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Abstract

Given a unital C∗-algebra A and a right C∗-module X over A, we consider the problem of
finding short smooth curves in the sphere SX = {x ∈ X :< x, x >= 1}. Curves in SX are measured
considering the Finsler metric which consists of the norm of X at each tangent space of SX . The
initial value problem is solved, for the case when A is a von Neumann algebra and X is selfdual:
for any element x0 ∈ SX and any tangent vector v at x0, there exists a curve γ(t) = etZ(x0),
Z ∈ LA(X ), Z∗ = −Z and ‖Z‖ ≤ π, such that γ(0) = x0 and γ̇(0) = v, which is minimizing along
its path for t ∈ [0, 1]. The existence of such Z is linked to the extension problem of selfadjoint
operators. Such minimal curves need not be unique. Also we consider the boundary value problem:
given x0, x1 ∈ SX , find a curve of minimal length which joins them. We give several partial answers
to this question. For instance, let us denoteb

Keywords: C∗-modules, spheres, geodesics.

1 Introduction

The sphere SX of a right Hilbert C∗-module X over a unital C∗-algebra A, which consists of the
elements x ∈ X such that < x, x >= 1, is a C∞ submanifold of the (Banach space) X . Its basic
topological and differentiable aspects were considered in [2]. In this paper we consider the geometric
problem of finding short smooth curves in SX . To measure the length of a smooth curve we endow
each tangent space (which we describe below, and is a complemented real Banach subspace of X ),
with the norm of X . Therefore the length of a curve γ(t) ∈ SX , t ∈ [a, b] is measured by

length(γ) =
∫ b

a

‖γ̇(t)‖ dt,

where ‖ ‖ denotes the norm of X . We refer the reader to [11] for basic facts on C∗-modules. As
is usual notation, let LA(X ) be the C∗-algebra of adjointable linear operators acting on X . If
y, z ∈ X , let y ⊗ z ∈ LA(X ) be the operator y ⊗ z(x) = y < z, x >. For example, it is easy to see
that if x ∈ SX , then x ⊗ x is a selfadjoint projection, which we shall denote by ex. Let U(X ) be
the unitary group of LA(X ). Perhaps the main feature in the geometry of SX (as with classical
spheres) is the natural action of U(X ) on SX :

U · x = U(x), U ∈ U(X ), x ∈ SX .
∗2000 Mathematics Subject Classification: 46L08, 53C22, 58B20.
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In [2] it was shown that if x0, x1 ∈ SX verify ‖x0−x1‖ < 1/2, then x0 and x1 are conjugate by this
action, moreover, one can find a unitary operator U(x0,x1), which is a C∞ function in (x0, x1) such
that U(x0,x1)(x0) = x1. In particular the action is locally transitive. It is globally transitive in some
cases (e.g. if X is selfdual [15] and A is a finite von Neumann algebra). In general, SX has many
components: take for instance X = B(H) with the inner product < X,Y >= X∗Y , then the sphere
is the set of isometries of H, whose connected components are parametrized by the codimension of
the range.

The existence of local cross sections for the action (namely, the unitaries U(x0,x1)), implies that
for any fixed x0 ∈ SX , the map

πx0 : U(X )→ SX , πx0(U) = U(x0)

is a locally trivial fibre bundle and a C∞ submersion. It follows that any smooth curve γ(t) ∈ SX
can be lifted to a smooth curve µ(t) ∈ U(X ), and therefore represented γ(t) = µ(t) · x0 for some
x0 ∈ SX . This enables one to compute the tangent spaces of SX :

(TSX )x0 = {A(x0) : A ∈ LA(X ), A∗ = −A}.

Clearly these elements are also characterized by the condition

(TSX )x0 = {v ∈ X :< v, x0 > + < x0, v >= 0}.

It is natural to ask whether one can find curves of the form

γ(t) = etZ(x0), t ∈ [0, 1], Z∗ = −Z,

which have minimal length joining their endpoints, or more strictly, which have minimal length
along their paths.

There are two main problems.

1. The initial value problem: for any tangent vector v ∈ (TSX )x0 find a curve γ as above (in
particular γ(0) = x0), with γ̇(0) = v, such that γ has minimal length.

2. The boundary value problem: given x0, x1 in the same component of SX , find a minimal curve
γ as above, which joins x0 and x1.

In this paper we solve the initial value problem: we show that if A is a von Neumann algebra
and X is a right C∗-module, which is selfdual [15], then for any x0 ∈ SX and any tangent vector
v ∈ (TSX )x0 with ‖v‖ ≤ π there exists a curve γ(t) = etZ(x0) with γ(0) = x0 and γ̇(0) = v,
which has minimal length along its path for t ∈ [0, 1]. The antihermitic operator Z implementing
this geodesic is the solution of the extension problem by M.G. Krein [10], in the context of von
Neumann algebras (see [6]), as it will be shown in the next section. We call such Z minimal lifts,
following [7].

