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Abstract

The latest charge against parsimony in phylogenetic inference is that it involves estimating too many parameters. The charge is

derived from the fact that, when each character is allowed a branch length vector of its own (instead of the homogeneous branch

lengths assumed in current likelihood models), the results for likelihood and parsimony are identical. Parsimony, however, can also

be derived from simpler models, involving fewer parameters. Therefore, parsimony provides (as many authors had argued before)

the simplest explanation of the data, or the most realistic, depending on one�s views. If (as argued by likelihoodists) phylogenetic

inference is to use the simplest model that provides sufficient explanation of the data, the starting point of phylogenetic analyses

should be parsimony, not maximum likelihood. If the addition of new parameters (which increase the likelihood) to a parsimony

estimation is seen as desirable, this may lead to a preference for results based on current likelihood models. If the addition of

parameters is continued, however, the results will eventually come back to the same place where they had started, since allowing

each character a branch length of its own also produces parsimony. Parsimony can be justified by very different types of models—

either very complex or very simple. This suggests that parsimony does have a unique place among methods of phylogenetic esti-

mation.

� 2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

The two most widely used criteria for phylogenetic

inference are parsimony and maximum likelihood.

Usually, parsimony is defended by recourse to realism,

generality, and economy of assumptions, while maxi-

mum likelihood is defended by its explicit use of evo-
lutionary models and the idea that phylogenetic

inference must be viewed exclusively as a problem in

statistical inference. Parsimony, under some specific

models, is also a maximum likelihood estimator; as

noted by Farris (1986, p. 24), the ‘‘method of maximum-

likelihood is not a technique for estimating anything in

particular, but a way of deriving estimation procedures

from models.’’
The most widely used maximum likelihood methods

are now the ones based on the work of Felsenstein

(1973, 1981), reviewed in Swofford et al. (1996), which

assume stochastic, Markovian models of evolution,

where all the sites have the same probability of change

along a branch (a limited amount of rate variation is

allowed in some models; see Yang, 1993, 1994). This

probability depends on the ‘‘length’’ of the branch (time

and mutation rates combined). These models are derived

from neutral theories of evolution, which assume that

only time and mutation rate are the forces behind most

of molecular evolution. Throughout this paper, the term
‘‘likelihood’’ (or ‘‘likelihoodist’’) is used to denote this

type of method (or the people espousing its use).

Parsimony was not originally justified by means of an

explicit probabilistic model. In the belief that only

methods based on explicit probabilistic models are de-

fensible, the likelihoodists have tried to discover (start-

ing with Felsenstein, 1978) ‘‘the model’’ implicit in

parsimony; the resulting findings have been used to
criticize the assumptions supposedly required to justify

parsimony.

Some authors have defended parsimony from a

philosophical perspective (Kluge, 1997, 2001; Siddall,

1997, 2002), but most likelihoodists (with few excep-

tions, such as de Queiroz and Poe, 2001) have ignored

these philosophical issues. The purpose of the present

paper is to revise some aspects of the parsimony vs
likelihood controversy, from a more statistical perspec-

tive. Recent criticisms of parsimony accuse it of relying
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on an implicit model that is too complex and therefore
over-fits the data (this charge has now replaced earlier

criticisms that accused it of being too simplistic—e.g.,

Felsenstein, 1982, p. 388; Felsenstein, 1988, p. 535). My

main conclusion is that, since most parsimonious trees

are maximum likelihood estimates under different

models (either very simple or very complex), parsimony

can be seen as providing either the simplest explanation

of the data or the most realistic. Current likelihood
methods lie in between. More importantly, the fact that

parsimony can be derived under very different types of

models also casts doubt on the notion that one can

evaluate a method justified on logical grounds by simply

evaluating statistical models that happen to produce

similar results.

Philosophy

Many likelihoodists (e.g., Edwards, 1996; Felsenstein,

1973, 1978, 1988; Goldman, 1990; Yang et al., 1995)
have claimed that methods of phylogenetic inference can

be properly justified only by recourse to statistical rea-

soning, instead of the logical and philosophical argu-

ments often advanced in favor of parsimony (e.g.,

Farris, 1983, 1986). They often portray advocates of

parsimony as people who are unaware of the sound

statistical principles behind maximum likelihood and

misunderstand the technical aspects of maximum like-
lihood. Felsenstein�s comment on the work of two

statisticians (Barry and Hartigan, 1987a) is a good ex-

ample of this attitude:

after coping with taxonomists, who tend to dismiss statistical in-

ference and adopt arbitrary and bizarre ‘‘hypothetico-deductive’’

philosophical frameworks, it is refreshing to deal with statisti-

cians, who are not tempted to replace the hard work of inference

by philosophical quotation-mongering (Felsenstein, 1987, p.

208).

Writing for the general public Edwards (1992) ap-

peared to have a very open attitude toward science and

philosophy; the introductory remarks for his book on

likelihood could well have been written by a philo-

sophically inclined pattern cladist:

The incentive for contemplating a scientific hypothesis is that

through it we may achieve an economy of thought in the descrip-

tion of events, enabling us to enunciate laws and relations of

more than immediate validity and relevance. The classical con-

cepts of probability allow us to extend our activities into the

realm of uncertainty, for it appears that even the most random

of events, such as the results of a penny-tossing experiment, ex-

hibit, in the aggregate, certain regularities. The greater the regu-

larity of pattern in a sequence of events, the more we feel

compelled to seek an �explanation� in terms of a law . . . It is

our task to detect regularity in the presence of confusion, order

in the presence of chaos. It will not be sufficient, when faced with

a mass of observations, to plead special creation, even though, as

we shall see, such a hypothesis commands a higher numerical

likelihood than any other. We prefer more general and more sim-

ple hypotheses (Edwards, 1992, p. 1).

But when discussing the ideas of those who attempt

to justify parsimony on general philosophical principles,

Edwards (1996) had a rather different attitude:

It is surprising to find the philosophy of systematics ensnared in

prestatistical arguments, as though Darwin had lived before Pas-

cal, Bernoulli, Gauss, and Laplace, and that therefore the implica-

tions of Darwin�s revolutionary hypothesis have to be studied

without reference tomodern theories of scientific inference (p. 81).

Any approach that attempts to grapple with inference under

uncertainty without using ideas from the theory of probability

is unlikely to command scientific respect (p. 89).

Since ‘‘inference under certainty’’ cannot exist in real

empirical research (from physics to anthropology), Ed-

wards� statement amounts to saying that no conclusion

established without strict statistical reasoning is scien-

tific.

