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Abstract. Riesz transforms associated to Hermite functions were introduced by S. Thangavelu,
who proved that they are bounded operators on L?(R?), 1 < p < oo. In this paper we give
a different proof that allows us to show that the L” —norms of these operators are bounded by
a constant not depending on the dimension d. Moreover, we define Riesz transforms of higher
order and free dimensional estimates of the L”—bounds of these operators are obtained. In
order to prove the mentioned results we give an extension of the Littlewood-Paley theory that
we believe of independent interest.
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1. Introduction

Let { Hi}x>0 be the family of 1—dimensional Hermite polynomials

k
Hex) = (= (e )et,
dxk

We have,
H(x) =2kH,_1(x)  and  Hiyi(x) = —He(x) + 2x Hi(x),
see [Th] and [Sz]. We define the 1—dimensional Hermite functions

h(x) = Q7 V)12 H (x)e ™2, k=0,1,....
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2 E. Harboure et al.

This is a complete orthonormal system in L?(IR). Then follows that

d d
<_d_ +X) hk = \/2(]( + l)hk+1 and (d_ +X> hk = v2khk,1. (11)
X X

We observe that the operator

2

d
b=-gath

2

can be factorized as

=3[ () () )

It follows from (1.1) that

Lhy = Qk + 1)hy. (1.2)
We define the d —dimensional Hermite functions 4, (x) witho = («q, ..., ay)
and x = (x, ..., xg), as the product h,(x) = Hj.lzlhai (x;). This is a complete
orthonormal system in L2(R?). Let L be the differential operator given by
L=—A+|x% (1.3)
A consequence of (1.2) is that
Lhy, = Qla| + d)hy, where |a|=o; + -+ ay. (1.4)

The operator L is positive, self-adjoint with respect to the Lebesgue measure
in R?, and admits the spectral decomposition

Lf =) @n+d) Y coha, f € Dom(L),

n=0 la|=n

where ¢ =< f,hy >= [ f(x)he(x)dx.
By (L)~!/2 we mean the operator defined over the Hermite functions as

1
I
J2al +d

and extended to the space of linear combinations of Hermite functions.
Let us denote by A;, 1 < |i| < d, the 2d differential operators given by
0

d
Ai=—+x, Ai=——+x, for 1=<i=d. (1.5)
Bxi 8x,-

(L) hy =

Then, we define the “Riesz” transforms

R =AL7Y2, for 1<|i|<d.
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These Riesz transforms associated to the differential operator L just defined, were
introduced by S. Thangavelu, see [Th]. He showed that they are bounded from
L?(R?) into L?(R¥) for p in the range 1 < p < oo and also of weak type (1, 1).
In dimension one conjugate expansions were studied in [GoSt]. In this paper we
give a new proof of Thangavelu’s result that has the advantage of showing that
the L? —boundedness, for 1 < p < oo, is a dimension free phenomenon. More
precisely, we shall prove the following theorem:

Theorem A. Let p be in the range 1 < p < 00, then
1/2

Yo RSP < Cpll fllrgeays

1<|i|=d Lp(Rd)

where C, is a positive constant which depends only on p (and not on the dimension
d).

The corresponding result for the classical Euclidean Riesz transforms associ-
ated to the differential operator A was proved by E. Stein in 1983, see [S3], by
using Littlewood-Paley g—functions. By transference methods J. Duoandikoetxea
and J. L. Rubio de Francia, see [DR], gave an alternative proof of Stein’s result.

The result is also known for the Riesz transforms associated to the differential
operator in R given by A —2x.V. In this case the natural measure is the gaussian
measure and the eigenvalues of the operator turn out to be the Hermite polynomi-
als. Proofs of these results were given by G. Pisier, see [P] and C. Gutiérrez, who
used an extension of the Littlewood-Paley g—functions, see [Gu]. In this case,
since the measure is finite, R. Gundy and P. A. Meyer obtained dimension free
results using probabilistic methods, see [Gn] and [Me]. Analogous results were
proved in [CMZ] for the case of the Heisenberg group.

The proof of Theorem A will follow some ideas introduced by E. Stein in [S3],
[S2] and [Gu]. In the way of proving our result we shall introduce in section 2, new
Littlewood-Paley g—type functions. We believe that the boundedness properties
of the g—type functions stated in Theorem 1 are of independent interest.