We also consider the boundary value problem. We prove that if < x0, x1 > is a scalar multiple
of the identity, then x0 and x1 can be joined by a minimizing geodesic (Proposition (4.1)). Another
case in which there exists a short geodesic joining x0 and x1 occurs when the (non empty) set
{‖Z‖ : Z∗ = −Z, eZ(x0) = x1} has a minimum (Theorem (4.3)). As a consequence, we obtain
that if f0(X ) is finite dimensional (f0 = I − ex0), then there exists such a geodesic. In section 5 we
introduce a metric in SX , by means of the states of A, which induce Hilbert space representations
of the sphere SX . We compare this metric with the Finsler metric. For example, it is shown that
they coincide whenever there exist minimal lifts (Theorem (5.4)).
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2 Extension problem in von Neumann algebras

A simplified version of the extension problem ([10], [14], [6]) could be stated as follows: given a
closed subspace L of a Hilbert space H and a bounded symmetric operator A0 : L → H, find a
selfadjoint extension A : H → H with ‖A‖ = ‖A0‖. This problem was solved, and all solution
parametrized. We remark that extensions can, but in general need not, be unique. See for example
[6] or [14] for explicit parametrizations. M.G. Krein [10] showed that there exist a minimal and a
maximal solution (in terms of the usual order of selfadjoint operators), and that all solution lie in
between. For our purposes, we need the additional requierement that if P = PL (=the orthogonal
projection onto L) and A0 lie in a von Neumann algebra B, then there exists a solution of the
extension problem in B. By this we mean the following result, which is a consequence of the
parametrization of solutions given by Davis, Kahan and Wi

Lemma 2.1 Let A be a selfadjoint element and P a selfadjoint projection in a von Neumann
algebra B. Then there exists a selfadjoint element Z in B such that ZP = AP and ‖Z‖ = ‖AP‖.

Proof. Let A and P ∈ B be as above. Choose a representation of the von Neumann algebra B
in B(H) with H a Hilbert space. Let us consider the following selfadjoint 2× 2 block operators in
terms of P and (I − P ):

ZX =
(

PAP (I − P )AP
PA(I − P ) X

)
where X is a selfadjoint operator in B ((I − P )H). These ZX ∈ B(H) satisfy ZXP = AP and
‖ZX‖ ≥ ‖AP‖.

As it was mentioned at the begining of this section, several authors dealt with the problem of
minimizing the norm of ZX . Theorem 1 in [14], for example, proves that in our context there exists
an X0 ∈ B((I −P )H) such that ‖ZX0‖ = ‖PA‖ and X0 is the weak limit of the following elements
of B: −cn(I − P )(I − dnPAPAP )−1PAPA(I − P ) (where {cn} and {dn} are sequences of real
numbers). Therefore this X0 belongs to B and then ZX0 belongs to B, and verifies ‖ZX0‖ = ‖PA‖.
�

We state now a consequence of the result above, in the context of the modular spheres. Let
x0 ∈ SX , and v ∈ (TSX )x0 . We call an antihermitic operator Z ∈ La(X ) a minimal lift of v if
Z(x0) = v and ‖Z‖ = ‖v‖.

Corollary 2.2 Let x0 ∈ SX , with X a selfdual module over the von Neumann algebra A, and
v ∈ (TSx)x0 . Then there exists a minimal lift Z of v.

Proof. In this case, LA(X ) is a von Neumann algebra [15]. Since v ∈ (TSx)x0 , there exists
A ∈ LA(X ) such that −A = A∗ and A(x0) = v. Note that this implies that A(x0 ⊗ x0) = v ⊗ x0.
Moreover, the operator v ⊗ x0 has norm equal to the norm of v. Indeed, clearly ‖v ⊗ x0‖ ≤
‖v‖‖x0‖ = ‖v‖ because ‖x0‖ = 1, and ‖v ⊗ x0‖ ≥ ‖v ⊗ x0(x0)‖ = ‖v‖. Since ex0 = x0 ⊗ x0 is a
selfadjoint projection in LA(X ), by the above lemma there exists Z ∈ LA(X ) such that Z∗ = −Z,
Zex0 = Aex0 and ‖Z‖ = ‖Aex0‖. In other words, Z(x0) = Zex0(x0) = Aex0(x0) = A(x0) = v, and
‖Z‖ = ‖v‖. �

3 The initial value problem

Let us state our main result.
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Theorem 3.1 Let x0 ∈ SX and v ∈ (TSX )x0 with ‖v‖ ≤ π. Let Z be a minimal lift of v, i.e.

Z∗ = −Z, Z(x0) = v and ‖Z‖ = ‖v‖.

Then the curve ν(t) = etZ(x0), t ∈ [0, 1] which verifies ν(0) = x0 and ν̇(0) = v, has minimal length
along its path among smooth curves in SX .