Admittedly, not all defenders of likelihood will
present the problem in terms as extreme as Felsenstein

or Edwards. Although they discuss the problem of

phylogenetic inference as a purely statistical problem,

Swofford et al. (1996) present their views from what

seems a very moderate and eclectic perspective:

It is often argued that it is circular to model character change for

the purpose of estimating a phylogeny because we cannot begin

to understand the processes of character change without first

knowing the tree. We prefer, instead, to think of the problem

as one of ‘‘reciprocal illumination’’ (Hennig, 1966): having some

idea of the phylogeny is relevant to the development of good

models, but ever-improving models can also lead to better phy-

logenetic inferences. Thus, both classes of methods are useful

and important (p. 409).

Their argument for ‘‘reciprocal illumination’’ is ap-

pealing at first,1 but not so much when one considers

that practice among likelihoodists always falls short of

this scenario. In fact, one can seriously doubt that

Swofford et al. (1996) truly believe that parsimony is so
‘‘useful and important,’’ because they very clearly point

out what they perceive as the general advantages of

maximum likelihood but never actually inform the

reader what the advantages of parsimony are supposed

to be (this asymmetry is also quite obvious in the con-

cluding remarks of Swofford et al., 2001, p. 538). Their

abstract praising of parsimony seems more intended to

1 Note that Hennig (1966) actually meant by ‘‘reciprocal illumina-

tion’’ the consideration of independent evidence (e.g., reexamination of

characters in case of conflict, agreement with other sources of

evidence) that could bear on a phylogenetic hypothesis. By ‘‘reciprocal

illumination’’ Swofford et al. (1996) mean instead the theoretical

improvement of existing models using the implications of accepted

phylogenies (which is in fact very rarely done).
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create the impression of open-mindedness and the im-
pression that they avoid unfair criticisms of other au-

thors or methods.2 The impression of open-mindedness

and fairness of judgment makes superficially convincing

their almost casual dismissal of arguments against like-

lihood (e.g., arguments by Farris (1983, 1986), are not

fully discussed in the text, but just misrepresented and

rejected in a footnote (p. 427)).

Defendants of parsimony are often more concerned
with epistemology than with statistics. Likelihoodists

would make us believe that the controversy, once the

superior value of statistical reasoning is accepted, can be

easily or automatically resolved. However, accepting

statistical reasoning as supreme under all circumstances

requires itself philosophical considerations. On top of

this, whether a given model of evolution is considered

valid cannot be decided only on a statistical basis; the
decision will ‘‘also be influenced by the simplicity of the

hypothesis, by their relevance to other situations, and by

a multitude of subtle considerations that defy explicit

statement’’ (Edwards, 1992, p. 34). Therefore, to prac-

titioners of parsimony, the increase in precision gained

by applying a rigorous statistical methodology is—in the

face of so many imponderables—entirely illusory. Ra-

ther than trying to attribute a degree of statistical con-
fidence to phylogenetic hypotheses, it seems more honest

to acknowledge that phylogeny estimation has a strong

element of irreducible uncertainty. On the other hand,

even if a statistical approach is adopted, it does not

follow automatically that current likelihood methods

are the best estimation procedure. For example, San-

derson and Kim (2000), advocates themselves of the

statistical approach, argue against the very use of
parametric models. If one adopts their point of view,

much of the present discussion (cast in terms of para-

metric estimations) is rendered irrelevant.

Contrary to most likelihoodists, I do not consider

that philosophy is irrelevant to the controversy; many

aspects of the likelihood vs parsimony controversy do

involve philosophical points. The so-called ‘‘statistical

viewpoint’’ of phylogeny estimation, taken to the ex-
treme, means that no method can be considered justified

in general ; each individual case will require use of just

that method most likely to recover the true tree in that

specific case. Those who approach the problem from the

more philosophical side are trying to decide whether

some general method or principle can guide phyloge-

netic inference in all its applications—a deeper justifi-

cation, in some sense. Likelihoodists, however, have
repeatedly made it clear that they are not willing to

listen to this kind of argument, and therefore my general

discussion is cast in more statistical terms.

Consistency and simplicity

In earlier literature, the property of statistical con-

sistency (i.e., the property to converge on the true tree

when the underlying model generated the data and

many characters are sampled) was loudly voiced as the

main advantage of likelihood methods. The emphasis on

consistency on the part of likelihoodists has gradually

decreased. It decreased with the realization that maxi-
mum likelihood can be inconsistent even with minor

violations of the model (Chang, 1996a). It decreased

with the realization that, given some evolutionary

models, even maximum likelihood estimators could

suffer inconsistency (Farris, 1999; Steel et al., 1994). It

decreased with the realization that parsimony can be

consistent (Steel et al., 1993). It decreased with the re-

alization that, even if likelihood was a more accurate
method in principle, inferences based on trees subopti-

mal under likelihood could be less reliable than infer-

ences based on trees actually optimal under otherwise

inferior but faster criteria (Sanderson and Kim, 2000). It

decreased with the realization that (under some models)

parsimony may be more likely than maximum likeli-

hood to find the correct tree, given finite amounts of

data (Pol and Siddall, 2001; Siddall, 1998; Yang, 1997).
As the emphasis shifted away from consistency, ad-

vocates of parsimony (e.g., Farris, 1999, 2000; Siddall

and Kluge, 1999) often cited Tuffley and Steel (1997) in

their support. Tuffley and Steel (1997) demonstrated

that parsimony is a maximum likelihood estimation

when each site can have its own branch length, and this

(according to those who defend parsimony) is an indi-

cation that parsimony is simply a more realistic model: it
does not force uniform probabilities of change onto all

characters. Defenders of likelihood (e.g., Lewis, 2001, p.

914; Steel, 2002, p. 133; Steel and Penny, 2000, p. 843;

D. Swofford, pers. comm.)3 reacted by pointing out that

the model that assumes uniform probabilities for all sites

is simpler (i.e., has fewer parameters) than the model of

Tuffley and Steel, where each site has its own branch

length. Simplicity has always been recognized as desir-
able in scientific inference:

If we are to pursue the fundamental idea that similar circum-

stances have similar consequences, then we must formulate a

law which embodies the similarities. . . . It follows that the law

will be simpler than the observations if it is to achieve anything.

The wider the circumstances to which it is to apply, the simpler it

will be; and since our natural interest is in laws which express the

similarity in a wide variety of circumstances, our natural interest

is in simple laws. A law of wide applicability contains few �ifs�

2 To be fair, Swofford et al. (1996) may well believe this themselves. I

have no way to know.

3 Swofford maintained this position during the discussion—in which I

took part—of a seminar given by James S. Farris at the Smithsonian

Institution (May 2001). He also made the same charge against

parsimony in a seminar that he gave at Columbia University

(November 1999; I did not attend this seminar but heard accounts

of it from D. Pol, J. Faivovich, and G. Giribet).
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and �buts� to cover special circumstances, and a law with few �ifs�
and �buts� is what we call simple (Edwards, 1992, p. 200).

