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THE SCHUR-HORN THEOREM FOR OPERATORS AND
FRAMES WITH PRESCRIBED NORMS AND FRAME
OPERATOR.

J. ANTEZANA, P. MASSEY, M. RUIZ, AND D. STOJANOFF

ABSTRACT. Let H be a Hilbert space. Given a bounded positive definite
operator S on H, and a bounded sequence ¢ = {ci }ren of non negative
real numbers, the pair (5, c) is frame admissible, if there exists a frame
{fx}ren on H with frame operator S, such that ||fx]|2 = cp, k € N.
We relate the existence of such frames with the Schur-Horn theorem
of majorization, and give a reformulation of the extended version of
Schur-Horn theorem, due to A. Neumann. We use it to get necessary
conditions (and to generalize known sufficient conditions) for a pair
(S, ), to be frame admissible.

1. INTRODUCTION

Let H be a separable Hilbert space and let S be a bounded selfadjoint op-
erator on H. In the first part of this note, we give a complete characterization
of the closure in £*°(N) of the set of possible “diagonals” of S, i.e., the set
C[U/(S)] of real sequences ¢ = (¢, )nen such that

(1) (Sen,en)=cn, meN,

for some orthonormal basis B = {e,, }nen of H. Note that, if dim H = m < oo,
this can be made in terms of majorization theory. More precisely, the Schur-
Horn theorem assures that ¢ € R™ satisfies Eq. () for some orthonormal
basis if and only if ¢ is majorized by the vector of eigenvalues of S (see
Theorem for a detailed formulation). In the general case, we define an
analogous form of “the sum of the greatest k eigenvalues” in the following
way: given S a selfadjoint operator on H and k € N, we denote

Uk(S) =sup{tr SP : P € L(H) is an orthogonal projection with tr P =k} ,

and Li(S) = —Ug(—S). We prove, based on the results obtained by A.
Neumann in [I7], that ¢ belongs to the ¢*°(N) - closure of C{Uy/(S)] if and
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only if
(2) Ui(c) <Uk(S) and Lk(S) <Lglc), keN,
where Ug(c) = sup Z ¢i,and Lg(c) = mf ZcZ = —Ug(—c). Similarly,

|F|=k i€l

if S'is a trace class operator, we show that c belongs to the ¢1(N) - closure of
ClUz(S)] if and only if c satisfies formulas (@) and ), ¢, = trS. On the
other hand, a somewhat technical characterization of the maps Uy and Ly is
obtained (see Proposition BH), which is used to compute these quantities and
to prove their basic properties. Related results can be found in R. Kadison
4], [15], and Arveson and Kadison [2] (which appeared during the revision
process of this work).

In the second part of this note, these extended Schur-Horn theorems are
used to give conditions for the existence of frames with prescribed norms
and frame operator. First we recall some basic definitions. Let M = N or
M={1,2,...,m}:=1,, for some m € N. A sequence {f}rem in H is called
a frame for H if there exist constants A, B > 0 such that

Allz||? < Z l(z, fi)|* < B|jz||*, forevery z€H.
keM

For complete descriptions of frame theory and its applications, the reader is
referred to [8], [I1], [I2], B] or the books by Young [20] and Christensen [7].
Let F = {fx}rem, be a frame for H. The operator

(3) S:H—H, givenby S(@)=> (x.fidfx, vEH.

keM
is called the frame operator of F. It is always bounded, positive and invertible
(we use the notation S € GI(H)™).

In the recent works of Casazza and Leon [B] and [6], Casazza, Fickus, Leon
and Tremain H], Dykema, Freeman, Korleson, Larson, Ordower and Weber
[10], Kornelson and Larson [16], and Tropp, Dhillon, Heath Jr. and Strohmer
[19], the problem of existence and (algorithmic) construction of frames with
prescribed norms and frame operator has been considered. Following [5], [6],
we say the pair (S,c) € GI(H)T x£°(M)™" is frame admissible if there exists
a frame F = {fk}kGM on H such that

(1) F has frame operator S, and

(2) || fxll*> = ck for every k € M.
In this case, we say that F is a (S, c)—frame. We denote by F(S,c) the
set of all (S,c)—frames on H. Hence the pair (S, c) is frame admissible if
F(S,e) #0.

It is known (see [B], [19]) that, in the finite dimensional case, there is a
connection between frame admissibility and the theory of majorization, in
particular with the Schur-Horn theorem. We make this connection explicit
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both in the finite and infinite dimensional context. We use the classical Schur-
Horn theorem in the finite dimensional case and its extension, developed in
the first part of the paper, for the infinite dimensional case.

This presentation of the problem allows us to get equivalent conditions for
the frame admissibility of a pair (S,c) € G1,,(C)* x £*°(N)*; and necessary
conditions for the frame admissibility of pairs (S,c) € GI(H)" x £>*(N)*.
We show that, if the pair (S, c) is frame admissible, then ),  cx = oo, and
Ui(c) < Ug(S) for every k € N. In particular, limsup ¢ < ||S]|¢, the essential
norm of S (see Theorem El). Then, by strengthening these conditions we
get sufficient conditions for the frame admissibility of pairs (S, c) € GI(H)T x
¢>°(N)* (Theorem 4. These conditions are less restrictive that those found
by Kornelson and Larson in [I6].

We briefly describe the contents of the paper. In section 2 we fix our
notation, and we state the classical Schur-Horn theorem. In section 3 we prove
the extension of the Schur-Horn theorem for general selfadjoint operators. In
section 4 we give some reformulations of the notion of frame admissibility
which allows us to apply majorization theory to this problem, and we show
equivalent conditions for frame admissibility in the finite dimensional case
(both for finite or infinite sequences c¢). In section 5 we study the infinite
dimensional case, showing separately necessary and sufficient conditions for
frame admissibility. In section 6 we give several examples for the boundary
cases of the conditions studied before. These examples show that, in general,
the conditions can not be relaxed further. We also study different types of
frames in F'(S,c), in terms of their excesses.