Proof. Given a positive element A of a C∗-algebra, there exists a faithful representation of the
algebra (for instance, the universal representation) and a unit vector ξ in the Hilbert space H of this
representation, such that Aξ = ‖A‖ξ (here we identify A with its image under the representation).
Let us call such a vector ξ a norming eigenvector for A. Let us apply this folklore fact to the
positive operator −eZ2e, where e = ex0 . Let ξ be a (unit) norming eigenvector for −eZ2e. Again
we identify the operators with their images under this representation, and regard them as operators
in this Hilbert space. Clearly ξ lies in the range of e. We claim that ξ is a norming eigenvector for
−Z2 as well. Indeed,

−Z2ξ = −Z2eξ = −eZ2Pξ − (I − e)Z2Pξ = ‖eZ2e‖ξ + ξ1,

where ξ1 = −(I − e)Z2eξ is orthogonal to ξ. Note that

‖eZ2e‖ = ‖Ze‖2 = ‖Z‖2 = ‖Z2‖.

Then
‖Z2‖2 ≥ ‖Z2ξ‖2 = ‖eZ2e‖2 + ‖ξ1‖2 = ‖Z2‖2 + ‖ξ1‖2.

It follows that ξ1 = 0 and our claim is proved. Consider the curve ν̂(t) = etZ(ξ). Clearly ‖ ˆν(t)‖ = 1,
i.e. ν̂(t) is a curve in the unit sphere SH of the Hilbert space H. Let us prove that it is a minimizing
geodesic of this Riemann-Hilbert manifold. Indeed,

¨̂ν(t) = etZZ2ξ = −‖Z‖2etZξ = −‖Z‖2ν̂(t).

That is, ν̂ satisfies the differential equation of the geodesics of the sphere SH. Moreover, the length
of ν̂ is

length(ν̂) =
∫ 1

0

‖ ˙̂ν(t)‖ dt = ‖Zξ‖ ≤ π.

It follows that ν̂ is a minimizing geodesic of the unit sphere. Note also that

‖Zξ‖2 =< Zξ,Zξ >=< −Z2ξ, ξ >= ‖Z2‖ = ‖Z‖2.

Clearly, if [t0, t1] ⊂ [0, 1], the length of ν̂ restricted to [t0, t1] (or shortly ν̂|[t0,t1]) is (t1 − t0)‖Z‖.
On the other hand,

length(ν|[t0,t1]) =
∫ t1

t0

‖ν̇‖ dt = (t1 − t0)‖Z(x0)‖ = (t1 − t0)‖Z‖.

It follows that length(ν̂) = length(ν) on any subinterval of [0, 1].
Suppose now that γ : [a, b]→ SX is a smooth curve joining ν(t0) and ν(t1). Consider the curve

γ̂(t) := γ(t)⊗ x0(ξ). Note that γ̂ is also a curve in the unit sphere of H:

< γ̂(t), γ̂(t) >H=< (γ(t)⊗x0)∗(γ(t)⊗x0)ξ, ξ >H=< (x0⊗γ(t))(γ(t))⊗x0ξ, ξ >H=< eξ, ξ >H= 1.

Moreover,
‖ ˙̂γ(t)‖ = ‖(γ̇(t)⊗ x0)ξ‖ ≥ ‖γ̇(t)⊗ x0‖ = ‖γ̇(t)‖.
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This implies that length(γ) ≤ length(γ̂). Finally, let us show that ν̂|[t0,t1] and γ̂ join the same
endpoints of SH:

ν̂(t0) = et0Zξ = et0Zeξ = et0Z(x0⊗x0)ξ = (et0Z(x0)⊗x0)ξ = (ν(t0)⊗x0)ξ = (γ(t0)⊗x0)ξ = γ̂(t0),

and similarly for t1. By the minimality of ν̂, it follows that length(ν̂|[t0,t1]) ≤ length(γ̂). Therefore

length(ν|[t0,t1]) = length(ν|[t0,t1]) ≤ length(γ̂) ≤ lenght(γ),

which completes the proof.
�

Corollary 3.2 If A is a von Neumann algebra and X is a selfdual module, then for any element
x0 ∈ SX and tangent vector v ∈ (TSX )x0 with ‖v‖ ≤ π, there exists a geodesic δ with δ(0) = x0,
δ̇(0) = v, such that δ is minimizing along its path for t ∈ [0, 1].

Proof. In this case, minimal lifts exist for any tangent vector v. �

4 Geodesics joining given endpoints

The problem of finding minimizing geodesics given any pair of points (in the same component) of
the sphere SX is more difficult. It is related to the analogous problem for abstract homogeneous
spaces [8]. In this section we find solutions in certain cases. These results work for arbitrary
C∗-algebras and modules.

Proposition 4.1 Let x0, x1 ∈ SX with < x0, x1 >= α.1, for α ∈ C. Then there exists a smooth
curve in SX with minimal length along its path, which joins x0 and x1.