Likelihoodists point out that statisticians eschew the

use of too complex a model, because, although this in-

creases fit, the results become less predictive and ex-

planatory, more computationally demanding, and more

prone to errors. Phylogenetic inference, the likelihood-

ists then claim, should always use the simplest possible

model, using more parameter-rich models if (and only if)
the likelihood (fit) is significantly higher. The starting

point of a phylogenetic analysis should therefore be a

model like Felsenstein�s (1981), which (in using uniform

branch lengths for all sites) is much simpler than par-

simony. What parsimony does, according to this line of

reasoning, is like fitting a curve that passes through each

and every one of the data points, instead of using a

straight line. Such a curve has a perfect fit, but no pre-
dictive value; any one new data point will certainly fall

outside the previously specified trajectory, which (if fit is

to be preserved) will have to be modified every time a

new data point is added.

While the preference for simpler hypotheses is hardly

objectionable, it is far from obvious that parsimony

really requires such a complex formulation. For exam-

ple, ‘‘perfect fit’’ is certainly never obtained by applying
parsimony to real data sets of some size; otherwise,

phylogeneticists would not have been struggling for

decades with ways to deal with homoplasy. If parsimony

is so complex a model (and given that estimation pro-

cedures with more parameters always involve more

computations), it is surprising (as noted by M. Steel, in

Sanderson and Kim (2000)) that parsimony requires so

little computational work, as compared to a likelihood
method like Felsenstein�s (1981). All this suggests that a

closer look at the actual simplicity of parsimony and

likelihood is required.

Integrated and maximum relative likelihood

In phylogenetics, likelihoodists have used only what
is known as maximum relative likelihood, even if ad-

mitting that the ideal estimation is integrated likelihood.

Calculating the actual integrated likelihood of a tree

would require a probabilistic model of branch lengths

for the given tree topology (as early recognized by Fel-

senstein (1973); the same point was made by Farris

(1973)):

To evaluate the likelihood of a topology s [for data D and model

M ], we would calculate

PM ðDjsÞ ¼
Z
s
P ½timesj s� P ½Djtimes; s�; ð4Þ

where we integrate over the set S of all branch point times com-

patible with the topology s . . . The methods for doing this have

not been developed . . . An easier approach would be simply to

estimate both topology and branch point times, and then to ig-

nore the branch point time estimates. Such a procedure does

not make fully efficient use of the data, but it will have to suffice

until methods for calculating (4) [the integrated likelihood] have

been devised (Felsenstein, 1973, p. 243).

Thus, for tractability, the estimation of the branch

point times and topology is done under the assump-

tion that the parameters (branch lengths, tree) take

values such that P ðDjsÞ is highest.4 The parameters

corresponding to branch lengths become a type of

nuisance parameter, in that (even if the only interest is

in the topology s) they have to be estimated to de-
termine the value of P ðDjsÞ. Assuming that the pa-

rameters maximize the likelihood may be problematic

(as noted by E. Sober, in Felsenstein and Sober, 1987;

Goldman, 1990; Steel and Penny, 2000), since some of

the values that maximize P ðDjsÞ may themselves be

very improbable. The problems become worse when

there are many nuisance parameters (i.e., many branch

lengths).
In the usual likelihood formulation, a single set of

branch lengths is chosen, but all the possible pathways

(reconstructions of ancestral states) that could have

led to the data are considered. This formulation, ac-

cording to likelihoodists, integrates ancestral recon-

structions into the model. In this way, the probability

assigned to a given site does not depend on a given

reconstruction, and ancestral states are actually not
estimated (Felsenstein, 1973, 1978). According to

likelihoodists, specific assignments of ancestral states

to internal nodes are (just like branch lengths) nui-

sance parameters, which (unlike branch lengths) in-

crease more and more as new characters are added.

The ‘‘pruning’’ algorithm of Felsenstein (1981) allows

calculating more or less efficiently the individual con-

ditional likelihoods at each node of the tree, in a
postorder traversal of the tree (see Swofford et al.

(1996), for review; see also Fig. 2). If branch lengths

are changed one at a time (under the ‘‘pulley’’ prin-

ciple of Felsenstein (1981)), the change in likelihood

for the total tree is easy to derive (using only the

conditional likelihoods of the nodes delimiting the

branch); thus the optimal branch lengths are found in

practice by iteratively adjusting each of the branch
lengths, until the likelihood cannot be further im-

proved by adjusting branches one at a time. This

branch-length fitting procedure is the most time-con-

suming part in searches under maximum likelihood

(and it is likely to always keep likelihood well below

4 In practice, other parameters (e.g., probability ratios for all

possible nucleotide transformations) are often also estimated, using

the same approach; throughout, my discussion holds regardless of

whether those parameters are given or estimated.
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parsimony with regard to speed; see Sanderson and
Kim (2000, pp. 822, 823)).5

Once the optimal branch lengths have been found,

they are discarded, and only the tree topology is re-

tained. However, since the maximization of P ðDjsÞ in-

volves fixing branch lengths, this in effect amounts to

considering trees of identical topology but different

branch lengths (Fig. 1) as different trees. Since we are

interested only in choosing topologies (i.e., hypotheses
of monophyly), then it seems more logical to evaluate

trees regardless of branch lengths. For a single tree, this

requires summing the probabilities of the data, given the

topology and all possible combinations of branch

lengths. In the absence of more detailed models of

branch lengths, this is not exactly equivalent to the in-

tegrated likelihood of Felsenstein�s (1973, his formula 4),

which multiplies each combination of branch lengths by
its (prior) probability. Here, the values of P ðDjs; kÞ for

different branch lengths k are simply summed. The ap-

proach, however, seems more consistent than just inte-

grating reconstructions; after all, just as different

assignments of ancestral states form plausible recon-

structions, different branch lengths are also plausible.6

The integration of branch lengths could be done in

two different ways. One could calculate first the sum of
likelihoods (or, equivalent for tree selection, their aver-

age) for each of the individual sites, under the same

range of branch lengths for all sites, and then multiply

the site likelihoods. This is easily done. Consider the

postorder likelihood calculations for a fixed set of

branch lengths, for a given site in the tree in Fig. 2

(using, for simplicity, only two states). In that tree, node

X gives rise to A and B, and node Y gives rise to C and

X; bi is the length of the branch leading to node i. If only

the terminals descended from X are considered (and
branch lengths are fixed), the probability of obtaining

the observed data for A and B if node X had state i is

LiX. The probability of a state remaining unchanged

along a branch i ðP00i and P11i), or changing (P01i and

P10i), is a function fðbÞ of the length bi of the branch (in a

Neyman, 1971 two-state model, this would be

0:5� 0:5e�b for a different state and 0:5þ 0:5e�b for the

same state; other models would use different formulae,
but this makes no difference for the present argument).