Theorem A can be extended to the Riesz transforms of higher order. More
precisely, let L=™/2 be the operator defined by

L™"hy = Qlal +d) " ?hy, (1.6)
and defined the Riesz transforms of order m as
Rijiy..iy = Aiy Aiy ... A

where 1 < |ij| < d, forevery 1 < j < m. In order to deal with these Riesz
transforms we introduce higher order Littlewood-Paley g—type functions in sec-
tion 3 whose boundedness properties are stated in Theorem 4 and Theorem 5. The
method used in proving these theorems follows ideas contained in [GuSeT]. For
the Riesz transforms of order m we have the following theorem:

L=m? (1.7)

Im
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Theorem B. Let p be in the range 1 < p < 00, there exist constants C, ,, not
depending on the dimension d, such that

1/2

> ARuiein fI < Cpmlfllr@ey.  (1.8)

1<litl,..., lim|<d Lp(Rd)

2. Littlewood-Paley g —functions of order one
The well known Gauss-Weierstrass kernel on R¢ is defined as
W, (x) = (4rt)~42e P/@0, 2.1)

It is easy to check that
W) =0, [ Wy =1 and Wk W) = W)
R4

hold for every x € R? and ¢, s > 0. The Gauss-Weierstrass integral of a func-
tion f(x) is given by

Wi (f)(x) = Ad Wilx = y) f(y)dy.

For every f € LP(RY),1 < p < oo, we have that lim,_ o+ W,(f) = f in
L?(R?) and almost everywhere. Thus, W, defines a contraction semigroup on
LP(RY),1 < p < 0.
We denote the maximal function f* associated to this kernel, of a function
f(x), as
F5(x) = sup | W, () ().

t>0

As it is well known (see [S2], page 73), f* satisfies the inequality

I N Lrway < Cpll fll Lrways (2.2)

for every 1 < p < oo where the constant C,, does not depend on the dimension
d.
Foreveryt > 0we consider the kernel G, defined on R? x R“ by the expression

Gl(x’ )’) :rd/zMr(xv y)7 (23)
where r = ¢~ and
o0
Mo (x,9) =Y _r" > ha(¥)ha(y). (2.4)
n=0 la|=n
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By the d—dimensional version of the Mehler’s formula (see [Th], page 6), we
have that

1
M, (x,y) = a2 (1 _r2)d/2
1 1—r PN 1+r | 2
xexpli——|—)Ix — ) x = .
S v L y 1= Y
Then, if u = }%,We can write
1—u?]"? 1 , 1 5
Gi(x,y) = expy— [ulx+yI"+ —lx —yl
4mu 4 u
274/2
< L2 it 2.5)
| 4mu
From (2.1) it follows that
l—e 2
Gt(x,y) < Wu(x —y) with u = m (26)

Moreover, the following properties of the kernel G, hold:
(1) fRd Gt(xv y)GY(ya Z)dy = Gt+S(~x7 Z)v

2 tanh 27

d/2 __u xl
(i) fga Gi(x, y)dy = <1lﬁ2) ¢ " = (cosh21) 742 =51 and

(iii) from property (ii) above and (2.6) it follows that for every f € L?(R?),
1 < p < oo, lim,_ g+ fRd Gi(x,y)f(y)dy = f(x) in L?(R?) and almost
everywhere.

Thus, by (2.6), (i) and (iii) we see that

Gi(fHx) = /Rd Gi(x, y) f(y)dy

defines a contraction semigroup on L” (R?), 1 < p < oo. It can be shown that the
infinitesimal generator of this semigroup is the differential operator A — |x|?> =
—L, see (1.3).

Let b be an integer. We define

Gl (x,y) =" G(x, y).
Then,
G (f)(x) = /Rd G (x,y) f(y)dy

defines asemigroupon L”(R%), 1 < p < 00, and || G?00( f) lLr ey < e’ f lLr®a)-
Obviously, the infinitesimal generator of this semigroup is —L + b.
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Recalling that u = % it turns out that 0 < u < 1.
Ifd > b+ 1, then

b+1
46_2t 2 4 bil
(1 —u?)? = e |:—(1 n 6_21)2] (1—u?)?=
< Cpe™,

holds, where the constant Cj, is equal to 2641ifp4+1>0and Cp, = 1ifb+1 < 0.
Thus, from (2.5) it follows that

Gl(x.y) < Cpe™ Wy (x — y).