Proof. Note that since ‖ < x0, x1 > ‖ ≤ ‖x0‖ ‖x1‖ = 1, it follows that |α| ≤ 1. If |α| = 1, then
α = eir with |r| ≤ π. In this case clearly x1 = αx0. Indeed,

< x1 − αx0, x1 − αx0 >=< x1, x1 > − < x1, αx0 > − < αx0, x1 > + < αx0, αx0 >= 0.

Put γ(t) = eirtx0. Apparently γ is minimizing along its path (for instance, ‖re‖ = r, i.e. the
operator rI is a minimal lift).

If |α| < 1, let β ∈ C be such that |α|2 + |β|2 = 1 (note that β 6= 0), and consider y =
αβ−1x0 − β−1x1. Then clearly

< x0, y >= αβ−11− β−1 < x0, x1 >= 0,

and

< y, y >=
|α|2

|β|2
− ᾱ

|β|2
< x0, x1 > −

α

|β|2
< x1, x0 > +

1
|β|2

= 1.

in other words, x1 = αx0 + βy with y ∈ SX . That is, x1 lies in the complex plane generated by
two orthogonal elements x0 and y of SX . The situation resembles what happens in a classic finite
dimensional sphere, and the proof follows as in that case. Namely, let (α(t), β(t)) be a minimal
geodesic of the sphere SC2 of C2, joining (1, 0) (at t = 0) and (α, β) (at t = 1). Consider the curve
γ(t) = α(t)x0 +β(t)y. Clearly it is a smooth curve with γ(0) = x0 and γ(1) = x1, which lies in SX :

< γ(t), γ(t) >= |α(t)|2 + |β(t)|2 = 1.

Moreover, it has constant speed equal to

‖γ̇(t)‖2 = ‖ < α̇(t)x0 +β̇(t)x1, α̇(t)x0 +β̇(t)x1 > ‖2 = |α̇(t)|2 +|β̇(t)|2 = |α̇(0)|2 +|β̇(0)|2 = ‖γ̇(0)‖2.
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We claim that it is minimizing along its path. Let ϕ be a state in A. Then the form

[x, y]ϕ := ϕ(< x, y >), x, y ∈ X

is positive semidefinite in X . Let Hϕ be the completion of (X/Z, [ , ]ϕ), where Z = {z ∈ X :
[z, z]ϕ = 0}. Denote by x̄ be the class of x ∈ X in X/Z ⊂ Hϕ . In other words, x̄ is the element
x regarded as a vector in the Hilbert space Hϕ. Note that the elements of SX induce elements in
the unit sphere of Hϕ: clearly [x̄, x̄]ϕ = ϕ(< x, x >) = 1

The geodesic (α(t), β(t)) of SC2 satisfies the Euler equation of the sphere:

(α̈(t), β̈(t)) = −κ2(α(t), β(t)).

It follows that γ̄ satisfies the differential equation

¨̄γ(t) = −κ2γ̄(t),

in the sphere SHϕ of Hϕ. Moreover, the length of γ̄ restricted to the interval [t1, t2] ⊂ [0, 1], is
given by ∫ t1

t0

[ ˙̄γ(t), ˙̄γ(t)]1/2 dt =
∫ t1

t0

ϕ(< α̇(t)x0 + β̇(t)y, α̇(t)x0 + β̇(t)y >)1/2 dt

=
∫ t1

t0

ϕ(|α̇(t)|2.1 + |β̇(t)|2.1)1/2 dt = (t1 − t0)‖γ̇(0)‖.

It follows that γ̄ is minimizing along its path in SHϕ , and

length(γ̄) = length(γ).

Let ν(t), t ∈ [0, 1] be another smooth curve in SX joining ν(0) = γ(t0) and ν(1) = γ(t1). Then ν̄
is a smooth curve in SHϕ , and the inequality

[ ˙̄ν, ˙̄ν]ϕ = ϕ(< ν̇, ν̇ >) ≤ ‖ < ν̇, ν̇ > ‖

implies that
length(ν) ≥ length(ν̄).

It follows that ν is not shorter than γ|[t0,t1]. �

If x0, x1 ∈ SX satisfy that ‖x0 − x1‖ < 1/2, then they are conjugate by the action of U(X ) (see
[2]). Let us state the following result, estimating the distance between the identity and the unitary
operator performing this conjugacy.

Lemma 4.2 Let x0, x1 ∈ SX with ‖x0 − x1‖ < 1/2. Then there exists a unitary U ∈ U(X ) such
that U(x0) = x1 with ‖U − I‖ < 3/2.

Proof. First we transcribe the construction of the unitary U given in [2]. Let e0 = ex0 and
e1 = ex1 . Since ‖x0 − x1‖ < 1/2, it follows that

‖e0 − e1‖ ≤ ‖e0 − x0 ⊗ x1‖+ ‖x0 ⊗ x1 − e1‖ = ‖x0 ⊗ (x0 − x1)‖+ ‖(x1 − x0)⊗ x1‖.