Once the conditional likelihoods at node X have been

calculated, it is possible to calculate the conditional

likelihoods at node Y. The conditional likelihoods at the

root node are final, for the given branch lengths. There

is an infinite number of combinations of lengths for the

branches bA, bB, bC, bX, and bY. Note, however, that the

conditional likelihoods at node Y depend (by multipli-

5 Sanderson and Kim (2000) note that parsimony has a significant

advantage over likelihood in that the evaluation of a candidate tree

during a search ‘‘can be accomplished very efficiently in time linearly

proportional to the number of taxa . . . by way of the Fitch–Hartigan

algorithm.’’ Sanderson and Kim, however, grossly underestimate the

speed of actual parsimony calculations under branch-swapping. For T

terminal taxa, the algorithms described by Goloboff (1996, 1999) use

6T times fewer operations than direct application of the Fitch–

Hartigan algorithms. Therefore parsimony can evaluate trees at the

same speed for any number of taxa (or even use less time to evaluate

trees with more taxa). To be fair to likelihood, however, the

optimization of branch lengths from scratch for each tree examined

during branch-swapping (as done in current programs; see Rogers and

Swofford (1998)) is also unnecessary; Barry and Hartigan (1987a) had

already proposed to calculate the likelihood (when adding a terminal

or a group to a subtree) by optimizing only the three branches

subtending the newly created node. For real data sets, this produces so

much error (pers. observ.) that the approximate evaluation becomes

almost meaningless; a modified procedure based on the same idea,

however, may produce more meaningful evaluations, by optimizing the

length of only a reduced number of branches around the new node, for

each tree examined during branch swapping (P. Goloboff, unpub-

lished). With this, the evaluation of a tree during branch-swapping

with maximum likelihood could be (depending on the desired precision

and/or the greediness of the data) from T/10 to T/20 times faster than

current implementations.
6 Note that Bayesian analysis (Huelsenbeck and Ronquist, 2001;

Larget and Simon, 1999; Yang and Rannala, 1997) treats this

integration of branch lengths as an essential desideratum of the

analysis, since the branch lengths themselves are part of the parameter

space to be explored with the Monte Carlo Markov Chain.

Fig. 1. Three trees with identical topologies, but different branch

lengths. Current models of maximum likelihood will consider one of

these trees better than the others, even if their topologies are identical.

Fig. 2. A tree with three terminal taxa (A–C) and two internal nodes

(X, Y), showing how the conditional likelihoods are determined (after

Felsenstein�s (1981) pruning algorithm; for simplicity, the example

assumes a two-state character). LjK is the likelihood of the data ob-

served for the descendants of node K, given that the node K has state j;

PijK is the probability of ending in state j at node K if the ancestor had

state i (this is a function of the length, bK , of the branch leading to

node K).
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cation) on the conditional likelihoods at node X, and
those of node X correspond to the multiplication of a

factor corresponding to the left branch, bA, and a factor

corresponding to the right branch, bB. Thus, if the

length of the branch bA is fixed, it is possible to change

the lengths of the other branches (the results will be

carried over by the multiplication); likewise for the other

branches. Thus, the average probabilities can be calcu-

lated one branch at a time. Therefore, to calculate L0X

changing branch bA, it is necessary to first calculate the

average value of P00AL0A þ P01AL1A: Since L0A and L1A

are fixed at this point, this is equivalent to

P00AL0A þ P01AL1A:

The average probabilities of change and stasis for a

given range (t0 to t1) of branch lengths are easily

determined with

P ¼
R t1

t0
fðtÞdt

t1 � t0
:

For a two-state Neyman or Jukes–Cantor type of
model, the probability a of stasis is

P00 ¼ P11 ¼
R t1

t0
ð0:5 þ 0:5e�tÞdt

t1 � t0

and the probability b of change is

P01 ¼ P10 ¼
R t1

t0
ð0:5 � 0:5e�tÞdt

t1 � t0
:

If the range of branch lengths is from 0 to infinity,

change and stasis are equiprobable, and no tree choice is
possible. The range of branch lengths can be logically

bounded between 0 and some positive number (since

both time and mutation rate are bounded). In real

maximum likelihood analyses, a branch length of 2 is

considered very long. For a range 0–2, a 	 0:72, and
b 	 0:28.

The postorder traversal of the tree (applying the

pruning algorithm of Felsenstein (1981)) now can be
done with regard to these fixed average probabilities of

stasis, a, and change, b. This is a simpler method, be-

cause it avoids estimation of a host of nuisance pa-

rameters; the branch lengths become instead

incorporated into the model. Accordingly, the compu-

tational cost of calculating this integrated likelihood is

much lower than that for the maximum relative likeli-

hood proposed by Felsenstein (1981).7 Interestingly,
Goldman (1990) considered that this type of model,

where probabilities of change and stasis are the same
across all branches, lacked a ‘‘time structure.’’ However,

it is precisely the model that results from considering

alternative branch lengths in the likelihood calculations.

The most remarkable result of integrating out branch

lengths is that it produces probabilities of change fixed

along all branches. Branch lengths become therefore

irrelevant to choosing trees (Fig. 3). This is similar to the

model proposed by Sober (1985), which he intended as a
model for parsimony. For unrooted trees of four taxa

(with no missing entries), this always produces the same

results as parsimony (see Fig. 3), but this need not be so

for more taxa or rooted trees. Goldman (1990) already

showed that a method with fixed probabilities of stasis

and change is not generally equivalent to parsimony,

using four taxa and one additional (root) node. Addi-

tional examples showing differences between this meth-
od and parsimony are illustrated in Fig. 4. This method

(just like parsimony for four taxa) can be inconsistent.

The inconsistency, however, comes only from consid-

ering that different combinations of branch lengths are

plausible alternatives.

7 Shortcuts similar to those used by Goloboff (1998) for Sankoff

characters could be used here during branch-swapping (e.g., deriving

the likelihood of a tree produced by joining two subtrees from the

conditional likelihoods of the nodes delimiting the branches to be

joined). This would produce tree searches about as fast as those for

Sankoff parsimony (i.e., hundreds of times faster than current branch-

swapping for maximum relative likelihood).