Using the subordination formula (see [S1])

1 /OO ~s =112~ g ! /oo ~s=32=l g 2.7)
el = — e’s e Hds = —— e’s e #ds, .
ﬁ 0 Var Jo
we have that ford > b + 1

\/% /ooo fR Gh(x, WIFOldys e~ ds < Cye™ | (). (2.8)

In particular, in the case of f(x) = 1, (2.8) implies that

t o 2
— Gl (x,y)s7 e Sdsdy < Che™. (2.9)
JVar /Rd /o * B

Taking into account these estimations, we define for d > b + 1 the “Poisson”
kernel Pf’ (x,y) as

2
Ptb (x,y) = Gf(x, y)s73/zefﬂds.

t o
Var /0
This kernel is positive and symmetric in the variables x and y. Moreover, by (2.9),
it follows that

/R . Pb(x,y)dy < Cpe™. (2.10)

By (2.8) we can define the “Poisson” integral u,(x, t) = Pt"( f)(x) of a function

f(x) as
up(x,1) = P (f)(x) = /Rd P (x,y) f(y)dy

t ° 2
= — G (x,y) f(y)s e mdsdy. (2.11)
AT ~/H.{d~/0 NI
From (2.8) it follows that, if d > b + 1

lup(x, )] < Cpe™" | f1"(x) (2.12)
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holds. The Poisson integral P?(f) defines a semigroup on L?(R%), 1 < p < oo.
Using (2.3) and (2.4), it is not difficult to check that

o0
wp(x, 1) = Ze—<2"+d—”>”2’ 3 cahal). (2.13)
n=0 la|=n

where

o =< f,hy >= /Rd fhe(y)dy.

In order to deal with the case b + 1 > d, we shall need an estimate of
d \k .
(%) M, (x, y). It is easy to see that,

dkM( )= 0. (x +yI*.| BE L=
- r ’ = r ’ - Xp ——~
dr Y Ty Y p 4 147
147
+<1 )lx—ylz},
—r

where Q,(u, v) is a polynomial of k degree whose coefficients are functions
depending on

)I)chyl2

1 1—r 1+r
a7 and
(1_,,2) 14+r 1—r

and their derivatives up to the order k. Since these functions are analyticon |r| < 1,
it follows that for 0 < r < 1/2

10, (x + 12 1x = yP)| < Coa (14 x + 2 + 1x — y2)*.

Moreover, if 0 < r < 1/2 the 1nequa11tles — >1/4 and 1+’ > 1 hold. Then,
d\*
- Mr )

( dr) (x,y)

Thus, by Taylor’s formula, we have the estimate

< Cra (1 +[x + y|2 + |x — y| ) e 16 L (x+y P +x—y[?)

_ (ryPa—y?) eyl
< Crae 2 < Crae 7.

x—y[?
‘Z 3 ha(x)he (y)‘ <k Crge "3, for 0<r<1/2.  (2.14)

|a|=n

In the case b + 1 > d, we shall show that the “Poisson” integral of f(x)
defined as before by

ub<x,r)=Pf(f)(x)=J%4_n /O ( [ G (x. y)f(y)dy) 20~ ds,
(2.15)
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is well defined if we restrict the functions f(x) to satisfy thatc, =< f, by >=0
for every «, || < k — 1, where k is a positive integer such that 2k > b + 2 — d.
In fact, since for s > 1,7 = e~ < 1/2, by (2.3), (2.4) and (2.14) we obtain

< ol /R 2o Y ha@ha()| 1 (] dy

n=k |a|=n

‘ /R GLx ) fO)dy

Then, by the subordination formula (2.7), we have

t o0 t2
Jan Gl(x, dv ) s d
‘ 471/0 (/Rd s ) y)s e g

B B k=2
< Cpge@htdbys / () dy.
tebtl ol

(1)

t o 2 oy
+Ck’dJ41_/d/ o~ kHd=b)s (=3/2 =55 p= 35 | f ()| dsdy
7 Jrd J1

t
b+1 —t * —2k+d—b-2)
<e e |fI'(x) + Cra—r=ce
A

<1
AT
t2
( / Gs(x, y) | f ()] dy) e s e wds
R4

=

X /;oo(e"sg)ess%efssg /Rd 67% | f (V) |dyds
= Cprae | fI*(x).
Thus, the Poisson integral u,(x, t) of f(x) as given in (2.15) is well defined and
lup(x, )] < Cprae™ | f1"(x) (2.16)
holds, where 2k > b+ 2 — d.

