Metrics in the sphere of a C^* -module^{*}

Esteban Andruchow and Alejandro Varela

Instituto de Ciencias, Univ. Nac. de Gral. Sarmiento, Argentina

Abstract

Given a unital C^* -algebra \mathcal{A} and a right C^* -module \mathcal{X} over \mathcal{A} , we consider the problem of finding *short* smooth curves in the sphere $\mathcal{S}_{\mathcal{X}} = \{x \in \mathcal{X} : \langle x, x \rangle = 1\}$. Curves in $\mathcal{S}_{\mathcal{X}}$ are measured considering the Finsler metric which consists of the norm of \mathcal{X} at each tangent space of $\mathcal{S}_{\mathcal{X}}$. The initial value problem is solved, for the case when \mathcal{A} is a von Neumann algebra and \mathcal{X} is selfdual: for any element $x_0 \in \mathcal{S}_{\mathcal{X}}$ and any tangent vector v at x_0 , there exists a curve $\gamma(t) = e^{tZ}(x_0)$, $Z \in \mathcal{L}_{\mathcal{A}}(\mathcal{X}), Z^* = -Z$ and $||Z|| \leq \pi$, such that $\gamma(0) = x_0$ and $\dot{\gamma}(0) = v$, which is minimizing along its path for $t \in [0, 1]$. The existence of such Z is linked to the extension problem of selfadjoint operators. Such minimal curves need not be unique. Also we consider the boundary value problem: given $x_0, x_1 \in \mathcal{S}_{\mathcal{X}}$, find a curve of minimal length which joins them. We give several partial answers to this question. For instance, let us denoteb

Keywords: C*-modules, spheres, geodesics.

1 Introduction

The sphere $S_{\mathcal{X}}$ of a right Hilbert C^* -module \mathcal{X} over a unital C^* -algebra \mathcal{A} , which consists of the elements $x \in \mathcal{X}$ such that $\langle x, x \rangle = 1$, is a C^{∞} submanifold of the (Banach space) \mathcal{X} . Its basic topological and differentiable aspects were considered in [2]. In this paper we consider the geometric problem of finding short smooth curves in $S_{\mathcal{X}}$. To measure the length of a smooth curve we endow each tangent space (which we describe below, and is a complemented real Banach subspace of \mathcal{X}), with the norm of \mathcal{X} . Therefore the length of a curve $\gamma(t) \in S_{\mathcal{X}}$, $t \in [a, b]$ is measured by

$$length(\gamma) = \int_a^b \|\dot{\gamma}(t)\| \ dt,$$

where $\| \|$ denotes the norm of \mathcal{X} . We refer the reader to [11] for basic facts on C^* -modules. As is usual notation, let $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$ be the C^* -algebra of adjointable linear operators acting on \mathcal{X} . If $y, z \in \mathcal{X}$, let $y \otimes z \in \mathcal{L}_{\mathcal{A}}(\mathcal{X})$ be the operator $y \otimes z(x) = y < z, x >$. For example, it is easy to see that if $x \in \mathcal{S}_{\mathcal{X}}$, then $x \otimes x$ is a selfadjoint projection, which we shall denote by e_x . Let $\mathcal{U}(\mathcal{X})$ be the unitary group of $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$. Perhaps the main feature in the geometry of $\mathcal{S}_{\mathcal{X}}$ (as with classical spheres) is the natural action of $\mathcal{U}(\mathcal{X})$ on $\mathcal{S}_{\mathcal{X}}$:

$$U \cdot x = U(x), \quad U \in \mathcal{U}(\mathcal{X}), \quad x \in \mathcal{S}_{\mathcal{X}}.$$

^{*}2000 Mathematics Subject Classification: 46L08, 53C22, 58B20.

In [2] it was shown that if $x_0, x_1 \in S_{\mathcal{X}}$ verify $||x_0 - x_1|| < 1/2$, then x_0 and x_1 are conjugate by this action, moreover, one can find a unitary operator $U_{(x_0,x_1)}$, which is a C^{∞} function in (x_0, x_1) such that $U_{(x_0,x_1)}(x_0) = x_1$. In particular the action is locally transitive. It is globally transitive in some cases (e.g. if \mathcal{X} is selfdual [15] and \mathcal{A} is a finite von Neumann algebra). In general, $S_{\mathcal{X}}$ has many components: take for instance $\mathcal{X} = \mathcal{B}(\mathcal{H})$ with the inner product $\langle X, Y \rangle = X^*Y$, then the sphere is the set of isometries of \mathcal{H} , whose connected components are parametrized by the codimension of the range.

The existence of local cross sections for the action (namely, the unitaries $U_{(x_0,x_1)}$), implies that for any fixed $x_0 \in S_{\mathcal{X}}$, the map

$$\pi_{x_0}: \mathcal{U}(\mathcal{X}) \to \mathcal{S}_{\mathcal{X}}, \ \pi_{x_0}(U) = U(x_0)$$

is a locally trivial fibre bundle and a C^{∞} submersion. It follows that any smooth curve $\gamma(t) \in S_{\mathcal{X}}$ can be lifted to a smooth curve $\mu(t) \in \mathcal{U}(\mathcal{X})$, and therefore represented $\gamma(t) = \mu(t) \cdot x_0$ for some $x_0 \in S_{\mathcal{X}}$. This enables one to compute the tangent spaces of $S_{\mathcal{X}}$:

$$(T\mathcal{S}_{\mathcal{X}})_{x_0} = \{A(x_0) : A \in \mathcal{L}_{\mathcal{A}}(\mathcal{X}), A^* = -A\}.$$

Clearly these elements are also characterized by the condition

$$(T\mathcal{S}_{\mathcal{X}})_{x_0} = \{ v \in \mathcal{X} : < v, x_0 > + < x_0, v > = 0 \}.$$

It is natural to ask whether one can find curves of the form

$$\gamma(t) = e^{tZ}(x_0), \quad t \in [0,1], Z^* = -Z,$$

which have minimal length joining their endpoints, or more strictly, which have minimal length along their paths.

There are two main problems.

- 1. The initial value problem: for any tangent vector $v \in (TS_{\mathcal{X}})_{x_0}$ find a curve γ as above (in particular $\gamma(0) = x_0$), with $\dot{\gamma}(0) = v$, such that γ has minimal length.
- 2. The boundary value problem: given x_0, x_1 in the same component of S_{χ} , find a minimal curve γ as above, which joins x_0 and x_1 .

In this paper we solve the initial value problem: we show that if \mathcal{A} is a von Neumann algebra and \mathcal{X} is a right C^* -module, which is selfdual [15], then for any $x_0 \in S_{\mathcal{X}}$ and any tangent vector $v \in (TS_{\mathcal{X}})_{x_0}$ with $||v|| \leq \pi$ there exists a curve $\gamma(t) = e^{tZ}(x_0)$ with $\gamma(0) = x_0$ and $\dot{\gamma}(0) = v$, which has minimal length along its path for $t \in [0, 1]$. The antihermitic operator Z implementing this geodesic is the solution of the extension problem by M.G. Krein [10], in the context of von Neumann algebras (see [6]), as it will be shown in the next section. We call such Z minimal lifts, following [7].