Note that ‖x0 ⊗ (x0 − x1)‖ ≤ ‖x0 − x1‖ (in fact equality holds because x0 ∈ SX ), and analogously
for the other term. Therefore ‖e0 − e1‖ < 1. It is a standard fact that two such projections are
unitarily equivalent, morever, the unitary V such that V e0V

∗ = e1 can be chosen V = eY with
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Y ∈ LA(X ) such that Y ∗ = −Y and ‖Y ‖ < π/2 (moreover, Y is codiagonal in terms of e0 and
sin ‖Y ‖ = ‖e0 − e1‖, see for instance [3], page 151). Therefore

‖I − V ‖ = r(I − V ) = supp{|1− eω| : ω ∈ sp(Y )} <
√

2,

because |ω| ≤ ‖Y ‖ < π/2 (here sp and r stand for the spectrum and the spectral radius, respec-
tively). Consider

U = x1 ⊗ x0 + V (I − e0).

This unitary verifies that U(x0) = x1, and moreover,

‖I − U‖ = ‖e1 − x1 ⊗ x0 + (I − e1)− V (I − e0)‖.

Since V (I − e0)V ∗ = e1, it follows that the operators e1 − x1 ⊗ x0 and (I − e1) − V (I − e0)
have orthogonal ranges (in any Hilbert space representation for LA(X )). Indeed, the range of
e1−x1⊗x0 = e1(I−x1⊗x0) is contained in the range of e1, and the range of (I−e1)−V (I−e0) =
(I − e1)− (I − e1)V ∗ is contained in its orthogonal complement. Thus

‖I − U‖ ≤
√
‖e1 − x1 ⊗ x0‖2 + ‖I − e0 − V (I − e0)‖2.

Note that ‖e1 − x1 ⊗ x0‖ = ‖x1 ⊗ (x1 − x0)‖ = ‖x1 − x0‖ < 1/2 and

‖I − e0 − V (I − e0)‖ = ‖(I − e0)(I − V )‖ ≤ ‖I − V ‖ ≤
√

2.

Then
‖I − U‖ < 3/2.

�

In particular, by a standard argument involving the continuous functional calculus in the C∗-algebra
LA(X ), the unitary U of the lemma above is of the form U = eZ for Z ∈ LA(X ), with Z∗ = −Z
and ‖Z‖ < π/3 (using the same computation as in the norm of I − V above).

Denote by
Lx0,x1 = {Z ∈ LA(X ) : Z∗ = −Z, eZ(x0) = x1}.

If ‖x0 − x1‖ < 1/2, then Lx0,x1 is non empty. If x0, x1 are not that close, but they lie in the same
component of SX , the algebra A is a von Neumann algebra, and the module X is selfdual, one also
has that Lx0,x1 is non empty, with the unitary chosen such that ‖Z‖ ≤ π. If moreover A is finite,
then S(X ) is connected, and any pair of elements in the sphere are conjugate by an exponential.

The following result is an adaptation of Theorem 3.2 in [8], to our particular context, where the
Finsler metric is given by the norm of X (in [8] quotient norms are considered).

Theorem 4.3 Let x0, x1 ∈ SX , with ‖x0 − x1‖ < 1/2. Suppose that there exists Z0 ∈ Lx0,x1 such
that

‖Z0‖ = inf{‖Z‖ : Z ∈ Lx0,x1}.

Then Z0 is a minimal lift and therefore ν(t) = etZ0(x0) is minimizing along its path. In particular,
it is shorter than any other piecewise smooth curve joining x0 and x1 in SX .

Proof. The proof, as in 3.2 of [8], proceeds in three steps:

• a) Let Z0 ∈ Lx0,x1 with ‖Z0‖ = inf{‖Z‖ : Z ∈ Lx0,x1}, fix s ∈ (0, 1) and denote xs = esZ0(x0).
Then sZ0 ∈ Lx0,xs and s‖Z0‖ = inf{‖Z‖ : Z ∈ Lx0,xs}.
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• b) Suppose that X,Y are antihermitic operators of small norms in order that eXeY lies in
the domain of the power series of the logarithm log defined on a neighbourhood of I with
antihermitic values. (for intance, ‖eXeY − I‖ < 1). Then

log(eXeY ) = X + Y +R2(X,Y ),

where

lim
s→0

R2(sX, sY )
s

= 0.

• c) Let e = ex0 . For any Y ∗ = −Y such that Y = (I − e)Y (I − e), one has that

‖Z0‖ ≤ ‖Z0 + Y ‖.