If
fO) =YY" cahalx),

n=0 |a|=n

where ¢, =0, forevery o, 0| <k —1,d <b+1and 2k > b+ 2 — d we have

( f G (. y)f(y)dy) e 5 ds
Rd

up(x,t) =

t o0
\/471/0
== OIS N aha(x) | 57 ds

4n/0
n=k

la|=n

o0
= e @D N g (), 2.17)
n=0

la|=n

asin the case d > b + 1, see (2.13).
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Collecting our results we have that the Poisson integral defines a semigroup
on LP(RY), 1 < p < oo, inthecased > b+ 1, and in the case d < b + 1
defines a semigroup on the subspace of L”(R¢) consisting of all functions f(x)
that satisfy the condition ¢, =< f, h, >= 0 forevery «, || < k — 1, where k is
a positive integer such that 2k > b+ 2 — d.

Let us define the differential operator

Ly=L—bl =—A+|x|* —b.

Obviously, for b = 0, this operator coincides with the operator given in (1.3). We
shall also consider the operator £;, defined on RY x (0, co) by
9? 9? >
Eb:—m-{-Lb:—ﬁ—A—Fl.ﬂ —b.

Then, by (1.4) we get
Lyhy = (L —bl) hy = Qla| +d — b) hy.
From (2.13) and (2.17), it follows that
Lyup(x, 1) =0, (2.18)

holds for every integer b.
Now, we define

A:(-A—d"" y-A—l’A()vAl?"' ’Ad)

where as in (1.5)
0 0 .
Ai=—+x;, and A, =——+x; forl <i <d,
0x; 0x;

and

0
Ay = —.
07 Bt

The following identities for 1 <i <d,

2 dup\? ou
(Ajup)* = [(% +Xi) ub] = (8_xf> + 2xiuba_xf + (xiup)”
2 dup\? ou
2 9 b
(A_iup)” = [(—g +xi> ub] = (8_3@) - 2xzuba—xi + (xiup)

and
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imply that
Vet < TAup)* <2 (IVanupl® + X2 uj ) . (2.19)
Moreover, by (2.18)

Bzui d uy, 2
972 + Z — + 2bub

Lemma 1. Let € > 0. Then, for p in the range 1 < p < 2, we have that

2 (u + ) :
0t?

> ”(”T_l) (@2 + )T AP 2.21)

+ A (u} +82)g + p bl (up + %)

holds.

Proof. Simple calculations show that

92 (uﬁ + 82)”/2
ot2

2 d o\ 2
(P =2) 5 -2 | (dup duy,
=7 +e) ot +,Z ox;
2.2 d 22
P -2 | 07U 9uy,
A e e

2.2 2,2
p (p—2)/2 | 0°u 0u (p—2)/2
=E(”§+82)p |:—b—|— > b+2bu2:|—pb(u,2]+82)p up

+ A (u} +¢%)""?

ot? P Bxiz
p(p—2) EANEIA 3 oul\?
- 2 2\(p— b b 2 4
+T(1/lb+8) [(W) +i=1 (B—XZ) +4|x| I/tbi|
(p—4/2
—pp—2) |x|2 (u,z,—i-sz) P/ u;ﬁ.

Then, by (2.20) and (2.19) we see that this expression is greater than or equal to

-2)/2 -2 —4)/2
E(u§+82)(p )/ | Auy |? + p(p )(uz+82)(p )/ M%IAMHZ

2 2
(p—2)/2 (p—4)/2
—pb (u} + )" 7wl — p(p —2) (ul + )" up x|
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Consequently,
0 (12 +6?)""
a2
_ -2 _
> g (up + 82)(p 22 Aup? + —p(p2 ) (up + 82)(p nr2 ul | Auy|?

+ A (u,27 + 82)'7/2

r=2)/2 (p—=4)/2
—pb(ui—l—sz)p u; — p(p—2) (uﬁ-l—sz)p ug |x|*.