We also consider the boundary value problem. We prove that if $\langle x_0, x_1 \rangle$ is a scalar multiple of the identity, then x_0 and x_1 can be joined by a minimizing geodesic (Proposition (4.1)). Another case in which there exists a short geodesic joining x_0 and x_1 occurs when the (non empty) set $\{||Z|| : Z^* = -Z, e^Z(x_0) = x_1\}$ has a minimum (Theorem (4.3)). As a consequence, we obtain that if $f_0(\mathcal{X})$ is finite dimensional ($f_0 = I - e_{x_0}$), then there exists such a geodesic. In section 5 we introduce a metric in $\mathcal{S}_{\mathcal{X}}$, by means of the states of \mathcal{A} , which induce Hilbert space representations of the sphere $\mathcal{S}_{\mathcal{X}}$. We compare this metric with the Finsler metric. For example, it is shown that they coincide whenever there exist minimal lifts (Theorem (5.4)).

2 Extension problem in von Neumann algebras

A simplified version of the extension problem ([10], [14], [6]) could be stated as follows: given a closed subspace \mathcal{L} of a Hilbert space \mathcal{H} and a bounded symmetric operator $A_0 : \mathcal{L} \to \mathcal{H}$, find a selfadjoint extension $A : \mathcal{H} \to \mathcal{H}$ with $||A|| = ||A_0||$. This problem was solved, and all solution parametrized. We remark that extensions can, but in general need not, be unique. See for example [6] or [14] for explicit parametrizations. M.G. Krein [10] showed that there exist a minimal and a maximal solution (in terms of the usual order of selfadjoint operators), and that all solution lie in between. For our purposes, we need the additional requierement that if $P = P_{\mathcal{L}}$ (=the orthogonal projection onto \mathcal{L}) and A_0 lie in a von Neumann algebra \mathcal{B} , then there exists a solution of the extension problem in \mathcal{B} . By this we mean the following result, which is a consequence of the parametrization of solutions given by Davis, Kahan and Wi

Lemma 2.1 Let A be a selfadjoint element and P a selfadjoint projection in a von Neumann algebra \mathcal{B} . Then there exists a selfadjoint element Z in \mathcal{B} such that ZP = AP and ||Z|| = ||AP||.

Proof. Let A and $P \in \mathcal{B}$ be as above. Choose a representation of the von Neumann algebra \mathcal{B} in $\mathcal{B}(\mathcal{H})$ with \mathcal{H} a Hilbert space. Let us consider the following selfadjoint 2×2 block operators in terms of P and (I - P):

$$Z_X = \begin{pmatrix} PAP & (I-P)AP \\ PA(I-P) & X \end{pmatrix}$$

where X is a selfadjoint operator in $\mathcal{B}((I-P)\mathcal{H})$. These $Z_X \in \mathcal{B}(\mathcal{H})$ satisfy $Z_X P = AP$ and $||Z_X|| \ge ||AP||$.

As it was mentioned at the beginning of this section, several authors dealt with the problem of minimizing the norm of Z_X . Theorem 1 in [14], for example, proves that in our context there exists an $X_0 \in \mathcal{B}((I-P)\mathcal{H})$ such that $||Z_{X_0}|| = ||PA||$ and X_0 is the weak limit of the following elements of \mathcal{B} : $-c_n(I-P)(I-d_nPAPAP)^{-1}PAPA(I-P)$ (where $\{c_n\}$ and $\{d_n\}$ are sequences of real numbers). Therefore this X_0 belongs to \mathcal{B} and then Z_{X_0} belongs to \mathcal{B} , and verifies $||Z_{X_0}|| = ||PA||$. \Box

We state now a consequence of the result above, in the context of the modular spheres. Let $x_0 \in S_{\mathcal{X}}$, and $v \in (TS_{\mathcal{X}})_{x_0}$. We call an antihermitic operator $Z \in \mathcal{L}_a(\mathcal{X})$ a minimal lift of v if $Z(x_0) = v$ and ||Z|| = ||v||.

Corollary 2.2 Let $x_0 \in S_{\mathcal{X}}$, with \mathcal{X} a selfdual module over the von Neumann algebra \mathcal{A} , and $v \in (TS_x)_{x_0}$. Then there exists a minimal lift Z of v.

Proof. In this case, $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$ is a von Neumann algebra [15]. Since $v \in (TS_x)_{x_0}$, there exists $A \in \mathcal{L}_{\mathcal{A}}(\mathcal{X})$ such that $-A = A^*$ and $A(x_0) = v$. Note that this implies that $A(x_0 \otimes x_0) = v \otimes x_0$. Moreover, the operator $v \otimes x_0$ has norm equal to the norm of v. Indeed, clearly $||v \otimes x_0|| \leq ||v|| ||x_0|| = ||v||$ because $||x_0|| = 1$, and $||v \otimes x_0|| \geq ||v \otimes x_0(x_0)|| = ||v||$. Since $e_{x_0} = x_0 \otimes x_0$ is a selfadjoint projection in $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$, by the above lemma there exists $Z \in \mathcal{L}_{\mathcal{A}}(\mathcal{X})$ such that $Z^* = -Z$, $Ze_{x_0} = Ae_{x_0}$ and $||Z|| = ||Ae_{x_0}||$. In other words, $Z(x_0) = Ze_{x_0}(x_0) = Ae_{x_0}(x_0) = A(x_0) = v$, and ||Z|| = ||v||.

3 The initial value problem

Let us state our main result.

Theorem 3.1 Let $x_0 \in S_{\mathcal{X}}$ and $v \in (TS_{\mathcal{X}})_{x_0}$ with $||v|| \leq \pi$. Let Z be a minimal lift of v, i.e.

$$Z^* = -Z, \ Z(x_0) = v \ and \ ||Z|| = ||v||.$$

Then the curve $\nu(t) = e^{tZ}(x_0), t \in [0,1]$ which verifies $\nu(0) = x_0$ and $\dot{\nu}(0) = v$, has minimal length along its path among smooth curves in $S_{\mathcal{X}}$.