Let us prove these steps, and show how they prove our result.
Step a):
For an element X∗ = −X, denote by γX(t) = etX . We claim that the condition ‖Z0‖ =

inf{‖Z‖ : Z ∈ Lx0,x1} implies that the curve γZ0 is the shortest among piecewise smooth curves
of unitaries joining I to the set {U ∈ U(H) : U(x0) = x1}. Indeed, by the remark above, since
‖x0 − x1‖ < 1/2, there exists X ∈ Lx0,x1 such that ‖X‖ ≤ π/3. It follows that ‖Z0‖ ≤ π/3.
Suppose that µ(t) is another smooth curve of unitaries with µ(0) = I and µ(1)(x0) = x1, which is
shorter than γZ0 . Let LA(X )∗∗ be the von Neumann enveloping algebra of LA(X ). Then there is
a curve of the form etΩ, Ω∗ = −Ω ∈ LA(X )∗∗ and ‖Ω‖ < π/3, with eΩ = µ(1), which is shorter
than µ. This follows from the folklore fact that exponentials are short curves in the unitary group
of a von Neumann algebra, when the length is measured with the Finsler metric given by the usual
norm (see for instance [5]). It follows that ‖I − µ(1)‖ < 3/2.T

Let us show that s‖Z0‖ = inf{‖Z‖ : Z ∈ Lx0,xs}. Suppose that there exists X ∈ Lx0,xs such
that ‖X‖ < s‖Z0‖. Consider the curve δ(t) = e(1−t)sZ0+tZ0 which joins esZ0 with eZ0 in U(X ), and
σ(t) = δ(t)e−sZ0eX , joining eX and e(1−s)Z0eX (in both cases t ∈ [0, 1]). Note that they have the
same length, for they differ on an element of U(X ): length(δ) = length(σ) = (1−s)‖Z0‖. Note also
that the endpoint of σ satisfies σ(1)x0 = x1. Let γ̃ be the piecewise smooth curve which consists
of the curve γX followed by σ. Then γ̃ joins I to the fiber {U ∈ U(X ) : U(x0) = x1} in U(X ), and
therefore, by the fact remarked above, length(γ̃) ≥ ‖Z0‖. On the other hand,

length(γ̃) = length(γX) + length(σ) = ‖X‖+ (1− s)‖Z0‖

< s‖Z0‖+ (1− s)‖Z0‖ = ‖Z0‖.

Step b):
The linear part of the series of log(eXeY ) is X + Y . So that

log(eXeY ) = X + Y +R2(X,Y )

Where the remainder term R2(X,Y ) is an infinitesimal of the order ‖X‖+ ‖Y ‖. Therefore

lim
s→0

R2(sX, sY )
s

= 0.

Step c):
By step a), for any s ∈ (0, 1), s‖Z0‖ = inf{‖Z‖ : Z ∈ Lx0,xs}. Let Y ∗ = −Y such that

Y = (I − e)Y (I − e). Then clearly eY (x0) = x0. Therefore log(eZ0eY ) ∈ Lx0,x1 . Analogously,
log(esZ0esY ) ∈ Lx0,xs . Then

s‖Z0‖ ≤ ‖ log(esZ0esY )‖ = ‖sZ0 + sY +R2(sZ0, sY )‖
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≤ s‖Z0 + Y ‖+ ‖R2(sZ0, sY )‖.

Then

‖Z0‖ ≤ ‖Z0 + Y ‖+
‖R2(sZ0, sY )‖

s
.

Taking limits, ‖Z0‖ ≤ ‖Z0 + Y ‖, which proves step c).
The theorem follows. The set {Z0 + Y : Y ∗ = −Y, (I − e)Y (I − e) = Y } parametrizes the set

of all Z such that Ze = Z0e. This means that Z0 is a minimal lift, and therefore ν(t) = etZ0(x0)
is a minimizing geodesic, joining x0 and x1. �

Note that if x0, x1 are conjugate by the action of U(X ), then the projections ex0 and ex1 are
unitarily equivalent: if U(x0) = x1, ex1 = U(x0)⊗ U(x0) = U(x0 ⊗ x0)U∗ = Uex0U

∗.

Corollary 4.4 Let x0, x1 ∈ SX , with ‖x0 − x1‖ < 1/2. Denote f0 = 1 − ex0 . If the algebra
f0LA(X )f0 is finite dimensional, then there exists a geodesic ν(t) = etZ(x0) with ν(1) = x1, which
is minimizing along its path.

Proof. Note that if U,U ′ ∈ U(X ) with U(x0) = U ′(x0) it follows that U∗U ′(x0) = x0. Let e0 = ex0 .
This last statement is equivalent to U∗U ′e0 = e0. The group Ge0 = {V ∈ U(X ) : V e0 = e0} when
written as 2× 2 matrices in terms of e0, consists of matrices of the form(

e0 0
0 f0V f0

)
,

where f0V f0 is a unitary operator in U(f0(X )), which identifies with the unitary group of the
reduced C∗-algebra f0LA(X )f0. It follows that Ge0 is compact in the norm topology. Therefore
the set {U ′ ∈ U(X ) : U ′(x0) = x1} is compact, which implies that the set

{‖Z‖ : Z ∈ Lx0,x1}

has a minimum, and the theorem above applies. �

Remark 4.5 If A is a von Neumann algebra and X is selfdual, then the hypothesis ‖x0 − x1‖ <
1/2 of the above results can be replaced by the requirement that x0, x1 lie in the same connected
component, or by no requirements at all if A is finite.