2. NOTATIONS AND PRELIMINARIES.

Let H be a separable Hilbert space, and L(#H) be the algebra of bounded
linear operators on H. We denote Lo(H) the ideal of compact operators,
GIl(H) the group of invertible operators, L(H)p the set of hermitian opera-
tors, L(H)* the set of non negative definite operators, U(H) the group of
unitary operators, and GI(H)1 the set of invertible positive definite opera-
tors. We denote by L*(#) the ideal of trace class operators in L(H). We
denote LY(H)p, = LY(H) N L(H), and LY (H)T = LY(H) N L(H)". We de-
note by ¢!(N) the Banach space of complex absolutely summable sequences.
By (1(N) (resp. ¢'(N)T) we denote the subsets of real (resp. non negative)
sequences. Similarly, we use the notations ¢*°(N), £2°(N) and ¢>*°(N)* for
bounded sequences.

Given an operator A € L(#H), R(A) denotes the range of A, ker A the
nullspace of A, o(A) the spectrum of A, A* the adjoint of A, p(A) the spectral
radius of A, and || A|| the spectral norm of A. We say that A is an isometry
(resp. coisometry) if A*A =1 (resp. AA* =1).
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We also consider the quotient A(#H) = L(H)/Lo(H), which is a unital C*-
algebra, known as the Calkin algebra. Given T' € L(H), the essential spectrum
of T, denoted by o.(T), is the spectrum of the class T + Lo(#) in the algebra
A(H). The essential norm ||T||e = inf{||T + K| : K € Lo(H)} of T is the
(quotient) norm of T+ Lo(H), also in A(H). Given S € L(H); , we define

(4) at(S) =maxo.(S) =S|l and a_(S)=mino.(S) .

Ifs = fa(s)t dE(t) is the spectral representation of S with respect to the
spectral measure F, we shall often consider the following compact operators:

St = / (t—a*(S)dE(t), and
[ (9), IS1]

(5) S_ = / (t —a_(S))dE(t) .
SIEIE)

Note that S_ <0< ST,

Given a subset M of a Banach space (X, || -||), its closure is denoted by M
or cl (M), and the convex hull of M is denoted by conv(M). Also, given
a closed subspace S of H, we denote by Ps the orthogonal (i.e. selfadjoint)
projection onto S. If B € L(H) satisfies PsBPs = B, in some cases we shall
use the compression of B to S, (i.e. the restriction of B to S as a linear
transformation from S to S), and we say that we consider B as acting on S.

Finally, when dim#H = n < oo, we shall identify H with C", L(H) with
M, (C), and we use the following notations: M., (C);, for L(H)p, M,(C)T
for L(H)™, U(n) for U(H), and Gl,,(C) for GI(H).

Majorization. In this subsection we present some basic aspects of majoriza-
tion theory. For a more detailed treatment of this notion see [I3]. Given
b = (b1,...,b,) € R", denote by bt € R" the vector obtained by rearranging
the coordinates of b in non increasing order. If b, ¢ € R™ then we say that ¢
is majorized by b, and write ¢ < b, if

n n
ijZZCj k=1,....,n—1, and Zbi:Zci.

i=1 i=1 i=1 i=1
Majorization is a preorder relation in R™ that occurs naturally in matrix
analysis.

Definition 2.1. Let M = N or M = {1,2,...,m} := L, for some m € N.
Let K be a Hilbert space with dim/X = [M| and let B = {ep}nem be an
orthonormal basis of K.
(1) For any a = (an)nem € £°°(M), denote by Mp » € L(K) the diagonal
operator given by Mg ae, = ape,, n € M. When it is clear which
basis we are using, we abbreviate Mp o = M.
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(2) In particular, for a € C*, we denote by M, € M, (C) the diagonal
matrix (with respect to the canonical basis of C™) which has the
entries of a on its diagonal.

(3) The diagonal pinching Cp : L(K) — L(K) associated to the basis B,
is defined by Cg(T') = Mp.a, where a = ((Tey, €5) )nem. A

Theorem 2.2 (Schur-Horn). Let b, ¢ € R™. Then ¢ < b if and only if there
exists U € U(n) such that

Ce(U*MwU) = M.

where £ is the canonical basis of C™. O

3. SCHUR-HORN THEOREM FOR SELFADJOINT OPERATORS.

In this section we present a different version of the “infinite dimensional
Schur-Horn theorem” given by A. Neumann in [I7]. Our approach avoids the
somewhat technical distinction between the diagonalizable and non diagonal-
izable case. On the other hand, this version can be applied more easily to
the problem of frame admissibility in the infinite dimensional case. The main
tools we use are the Weyl von Neumann theorem and the known properties
of approximately unitarily equivalent operators.

Given a sequence a € £2°(N), Neumann [I7] defines:

Ui(a) = sup Zai and Li(a) = inf Zai.
IFI=k cF Fl=F eF

This generalizes the partial sums which appear in the definition of majoriza-

tion. In the first part of this section we shall extend this definition for arbitrary

selfadjoint operators on a Hilbert space H. Denote by Py, the set of orthogonal
projections onto k-dimensional subspaces of H.

Definition 3.1. Given S € L(#H)n, we define, for any k € N,

Ur(S) = Psgg tr(SP) and Lg(S) = Pi&f)k tr(SP)=—-Ui(-9) .

A

Remark 3.2. It is easy to see that Uy and Ly, satisfy the following properties:

(1) For every k € N, Uy, is a convex map, and Ly is a concave map.
(2) The maps Uy and Ly are unitarily invariant, for every k € N, i.e,
Uk(S) = U (U*SU), for every U € U(H) and S € L(H)y, - A

The following result asserts that Definition Bl extends the natural extrap-
olation of Neumann’s definition for diagonalizable operators.

Proposition 3.3. Let B = {e,}nen be an orthonormal basis of a Hilbert
space H. If a € £2°(N) then, for every k € N,

Uk(MB,a) = Uk(a).
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In order to prove this Proposition we need the following technical results.

Lemma 3.4. Let S € Lo(H)™T, and denote by Ay > Ao > -+ > Xy > ...
the positive eigenvalues of S, counted with multiplicity (if dim R(S) < oo, we
complete this sequence with zeros). Then, for every k € N,

k
Uk(S) = A
i=1

Moreover, if P € Py is the projection onto the subspace spanned by an or-
thonormal set of eigenvectors of A1, ..., A\, then Uk(S) = tr(SP).