Proof. Given a positive element A of a C^* -algebra, there exists a faithful representation of the algebra (for instance, the universal representation) and a unit vector ξ in the Hilbert space \mathcal{H} of this representation, such that $A\xi = ||A||\xi$ (here we identify A with its image under the representation). Let us call such a vector ξ a norming eigenvector for A. Let us apply this folklore fact to the positive operator $-eZ^2e$, where $e = e_{x_0}$. Let ξ be a (unit) norming eigenvector for $-eZ^2e$. Again we identify the operators with their images under this representation, and regard them as operators in this Hilbert space. Clearly ξ lies in the range of e. We claim that ξ is a norming eigenvector for $-Z^2$ as well. Indeed,

$$-Z^{2}\xi = -Z^{2}e\xi = -eZ^{2}P\xi - (I-e)Z^{2}P\xi = ||eZ^{2}e||\xi + \xi_{1},$$

where $\xi_1 = -(I - e)Z^2 e\xi$ is orthogonal to ξ . Note that

$$||eZ^2e|| = ||Ze||^2 = ||Z||^2 = ||Z^2||.$$

Then

$$||Z^{2}||^{2} \ge ||Z^{2}\xi||^{2} = ||eZ^{2}e||^{2} + ||\xi_{1}||^{2} = ||Z^{2}||^{2} + ||\xi_{1}||^{2}.$$

It follows that $\xi_1 = 0$ and our claim is proved. Consider the curve $\hat{\nu}(t) = e^{tZ}(\xi)$. Clearly $\|\hat{\nu}(t)\| = 1$, i.e. $\hat{\nu}(t)$ is a curve in the unit sphere $S_{\mathcal{H}}$ of the Hilbert space \mathcal{H} . Let us prove that it is a minimizing geodesic of this Riemann-Hilbert manifold. Indeed,

$$\ddot{\hat{\nu}}(t) = e^{tZ} Z^2 \xi = -\|Z\|^2 e^{tZ} \xi = -\|Z\|^2 \hat{\nu}(t)$$

That is, $\hat{\nu}$ satisfies the differential equation of the geodesics of the sphere $S_{\mathcal{H}}$. Moreover, the length of $\hat{\nu}$ is

$$length(\hat{\nu}) = \int_0^1 \|\dot{\hat{\nu}}(t)\| dt = \|Z\xi\| \le \pi.$$

It follows that $\hat{\nu}$ is a minimizing geodesic of the unit sphere. Note also that

$$||Z\xi||^2 = \langle Z\xi, Z\xi \rangle = \langle -Z^2\xi, \xi \rangle = ||Z^2|| = ||Z||^2.$$

Clearly, if $[t_0, t_1] \subset [0, 1]$, the length of $\hat{\nu}$ restricted to $[t_0, t_1]$ (or shortly $\hat{\nu}|_{[t_0, t_1]}$) is $(t_1 - t_0) ||Z||$. On the other hand,

$$length(\nu|_{[t_0,t_1]}) = \int_{t_0}^{t_1} \|\dot{\nu}\| dt = (t_1 - t_0) \|Z(x_0)\| = (t_1 - t_0) \|Z\|.$$

It follows that $length(\hat{\nu}) = length(\nu)$ on any subinterval of [0, 1].

Suppose now that $\gamma : [a, b] \to S_{\mathcal{X}}$ is a smooth curve joining $\nu(t_0)$ and $\nu(t_1)$. Consider the curve $\hat{\gamma}(t) := \gamma(t) \otimes x_0(\xi)$. Note that $\hat{\gamma}$ is also a curve in the unit sphere of \mathcal{H} :

$$<\hat{\gamma}(t),\hat{\gamma}(t)>_{\mathcal{H}}=<(\gamma(t)\otimes x_{0})^{*}(\gamma(t)\otimes x_{0})\xi,\xi>_{\mathcal{H}}=<(x_{0}\otimes\gamma(t))(\gamma(t))\otimes x_{0}\xi,\xi>_{\mathcal{H}}=_{\mathcal{H}}=1.$$

Moreover,

$$\|\hat{\gamma}(t)\| = \|(\dot{\gamma}(t) \otimes x_0)\xi\| \ge \|\dot{\gamma}(t) \otimes x_0\| = \|\dot{\gamma}(t)\|.$$

This implies that $length(\gamma) \leq length(\hat{\gamma})$. Finally, let us show that $\hat{\nu}|_{[t_0,t_1]}$ and $\hat{\gamma}$ join the same endpoints of $S_{\mathcal{H}}$:

$$\hat{\nu}(t_0) = e^{t_0 Z} \xi = e^{t_0 Z} e\xi = e^{t_0 Z} (x_0 \otimes x_0) \xi = (e^{t_0 Z} (x_0) \otimes x_0) \xi = (\nu(t_0) \otimes x_0) \xi = (\gamma(t_0) \otimes x_0) \xi = \hat{\gamma}(t_0),$$

and similarly for t_1 . By the minimality of $\hat{\nu}$, it follows that $length(\hat{\nu}|_{[t_0,t_1]}) \leq length(\hat{\gamma})$. Therefore

$$length(\nu|_{[t_0,t_1]}) = length(\nu|_{[t_0,t_1]}) \le length(\hat{\gamma}) \le lenght(\gamma),$$

which completes the proof.

Corollary 3.2 If \mathcal{A} is a von Neumann algebra and \mathcal{X} is a selfdual module, then for any element $x_0 \in S_{\mathcal{X}}$ and tangent vector $v \in (TS_{\mathcal{X}})_{x_0}$ with $||v|| \leq \pi$, there exists a geodesic δ with $\delta(0) = x_0$, $\dot{\delta}(0) = v$, such that δ is minimizing along its path for $t \in [0, 1]$.

Proof. In this case, minimal lifts exist for any tangent vector v.

4 Geodesics joining given endpoints

The problem of finding minimizing geodesics given any pair of points (in the same component) of the sphere $S_{\mathcal{X}}$ is more difficult. It is related to the analogous problem for abstract homogeneous spaces [8]. In this section we find solutions in certain cases. These results work for arbitrary C^* -algebras and modules.

Proposition 4.1 Let $x_0, x_1 \in S_{\mathcal{X}}$ with $\langle x_0, x_1 \rangle = \alpha.1$, for $\alpha \in \mathbb{C}$. Then there exists a smooth curve in $S_{\mathcal{X}}$ with minimal length along its path, which joins x_0 and x_1 .

Proof. Note that since $|| < x_0, x_1 > || \le ||x_0|| ||x_1|| = 1$, it follows that $|\alpha| \le 1$. If $|\alpha| = 1$, then $\alpha = e^{ir}$ with $|r| \le \pi$. In this case clearly $x_1 = \alpha x_0$. Indeed,

$$< x_1 - \alpha x_0, x_1 - \alpha x_0 > = < x_1, x_1 > - < x_1, \alpha x_0 > - < \alpha x_0, x_1 > + < \alpha x_0, \alpha x_0 > = 0.$$

Put $\gamma(t) = e^{irt}x_0$. Apparently γ is minimizing along its path (for instance, ||re|| = r, i.e. the operator rI is a minimal lift).