Since we are assuming that 1 < p < 2, the former inequality implies

2
92 (”i + 82)1’ LA (ui i 82)17/2

91>
pp—1 -2)/2 2
=2 T (+ ) AP = plbl (uf + )"
which completes the proof of Lemma 1 O

Definition 1. Given a function f € LP(RY), with p inthe range 1 < p < 00, we
define the square functions g,(f) and g}, (f) as

00 dr\ /2
gr(f)(x) = (/ |t Aup(x, )| 7) ;
0

- 2y 12
g () = ( / l) ,
0 t

where up(x,t) = Plb f(x), is the “Poisson” integral of the function f(x), defined
in(2.11) and (2.15).

and

b
t—(x,t
o (x,1)

Lemma 2. Let us assume that p is in the range 1 < p < 2. Then

8o (NI r@ey < CllfllLr®ay,

holds under the following conditions:

(i) ifd > b+ 1 the function f(x) belongs to L?(RY) and the constant C depends
on p, b and not on the dimension d,
and

(ii) if d < b the function f(x) belongs to L?(R?) and ¢y =< f, hy >= 0 for
every |a| < k — 1, where the non negative integer k satisfies 2k > b — d + 2,
and the constant C depends on p, k,d and b.
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Proof. We can assume that f(x) is a finite linear combination of the Hermite func-
tions A, since these functions are dense in L”(R“). For each N > 0, applying
Lemma 1 we have that

N N
dt 2 2-p
|t Auy > — < —/ (up + &%)
/0 t T pp-DJ
(az(u§+82)'z
x —_—

e + AW+ D)+ plbl (u§+82)5> td.

(2.22)

32 (ud+e2)P/?

By (2.21) the sum ( - + Auj + eI + p bl (uj + 32)g> is non-neg-
ative, then the former integral is bounded by

2 2-p
—( sup ub(x,t)2+82) ’
p(p—1) \oss<n

N oo
x (/ tA(x,,)(u§+ez)’z’dt+p|b|f t(u§+sz)5dt).
0 0

Applying Beppo Levi’s theorem, we get

N dt p/2
f gp (f) (x)Pdx = lim (/ It Auy (x, 1)) —) dx.
Rd lxl<N \Jo t

N—o0

In virtue of (2.22), we have that

N p/2
f (/ It Aup(x, )| ﬂ) dx
lxl<¥ \Jo t

< Cp/ ( sup up (x, 1)? +82>
|x|<N \0<t<N
N » 00 » g
X (/ 1A (up +€°)7dt +p |b|/ t (uy +€)° dt) dx.
0 0

By Holder’s inequality, this expression is bounded by the constant C), times the

product of
p/2
/ (sup up(x, t)2 + 82) dx
[x|]<N \t>0
and

N N
(/ (/ N (u§+82)p/2dt+p|b|/ t(ui—i—sz)mdt) dx)
=N \Jo 0

r2—p)
1

2-p)/2

p/2
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Taking into account (2.12), (2.16) and (2.2) we have that

r/2
lim f <sup up(x, 1) + 82) dx
e—0 Ix|]<N \t>0
p 2-p)/2 2-p)/2
— (/ (sup luy (x, t)|) dx) <C (/ |f|*(x)”dx)
lx|<N \1>0 R
2-p)/2
<C (/ If(x)l”dX) ,
Rd

where the constant C depends only on p ifd > b+ 1, and depends on p, k, d and
b in the case d < b.
Let us compute

N N
lim (/ (/ A (ul + 63" di + p |b|/ t(ul + )" dt) dx) .
=V \Jxi=N \Jo 0

(2.23)

2-p)/2

If 0Qy denotes the boundary of QO = {(x, 1) : |x] < N,0 <t < N}, then by
Green’s formula, we obtain that

N
/ / ZA(X’I) (M% + 82)p/2 dtdx
[x|<N JO

_ / (i (2 + &%) — (i3 + &) ﬁ) do (x. 1)
0N an

an

_ 0 ot
-/ (tp (2 +82) PP, 250 3y 2y _) do (x.1)
00N

an an
5/ (tp (a2 +62) 7"
10N

oup
Then, the limit in (2.23) is less than or equal to

an
/ (rpmv”
0N

Recalling that we are assuming that u, is a finite linear combination of functions
of the type e*(2|"‘|+d*b)1/2tha (x), taking the limit for N tending to infinite, (2.12),
(2.16) and (2.2), we have that (2.24) is majorized by

at
— (uj + sz)p/z 3_77> do (x,t).