Proof. Fix k € N. Tt suffices to show that tr(SQ) < tr(SP) = Zle A; for
every @ € Pi. This follows from Schur’s theorem (the diagonal is majorized
by the sequence of eigenvalues), which also holds in this setting (see Ch.1 of
Simon’s book [T8]). O

In [7], Neumann proved the following result (Lemma 2.17): if a € £2°(N),

(6) af =max{a; —limsup a, 0} and a; = min{a; —liminf a, 0},

1 € N, then, for every k € N,
(7) Ux(a) =Ux(a®)+k limsup a and Li(a) = Li(a~) +k liminf a .

The next result extends Eq. (@) to selfadjoint operators. This fact is necessary
for the proof of Proposition B3 but it is also a basic tool in order to deal
with the maps Uy and Ly .

Proposition 3.5. Let S € L(H). Then, for every k € N,
1. Uk(S) = Uk(S+) +k a+(S)
2. Lg(9) = Lk(S_) +ka_(5)

where at(S), a_(S), ST, S_ are defined in {)) and [@). In particular,

(8) lim Ur(5) =at(S)=|Sle and lim Li(5) =a_(S5).
k— o0 k k—o00 k

Proof. Denote at = a™(9), and

9) Py = Py(S) = E[||S]e, ISI] = E[a™,[IS]]] ,

where F is the spectral measure of S. Recall that
St :/ (t—a®) dE(t) = (S — o™ )Py .
[o, [1S]I]

Then S — ST = S(I — B) + at P, < a™l. Therefore, for every k € N and
Q € Pr,

(10) tr(SQ) = tr(STQ) + tr((S — ST)Q) < Up(ST) + ka™ |

which shows that Uy (S) < Ug(ST) + ka™ for every k € N.
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To see the converse inequality, suppose first that tr P, = 4+0c0. Denote by
AL > Xy > - >\, > ... the eigenvalues of ST, chosen as in Lemma .20

Let Qi € Pj be the projection onto the subspace spanned by an orthonor-
mal set of eigenvectors of Ay,...,\y. Then Qi < P,. By Lemma B4l

k
tr(SQx) = tr(STQk) + tr((S — ST)Qx) = > Ni + kat = U(S1) + ka' .
i=1

Hence, Ug(S) = Ur(S™) + ka™. Now, assume that tr P, = r < oo. If k <,
the same argument as before shows that Uy(S) = Ug(S™) + kat. So, let
k > r and take € > 0. Since P. = E[at —¢, a™ ) has infinite rank (otherwise
[IS]le € o™ —¢), we can take @ < P. a projection of rank k—r. If Q = Q+ P,

Ur(S) > tr(SQy) = tr(SPy) + tr(SQ)
=tr(ST) +rat +tr(SP.Q)
>tr(ST) +rat + (k—7r)(a™ —¢)
=Up(ST) +ka™ —e(k—71) .

Since € is arbitrary, Ug(S) = Ux(S*) + ka™. The formula for L (S) follows
applying item 1 to —S. Finally, as ST € Lo(H)™, then its eigenvalues converge
Ur(S™)

to zero. Hence, by Lemma B4l we get that klim
— 00
for Ly(S_). Therefore, Eq. ) becomes clear. O

Proof of Proposition[Z-3 It follows using Lemma B4 Proposition B3 Eq.
[@ and the following apparent identities: if S = Mp a, then

(1) a™(S) =limsup a, and a_(S) =liminf a .

(2) ST =Mp o+ and S_ = Mg »- ,
where a™ and a~ are defined as in Eq. (@). O
Definition 3.6. Let H be a Hilbert space, S € L(#) and B an orthonormal
basis of H. Then,

(1) Up(S) ={U*SU : U e U(H)}.

(2) ClUn(S)] = {c € £>(N) : Mp, ¢ € Cs(Un(S))}- A
Remark 3.7. Given S € L(H), the definition of C[i(S)] does not depend
on the orthonormal basis B. In fact, if B’ is another orthonormal basis of H,
U € U(H) maps B onto B', and ¢ € (*°(N)" satisfies Mp, . = Cp(T) for some
T € Uy (S), then

]\45/7 c = UM& CU* = UCB(T)U* = CB/(UTU*) S CB/(UH(S)) .
Therefore {c € (*°(N) : Mg/ € Cp (Un(S))} = ClUn(S)]. A
Given a diagonal operator M, € L(#)p, Neumann showed that, if ¢ €

£2°(N), the following statements are equivalent (Corollary 2.18 and Theorem
3.13 of [11]):

= 0 and similarly
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(1) ¢ € ClU(Ma)].

(2) Uk(a) > Uk(C) and Lk(a) < Lk(C), k e N.
Now, our objective is to generalize this equivalence for every operator S €
L(#H)y (via areduction to the diagonalizable case). We need first the following
result about approximately unitarily equivalent operators.

Lemma 3.8. Let S,T € L(H)n. Then S € cl,  (Uu(T)) if and only if
., Uu(9)) =cl,, Uu(T)).
In this case Uy(S) = Up(T) and Li(S) = Li(T) for every k € N.
Proof. If {V,,}nen is a sequence in U(H) such that |V, TV, — S — 0,
then
VSV = T = IV (S — VTV Wall = VTV — S| ——0.

Hence cl | (Uu(S)) = ¢l Uu(T)). By Remark B2 Up(V,TV;)) = Uk(T)
and Ly (V,TV,*) = Li(T), for n, k € N. Fix k € N and take P € Py. Then

tr SP = lim tr V,TV*P < lim Up(V,TV?) = Uk(T).
n—00 n—o0

Hence Ui (S) < Up(T). Similarly Li(S) > Lg(T). The reverse inequalities
follow from the fact that VySV,, —— T. O

n—roo

Remark 3.9. Two operators S,T € L(H); satisfying the conditions of
Lemma are called approzimately unitarily equivalent. This equivalence
relation is deeply studied in the theory of operator algebras. For example, as
a consequence of the Weyl von Neuman theorem, it is proved in Davidson’s
book [9] (I1.4.4) that S,T € L(H);, are approximately unitarily equivalent if
and only if 0.(5) = 0.(T) and dimker(S — A\I) = dimker(T' — AI) for every
A ¢ 0.(S). From this fact it can be deduced (see the proof of I1.4.4 in [9])
that, for every S € L(H)p, there exist a diagonalizable D € L(H); which is
approximately unitarily equivalent to S. A

Theorem 3.10. Let S € L(H), and ¢ € £°(N). Then the following condi-
tions are equivalent:

(1) c e Clun(9)].
(2) Uk(S) > Uk(c) and L(S) < Li(c) for every k € N.
If this is the case, then max o.(S) > limsup c and mino.(S) < liminfc.