Fig. 3. Example showing the implications of considering alternative

branch lengths when calculating the likelihood of each site, which leads

to probabilities of stasis (a) and change (b) uniform for all branches

(see text). For simplicity, only two states are considered. There are six

nontrivial (i.e., nonuniform) types of character distributions for a tree

of four taxa (where one taxon is considered as the ancestral node). The

individual likelihood contribution of each type, given values of a and

b, can be calculated either by enumerating possible reconstructions or

by applying the postorder conditional calculations and operating al-

gebraically. Note that types 1, 2, and 3 interconvert when switching

between trees, so that these types of characters (with identical indi-

vidual likelihoods) do not not influence tree choice. Since the same

taxon is always used to root the tree, type 4 remains the same for any

tree (and has a likelihood identical to those of types 1–3). The only

types relevant for tree choice are therefore types 5 and 6, as in parsi-

mony. For any value of a 6¼ b, type 5 (‘‘synapomorphy’’) has a higher

likelihood than type 6 (‘‘parallelism’’), so that the tree that invokes the

fewest parallelisms is always preferred.
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An alternative integration of branch lengths is pos-
sible, although it is computationally more difficult. In-

stead of calculating the likelihood for each site under a

range of branch lengths, one could calculate the likeli-

hood for all the data (i.e., the product of the individual

site likelihoods), for different combinations of branch

lengths. This has the drawback that the average likeli-

hood of individual sites cannot be obtained from the

calculations, but (even if considering P ½timesj s� the
same for all branch length combinations) it may be

closer to the intent of Felsenstein (1973). As he noted,

the integrals are here much more complicated, and there

seems to be no general form to solve them. However,

computers are now much faster than in 1973, and this

allowed me to examine the behavior of this method with

brute force, by considering (for the unrooted four-tax-

on, two-state case, under a Neyman model) a large
number of different branch length combinations. The

range of lengths considered was 0–1 for the five branches

in the four-taxon network; 100 different branch lengths

were considered for each branch (from 0 to 1, increasing

by 0.01); this requires considering 1005 ¼ 1010 different

combinations of branch lenghts. The fourth taxon was

considered as an all-0 ancestor (the results are simply

mirrored if the state 1 for the ancestor is considered

also). The probabilities for each of the possible four
reconstructions at the internal nodes were then evalu-

ated for each combination of branch lengths (summing

them up). The frequency (¼ probability) of each one of

the eight possible types of characters (the eight different

combinations of 0/1 in three taxa A, B, and C) was

calculated for a fixed combination of branch lengths in

the model tree. These probabilities were used to estimate

the average likelihood, under different branch lengths
for the model tree, for the three possible trees for four

taxa (e.g., if a given character type has a probability X

under the branch lengths of the model tree, and the

character has an individual likelihood of L under a given

set of branch lengths in the estimated tree, the likelihood

contribution of that character was calculated as Lx).

Although long branches are less strongly attracted in

this method than in parsimony, the resulting method is
not statistically consistent, showing some attraction of

long branches. For example (using for the model tree the

same notation as that in Fig. 2), when branch lengths

bA ¼ bX ¼ bY ¼ 0:02 and bB ¼ bC ¼ 0:5, the model tree

(((AB)C)D) has a lower likelihood than the wrong tree

(((BC)A)D) (the estimated average likelihoods are, re-

spectively, 0.0822177 and 0.0835179, or 1.5% lower for

the model tree).
The inconsistency produced by either type of inte-

gration makes it unlikely that likelihoodists will accept

any of them, even if it seems a more proper procedure

than choosing the parameters that maximize the likeli-

hood. In the words of Felsenstein (1973):

my estimates of the tree topology are obtained by first estimating

more than the topology, then dropping some of that informa-

tion. This is not the same as making a maximum likelihood esti-

mate of the topology. Only the expression based on (4) is the

maximum likelihood estimate of the topology. If we cannot use

(4), either because we have no model of branching to give us

P ½timesj s� or because we cannot evaluate the integrals, my pro-

cedure would seem to have at least one major advantage, consis-

tency (p. 246).

It is now seen that, in the absence of a model for

P ½timesj s�, the advantage of consistency cannot be

claimed for formulations that do not depend on esti-

mating specific values for branch lengths. This raises an

interesting question. As pointed out by Yang (1996, p.

304), there are some significant differences between the

conventional maximum likelihood estimation and the
maximum likelihood estimation of a tree topology as in

Felsenstein�s formulation; given these differences, con-

sistent estimations of tree topology are not guaranteed

by Wald�s (1949) conditions (which Felsenstein (1973),

had improperly cited as providing proof of the consis-

tency of his method; see Farris (1999)). Rogers (1997)

proved, however, that topology estimation under Fel-

senstein�s formulation is consistent. As shown above, if
Felsenstein�s formulation is changed so that only the

topology is estimated—integrating branch lengths—the

Fig. 4. Two cases where the integrated likelihood (produced by con-

sidering alternative branch lengths, with average probability of stasis a
and average probability of change b) considers trees with the same

numbers of steps as having a different likelihood. Tree 1 is better than

2, and 3 is better than 4. In both cases, the best tree is the one that has

an ambiguous optimization (and therefore has more reconstructions

with minimum transformations; these contribute more to the total

likelihood score). Note that trees 3 and 4 are identical, except for the

placement of the taxon with a missing entry.
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method becomes inconsistent. Rogers�s proof was based
on demonstrating that sums of branch lengths along the

path between different taxa are consistently estimated

(Rogers, 1997, p. 357). Once all the branch lengths be-

tween pairs of taxa are consistently estimated, a tree

topology is automatically determined—as a by-product

of the branch length estimations, so to speak.8 Given

Felsenstein�s model, perhaps no method can estimate the

tree topology alone consistently.

Other formulations

Aside from consistency, the most likely argument

against considering alternative branch lengths is that the

data themselves make some branch lengths more likely

(or better) than others. If that line of reasoning is ac-
cepted, defending the formulation that maximizes

branch lengths on those grounds also implies that one

should also choose the individual reconstructions (con-

sidered by likelihoodists as a nuisance parameter) to

maximize the likelihood. Choosing values to maximize

likelihood for one type of parameter, but not for the

other, seems logically inconsistent. Barry and Hartigan

(1987a) were the first to formally propose the idea that
one can choose the parameters that maximize the like-

lihood for both branch lengths and reconstructions.

They called their procedure ‘‘most parsimonious likeli-

hood’’ and used both optimal branch lengths and indi-

vidual reconstructions to maximize likelihood. It is not

entirely clear how they chose state assignment to the

interior nodes; they state that ‘‘the values of the internal

nodes are usually assigned to agree as much as possible
with neighboring nodes’’ (p. 200). They estimated the

complete transition matrices at each node (they were

aware that the resulting probability model is not iden-

tifiable; see 1987a, p. 201), but a fixed one could be used

for all the branches.

