p. However, for low values of p,
all groups with no support will necessarily have positive



Fig. 12. Curves of frequency under symmetric resampling, as a function of different values of p. The groups HI, EFG, and CDE correspond to the

example in Fig. 7.

3 It is easy to show that the estimator is biased, for a sample size of 1.

Imagine that there are Ny rearrangements of the weight vector that

display group G (with an average associated probability Yi;p equal to a)
and Nn rearrangements that do not (with an average associated

probability Xi;p equal to b). Then, sampling one rearrangement, srðG; pÞ
will be estimated as 1 with frequency Ny=ðNy þ NnÞ and as 0 with
frequency Nn=ðNy þ NnÞ; srðG; pÞ is then estimated (on average) as

Ny=ðNy þ NnÞ, but the true frequency of the group is a 	Ny . The

estimator is unbiased only when a ¼ 1=ðNy þ NnÞ; it is easy to see that
this also implies that b ¼ 1=ðNy þ NnÞ, and then the estimator is
unbiased only when a ¼ b (which is guaranteed only under p ¼ 1=3).
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slopes (since limp!0 srðG; pÞ ¼ 0), and all groups with
positive support will necessarily have negative slopes

(since limp!0 srðG; pÞ ¼ 1). Groups with high support
have negative slopes that approach 0, and groups with

low support have more negative slopes. Groups with

slopes that are very close to 0 could be either strongly

supported, very ambiguous, or strongly contradicted

groups; the frequencies for such groups will be close to

1.0, 0.5, or 0 (respectively). The slope could be intro-

duced in the support measure in several ways, for ex-

ample, by multiplying the absolute frequencies by a
factor that depends on the slope.

In principle, estimating the slope of srðG; pÞ accurately
will require a significant amount of computational ef-

fort. This would require computing srðG; pÞ for different
(but close) values of p and then using those values in a

regression. Each of the values of srðG; pÞ will, however,
have a significant error; estimating the slope implies

calculating srðG; p1Þ � srðG; p2Þ when p1 approaches p2. The
error in srðG; p1Þ � srðG; p2Þ can be up to twice the error in
each estimation; what is worse, the magnitude of that

error may be very large relative to p1 � p2.
For small matrices, an exhaustive enumeration can be

used to compute the slope, using the approach illus-

trated in Fig. 1. If the number of changed/unchanged

characters is recorded for each matrix examined, it is

possible to calculate the actual values of Yi;p (and Xi;p)
for any value of p, without the need to repeat the
tree-searching calculations. For small matrices, this

exhaustive enumeration can be used to compute the

slope almost exactly.

For matrices with larger numbers of characters, ex-

haustive enumeration is not possible. An estimation

obtained by sampling from among possible rearrange-

ments of the weight vector (as before, each rearrange-
ment must be examined only once and must have the

same probability to be sampled) and calculating the es-

timated frequency as sr0ðG; pÞ ¼
P

Xi;p=ð
P

Xi;p þ
P

Yi;pÞ
(note that the denominator does not add to 1) will work
only for very large numbers of replications. When the

number of replications (¼ rearrangements of the weight
vector) is very large, sr0ðG; pÞ converges to srðG; pÞ (andP

Xi;p þ
P

Yi;p) approaches 1), but the estimator is sig-
nificantly biased for smaller sample sizes.3 Aside from

the bias, it has a significant dispersion, and, therefore,

even for relatively modest numbers of characters (40 or

50), different estimations based on 1000 replications

produce very different results; much larger numbers of

replications are necessary to produce more stable results.

Although estimations of the slope for p ¼ 0:3333 should
be more accurate (since in that case all rearrangements

have the same probability), the slope at that point will

not always produce proper evaluations of support, since

the frequency of unsupported groups sometimes peaks

below p ¼ 0:3333 and thus has negative slopes at that
point.

A more accurate and less biased estimation can be

obtained by doing a normal estimation of the group
frequency under a change probability p (i.e., simply

generating matrices where each character is duplicated

or removed with probability p, allowing duplicate ma-

trices to be examined) and then extrapolating the

probabilities associated with each replication to the vi-

cinity of p. Thus, the frequency estimated at point p is

(as usual) the proportion of replications that displayed

the group, and at point p0 the estimated frequency is
sr0ðG; p0Þ ¼ ð

P
viÞ=ð

P
vi þ

P
wiÞ, where vi ¼ Yi;p0=Yi;p if



Fig. 13. Frequencies (on branches) and slopes (below branches), for p ¼ 0:10, for the data matrix of Fig. 7, estimated with 10,000 replications. The
least supported group is group HI (with the most negative slope); group EFG (contradicted by the data, with a higher frequency at p ¼ 0:33) has a
lower frequency at p ¼ 0:10 and a positive slope.
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replication i displays the group (vj ¼ 0 otherwise), and
wi ¼ Xi;p0=Xi;p if replication i does not display the group

(wi ¼ 0 otherwise).4 Using this procedure (for p ¼ 0:10),
the unsupported group EF of Fig. 11 (which appeared
as supported with GC) is properly identified for both

matrices, with a slope of 1.07 (frequency �0.15) for the
top matrix, and 1.63 for the bottom one (frequency

�0.35). As another example, Fig. 13 shows the value of
slopes and frequencies (at p ¼ 0:10), for the data set of
Fig. 7; group HI is correctly shown as supported (with a

negative slope, )3.60) and contradicted group EFG

(which had a higher frequency than HI at p ¼ 0:33) has
a lower frequency and a positive slope (+0.59). Contrast

this with a hypothetical case where 15 characters sup-

port group AB and 15 support BC (so that neither AB

nor BC have any actual support); at p ¼ 0:10, both AB
and BC have a frequency �0.42 (slightly above the
frequency of supported HI), but they have a positive

slope (+0.38).
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