Proof. The diagonalizable case was proved by Neumann as we mentioned
before. Note that, in order to deduce our formulation from Neumann’s result,
we need PropositionB3l If S is not diagonalizable, by Remark B, there exists
a diagonalizable operator D € cl | (U (S)). By Lemma &g Uy(D) = Ux(S)
and Ly (D) = Li(S) for every k € N, and cl, | (U (D)) =cl (Un/(5)). This
implies that

ey, (Cl(D)]) = ey, (CUn(S))),
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because the map T — Cp(T) is continuous for every orthonormal basis B.
Hence, the general case reduces to the diagonalizable case. The final remark
follows from the fact that

Lk(c)

3

U
(11) limsupc = lim k() and liminfc = lim
k— o0 k k— o0

and Eq. @). O

A similar result can be stated for hermitian operators in L'(H) and se-
quences in £} (N). In this case our result is just an slight generalization, using
our maps Uy and Ly, of some results due to Neumann.

Definition 3.11. Let II be the set of all bijective maps on N and, for any
k € N, denote ITj, C II the set of permutations o such that o(n) = n for every
n > k. Given a € £*°(N) and o € II, we denote

(1) ag = (ag(1), Ao (2)s ----)-
(2) II-a={a,, o€ Il}, the orbit of a, under the action of II.
(3) conv(II - a), the convex hull of the orbit of a. A

3.12. If b, a are sequences in ¢! (N), Neumann [I7] proved that the following
statements are equivalent:

(1) b e (31”.”1 (COHV(H . a))
(2) ZZOZI by = 22021 ar and Ug(a) > Uk(b), Lk(a) < Lk(b), k e N.

Proposition 3.13. Let S € L'(H)p, and b € (}(N). Then, the following
statements are equivalent,

(1) b e clyy, (CUn(S)]).

(2) Uk(S) > Uk(b), Li(S) < Li(b) for every k €N, and > b =trS .
k=1

Proof. 1 — 2. Note that (31”.”1 (ClUn(S)]) < (31”.”00 (ClU(S)]). Hence, by
Proposition B0, Uy (S) > Uk(b) and Ly(S) < Lg(b) for every k € N. The
equality Y ;2 by = trS clearly holds if b € C[Uy(S)]. The general case
follows from the ¢!(N) - continuity of the map b — > 7 | by

2 — 1. Let a € }(N) and B = {ex }ren an orthonormal basis of H such that
S = Mpo. ByBI2and Prop. B3 it suffices to show that clj., (conv(Il - a)) C
clyyp, (ClUz(S9)])-

Claim: clj., (conv(IT-a)) = clj., (conv(Tlp - a)), where Iy = U,y k-
Indeed, it is sufficient to prove that II-a C cly.j, (conv(Ily - a)). Given o € II,
a, €Il-a, and € > 0, take N € N such that ), v |ax| < 5 and No € N such
that o= 1(Iy) C In,. There exists o € Iy, such that o(k) = oo(k) for every
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k € Iy, such that o(k) € Iy. Therefore,

lag = aglli = Y lao() = oy

(k)¢ 1IN
< Z |a‘a'(k)| + Z |0J0'0(k7)| <e.
(k)¢ 1IN oo (k)¢ 1IN

Consider b € conv(Ilp-a). Then, there exists n € N such that b € conv(II,a).
This means that the first n entries of b form a convex combination of per-
mutations of the first n entries of a, and by = ay for every k > n. Hence
(b1,...,bn) < (a1,...,an). Denote B, = {ey : k < n} and H,, = span{B,}.
So, by Schur-Horn Theorem &2 there exists a unitary Uy € L(H,) such that

MByb|Hn = CBn (U3M873|H71UO) .

Letting U = [{)O ? ) Z_ﬁ € U(H), we get that Mgy = Cp(U*Mp,aU),

and b € C[Uy(S)]. Therefore
CIH,H1 (COHV(H . a)) = CIH,H1 (COnV(HO a)) - (31”.”1 (C[UH(S)]),

which completes the proof. O

Remark 3.14. Comparing with Proposition B3 it follows that, if
S = Mg, for some a € £ (N) and some orthonormal basis B of H, then

clj.y, (conv(IL-a)) = cly., (CU(S)]) -

In particular, cl., (C[U(S)]) is a convex set. On the other hand, since the
maps Uy are convex and the maps Ly are concave, k € N, it can be deduced
from Theorem BT that clj_ (C[Up(S)]) is convex, for every S € L(H)n.
Actually, this fact is known, and can also be deduced from the following
results of Neumann [I7]:

L. If S = Mg 4 for some a € £2°(N) and some orthonormal basis B, then
CIH'HOO (COHV(H . a)) = C]‘H'”oo (C[U (S)])
2. If S is not diagonalizable,

(12) ClLh ()] = Clth(ST)] + [a—(S), a™ (S)]" + ClLh (S-)],

where at(S5), a_(S), ST, S_ are defined in @) and (H). A

Note that formula (), which holds also for diagonalizable operators, gives
another complete characterization of C[Uy (S)]. It can be used to give an alter-
native proof of Theorem BI0, but it can also be deduced from the statement
of this Theorem, and Proposition Bl
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4. FRAMES WITH PRESCRIBED NORMS AND FRAME OPERATOR.

Preliminaries on frames. We introduce some basic facts about frames in
Hilbert spaces. For a complete description of frame theory and its applica-
tions, the reader is referred to Daubechies, Grossmann and Meyer []], Al-
droubi [1], the review by Heil and Walnut [I1] or the books by Young [20] and
Christensen [{.

Definition 4.1. Let F = {f,}nen a sequence in a Hilbert space H.
1. F is called a frame if there exist numbers A, B > 0 such that
(13) AP <DL f P < B, forevery  feH.
neN

2. The optimal constants A, B for Eq. (@) are called the frame bounds
for F. The frame F is called tight if A = B, and Parseval if A =B =
1. Parseval frames are also called normalized tight frames. A

Definition 4.2. Let F = {f,}nen be a frame in H. Let K be a separable
Hilbert space. Let B = {¢,, : n € N} be an orthonormal basis of . From Eq.
(@), it follows that there exists a unique T' € L(K,H) such that

T(on)=fn, neN.