8u;,

an

ot N
- Iublp%) do (x,t) + pl|b| / tlup|Pdtdx.
lx|<N Jo
(2.24)

/ |f(x)|pdx+Cf |f|*(x)pdx/ootep’dt§C/ | f(x)|Pdx.
R4 R4 0 R4
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Therefore, if 1 < p < 2 it follows that

g Nr@ay < Cllfllr@rays

where if d > b + 1, the constant C depends on p, b and not on the dimension
d, and if d < b the constant C depends on p, k, d and b, where k satisfies the
condition 2k > b —d + 2 O

Lemma 3. The following inequalities hold:
(i)Ifd >b+3and1 <i <d
|Ajup(x, )P < Cpe™'/? f P ) LA (v, 1/2) dy,
R

At (x, O < Cpe'l? /R P ) M0, /D dy,

and
Aoup(x. D < Cpe'/? / Pl () Moun (v, /D dy
Rc

where the constant Cj, does not depend on the dimension d.
(ii) Ifd < b+2and2k > b—d+3, let f (x) be a function with Fourier coefficients
co = 0 forevery |a| <k — 1, then

g (6, D = Cra( / P A (v, 1/2)Pdy
R

+/ ! |Aiup(y, 1/2)1°d )
iuply, Yy
R (|x — y[? 4 12)“F

forevery —d <i <d.

Proof. Let us consider (i). For 1 <i < d, we have

ad
Aliup (v, 1) = =2 (50 xup (3. 1)

Xi

o0
— Ze—(2n+d—b)l/2t/2 Z e—(2n+d—b)1/2t/2Ca /72 (; + 1)hoz+e,- ).
n=0

la|=n
Sinced > b + 3,
A iup(x, 1) = PJE (Aiup(-, 1/2)) (x).

Therefore, by Schwarz’s inequality we get

, 2 | pbr2 g4 2
A (e, OF = [ PIE (A qup ¢ 1/2) ()

< ( / Pf;f(x,y)dy) ( / P,’};z(x,y)|A_[ub<y,r/2>|2dy),
R4 Rd
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which by (2.10) implies
Acune, 0 = Coe P [P (o) LA, /D P dy.
R

Analogously, we can obtain the others inequalities in (i).

Now, let us consider case (ii). For —d < i < d, by (2.17) we have

! OO —2sg(i)—d)s = —2ns
Ay e, D) < W/o ([ e[S e™ 3 hawhao)]

n=k |a|=n

3 2
x Ajup(y, t/2)dy)s_ie—mds

fm(fol [)=a+s

We observe that this is valid also taking k = 0. Let us estimate A. By (2.9) and
Schwarz’s inequality we have

_|_

telbl+2
A<

1 2
G,(x, (v, 1/2) | dys e e d
i | G Ay e s

1/2
< Cpe™'/* (/Rd Py (x, y) | Aiup (y, t/2)|2dy> :
As for B, it is bounded by

t o ad 3 2
(b+2—d) —ons . 32
e fR d /1 0 S S (o ()| Ay, 1/2)ldys~3e s

n=k la|=n

which, in virtue of (2.14), is less than or equal to

Crat *_ b3y, s 4o _d _kol 3 2
] e (2k+d—b 3)S(e SSZ)S Te T s e e s
4ﬁ R4 1

This expression is bounded by

) | Ajup(y, 1/2)|dy.

t o0 =y 2
c s 573w ds | | Ajup (v, 1/2)|d
CEP 4 S Jpa (/1 et e

t
<C A ,1/2)|d
< Cras [ (|x—y|2+t2)<d+1)/2| up(y, 1/2)ldy

12
t
<C A; 1/2)|%d

as we wanted to prove.
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Lemma 4. Let us assume that p is in the range 2 < p < 00. Then

lgo (N r@ay < CllfllLr®ay,
holds under the following conditions:

(i) ifd > b+ 3 the function f(x) belongs to L?(R?) and the constant C depends
on p, b and not on the dimension d,
and

(ii) ifd < b+ 2 the function f(x) belongs to L?(RY) and ¢y =< f, hy >= 0 for
every |a| < k — 1, where the non negative integer k satisfies 2k > b — d + 3,
and the constant C depends on p, k,d and b.