As noted by Barry and Hartigan themselves (1987b),

this method may produce inconsistent estimations. As

respectable as Felsenstein may have considered statisti-
cians, they are obviously also capable of producing

seriously inconsistent methods. For the four-taxon, two-

state case (under a Neyman model), using as the likeli-

hood of a tree the best branch lengths and the best

(unconstrained) reconstructions produces results which

are hardly defensible. Consider the case where the model

tree is (((AB)C)D), with branches leading to B and C

long and all other branches short. Since change is seen
as more likely along long branches than along short

branches, all the changes are pushed toward the long

branches, and no change is implied along the interme-
diate branch. This method therefore tends to distort

branch lengths (shortening short branches, lengthening

long ones). Even in cases of small differences in branch

length (where parsimony still performs consistently),

this method may lead to prefer the wrong trees. When

the underlying branch lengths in the model tree are

bA ¼ bX ¼ bY ¼ 0:6 and bB ¼ bC ¼ 0:8, the tree with the

highest likelihood (calculated as before) is ((BC)(AD))
(0.131487, with branch lengths set to bA ¼ bB ¼ 0,

bX ¼ 1:4, bC ¼ 2:2, and bY ¼ 1:8; the model tree has a

likelihood of 0.113415). With these branch lengths in the

model tree, parsimony is consistent. Under the same

model tree, if the reconstructions are restricted to be

‘‘parsimonious,’’9 Barry and Hartigan�s procedure leads
to preference for the correct tree; restricting assignments

based on parsimony considerations improves the situa-
tion. Even under such restriction, however, other com-

binations of branch lengths in the model tree produce

branch length repulsion or translocation (apparently,

never attraction).

Perhaps the most interesting aspect of Barry and

Hartigan�s formulation is that it is precisely a simplifi-

cation of this method that produces the derivation of

parsimony proposed by Goldman (1990). Goldman
showed that parsimony is a maximum likelihood esti-

mator when the probabilities of change and stasis are

fixed (at any given value) across all the branches of the

tree and across all characters, as long as the probability

of change, b, is less than the probability of stasis, a. A
reconstruction with a step along n branches (and no

change along m) implies a probability ambn. As long as

a > b, the expression ambn increases as n (¼ steps) de-
creases, and thus reconstructions (or trees) with fewer

steps imply a higher probability. Goldman�s is a simpler

method than Barry and Hartigan�s, since it does not rely
on estimating branch lengths.

Assumptions and specious arguments

Goldman (1990) claimed that his model showed cer-

tain assumptions implicit in parsimony. He criticized (p.

356) the idea that probabilities of change could be

constant over time, the idea that ‘‘an event . . . is as likely

8 An earlier, more abstract, proof of consistency was provided by

Chang (1996b). If I understand his proof correctly, the same comments

apply to it, since it is based on the probability of joint distributions

among pairs of taxa.

9 This was done by assigning to interior nodes the state present in

two of the three neighboring nodes (the cases examined had only two

states and no missing entries). Reconstructions were ignored when an

interior node had the state present in only one neighbor node. When

there are more than four taxa this is ‘‘parsimonious’’ in a general sense,

but may not imply most parsimonious reconstructions. Consider the

tree ((((0 1) 1) 1) 0), where all the branches leading to the 1�s are very

long and the other branches are very short. In such a situation,

assigning state 0 to the three internal nodes satisfies the requirement

and produces a higher likelihood than assigning state 1 (the most

parsimonious assignment).
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to occur during a short period of time as during a long
one.’’ He continued that in such a model the ‘‘proba-

bilities depend only on the structure of a hypothesized

tree; more precisely. . . only on the branching events that

have occurred.’’ He considered this a weakness of the

model, as it ‘‘implies we should consider all of the lin-

eages representing descendants of the ‘‘root’’ species’’,

which we would fail to do ‘‘if, for example, we studied a

subset of all the mammals.’’
Goldman�s idea that parsimony trees lack a ‘‘time

structure’’ but display only ‘‘tree structure’’ is surpris-

ing, in that ‘‘tree structure’’ means precisely a temporal

sequence of branching events. The implied probabilities

depend simply on whether (or how well) the branching

sequence hypothesized in the tree matches the one im-

plicit in the observations. If the estimation procedure

indeed required that one had hypothesized correctly all
the branching events in the history of the group ana-

lyzed, the results of parsimony analysis would never be

as stable to the addition of new taxa as they are in

practice (shown by decades of phylogenetic analysis; for

a nice example of how parsimony is more stable than

likelihood to the addition of new taxa, see Siddall and

Whiting (1999)).

The type of argument advanced by Goldman (1990)
against parsimony seems somewhat specious. By the

same line of reasoning that Goldman uses, one could

criticize current likelihood models (at least those which

sum probabilities for reconstructions, such as Felsen-

stein�s methods) for being totally insensitive to branch-

ing events (as admitted by Lewis (2001, p. 916)). The

probability of changing from one state to another be-

tween any two nodes does not depend at all on the
number of branching events in between but depends

instead simply on the sum of the lengths of the inter-

vening branches; the path between any two nodes of the

tree is simply seen as a smooth continuum (Fig. 5). This

is not a side product of the likelihood calculations; it is

instead purposefully built into the model. Likelihood, in

essence, models phylogeny as a series of populations

undergoing genetic drift. Most current models of spe-
ciation postulate that speciation events bring about

sudden change and/or disruption in the genetic makeup
of populations. Therefore, we could argue (following

Goldman�s line of reasoning) that what is in conflict

with established knowledge is current likelihood models,

which treat speciation events as virtually nonexistent.

Steel and Penny (2000) also provided a misleading

treatment of the assumptions entailed by parsimony. In

reference to Tuffley and Steel�s (1997) model, they

claimed that Ockham�s Razor (the principle of parsi-
mony, in a philosophical sense) could be better applied

to Felsenstein�s formulation, because it is more ‘‘parsi-

monious to assume one common mechanism for all sites

rather than 10,000 different mechanisms, one for each

site’’ (Steel and Penny, 2000, p. 843). It would be more

proper to say that (cladistic) parsimony does not assume

that each site evolves according to the same mechanism;

there is an important difference between not requiring
existence of a common mechanism and requiring that no

common mechanism exists. Likewise, Yang (1996, p.

305) claimed to have ‘‘been unable to see any connection

between the parsimony method of phylogenetic tree re-

construction and the parsimony or simplicity principle

of science and philosophy, or any scientific merit of

discussions that claim such a connection.’’ However, the

only paper cited by Yang (1996) that attempted to es-
tablish such a connection is an early paper of Wiley

(1975), which concerned a very abstract discussion not

directly related to parsimony; Yang�s inability to see the

connection stems only from not being aware of relevant

literature. Farris (1983) did connect homoplasies with

the (philosophical) principle of parsimony in a very

specific sense: they both concern disregarding noncon-

forming observations for the sole purpose of protecting
a theory from rejection. Farris even discussed (1983, pp.

23, 24) how the departure from parsimonious arrange-

ments might be justified by covering assumptions (using

the common mechanism postulated by Felsenstein as an

example of a covering assumption; p. 24). As Farris

noted, using the covering assumption could be justified

if it is supported by empirical evidence.