We shall say that the triple (T, IC, B) is a synthesis (or preframe) operator for
F. Another consequence of Eq. (@) is that T is surjective. A

Remark 4.3. Let F = {f,}nen be a frame in H and (T, K, B) a synthesis
operator for F, with B = {¢,, : n € N}.
1. The adjoint 7% € L(H,K) of T, is given by T*(z) = > (2, fn)¢n,

neN
x € H. It is called an analysis operator for F.

2. By the previous remarks, the operator S = TT* € L(H)™, called the
frame operator of F, satisfies

(14) Sf=> (ffa)fu, forevery feM.
neN

It follows from (3] that AT < S < BI. So that S € GI(H)*. Note
that, by formula ([[d), the frame operator of F does not depend on
the chosen synthesis operator. A

Definition 4.4. Let F = {f,}nen be a frame in H. The cardinal number
e(F) = dim {(Cn)nGN € A(N) : Z Cnfn = ()},
neN

is called the excess of the frame. Holub [I2] and Balan, Casazza, Heil and
Landau [3] proved that

e(F)=sup{ [I|: I CN and {fn},¢s is still a frame on H}.
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This characterization justifies the name “excess of F”. It is easy to see that,
for every synthesis operator (T, /C, B) of F, e(F) = dimkerT. The frame F
is called a Riesz basis if e(F) = 0, i.e., if the synthesis operators of F are
invertible. A

Reformulation of frame admissibility. Recall that, given a sequence ¢ =
(ck)rem € £°(M)T and S € GI(H)™T, we denote by F(S,c) the set of (5, c)-
frames, i.e., those frames F = { fi }rem for H, with frame operator S, such that
| fxl|? = ck, for every k € M, and we say that the pair (S, c) is frame admissible
if F(S,c) # (). We shall consider the following equivalent formulation of frame
admissibility, which makes clear its relationship with the Schur-Horn theorem
of majorization theory.

Proposition 4.5. Let ¢ € (°(M)" and let S € GI(H)t. Then the following
conditions are equivalent:

1. The pair (S, c) is frame admissible.
2. There exists a sequence of unit vectors {yi}rem in H such that
S=> cryp @y ,
keM

where, if M = N, the sum converges in the strong operator topology.
3. There exists an extension K = H ® Hq of H such that, if we denote
S 0\ H
15 5= (O 0) i

In this case, there exists a frame F € F(S,c) with e(F) = dimHy .

e L(K)t, then c e ClUx(S)] -

Proof. The equivalence between conditions 1 and 2 is well known (see, for
example, [10]). Hence we shall prove 1 <+ 3. Assume that F = {fi}rem €
F(S,c) . Let (Ty, Ko, Bo) be a synthesis operator for F. Consider the polar
decomposition Ty = U|Ty|, where U : Ky — H is a coisometry with initial
space (ker Tp)* and range H. Note that U* maps isometrically H onto ker Tj-.
Denote Hq = kerTy, and K = HP Hg . Let V : K — Ky be the unitary
operator given by

V(€1,6)=U" +& for (&1,&)eHPH=K.
Consider the orthonormal basis B = V*(By) of K, and T' = T,V € L(K,H).
Then (T, K, B) is another synthesis operator for F, with ker T' = H,.

Let Th € L(K) given by Th¢{ = T, ® 0y, £ € K. Then T7Ty = TT,

|Ty| = |T|, and
. (TT* 0\ H (S 0\
T1T1_< 0 0) Hq _<0 o>_51'

If Ty = Uy|Th| = Uy|T] is the polar decomposition of Ty, then U; acts on
H = (kerT1)* as a unitary operator. Hence W = U; + Py, € U(K). Since
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T =W|T|,

Sy = TVIF = W|TPW* = W(IT*T)W* =  W*SiW =T*T .
On the other hand, if B = {ex }ren, then (T*Tey, e) = (Tex, Tex) = || fx]|* =
¢k, for every k € M. Therefore,

Cn (W*51W) = CB(T*T) =M. = cc C [U)c(Sl)] .
Conversely, suppose that there exists an extension K = H & Hy of H and
V € U(K) such that M. = Cg(V*S51V), for some orthonormal basis B =
{er}ren of K. Let T = Sll/QV. Since S is invertible, then R(T) = H and
dimkerT = dimHy. Thus F = {Tep}trem is a frame for H, with frame
operator TT*‘H = Sl‘ﬂ = S. Since T*T = V*S,V and Cg(V*S1V) = M.,
then ||Tex||? = (T*Tex,ex) = cx, for every k € M. Hence F € F(S,c) with
e(F)=dimH,. ]

The finite-dimensional case. In this section we assume that H is finite
dimensional. We shall consider separately, the cases of frames of finite or
infinite length. Suppose that S € M, (C)T and |M| = m < oco. In this
case, the classical Schur-Horn Theorem gives a complete characterization
of frame admissibility for (S, c).

Theorem 4.6. Let c € R7 and let S € G1,,(C)T, with eigenvalues by > by >
... > by, > 0. Then, the pair (S,c) is frame admissible if and only if

k k n m
ZbiZZci for 1<k<n—-1, and Zbi=Zci.
i=1 i=1 i=1 i=1

In other words, if ¢ < (b1,...,bn,0,...,0) € R™. O

This result was obtained in [B] and [T6], from an operator theoretic point of
view. Actually the proofs given there can be adapted so as to obtain a proof
of the classical Schur-Horn theorem that are quite conceptual and simpler
than those in the literature. Now, we consider frame admissibility for infinite
sequences in finite dimensional Hilbert spaces. The case S = I of the next
result appeared in [].