If $|\alpha| < 1$, let $\beta \in \mathbb{C}$ be such that $|\alpha|^2 + |\beta|^2 = 1$ (note that $\beta \neq 0$), and consider $y = \alpha\beta^{-1}x_0 - \beta^{-1}x_1$. Then clearly

$$\langle x_0, y \rangle = \alpha \beta^{-1} 1 - \beta^{-1} \langle x_0, x_1 \rangle = 0,$$

and

$$\langle y, y \rangle = \frac{|\alpha|^2}{|\beta|^2} - \frac{\bar{\alpha}}{|\beta|^2} \langle x_0, x_1 \rangle - \frac{\alpha}{|\beta|^2} \langle x_1, x_0 \rangle + \frac{1}{|\beta|^2} = 1.$$

in other words, $x_1 = \alpha x_0 + \beta y$ with $y \in S_{\mathcal{X}}$. That is, x_1 lies in the complex plane generated by two orthogonal elements x_0 and y of $S_{\mathcal{X}}$. The situation resembles what happens in a classic finite dimensional sphere, and the proof follows as in that case. Namely, let $(\alpha(t), \beta(t))$ be a minimal geodesic of the sphere $S_{\mathbb{C}^2}$ of \mathbb{C}^2 , joining (1,0) (at t=0) and (α,β) (at t=1). Consider the curve $\gamma(t) = \alpha(t)x_0 + \beta(t)y$. Clearly it is a smooth curve with $\gamma(0) = x_0$ and $\gamma(1) = x_1$, which lies in $S_{\mathcal{X}}$:

$$<\gamma(t), \gamma(t)>= |\alpha(t)|^2 + |\beta(t)|^2 = 1.$$

Moreover, it has constant speed equal to

$$\|\dot{\gamma}(t)\|^{2} = \| < \dot{\alpha}(t)x_{0} + \dot{\beta}(t)x_{1}, \dot{\alpha}(t)x_{0} + \dot{\beta}(t)x_{1} > \|^{2} = |\dot{\alpha}(t)|^{2} + |\dot{\beta}(t)|^{2} = |\dot{\alpha}(0)|^{2} + |\dot{\beta}(0)|^{2} = \|\dot{\gamma}(0)\|^{2}.$$

 $\mathbf{5}$

We claim that it is minimizing along its path. Let φ be a state in \mathcal{A} . Then the form

$$[x,y]_{\varphi} := \varphi(< x, y >), \ x,y \in \mathcal{X}$$

is positive semidefinite in \mathcal{X} . Let \mathcal{H}_{φ} be the completion of $(\mathcal{X}/\mathcal{Z}, [,]_{\varphi})$, where $\mathcal{Z} = \{z \in \mathcal{X} : [z, z]_{\varphi} = 0\}$. Denote by \bar{x} be the class of $x \in \mathcal{X}$ in $\mathcal{X}/\mathcal{Z} \subset \mathcal{H}_{\varphi}$. In other words, \bar{x} is the element x regarded as a vector in the Hilbert space \mathcal{H}_{φ} . Note that the elements of $\mathcal{S}_{\mathcal{X}}$ induce elements in the unit sphere of \mathcal{H}_{φ} : clearly $[\bar{x}, \bar{x}]_{\varphi} = \varphi(\langle x, x \rangle) = 1$

The geodesic $(\alpha(t), \beta(t))$ of $\mathcal{S}_{\mathbb{C}^2}$ satisfies the Euler equation of the sphere:

$$(\ddot{\alpha}(t), \dot{\beta}(t)) = -\kappa^2(\alpha(t), \beta(t)).$$

It follows that $\bar{\gamma}$ satisfies the differential equation

$$\ddot{\gamma}(t) = -\kappa^2 \bar{\gamma}(t)$$

in the sphere $S_{\mathcal{H}_{\varphi}}$ of \mathcal{H}_{φ} . Moreover, the length of $\bar{\gamma}$ restricted to the interval $[t_1, t_2] \subset [0, 1]$, is given by

$$\int_{t_0}^{t_1} [\dot{\bar{\gamma}}(t), \dot{\bar{\gamma}}(t)]^{1/2} dt = \int_{t_0}^{t_1} \varphi(\langle \dot{\alpha}(t)x_0 + \dot{\beta}(t)y, \dot{\alpha}(t)x_0 + \dot{\beta}(t)y \rangle)^{1/2} dt$$
$$= \int_{t_0}^{t_1} \varphi(|\dot{\alpha}(t)|^2 \cdot 1 + |\dot{\beta}(t)|^2 \cdot 1)^{1/2} dt = (t_1 - t_0) \|\dot{\gamma}(0)\|.$$

It follows that $\bar{\gamma}$ is minimizing along its path in $\mathcal{S}_{\mathcal{H}_{\varphi}}$, and

$$length(\bar{\gamma}) = length(\gamma).$$

Let $\nu(t), t \in [0, 1]$ be another smooth curve in $S_{\mathcal{X}}$ joining $\nu(0) = \gamma(t_0)$ and $\nu(1) = \gamma(t_1)$. Then $\bar{\nu}$ is a smooth curve in $S_{\mathcal{H}_{\varphi}}$, and the inequality

$$[\dot{\bar{\nu}}, \dot{\bar{\nu}}]_{\varphi} = \varphi(\langle \dot{\nu}, \dot{\nu} \rangle) \le \| \langle \dot{\nu}, \dot{\nu} \rangle \|$$

implies that

$$length(\nu) \ge length(\bar{\nu}).$$

It follows that ν is not shorter than $\gamma|_{[t_0,t_1]}$.

If $x_0, x_1 \in S_{\mathcal{X}}$ satisfy that $||x_0 - x_1|| < 1/2$, then they are conjugate by the action of $\mathcal{U}(\mathcal{X})$ (see [2]). Let us state the following result, estimating the distance between the identity and the unitary operator performing this conjugacy.

Lemma 4.2 Let $x_0, x_1 \in S_{\mathcal{X}}$ with $||x_0 - x_1|| < 1/2$. Then there exists a unitary $U \in \mathcal{U}(\mathcal{X})$ such that $U(x_0) = x_1$ with ||U - I|| < 3/2.

Proof. First we transcribe the construction of the unitary U given in [2]. Let $e_0 = e_{x_0}$ and $e_1 = e_{x_1}$. Since $||x_0 - x_1|| < 1/2$, it follows that

$$||e_0 - e_1|| \le ||e_0 - x_0 \otimes x_1|| + ||x_0 \otimes x_1 - e_1|| = ||x_0 \otimes (x_0 - x_1)|| + ||(x_1 - x_0) \otimes x_1||.$$

Note that $||x_0 \otimes (x_0 - x_1)|| \le ||x_0 - x_1||$ (in fact equality holds because $x_0 \in S_{\mathcal{X}}$), and analogously for the other term. Therefore $||e_0 - e_1|| < 1$. It is a standard fact that two such projections are unitarily equivalent, morever, the unitary V such that $Ve_0V^* = e_1$ can be chosen $V = e^Y$ with