Ancestral states

Under the view that ancestral states are parameters,

the usual likelihood formulation (which sums over all

possible reconstructions but chooses optimal branch

lengths) seem logically inconsistent. Barry and Harti-

gan�s (1987a) formulation, or Goldman�s (1990) simpli-
fication of it to produce parsimony, seems preferable.

Likelihoodists object to both on the grounds of the

number of incidental parameters estimated.

Goldman (1990) provided a discussion of nuisance

parameters in likelihood estimation; he distinguished

between incidental and structural nuisance parameters.

Structural parameters apply to all of the observations,

Fig. 5. Example showing that the probability of transformation be-

tween any two states, for two nodes in the tree, depends only on the

length of the connecting branches and not on the branching events

between the two nodes. The segment at the left, of length 1, connects

two nodes; the probability of stasis is exactly the same if the segment is

divided into three parts and the probabilities of the four alternative

pathways from 0 to 0 are considered.
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and thus the precision with which they are estimated in-
creases as more data are added; branch lengths are

structural nuisance parameters. Incidental parameters are

those for which the precision is not increased asmore data

are added; likelihoodists have suggested that ancestral

states are incidental nuisance parameters. However, it is

much less than obvious that the ancestral states are really

a parameter. As Goldman (1990) admitted,

the values [of each state at each ancestral node] are not parame-

ters of the evolutionary process, but random variables: particular

realizations of parts of the process. [A possible approach] is to

estimate the random variables as though they were parameters

of the model. However, in this case they will be incidental param-

eters: as the amount of data (i.e., the number of characters) in-

creases, the number of parameters also increases. For each

additional character (labelled a, for instance), there are addi-

tional data xa, consisting of the states for all n species, and addi-

tional parameters ya, consisting of the states for all the internal

nodes fNl : l ¼ 1; 2; . . . ;mg (Goldman, 1990, p. 350).

Goldman (1990) decided that, even if the ancestral

reconstructions are not parameters, they ‘‘could be trea-

ted as if they were.’’ But they could also be treated (much

more properly) as if they were not a parameter. The an-

cestral states are more like a kind of inferred observation

(Farris, 1986). Parameters are instead those variables of

the process that determine the conditions of the prob-

lem—the variables that determine the outcome of evolu-
tion, that is. Even if not observed, the ancestral states are

(just like observed states) part of that outcome.

Felsenstein (1978) had similarly concluded that the

estimation of ancestral states was the cause of the in-

consistency for parsimony, but some years later (talking

then to two respectable statisticians such as Barry and

Hartigan, instead of taxonomists) admitted that ‘‘it is

not obvious whether [assigning a given state to internal
nodes in the tree sequences] amounts to estimating a

host of new parameters, one at each site at each internal

node of the tree’’ (Felsenstein, 1987, p. 208). Farris

(1986) argued that the inconsistency in determining an-

cestral states need not determine inconsistency in esti-

mating the tree topology:

In one of the standard estimation problems the aim is to estimate

the mean m of a normally distributed population on the basis of a

random sample xð1Þ; xð2Þ; . . . ; xðnÞ of n independent observations.
It iswell known that themaximum-likelihood estimator is the sam-

ple mean, and that the error of the estimation vanishes as n in-

creases without limit. But any estimate of m also provides

estimates of n independent quantities xð1Þ � m; xð2Þ � m; . . . ;
xðnÞ � m. The sampling error of those several estimates does not

vanish as n increases, so that those estimates could hardly be said

to be consistent. This plainly does not imply, however, that the

mean is not consistently estimated. That some parameters are

not consistently estimated, then, does not imply inconsistency of

every estimate (Farris, 1986, p. 22).

Farris (1986) also suggested that the behavior of parsi-

mony is determined only by the frequency with which

each type of character appears. For four taxa, if parti-
tions (AB)(CD) are more frequent than (AC)(BD) or

(BC)(AD), parsimony will choose tree (AB)(CD). Under

the hypothetical situation posed by Felsenstein (1978),

the frequencies of each type of character are correctly

(and consistently) estimated, regardless of the method

used to infer the phylogeny. For the four-taxon un-

rooted case, only eight types of character distributions

are possible in the remaining taxa. The likelihood con-
tribution of each type can be calculated beforehand.

Once this is done, calculating the likelihood for any set

of characters (no matter how numerous), does not in-

volve repeating calculations of ancestral states over and

over, but simply involves calculating the products of

these basic likelihoods (elevated to their respective ex-

ponents). The difference between likelihood and parsi-

mony is only in how the likelihood contribution of each
type of character is calculated.

If all the branches in the model tree have the same

length (probability of change, that is), then the proba-

bility of evolving each possible type of state distribution

in the terminal taxa follows; all the information required

is already contained in the tree and the length of the

branches. Since the model is Markovian, the true

probability with which each individual type occurs is
determined by summing the probabilities of all possible

reconstructions or pathways. Goldman�s formulation of

parsimony assumes that each character type occurs with

a probability equal to the pathway with highest proba-

bility, among all the pathways that lead to that character

type. If the probability of change in each branch is low,

this estimation produces probabilities that are roughly

proportional to the actual probabilities (i.e., the ones
obtained by summing); that is, all the resulting character

types are ranked in the same order of increasing prob-

ability by both criteria. This, however, does not convert

the calculations under Goldman�s model into estima-

tions of a parameter; if a reconstruction was indeed a

parameter, there would be one of them which would

confer to the corresponding character type its true

probability of occurrence under the model, and there is
none. Only the sum of all reconstructions provides the

true value for a given type.

Farris (1986) was entirely correct that the estimation

of ancestral states is not itself the cause of the incon-

sistency of parsimony, but the inconsistency does come

from using just one reconstruction to estimate the

probability of each character type: different types are

simply expected to occur with the wrong frequencies.10

The advantage, however, is that then the calculations

10 A consequence of this is that, for a given starting point at the root

of the tree, the sum of the probabilities attributed to all possible types

of character distributions in the terminals by their most likely

pathways does not sum up to one—as it does when all possible

pathways are considered.
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can be done much more easily than under a more proper
estimation method, and the error introduced is signifi-

cant only if the probability of change is very high.11 It is

then perfectly justified to consider (with Edwards

(1996)) that parsimony is appropriate because it pro-

duces results expected to mimic those ‘‘of a proper

method for that probabilistic model,’’ i.e., those that

would be obtained by using the exact, but harder to

calculate, probabilities with which each character type
occurs under the model. What is more important, per-

haps, is that parsimony is also a reasonable estimator

given other models (such as the models of Farris (1973)),

the model of Tuffley and Steel (1997), and possibly other

models).12

Considering what happens when the number of

character states increases, we can also see that the esti-

mation of ancestral reconstructions is not in itself the
cause of the inconsistency of parsimony. It is well

known (see Steel and Penny (2000)) that the parsimony

estimation then becomes consistent. But according to

Goldman (1990) this also implies that the ‘‘additional

parameters ya, consisting of the states for all the internal

nodes’’ must now be selected from a much larger num-

ber of possibilities. Yet, even if estimating the ancestral

states now becomes more complex (and a given most
parsimonious reconstruction is less likely to be correct),

parsimony becomes consistent. Again, parsimony be-

coming consistent is not what is expected by considering

that ancestral states are incidental parameters but rather

what is expected from considering that (under the model

used by Felsenstein (1978, 1981)), equating the proba-

bility of each character type with the most likely path-

way to that type produces much more accurate
estimations of the true probability when there are more

states.