Theorem 4.7. Let ¢ € (*(N)*. Let S € Gl,,(C)T, with eigenvalues by >
ba > ... > b, >0. Then the following conditions are equivalent:
(1) the pair (S, c) is frame admissible.
(2) 328 b > Uk(c), for every1 <k <n—1, and Y1 b; = > ien Ci -
Proof. Let b = (b1,...,b,,0,...,0,...) € £>°(N)™.
2 — 1: Let H be a infinite dimensional Hilbert space, and consider

S = (*g 8) eLC&H) .
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Then there exists an orthonormal basis B = {ex }xen of K = C* @ H such that
S1 = Mg . Hence, by Proposition B3

k
Uk (S1) = Zbi > Ug(c), for every k € N.
i=1

On the other hand, note that Ly(S1) = 0 < Lg(c) for every k € N and
Yow1bi = > en¢i- Then, by Proposition BT3 there exists a sequence
{Vin}men in U(K) such that

Ci (V55 Vi) 1y

m— 00

M.,

where ||A||; = tr|A|. Therefore, by Proposition LB there exists a norm

bounded sequence of epimorphisms 73, :  — C" such that that 17,7y = S
Zl

for all m € N, and (||T,n(e:)||?)ien I Then, by a standard diagonal
m—0o0

argument, we can assure the existence of a subsequence, which we still call

{T»} men, such that

Tm(e;) —— fi € C", with ||fi||* = ¢; for every i € N.
m—r oo

Let Tp : span {B} — C" be the unique (densely defined) operator, such that
To(e;) = f; for every i € N. Note that Tp is bounded because, if v = Y., a; e;

and C =, ¢ = tr S, then
ITo@) = 11D aifill <D lailllfil
i=1 i=1

IN

. /2 ;. 1/2
(Z ) (Z |ai|2> < CVle] .
i=1 i=1

The bounded extension of Ty to K is denoted T'.
Claim : ||T;,, - T|| —— 0.
m—0o0

Indeed, let € > 0 and 79 € N such that sz ¢; < €. Then, there exists
m1 € N such that

(16) Z | T (e)|* < e, for every m > m; .
i=io
.. 9 2H(N)
This is a consequence of the fact that (|| 75, (e:)[|)72;, —— (¢i)i2;,- On the
m—r oo

other hand, there exists mo > my such that

ig—1

(17) S [ To(es) = Fill2 < e, for every m > m, .
=1
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Let m > my and 2 = Y ._, aye; € span{B}. By equations (IG) and ([7),

(T = T)()* < (ZI%F) <Z (T |I2>

i0—1
< Jl=)? <Z (T, (e + 22 1T (ea) 1 + IIT(61)||2>

’L’Lo

<5eal?,

which proves the claim. Therefore TT* = lim T,,7,, = S. We have proved

m—0o0
that the frame F = {f; }ien € F(S5, ).
1 — 2: This follows from Theorem BI0, applied to S; and ¢, and Propo-
sition O

Remark 4.8. The statement of Theorem EZ7 can be reformulated in terms
of finite rank operators and sequences in ¢!(N) in the following way: Let K
be a separable, infinite dimensional Hilbert space. Let S; € L(K)™ such that
dim R(S1) < co. Then C[Ux(S1)] is closed, as a subset of £}(N).

Indeed, suppose that S; # 0 (the case S; = 0 is trivial). Then, there
exists a sequence b = (by,...,by,0,...,0,...) € /{(N)*, with b,, > 0, and
an orthonormal basis B = {e,}nen of K such that S; = Mpp. Let ¢ €
¢*(N)*. By Proposition B3, condition 2 of Theorem T means that ¢ €
clj.y, (ClU(S1)]) . But, by Proposition EER condition 1 of Theorem EE7l means
that ¢ € ClUx(S71)].

Note that, although (31”,”1 (conv(II- b)) = CIH,”1 (ClUk (S1)]) = ClUk(S1)],
as it is shown in Remark BTl it is not true that conv(Il - b) is closed, as a
subset of /1(N)*. For example, if b = (1,0,0,...), then, by Proposition BT3

1
(Q_n)nGN

C =

S Cl||.||1 (C[U)c(el & 61)]) = Cl”'”l (COHV(H . b)) .

Nevertheless, ¢ ¢ conv(Il - b), because every sequence in conv(Il - b) has
finite non zero entries. In this case, ¢ = Cp(z ® x) € ClUk(e1 @ e1)], where

T=3,n2 Zen. A

5. THE INFINITE-DIMENSIONAL CASE

Throughout this section H denotes a separable infinite dimensional Hilbert
space. The first result gives necessary conditions for frame admissibility:

Theorem 5.1. Let S € GI(H)t and ¢ € (>°(N)*. If the pair (S,c) is frame

admissible, then Z ¢; = 00, and Uy (S) > U(c), for every k € N. In partic-
ieN

ular, limsupc < ||S]e-
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Proof. Suppose that there exists a frame F € F(S,c). Then, by Proposition
E3 there exists an extension K = H @ Hq of H such that, if we denote

Sl = <€’ 8) 7‘721 S L(IC)+ s then celC [L{]C(Sl)] .
Hence, ZieN ¢; = trMe = trS; = oo . On the other hand, by Proposition

B3 Uk(S) = U(S1) for every k € N. Then, applying Theorem BI0 the
statement follows. O

Remark 5.2. Let S € GI(H)" and ¢ € ¢*°(N)*. Then, by Theorem BI0
and Proposition E5 the following conditions are equivalent :
(1) Ug(S) > Uk(c) for every k € N.
(2) There exists a sequence F = { fir}ien, k € N of frames on H, such
that S is the frame operator of every Fj and || fixl| - /C; uni-
— 00

formly for ¢ € N.

Indeed, note that the inequalities involving the maps Lg, k € N, can always
be fulfilled if we consider a sufficiently large extension H & Hq of H. In this
case, limsup ¢ < ||.9]]¢. A

At this point we should note that the conditions of Theorem B are not
sufficient to assure that the pair (S, c) is frame admissible, as Example G1]
below shows. That is, we can not remove the closures in the equalities of
Theorem B0 as it was already mentioned in [I7], for the diagonalizable
case.

In [16] (see also H]) appears the following result which gives sufficient con-
ditions for a pair (5, c) in order to be frame admissible:

Theorem 5.3 (Kornelson-Larson). Let S € GI(H)" and ¢ € I*°(N)". Sup-
pose that ), yci = 00 and ||clloe < ||S|le. Then the pair (S,c) is frame
admissible. |

The following result, which generalizes Theorem B3l strengths slightly the
necessary conditions for frame admissibility given by Theorem BRIl to get
sufficient conditions. A tight frame version of this result appeared in R.
Kadison [I4] and [I5]. Recall the notation Po(S) = E[||S|le, ||S]|], where E is
the spectral measure of S € L(H)™.