6

 $Y \in \mathcal{L}_{\mathcal{A}}(\mathcal{X})$ such that $Y^* = -Y$ and $||Y|| < \pi/2$ (moreover, Y is codiagonal in terms of e_0 and $\sin ||Y|| = ||e_0 - e_1||$, see for instance [3], page 151). Therefore

$$||I - V|| = r(I - V) = \sup\{|1 - e^{\omega}| : \omega \in sp(Y)\} < \sqrt{2},$$

because $|\omega| \leq ||Y|| < \pi/2$ (here sp and r stand for the spectrum and the spectral radius, respectively). Consider

$$U = x_1 \otimes x_0 + V(I - e_0).$$

This unitary verifies that $U(x_0) = x_1$, and moreover,

$$||I - U|| = ||e_1 - x_1 \otimes x_0 + (I - e_1) - V(I - e_0)||$$

Since $V(I - e_0)V^* = e_1$, it follows that the operators $e_1 - x_1 \otimes x_0$ and $(I - e_1) - V(I - e_0)$ have orthogonal ranges (in any Hilbert space representation for $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$). Indeed, the range of $e_1 - x_1 \otimes x_0 = e_1(I - x_1 \otimes x_0)$ is contained in the range of e_1 , and the range of $(I - e_1) - V(I - e_0) = (I - e_1) - (I - e_1)V^*$ is contained in its orthogonal complement. Thus

$$||I - U|| \le \sqrt{||e_1 - x_1 \otimes x_0||^2 + ||I - e_0 - V(I - e_0)||^2}.$$

Note that $||e_1 - x_1 \otimes x_0|| = ||x_1 \otimes (x_1 - x_0)|| = ||x_1 - x_0|| < 1/2$ and

$$||I - e_0 - V(I - e_0)|| = ||(I - e_0)(I - V)|| \le ||I - V|| \le \sqrt{2}.$$

Then

$$||I - U|| < 3/2$$

In particular, by a standard argument involving the continuous functional calculus in the C^* -algebra $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$, the unitary U of the lemma above is of the form $U = e^Z$ for $Z \in \mathcal{L}_{\mathcal{A}}(\mathcal{X})$, with $Z^* = -Z$ and $||Z|| < \pi/3$ (using the same computation as in the norm of I - V above).

Denote by

$$\mathcal{L}_{x_0,x_1} = \{ Z \in \mathcal{L}_{\mathcal{A}}(\mathcal{X}) : Z^* = -Z, e^Z(x_0) = x_1 \}.$$

If $||x_0 - x_1|| < 1/2$, then \mathcal{L}_{x_0,x_1} is non empty. If x_0, x_1 are not that close, but they lie in the same component of $\mathcal{S}_{\mathcal{X}}$, the algebra \mathcal{A} is a von Neumann algebra, and the module \mathcal{X} is selfdual, one also has that \mathcal{L}_{x_0,x_1} is non empty, with the unitary chosen such that $||\mathcal{Z}|| \leq \pi$. If moreover \mathcal{A} is finite, then $\mathcal{S}(\mathcal{X})$ is connected, and any pair of elements in the sphere are conjugate by an exponential.

The following result is an adaptation of Theorem 3.2 in [8], to our particular context, where the Finsler metric is given by the norm of \mathcal{X} (in [8] quotient norms are considered).

Theorem 4.3 Let $x_0, x_1 \in S_{\mathcal{X}}$, with $||x_0 - x_1|| < 1/2$. Suppose that there exists $Z_0 \in \mathcal{L}_{x_0, x_1}$ such that

$$||Z_0|| = \inf\{||Z|| : Z \in \mathcal{L}_{x_0, x_1}\}.$$

Then Z_0 is a minimal lift and therefore $\nu(t) = e^{tZ_0}(x_0)$ is minimizing along its path. In particular, it is shorter than any other piecewise smooth curve joining x_0 and x_1 in S_X .

Proof. The proof, as in 3.2 of [8], proceeds in three steps:

• a) Let $Z_0 \in \mathcal{L}_{x_0,x_1}$ with $||Z_0|| = \inf\{||Z|| : Z \in \mathcal{L}_{x_0,x_1}\}$, fix $s \in (0,1)$ and denote $x_s = e^{sZ_0}(x_0)$. Then $sZ_0 \in \mathcal{L}_{x_0,x_s}$ and $s||Z_0|| = \inf\{||Z|| : Z \in \mathcal{L}_{x_0,x_s}\}$.

• b) Suppose that X, Y are antihermitic operators of small norms in order that $e^X e^Y$ lies in the domain of the power series of the logarithm log defined on a neighbourhood of I with antihermitic values. (for intance, $||e^X e^Y - I|| < 1$). Then

$$\log(e^X e^Y) = X + Y + R_2(X, Y),$$

where

$$\lim_{s \to 0} \frac{R_2(sX, sY)}{s} = 0.$$

• c) Let $e = e_{x_0}$. For any $Y^* = -Y$ such that Y = (I - e)Y(I - e), one has that

 $||Z_0|| \le ||Z_0 + Y||.$

Let us prove these steps, and show how they prove our result.

Step a):

For an element $X^* = -X$, denote by $\gamma_X(t) = e^{tX}$. We claim that the condition $||Z_0|| = \inf\{||Z|| : Z \in \mathcal{L}_{x_0,x_1}\}$ implies that the curve γ_{Z_0} is the shortest among piecewise smooth curves of unitaries joining I to the set $\{U \in \mathcal{U}(\mathcal{H}) : U(x_0) = x_1\}$. Indeed, by the remark above, since $||x_0 - x_1|| < 1/2$, there exists $X \in \mathcal{L}_{x_0,x_1}$ such that $||X|| \le \pi/3$. It follows that $||Z_0|| \le \pi/3$. Suppose that $\mu(t)$ is another smooth curve of unitaries with $\mu(0) = I$ and $\mu(1)(x_0) = x_1$, which is shorter than γ_{Z_0} . Let $\mathcal{L}_{\mathcal{A}}(\mathcal{X})^{**}$ be the von Neumann enveloping algebra of $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$. Then there is a curve of the form $e^{t\Omega}$, $\Omega^* = -\Omega \in \mathcal{L}_{\mathcal{A}}(\mathcal{X})^{**}$ and $||\Omega|| < \pi/3$, with $e^{\Omega} = \mu(1)$, which is shorter than μ . This follows from the folklore fact that exponentials are short curves in the unitary group of a von Neumann algebra, when the length is measured with the Finsler metric given by the usual norm (see for instance [5]). It follows that $||I - \mu(1)|| < 3/2$.T

Let us show that $s||Z_0|| = \inf\{||Z|| : Z \in \mathcal{L}_{x_0,x_s}\}$. Suppose that there exists $X \in \mathcal{L}_{x_0,x_s}$ such that $||X|| < s||Z_0||$. Consider the curve $\delta(t) = e^{(1-t)sZ_0+tZ_0}$ which joins e^{sZ_0} with e^{Z_0} in $\mathcal{U}(\mathcal{X})$, and $\sigma(t) = \delta(t)e^{-sZ_0}e^X$, joining e^X and $e^{(1-s)Z_0}e^X$ (in both cases $t \in [0,1]$). Note that they have the same length, for they differ on an element of $\mathcal{U}(\mathcal{X})$: $length(\delta) = length(\sigma) = (1-s)||Z_0||$. Note also that the endpoint of σ satisfies $\sigma(1)x_0 = x_1$. Let $\tilde{\gamma}$ be the piecewise smooth curve which consists of the curve γ_X followed by σ . Then $\tilde{\gamma}$ joins I to the fiber $\{U \in \mathcal{U}(\mathcal{X}) : U(x_0) = x_1\}$ in $\mathcal{U}(\mathcal{X})$, and therefore, by the fact remarked above, $length(\tilde{\gamma}) \geq ||Z_0||$. On the other hand,

$$length(\tilde{\gamma}) = length(\gamma_X) + length(\sigma) = ||X|| + (1-s)||Z_0||$$

$$< s||Z_0|| + (1-s)||Z_0|| = ||Z_0||.$$

Step b):