5 Hilbert space spheres

Denote by d the metric in SX determined by the Finsler metric given by the norm of X at every
tangent space of SX :

d(x0, x1) = inf{length(γ) : γ joins x0 and x1},

with length(γ) measured as before. As in the proof of the proposition (4.1) at the beginning of the
preceding section, one may endow X with a semidefinite scalar product by means of a state ψ of
A. Namely, put

[x, y]ψ = ψ(< x, y >), x, y ∈ X .

If the state ψ is non faithful this inner product degenerates. Let Z = {z ∈ X : [z, z]ψ = 0} be the
subspace of degenerate vectors, and Hψ the completion of X/Z. Denote by x̄ the class of ∈ X in
Hψ. Note that the quotient map maps SX into SHψ . If x0, x1 ∈ SX , denote by

dψ(x0, x1) = inf{length(α) : α a smooth curve in SHψ joining x̄0 and x̄1},
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i.e. the geodesic distance of x̄0 and x̄1 as elements in the unit sphere SHψ . Let

ds(x0, x1) = sup {dψ(x0, x1) : ψ a state in A}.

If ‖ < x0, x1 > ‖ < 1, a fact which implies that [x0, x1]ψ < 1, then it is a standard fact from the
geometry of spheres (finite or infinite dimensional), that the distance equals

dψ(x0, x1) = arccos(Re([x̄0, x̄1]ψ)) = arccos(Re(ψ(< x0, x1 >))).

Note that, for fixed elements x0, x1 ∈ SX , the map ψ 7→ arccos(Re(ψ(< x0, x1 >))) is continuous
for the w∗-topology of the state space of A. Therefore the supremum at the definition of ds is
attained at a certain state. Note also that dψ is in fact a pseudometric in SX , if ψ is not faithful.

Proposition 5.1 ds is a metric in SX . Moreover

ds(x0, x1) ≤ d(x0, x1).

Proof. The metric ds is the supremum of a familiy of pseudometrics in SX , therefore it is a
pseudometric. Let us show that if ds(x0, x1) = 0 then x0 = x1. Clearly this implies that x̄0 = x̄1

in every Hilbert space Hψ, that is, ψ(< x0 − x1, x0 − x1 >) = 0 for all states ψ. This implies that
< x0 − x1, x0 − x1 >= 0 and therefore x0 = x1.

If γ is a smooth curve in SX with γ(0) = x0 and γ(1) = x1, then

[ ˙̄γ, ˙̄γ]ψ = ψ(< γ̇, γ̇ >) ≤ ‖γ̇‖2.

�

Next we show that these two metrics coincide if there exists a minimizing geodesic giving by
a minimal lift as in the first section (Theorem 3.1). To prove this fact we need the following
elementary results concerning states and operators in LA(X ).

Lemma 5.2 Let x0 ∈ SX and e = ex0 . Then A is isomorphic to the reduced algebra eLA(X )e, via
the mapping a 7→ x0a⊗ x0

Proof. The map a 7→ x0a ⊗ x0 is clearly linear, and takes values in eLX (A)e: e(x0a ⊗ x0)e =
x0a⊗ x0. It is multiplicative:

(x0a⊗ x0)(x0b⊗ x0) = x0a < x0, x0b > ⊗x0 = x0ab⊗ x0.

It preserves the adjoint: (x0a⊗ x0)∗ = x0 ⊗ x0a = x0a
∗ ⊗ x0. It is isometric: as remarked before,

‖x0a⊗ x0‖ = ‖x0a‖ ‖x0‖ = ‖a‖. Finally, it is onto: if T ∈ eLA(X )e, then

T = (x0 ⊗ x0)T (x0 ⊗ x0) = (x0 ⊗ x0)(T (x0)⊗ x0) = x0 < x0, T (x0) > ⊗x0,

i.e. T is the image of < x0, T (x0) >∈ A. �

A straightforward consequence of this result is the following (see [4]).

Lemma 5.3 If Φ is a state of LA(X ) with support less or equal than e = x0 ⊗ x0 (i.e. Φ(e) = 1),
then there exists a state ψ of A such that

Φ(T ) = ψ(< x0, T (x0) >), T ∈ LA(X ).
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Theorem 5.4 Let x0, x1 ∈ SX with ‖ < x0, x1 > ‖ < 1, and suppose that there exists a minimal
lift Z at x0 (i.e. Z ∈ LA(X ), Z∗ = −Z, with ‖Z‖ = ‖Ze‖ = ‖Z(x0)‖ ≤ π) such that eZ(x0) = x1.
Then the length of the geodesic ν(t) = etZ(x0) equals the distance ds(x0, x1). In other words,

d(x0, x1) = ds(x0, x1) = ‖Z‖.

In particular, ν is a minimazing geodesic in SX .