Theorem 5.4. Let S € GI(H)" and ¢ € I*°(N)", such that )
Assume one of the following two conditions:
1. (a) tr Pa(S) = oo,
(b) Ux(S) > Ug(c) for every k € N, and
(©) [1S] > limsup(c).

ieN c; = OQ.

2. (a) tr P(S)=r €N,
(b) Ur(S) > Ug(c) for 1 <k <r,
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(¢) Uk(S) > Ug(c), for k> r, and

(d) |IS|le > limsup(c).
Then, the pair (S, c) is frame admissible.
Proof. By Proposition ER it suffices to show that the there exists a sequence
of unit vectors {x}ren such that S = >, cx T ® 7p . Assume that the
first condition holds. Then, since ||S|. > limsup(c), there exist mo € N and
€ > 0 such that

em < ||S|le = for m > myg

Let g > po... > pyn > ... be the sequence of eigenvalues of ST, chosen as in
Lemma B4 Let {y,}nen be an orthonormal system such that STy, = pnyn.-

Denote Ay, = pn+||S]le; n € N. Note that ||S|| > A, > ||S]|e, and Sy, = A\nyn,
n € N. By Proposition B for every k € N,

k k
Shyioy<S, and  Up(S) =) \i.

=1 =1

no mo
Let ng be the first integer such that Z c; > Z Ai . Then ng > mg+ 1, and

i=1 i=1

no mo
h=> ci—=> Ai<eny <[Sle < Amg1 -

=1 i=1

Let ¢g = (c1,. .-, Cny). Since
k
Z)\i = Ux(S) > Uk(c) > Uk(co) , 1<k<mg,
i=1
then ¢g < (A1, -+, Amg, 2, 0,...,0) € R™. Denote by

mo
51 =N Ymo+1 ® Ymo+1 +Z/\i Yi 0y <85,
i=1
and S = S — S;. Then, the pair (S1,co), acting on span{yi, ..., Yme+1},

satisfies the conditions of TheoremELfl Hence, there exists a set of unit vectors
no

{z1,..., T, } such that Zci x; ®x; = S1 . Note that So > 0, R(S2) is closed

i=1
(by Fredholm theory), and ||Sz||e = [|S|le- Then, we can apply Theorem
to the pair (S2,{c¢;}isn,), acting on R(S2). So, there exist unit vectors zy,
for k > ng, such that

oo
So = Z Ci T QX .
1=no+1
Therefore we obtain the rank-one decomposition S = ZieN Ci Ti Q x;.
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Assume condition 2. Note that, by equations @) and (), the condition
[IS|le > limsup(c) implies that Uy, (S) — Uy (c) ——— oco. Therefore, by item
m—0o0
(c), we can assume that there exists § > 0 such that
(1) Urx(S) — 6 > Uryi(c), for every k € N.
(2) There exists mg > 1 such that ¢, < ||S|le — & for m > myg .
Let m; = max{mg,r + 1}. Let u3 > --- > p, be the greatest eigenvalues
of ST, and let {y1,...,y-} be an associated orthonormal set of eigenvectors.
Denote by

5
Ai=pi+|S]le, 1<i<r, and )\i:||S||e—%, r+1<i<m;+1.
1

Then, by Proposition B3]
k
(1) Ur(S) = Z)‘i ,for 1 <k <r, and

=1
k

(2) Uk(c) SUR(S) =0 <> A forr+1<k<mi+1.
i=1
On the other hand, since @ = E([||S||e — §/2m1,]|S]||c)) has infinite rank,
there exists an orthonormal set {y,41,...,Ym,;+1} € R(Q). Therefore

mi+1

Z Niyi®y; <5

i—1
Let ng be the first integer such that > %, ¢; > > A\;. Then ng > mq +1
and

no ma
h=> ci=Y Ni<cn <[Sle—0< Amys -
i=1 i=1
Let cg = (c1,. .-, Cny). Since

k
Y X =Uk(S) 2 Ukle) 2 U(eo) , 1<k<r, and
i=1

k
> N> Uk(S) =6 > Uk(c) > Up(co) , r+1<k<m,
=1

then ¢g < (A1,..., Amy, 0, 0,...,0) € R™. So, by Corollary EEf, there exists
a set of unit vectors {z1,...,2,,} C H such that
mi no
S = Z/\i Yi @Yi + I Ymo+1 @ Ymo+1 = ZQ‘ T; ® ;.
i=1 i=1
Since 57 < SN i @y, then Sp = 8 — 8) > 0 and || S| = ||S]|e. As
before, we apply Theorem B3 to the pair (Sa, {¢; }isn, ), acting on R(Ss), and
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we obtain a decomposition
oo
E Ci Ti @ T;.
1=no+1
Therefore we obtain the rank-one decomposition S = EieN ci T; Q@ x;. O

Example below shows that the condition 2 (c¢) of Theorem B4l can not
be dropped in general.

Corollary 5.5. Let 0 < A € R and ¢ € (>°(N)* such that 0 < ¢; < A, i € N.
Denote J ={i € N:¢; = A}. Assume that

Z c; =00 and limsup ¢; < A (or, equivalently, sup ¢; < A) .
i¢J i¢J i¢J

Then the pair (Al,c) is admissible. This means that there ezists a tight frame
with norms prescribed by ¢ and frame constant A. g

6. SOME EXAMPLES

In the following example we shall see that
Ur(S) > Ug(c), keN and ||S]|e =limsup(c) # F(S,c)#0D.

Example 6.1. Let S =1 € L(H) and a € (0,1). Let ¢ € £*°(N)* be given
by ¢ =p € (0,1) and

_ a” if k#1isodd,
%=\ 1-a*F ifkis even.

Then, 0 < ¢y <lforkeN, Y, cp=00=>,(1—ck),andlimsupc=1=
[IS|le - Suppose that there exists a frame F = { fr}reny € F(S,c). Then

llz||* = Z| )2, foreveryxzeH .
keN

In particular, we get, for every j € N,

£ = D15 P = 11+ D 1 fll

kEN kj

Thus, if j # 1, we obtain the inequality

[ )2 = 10 P <Y1 fl? = AP = 151 = e (1 =),
k#j
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Therefore,
p=Al* < Hf1||4+ch(1—cj)
J#1
(18) = P +Y d1-d)=p'+Y o Y a?
J#1 j#1 j#1
1 1
= p +1—a =2 P +1_a2

1 1
Taking p = 3 and a € (0,1) such that # < 1 we get that p > p? +

% , contradicting Eq. ([¥). Hence, in this case, F(S,c) = 0. Note
—a

that the pair (S, ¢) satisfies all necessary conditions of Theorem Bl because
Uk(S) = k = Uk(c) for every k € N. A

In the second example we see that, in general,
Up(S) > Uk(c), k€N and ||S|lc > limsup(c) # F(S,c)#0.