The linear part of the series of $\log(e^X e^Y)$ is X + Y. So that

$$\log(e^X e^Y) = X + Y + R_2(X, Y)$$

Where the remainder term $R_2(X,Y)$ is an infinitesimal of the order ||X|| + ||Y||. Therefore

$$\lim_{s \to 0} \frac{R_2(sX, sY)}{s} = 0$$

Step c):

By step a), for any $s \in (0,1)$, $s||Z_0|| = \inf\{||Z|| : Z \in \mathcal{L}_{x_0,x_s}\}$. Let $Y^* = -Y$ such that Y = (I-e)Y(I-e). Then clearly $e^Y(x_0) = x_0$. Therefore $\log(e^{Z_0}e^Y) \in \mathcal{L}_{x_0,x_1}$. Analogously, $\log(e^{sZ_0}e^{sY}) \in \mathcal{L}_{x_0,x_s}$. Then

$$s||Z_0|| \le ||\log(e^{sZ_0}e^{sY})|| = ||sZ_0 + sY + R_2(sZ_0, sY)||$$

$$\leq s \|Z_0 + Y\| + \|R_2(sZ_0, sY)\|$$

Then

$$||Z_0|| \le ||Z_0 + Y|| + \frac{||R_2(sZ_0, sY)||}{s}.$$

Taking limits, $||Z_0|| \le ||Z_0 + Y||$, which proves step c).

The theorem follows. The set $\{Z_0 + Y : Y^* = -Y, (I - e)Y(I - e) = Y\}$ parametrizes the set of all Z such that $Ze = Z_0e$. This means that Z_0 is a minimal lift, and therefore $\nu(t) = e^{tZ_0}(x_0)$ is a minimizing geodesic, joining x_0 and x_1 .

Note that if x_0, x_1 are conjugate by the action of $\mathcal{U}(\mathcal{X})$, then the projections e_{x_0} and e_{x_1} are unitarily equivalent: if $U(x_0) = x_1$, $e_{x_1} = U(x_0) \otimes U(x_0) = U(x_0 \otimes x_0)U^* = Ue_{x_0}U^*$.

Corollary 4.4 Let $x_0, x_1 \in S_{\mathcal{X}}$, with $||x_0 - x_1|| < 1/2$. Denote $f_0 = 1 - e_{x_0}$. If the algebra $f_0\mathcal{L}_{\mathcal{A}}(\mathcal{X})f_0$ is finite dimensional, then there exists a geodesic $\nu(t) = e^{tZ}(x_0)$ with $\nu(1) = x_1$, which is minimizing along its path.

Proof. Note that if $U, U' \in \mathcal{U}(\mathcal{X})$ with $U(x_0) = U'(x_0)$ it follows that $U^*U'(x_0) = x_0$. Let $e_0 = e_{x_0}$. This last statement is equivalent to $U^*U'e_0 = e_0$. The group $\mathcal{G}_{e_0} = \{V \in \mathcal{U}(\mathcal{X}) : Ve_0 = e_0\}$ when written as 2×2 matrices in terms of e_0 , consists of matrices of the form

$$\left(\begin{array}{cc} e_0 & 0\\ 0 & f_0 V f_0 \end{array}\right),$$

where f_0Vf_0 is a unitary operator in $\mathcal{U}(f_0(\mathcal{X}))$, which identifies with the unitary group of the reduced C^* -algebra $f_0\mathcal{L}_{\mathcal{A}}(\mathcal{X})f_0$. It follows that \mathcal{G}_{e_0} is compact in the norm topology. Therefore the set $\{U' \in \mathcal{U}(\mathcal{X}) : U'(x_0) = x_1\}$ is compact, which implies that the set

$$\{ \|Z\| : Z \in \mathcal{L}_{x_0, x_1} \}$$

has a minimum, and the theorem above applies.

Remark 4.5 If \mathcal{A} is a von Neumann algebra and \mathcal{X} is selfdual, then the hypothesis $||x_0 - x_1|| < 1/2$ of the above results can be replaced by the requirement that x_0, x_1 lie in the same connected component, or by no requirements at all if \mathcal{A} is finite.

5 Hilbert space spheres

Denote by d the metric in $S_{\mathcal{X}}$ determined by the Finsler metric given by the norm of \mathcal{X} at every tangent space of $S_{\mathcal{X}}$:

$$d(x_0, x_1) = \inf\{ length(\gamma) : \gamma \text{ joins } x_0 \text{ and } x_1 \},\$$

with $length(\gamma)$ measured as before. As in the proof of the proposition (4.1) at the beginning of the preceding section, one may endow \mathcal{X} with a semidefinite scalar product by means of a state ψ of \mathcal{A} . Namely, put

$$[x, y]_{\psi} = \psi(\langle x, y \rangle), \quad x, y \in \mathcal{X}.$$

If the state ψ is non faithful this inner product degenerates. Let $\mathcal{Z} = \{z \in \mathcal{X} : [z, z]_{\psi} = 0\}$ be the subspace of degenerate vectors, and \mathcal{H}_{ψ} the completion of \mathcal{X}/\mathcal{Z} . Denote by \bar{x} the class of $\in \mathcal{X}$ in \mathcal{H}_{ψ} . Note that the quotient map maps $\mathcal{S}_{\mathcal{X}}$ into $\mathcal{S}_{\mathcal{H}_{\psi}}$. If $x_0, x_1 \in \mathcal{S}_{\mathcal{X}}$, denote by

 $d_{\psi}(x_0, x_1) = \inf\{ length(\alpha) : \alpha \text{ a smooth curve in } \mathcal{S}_{\mathcal{H}_{\psi}} \text{ joining } \bar{x_0} \text{ and } \bar{x_1} \},\$

9

i.e. the geodesic distance of $\bar{x_0}$ and $\bar{x_1}$ as elements in the unit sphere $\mathcal{S}_{\mathcal{H}_{\psi}}$. Let

$$d_s(x_0, x_1) = \sup \{ d_{\psi}(x_0, x_1) : \psi \text{ a state in } \mathcal{A} \}.$$

If $\| < x_0, x_1 > \| < 1$, a fact which implies that $[x_0, x_1]_{\psi} < 1$, then it is a standard fact from the geometry of spheres (finite or infinite dimensional), that the distance equals

$$d_{\psi}(x_0, x_1) = \arccos(Re([\bar{x_0}, \bar{x_1}]_{\psi})) = \arccos(Re(\psi(\langle x_0, x_1 \rangle))).$$

Note that, for fixed elements $x_0, x_1 \in S_{\mathcal{X}}$, the map $\psi \mapsto \arccos(Re(\psi(\langle x_0, x_1 \rangle)))$ is continuous for the w^* -topology of the state space of \mathcal{A} . Therefore the supremum at the definition of d_s is attained at a certain state. Note also that d_{ψ} is in fact a pseudometric in $S_{\mathcal{X}}$, if ψ is not faithful.