Proof. As in the proof of theorem 3.1, let ξ be a norming (unit) eigenvector for eZ2e in a faithful
representation of LA(X ): (as before we identify operators with their images under this represen-
tation) eZ2eξ = −‖Ze‖2ξ = −‖Z‖2ξ. Recall that ξ lies in the range of e, and is also a norming
eigenvector for Z2. Consider the state Φ of LA(X ) given by ξ: Φ(T ) = [Tξ, ξ]H (here [ , ]H denotes
the inner product of H). Then Φ(e) = 1, and therefore there exists a state ϕ of A such that
ϕ(a) = Φ(x0a⊗ x0). We claim that the state ϕ realizes the maximum above:

ds(x0, x1) = max{arccos(Re(ψ(< x0, x1 >))) : ψ a state of A}.

To prove our claim, let us show that arccos(Re(ϕ(< x0, x1 >))) = ‖Z‖ = d(x0, x1), which ends the
proof. Note that

Φ(eZ) = Φ((x0 ⊗ x0)eZ(x0 ⊗ x0)) = Φ((x0 < x0, e
Z(x0) > ⊗x0) = ϕ(< x0, x1 >).

On the other hand, Φ(eZ) = [eZξ, ξ]H. Since Z2ξ = −‖Z‖2ξ, it follows that

eZξ = (1− 1
2
‖Z‖2 +

1
4!
‖Z‖4 + . . .)ξ + (1− 1

3!
‖Z‖2 +

1
5!
‖Z‖4 + . . .)Zξ.

Note that since Z is antihermitic, it follows that

Re([eZξ, ξ]H) = cos ‖Z‖.

Therefore
Re(ϕ(< x0, x1 >)) = Re(Φ(eZ)) = cos ‖Z‖.

�

It is a standard fact that given a state ψ of A, the algebra LA(X ) can be represented in Hψ.
Let us denote by ρψ this representation. Namely, if x, y ∈ X and A ∈ LA(X ), then

< A(x− y), A(x− y) >=< A∗A(x− y), x− y >≤ ‖A‖2 < x− y, x− y >,

therefore

[A(x−y), A(x−y)]ψ = ψ(< A(x−y), A(x−y) >) ≤ ‖A‖2ψ(< x−y, x−y >) = ‖A‖2[x−y, x−y]ψ.

This implies that if x and y are equivalent in X/Z, then A(x) and A(y) are also equivalent, and
the linear map x̄ 7→ ¯A(x) extends to a bounded operator ρψ(A) on Hψ.

Remark 5.5 Let x0 ∈ SX and v ∈ (TSX )x0 with ‖v‖ ≤ π. Suppose that there exists a minimal lift
Z ∈ LA(X ) for v. Let ϕ be a state in A constructed as in the proof of the previous result. Then
x̄0 ∈ Hϕ is an eigenvector for ρϕ(Z2), with eigenvalue −‖Z‖2 = −‖v‖2.

Let Z be a minimal lift for v, i.e. Z∗ = −Z, Z(x0) = v and ‖Z‖ = ‖v‖. By Theorem (3.1), the
curve ν(t) = etZx0 has minimal length along its path in SX . Then ν̄ is a minimizing geodesic in
the Hilbert space sphere SHϕ . Then ¨̄ν = −k2ν̄ for some real constant k. Therefore

−k2ν̄(t) = ¨̄ν(t) = ρϕ(Z2)ν̄(t),
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i.e. etρϕ(Z)(−k2x̄0) = etρϕ(Z)(ρϕ(Z2)(x̄0)), which implies that

ρϕ(Z2)(x̄0) = −k2x̄0.

On the other hand

[ρϕ(Z2)(x̄0), x̄0]ϕ = ϕ(< Z2(x0), x0 >) = Φ(eZ2e) = −‖Z‖2.

It follows that k2 = ‖Z‖2.

Combining the previous theorem with (4.4) one obtains the following:

Corollary 5.6 If the algebra f0LX (A)f0 is finite dimensional, and x0, x1 lie in the same connected
component of SX , then

d(x0, x1) = ds(x0, x1).

Proof. Note that ‖ < x0, x1 > ‖ ≤ 1. Suppose that ‖ < x0, x1 > ‖ < 1. By (4.4), there exists
a minimal lift Z ∈ LA(X ), Z∗ = −Z, ‖Z‖ ≤ π, such that eZ(x0) = x1. Then the above theorem
(5.4) applies and ds(x0, x1) = d(x0, x1). If ‖ < x0, x1 > ‖ = 1, then x1 can be approximated by
xn ∈ SX (in the norm of X ), with ‖ < x0, xn > ‖ < 1. It follows that ds(x0, xn) = d(x0, xn). Next
note that if ‖xn− x1‖ → 0, then [x̄n− x̄1, x̄n− x̄1]ψ → 0 for every state ψ. On the other hand also
it is clear that d(xn, x1)→ 0. Therefore the result follows. �
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