Example 6.2. Let S = Mg be the diagonal operator, with respect to an
orthonormal basis of H, given by s = {1 — (i + 1) "' };en and let (c;)ien be
given by ¢; = 1 and ¢; = 1/2 for every i > 2. Note that

e 1 =S| >1/2=limsup(c),

e Ui(S) =Ui(c), and

o Up(S)=k>1+(k—1)/2=U(c) for every k > 2.
Still, F(S,c) = 0. Indeed, suppose that there exists F € F(S5,¢c). Then, by
Proposition EEH there exists an extension K = H @ H4 of ‘H such that, if

0 0/ Hg

Let V € U(K) such that, in a orthonormal basis B = {eg}ren, Mc =
Cp(V*51V). Take x = PyVe;. We have that [|z|| < 1 and (Sz,z) =
(Mcej,e1) = ¢1 = 1, while ||S|| = 1. Then Sz = z, and 1 would be an
eigenvalue of S, which is false. In this example, condition 2 (¢) of Theorem
B4 does not hold, because || S]] = ||S||e, which implies that » = tr P2(S) = 0;
but U;(S) = 1 = Ui(c) . Note that ), ¢ = oo = >, (1 — ¢x), as in the
previous example. A

The excess of frames in F(S,c). Let S € GI(H)" and ¢ = (¢;)iem €
0°(M)T such that the pair (S,c) is frame admissible. Then, there can be
many different types of frames F € F(S,c). We consider the set

Null(S,c) ={ e(F): F € F(S,c) } .

In the Example below, we show that this set can be as big as possible. More-
over, this example shows that there exists an admissible pair (S, a), satisfying

S = (S O) H c L(IC)+ R then cc C[L{K(Sl)] .
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just the necessary conditions of Theorem Bl and in this case Uy (S) = Ug(a),
k €N, and limsupa = ||S]. .

Example 6.3. Let H be a Hilbert space with an orthonormal basis B =
{xn}nEN- Let

1 1 1 00 + +

a:(§,1,§,1,§,...)ee (N, and S=MgacGl(H)".

Then, the frame (Riesz basis) Fy = {a}/2:1:n}n€N has frame operator S, so
that o € F(S,a). On the other hand, let

R { 1 1 1 1 }

=14 —=1T9,T4, —= T2, T, —= T1, T8, —= T3, T10,--- [ -
1\/524\/526\/518\/5310

It is easy to see that also F; € F'(S,a), but e(F1) = 1. Analogously,

1 1 1 1 1
F :{—:v , T4y —= X2, X6, —= T8, L10, —= T8, L12, —= T ,...}EFS,a ,

2\/524\/526\/5810\/5812\/51 (S,a)

with e(F2) = 2. In a similar way, it can be constructed frames Fj, € F(S5,a)
with e(Fy) =k, for every k € NU {o0}. Note that

fa {1 1 1 1 1 1 }
o =9 —= X1, %4, —= T2, X8, —= T2, T12, —= T3, T16, —= L6, L20, —= LGy - - - (-
NG 1 4\/5 2,8 NG 2 12\/5 3,216 NG 6 20\/§ 6

In other words, F is the frame induced by the bounded operator T : £?(N) —
‘H given by

Tak if n=2k
1 : @l _
T(en) = ? Tok_1 %f n=6k-—5
5 Tak—2 if n=6k-3
%$4k,2 lf n:6k—1 .
Therefore Null(S,a) = NU {0, 00} . A

Proposition 6.4. Let S € GI(H)t and ¢ € (*(N)T. Assume that the pair
(S, c) is frame admissible and liminf ¢ < min o.(S). Then Null(S, c) = {co}.

Proof. Let F = {fn}nen € F(S,c), with e(F) = d. By Proposition EE1l there
exists an extension K = H & Hq of H such that, if we denote

S 0\ H
Sy = <O 0> o € L(K)",  then ceCUk(S1)] -
By Theorem BI0, min 0.(S1) < liminf c . But, if dim Hy4 = e(F) < oo, then
0¢(S1) = 0¢(S), which contradicts the fact that liminf ¢ < min o.(S). O

Remark 6.5. Let F = {f,}nen be a Parseval frame for H (i.e. it has
frame operator S = Iy). If liminf,en||f|| < 1, then, by Proposition 2]
e(F) = oo . This results was proved in [3] A
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Example 6.6. Let H be a Hilbert space with an orthonormal basis B =
{mi}ien. Let
N 333
a=(1,2,1,2,...), S=Mga€cGl(H) and c= (5,5,5,...).
We shall show that also Null(S,c) = NU {0, 00} . Note that, in this case,
a_(S)=1<liminfc = g =limsupc <2 =S .

Indeed, take the Riesz basis Fo = {fn }nen given by

% + Tpt1 if n is odd
fn =
% +z, if n is even

It is easy to see that Fy € F(S,c). Using that

3 3 3 3
—, =, =, 2,2,2,0
(2727272)-<(7 9~y )7
an arbitrary number of packs of four vectors with norm \/g associated to

packs of three even places of the diagonal of S can be interlaced into the
previous construction. Each of these packs adds excess 1 to the whole system.
In this way, frames F € F(S,c) with e(Fx) = k can be found for every
ke NU{oo}. A

Remark 6.7. Let S € GI,,(C)tT and ¢ € ¢>°(M)*. If the pair (S,c) is
frame admissible, then Null(S,c) = {|M| — n}. Nevertheless, if &k > n, ¢ =
(1,...,1) € C*and S = I € M,,(C), then F(S, c) is the set of spherical tight
frames of k elements in C". Dykema, Freeman, Korleson, Larson, Ordower
and Weber [I0] have shown that, in this case, F(S,c¢) has a rich geometrical
structure, with several orbits of qualitatively different elements. A
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