Proposition 5.1 d_s is a metric in $S_{\mathcal{X}}$. Moreover

$$d_s(x_0, x_1) \le d(x_0, x_1).$$

Proof. The metric d_s is the supremum of a family of pseudometrics in $S_{\mathcal{X}}$, therefore it is a pseudometric. Let us show that if $d_s(x_0, x_1) = 0$ then $x_0 = x_1$. Clearly this implies that $\bar{x}_0 = \bar{x}_1$ in every Hilbert space \mathcal{H}_{ψ} , that is, $\psi(\langle x_0 - x_1, x_0 - x_1 \rangle) = 0$ for all states ψ . This implies that $\langle x_0 - x_1, x_0 - x_1 \rangle = 0$ and therefore $x_0 = x_1$.

If γ is a smooth curve in $\mathcal{S}_{\mathcal{X}}$ with $\gamma(0) = x_0$ and $\gamma(1) = x_1$, then

$$[\dot{\gamma}, \dot{\gamma}]_{\psi} = \psi(\langle \dot{\gamma}, \dot{\gamma} \rangle) \le \|\dot{\gamma}\|^2.$$

Next we show that these two metrics coincide if there exists a minimizing geodesic giving by a minimal lift as in the first section (Theorem 3.1). To prove this fact we need the following elementary results concerning states and operators in $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$.

Lemma 5.2 Let $x_0 \in S_{\mathcal{X}}$ and $e = e_{x_0}$. Then \mathcal{A} is isomorphic to the reduced algebra $e\mathcal{L}_{\mathcal{A}}(\mathcal{X})e$, via the mapping $a \mapsto x_0 a \otimes x_0$

Proof. The map $a \mapsto x_0 a \otimes x_0$ is clearly linear, and takes values in $e\mathcal{L}_{\mathcal{X}}(\mathcal{A})e$: $e(x_0 a \otimes x_0)e = x_0 a \otimes x_0$. It is multiplicative:

$$(x_0a\otimes x_0)(x_0b\otimes x_0)=x_0a< x_0, x_0b>\otimes x_0=x_0ab\otimes x_0.$$

It preserves the adjoint: $(x_0 a \otimes x_0)^* = x_0 \otimes x_0 a = x_0 a^* \otimes x_0$. It is isometric: as remarked before, $||x_0 a \otimes x_0|| = ||x_0 a|| ||x_0|| = ||a||$. Finally, it is onto: if $T \in e\mathcal{L}_{\mathcal{A}}(\mathcal{X})e$, then

$$T = (x_0 \otimes x_0)T(x_0 \otimes x_0) = (x_0 \otimes x_0)(T(x_0) \otimes x_0) = x_0 < x_0, T(x_0) > \otimes x_0,$$

i.e. T is the image of $\langle x_0, T(x_0) \rangle \in \mathcal{A}$.

A straightforward consequence of this result is the following (see [4]).

Lemma 5.3 If Φ is a state of $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$ with support less or equal than $e = x_0 \otimes x_0$ (i.e. $\Phi(e) = 1$), then there exists a state ψ of \mathcal{A} such that

$$\Phi(T) = \psi(\langle x_0, T(x_0) \rangle), \quad T \in \mathcal{L}_{\mathcal{A}}(\mathcal{X}).$$

10

Theorem 5.4 Let $x_0, x_1 \in S_{\mathcal{X}}$ with $|| < x_0, x_1 > || < 1$, and suppose that there exists a minimal lift Z at x_0 (i.e. $Z \in \mathcal{L}_{\mathcal{A}}(\mathcal{X}), Z^* = -Z$, with $||Z|| = ||Ze|| = ||Z(x_0)|| \le \pi$) such that $e^Z(x_0) = x_1$. Then the length of the geodesic $\nu(t) = e^{tZ}(x_0)$ equals the distance $d_s(x_0, x_1)$. In other words,

$$d(x_0, x_1) = d_s(x_0, x_1) = ||Z||.$$

In particular, ν is a minimazing geodesic in $S_{\mathcal{X}}$.

Proof. As in the proof of theorem 3.1, let ξ be a norming (unit) eigenvector for eZ^2e in a faithful representation of $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$: (as before we identify operators with their images under this representation) $eZ^2e\xi = -||Ze||^2\xi = -||Z||^2\xi$. Recall that ξ lies in the range of e, and is also a norming eigenvector for Z^2 . Consider the state Φ of $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$ given by ξ : $\Phi(T) = [T\xi, \xi]_{\mathcal{H}}$ (here $[,]_{\mathcal{H}}$ denotes the inner product of \mathcal{H}). Then $\Phi(e) = 1$, and therefore there exists a state φ of \mathcal{A} such that $\varphi(a) = \Phi(x_0 a \otimes x_0)$. We claim that the state φ realizes the maximum above:

$$d_s(x_0, x_1) = \max\{\arccos(Re(\psi(\langle x_0, x_1 \rangle))) : \psi \text{ a state of } \mathcal{A}\}.$$

To prove our claim, let us show that $\arccos(Re(\varphi(\langle x_0, x_1 \rangle))) = ||Z|| = d(x_0, x_1)$, which ends the proof. Note that

$$\Phi(e^Z) = \Phi((x_0 \otimes x_0)e^Z(x_0 \otimes x_0)) = \Phi((x_0 < x_0, e^Z(x_0) > \otimes x_0) = \varphi(< x_0, x_1 >).$$

On the other hand, $\Phi(e^Z) = [e^Z \xi, \xi]_{\mathcal{H}}$. Since $Z^2 \xi = -\|Z\|^2 \xi$, it follows that

$$e^{Z}\xi = (1 - \frac{1}{2}||Z||^{2} + \frac{1}{4!}||Z||^{4} + \dots)\xi + (1 - \frac{1}{3!}||Z||^{2} + \frac{1}{5!}||Z||^{4} + \dots)Z\xi.$$

Note that since Z is antihermitic, it follows that

$$Re([e^{\mathbb{Z}}\xi,\xi]_{\mathcal{H}}) = \cos \|\mathbb{Z}\|.$$

Therefore

$$Re(\varphi(\langle x_0, x_1 \rangle)) = Re(\Phi(e^Z)) = \cos ||Z||.$$

 \square

It is a standard fact that given a state ψ of \mathcal{A} , the algebra $\mathcal{L}_{\mathcal{A}}(\mathcal{X})$ can be represented in \mathcal{H}_{ψ} . Let us denote by ρ_{ψ} this representation. Namely, if $x, y \in \mathcal{X}$ and $A \in \mathcal{L}_{\mathcal{A}}(\mathcal{X})$, then

$$< A(x-y), A(x-y) > = < A^*A(x-y), x-y > \le ||A||^2 < x-y, x-y >,$$

therefore

$$[A(x-y), A(x-y)]_{\psi} = \psi(\langle A(x-y), A(x-y) \rangle) \le \|A\|^2 \psi(\langle x-y, x-y \rangle) = \|A\|^2 [x-y, x-y]_{\psi}.$$

This implies that if x and y are equivalent in \mathcal{X}/\mathcal{Z} , then A(x) and A(y) are also equivalent, and the linear map $\bar{x} \mapsto A(x)$ extends to a bounded operator $\rho_{\psi}(A)$ on \mathcal{H}_{ψ} .