Note that, since ancestral reconstructions are not a

parameter while branch lengths are, the usual likelihood

model is not logically inconsistent (as suggested at the

beginning of this section) in integrating one but not the

other. A likelihoodist might at this point accuse parsi-

mony (under Goldman�s derivation) of using approxi-
mate calculations of probabilities, instead of the actual

ones. However, to calculate the probability of the data

(given the model and tree plus branch lengths), current

likelihood methods also use some approximations in-

stead of the actual probabilities. Consider for example

the assumption that base frequencies remain constant

over time. The base frequencies are necessary to deter-
mine the probability of transformation between two

different states along a given branch. The base fre-

quencies are in practice assumed equal or estimated

from the set of terminal taxa (alternatively, they can be

chosen so as to maximize the likelihood). The usual

likelihood calculations consider all reconstructions for

each individual site and then multiply the likelihoods of

the individual sites. However, a given reconstruction
for a certain site may make some reconstructions for

other site more (or less) likely. Consider a four-taxon

tree where two sites, 1 and 2, have terminal states

((AG)(AG)); the observed base frequencies are 50:50 for

A:G. The likelihoods for all reconstructions for each site

are considered independently, but they are not strictly

independent, if the base frequencies are to remain con-

stant over time. Suppose that for site 1 the ancestors of
the two groups in the tree are assigned state G; in that

case, only the reconstruction that assigns (in site 2) state

A to both groups is going to preserve the 50:50 ratio for

A:G. The reconstruction that assigns (for site 2) state G

implies that the base frequencies are A:G¼ 0:100, not

50:50; it is not an impossible combination of recon-

structions, certainly, but if base frequencies are in

equilibrium, it is less likely than the double A/G re-
construction (that the ancestors of the two groups in the

tree need not be contemporaneous merely compounds

the problem). Considering that the two reconstructions

are—a priori—equally likely amounts to saying that the

base frequencies may change over time, but if so, the

substitution probabilities as a function of time cannot be

determined. Alternatively, if the base frequencies do not

change, considering both sets of reconstructions equiv-
alent is incorrect. The final probability of observing the

data calculated with the usual approach, therefore, is

not the actual probability under the stipulated model.

Taking this into account would require evaluation of

combinations of reconstructions for different sites—

which is computationally impossible. This is not in-

tended as a criticism of likelihood, but rather as an

example showing that, even without violations of
the model, the probabilities calculated under usual

likelihood methods are only approximations—just as in

parsimony.

Simplicity and realism

Once ancestral reconstructions are reconsidered, it is
seen that the difference in behavior between parsimony

and likelihood stems only from the model used and that

the estimation method involving more parameters is

likelihood, not parsimony. In parsimony (i.e., Gold-

man�s model), all that determines the fit of a tree to the

data is its topology (and the probabilities of stasis and

change).

11 If data are generated from a model tree, and the probabilities of

change along each branch are up to three or four times the average

amounts of change observed in real DNA data sets with large numbers

of taxa, parsimony still recovers easily the model tree.
12 For example, it seems that a modified two-rate model (where each

branch can have different sets of sites in each of the two rate categories,

instead of having each site in a fixed category across all branches)

would also produce exactly the same results as parsimony, with fewer

parameters than Tuffley and Steel�s model.

P.A. Goloboff / Cladistics 19 (2003) 91–103 101



If we decide to integrate branch lengths out of the
model (with the site by site approach described above,

producing Sober�s (1985) formulation), all that deter-

mines the fit of a tree to the data is also its topology (and

the range of branch lengths considered). Sober�s method

is as simple as Goldman�s but produces different results.
In at least some cases, however, Sober�s formulation

implies differences in the likelihood of trees, which seem

hardly justifiable. As shown in Fig. 4, that formulation
implies that failure to observe the state in one taxon is

‘‘more likely’’ if the taxon is the sister group to two taxa

with identical states. The parsimony method implies that

both trees confer exactly the same probability on the

observations, and this seems more logical.

In the likelihood methods derived from Felsenstein

(1981) the branch lengths are allowed to vary to obtain a

higher likelihood. Whether the increase in likelihood, by
allowing branch lengths to vary, is considered significant

will often be subject to discussion, of course:

We like explanations which will fit the facts, and we like simple

explanations. The question is: how much simplicity are we pre-

pared to lose for a given increase in the excellence of the fit?

What increase in support do we require to justify an increase

in complexity in the model, say the addition of a new parameter?

What, in other words, is the rate of exchange between support

and simplicity? I . . . offer no specific guidance on the �rate-of-ex-
change� problem, but only a general warning to eschew dogma-

tism (Edwards, 1992, p. 200).

That parsimony (i.e., Goldman�s formulation) is an es-
timation procedure with fewer parameters than likeli-

hood agrees perfectly well with the historical perception

of phylogeneticists (e.g., Farris, 1982, 1983) that parsi-

mony is to be preferred on the grounds of simplicity of

explanation. If one is willing to introduce more pa-

rameters into the estimation, one may allow for differ-

ences in branch lengths, which will improve the

likelihood. If one is willing to further improve the like-
lihood, one will eventually arrive at a model where each

character can have its own branch length.13 At this

point, one will have come full circle, by necessity arriv-

ing at the same conclusion that one had started with, a

conclusion that can be defended by recourse either to

realism or to simplicity. Parsimony is therefore at both
ends of the spectrum from simplicity to realism.

This leads to an additional question that some like-

lihoodists have posed: is there a method of phylogenetic

estimation that, given different models and sets of pa-

rameters, is in general the one with the highest proba-

bility of recovering the true tree? So far, parsimony has

been compared to a very reduced set of quite similar

models, but the fact that it is derivable from very dif-
ferent circumstances suggests that it is perhaps justifi-

able under other types of models also. In being at both

ends of the spectrum of complexity, and in being de-

rivable from very different types of models, parsimony

does seem to have a unique place among methods of

phylogenetic estimation.
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