Remark 5.5 Let $x_0 \in S_{\mathcal{X}}$ and $v \in (TS_{\mathcal{X}})_{x_0}$ with $||v|| \leq \pi$. Suppose that there exists a minimal lift $Z \in \mathcal{L}_{\mathcal{A}}(\mathcal{X})$ for v. Let φ be a state in \mathcal{A} constructed as in the proof of the previous result. Then $\bar{x_0} \in \mathcal{H}_{\varphi}$ is an eigenvector for $\rho_{\varphi}(Z^2)$, with eigenvalue $-||Z||^2 = -||v||^2$.

Let Z be a minimal lift for v, i.e. $Z^* = -Z$, $Z(x_0) = v$ and ||Z|| = ||v||. By Theorem (3.1), the curve $\nu(t) = e^{tZ}x_0$ has minimal length along its path in $S_{\mathcal{X}}$. Then $\bar{\nu}$ is a minimizing geodesic in the Hilbert space sphere $S_{\mathcal{H}_{\varphi}}$. Then $\bar{\nu} = -k^2\bar{\nu}$ for some real constant k. Therefore

$$-k^2\bar{\nu}(t) = \ddot{\bar{\nu}}(t) = \rho_{\varphi}(Z^2)\bar{\nu}(t),$$

i.e. $e^{t\rho_{\varphi}(Z)}(-k^2\bar{x_0}) = e^{t\rho_{\varphi}(Z)}(\rho_{\varphi}(Z^2)(\bar{x_0}))$, which implies that

$$\rho_{\varphi}(Z^2)(\bar{x_0}) = -k^2 \bar{x_0}.$$

On the other hand

$$[\rho_{\varphi}(Z^2)(\bar{x_0}), \bar{x_0}]_{\varphi} = \varphi(\langle Z^2(x_0), x_0 \rangle) = \Phi(eZ^2e) = -||Z||^2.$$

It follows that $k^2 = ||Z||^2$.

Combining the previous theorem with (4.4) one obtains the following:

Corollary 5.6 If the algebra $f_0\mathcal{L}_{\mathcal{X}}(\mathcal{A})f_0$ is finite dimensional, and x_0, x_1 lie in the same connected component of $S_{\mathcal{X}}$, then

$$d(x_0, x_1) = d_s(x_0, x_1).$$

Proof. Note that $\| < x_0, x_1 > \| \le 1$. Suppose that $\| < x_0, x_1 > \| < 1$. By (4.4), there exists a minimal lift $Z \in \mathcal{L}_{\mathcal{A}}(\mathcal{X}), Z^* = -Z, \|Z\| \le \pi$, such that $e^Z(x_0) = x_1$. Then the above theorem (5.4) applies and $d_s(x_0, x_1) = d(x_0, x_1)$. If $\| < x_0, x_1 > \| = 1$, then x_1 can be approximated by $x_n \in \mathcal{S}_{\mathcal{X}}$ (in the norm of \mathcal{X}), with $\| < x_0, x_n > \| < 1$. It follows that $d_s(x_0, x_n) = d(x_0, x_n)$. Next note that if $\|x_n - x_1\| \to 0$, then $[\bar{x_n} - \bar{x_1}, \bar{x_n} - \bar{x_1}]_{\psi} \to 0$ for every state ψ . On the other hand also it is clear that $d(x_n, x_1) \to 0$. Therefore the result follows. \Box

References

- Andruchow, E., Corach, G. Mbekhta, M. On the geometry of generalized inverses, Math. Nachr. 278 (2005), no. 7-8, 756–770.
- [2] Andruchow, E., Corach, G., Stojanoff, D. Geometry of the sphere of a Hilbert module, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 2, 295–315.
- [3] Andruchow, E., Corach, G., Stojanoff, D. Projective spaces of a C*-algebra, Integ. Equat. Oper. Th. 37 (2000), no. 2, 143–168.
- [4] Andruchow, E., Varela, A. C^{*}-modular vector states, Integr. Equ. Oper. Th. 52 (2005), 149–163.
- [5] Atkin, C. J. The Finsler geometry of groups of isometries of Hilbert space. J. Austral. Math. Soc. Ser. A (1987), 196–222.
- [6] Davis, C., Kahan, W. M., Weinberger, H. F. Norm preserving dilations and their applications to optimal error bounds. SIAM J. Numer. Anal. 19 (1982), 445–469.
- [7] Durán, C. E., Mata-Lorenzo, L. E., Recht, L. Metric geometry in homogeneous spaces of the unitary group of a C^{*}-algebra. Part I. Minimal curves. Adv. Math. 184 (2004), no. 2, 342–366.
- [8] Durán, C. E., Mata-Lorenzo, L. E., Recht, L. Metric geometry in homogeneous spaces of the unitary group of a C*-algebra. Part II. Geodesics joining fixed endpoints, preprint 310, Instituto Argentino de Matemática, CONICET (2003).
- [9] Kobayashi, S., Nomizu, K. Foundations of differential geometry, Vol. II. Reprint of the 1969 original, Wiley Classics Library, John Wiley & Sons, New York, 1996.
- [10] Krein, M. G. The theory of selfadjoint extensions of semibounded Hermitian transformations and its applications. Mat. Sb. 20 (1947), 431–495; 21 (1947), 365–404 (in Russian).

- [11] Lance, E.C., Hilbert C*-modules, A toolkit for operator algebraists, London Math. Soc. Lecture Notes Series 210, Cambridge University Press, Cambridge, 1995.
- [12] Halmos, P. R., McLaughlin, J. E. Partial isometries. Pacific J. Math. 13 (1963), 585– 596.
- [13] Mata-Lorenzo, L.E., Recht, L. Infinite-dimensional homogeneous reductive spaces. Acta Cient. Venezolana 43 (1992), 76–90.
- [14] Parrott, S., On a quotient norm and the Sz.-Nagy-Foias lifting theorem. J. Funct. Anal. 30 (1978), no. 3, 311–328.
- [15] Paschke, W. L. Inner product modules over $BS_p(\mathcal{A})$ *-algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468
- [16] Riesz, F., Sz.-Nagy, B. Functional Analysis. Ungar, New York, 1972

Esteban Andruchow and Alejandro Varela Instituto de Ciencias Universidad Nacional de Gral. Sarmiento J. M. Gutierrez 1150 (1613) Los Polvorines Argentina e-mails: eandruch@ungs.edu.ar, avarela@ungs.edu.ar