Proof. Let us assume first that p > 4 and ¢ (x) be a non-negative function. We
can take f(x) a finite linear combination of the Hermite functions #,, since these
functions are dense in L?(R?). Let us consider (i). Since Pffora=b—2,bor
b + 2 are self-adjoint operators, then by Lemma 3 part (i) we have

t/i[gb(fvcxﬂ2¢(x)dx
Rd
=/ / 11 Aup(x, )¢ (x)dxdt
R4 JO
<G / f t(P! 4+ PP72 4+ PP*2Y (| Auy ) (x, t)p (x)dxdt
R4 JO

o
=G, / / 1) Aup(x, )2 (PP + PP72 + PP ¢ (x)dxdt.
R4 Jo

Applying Lemma 1 with p = 2, the last expression is bounded by

c,,/ / ( L Auj + 2|b|ub> (PP + PP~% + PP?) ¢ (x)dxdt
R4
=G, / / (— + Au ) (PP + P/ + PI?) ¢ (x)dxdt
Rd

+ C,,/ / 2t1bluy, (P! + P2 + P/*?) ¢ (x)dxdt = A + B.
R4 JO

Taking into account (2.12), applying Holder’s inequality with exponents % + é =1
and (2.2) we have that

B=C, f / + PP72+ PP?) ¢ (x) dxdt
R4

2
< Cb/ (/ te tdt) (suplub(x,t)l) o*(x)dx
R4 0 t>0

s@éﬂﬁ@%@qummﬂww
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On the other hand and since £, P/¢ = 0 it follows that

Ay (UpPl9) = PrOA s+ dup (Vs - Vi PEO) + upAcen P
= Pta(]ﬁA(X,t)ui + 4141, (V(x,,)ub . V(X’Z)Pta(p) + Lti (|X|2 Ptad) — (ZPta(p)
> PAOAnuy + 4up (Vs - Vo PPo) — aup P,

In consequence,

PrOAGouy < Airy (up o) — 4up (Vontts - Vi PLo) + auy P,
(2.25)

Then, we have
e’} 32 2
A=Cy / / (S22 4 Au2 (P} + PP2 + PP*2) ¢ (x) dxdt
Rd 0 8t2
< C;,Z{Ia ca=b—2,b,b+2},
where

o0
I, = / ) / t (Ageny @2 PEP) — 4up(Vie ity - Ve PLG) + aul PLg) dxdt
R4 JO

0 00
ff / tA(x,,)(u%Pt“¢)dxdt+4/ f tlubllv(x,[)ublIV(X,,)Pt”QSIdxdt
R4 JO R4 JO

o
+al / / tui PApdxdt.
R4 JO

By Green’s formula, (2.19) and (2.12) it follows that I, is bounded by

/Rd f(0)*p(x)dx + Cp /Rd |fT5 ()86 (f)(x)8a () (x)dx

+Cb|a|/ (/ tetdl) | f1¥(x)¢* (x)dx.
re \Jo

Since g < 2 for p > 4, applying Hoélder’s inequality and (2.2) this expression is
majorized by

Cop (1715 101, + 11ga(@)lly s (O, I£11,) -
By Lemma 2, this is bounded by

Co.p (1£115 1ll, + lpll, lleo (I, 1A 1)

and if we suppose that ||¢|| ¢ =1 it follows that

lgs(NI5 < A+ B < Cpp (I£15 + llgs (O, 1711,) 5
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which implies that
lgs(Dll, < (2Chp + 1) 1111,

holds ford > b 4 3 and p > 4, with a constant not depending on the dimension
d.
Now, let us consider (ii). We have that

o0
[ tstnmrewds = [ [ rlauf podrar
Rd re Jo
which, in virtue of Lemma 3 part (ii), it is bounded by
o0
Ck,d,b/ / f/ P, (x. y) | Auy, (v, 1/2)1> dy¢ (x)dtdx
riJo  Jrd

o0
1t
+Coan / / , / Aup (3. 1/2) dy (0)dxd.

Rrd Jo R4 (|x _ y|2 +t2)(d+l)/2

Applying Fubini’s theorem we see that this expression is less than or equal to

Coa / r fR B @) () LAw (3. 1/2) P dyds
0
+Ck,d,bf f[};{(j & () [ Auy (v, t/2)* dydt,
0

where ¢;(y) denotes the harmonic function

( ) r (d+21) / ¢ ( )
&) = —45 ¢ (x)dx.
7T SR (I — y? 4 12) T2

As it is well known, (see [S1]), lim,_.q ¢;(y) = ¢(y) almost everywhere. There-
fore, by Lemma 1, we have

/R (8(HWT P
* 82”12; 2 2 0
< Craup t e + Aujp + 2buy | (PP(@)(x) + ¢ (x)) dxdt.
R4 Jo
Moreover, by (2.25) witha = 0
PPy < Ay (up PP®) — dup (Ve s - Vieny P9)

and since A ¢, = 0 we get

D Aty = Ay (pd) — 4up (Vients - Vi dr) -
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Then,

/ [g5(f)(X)]* ¢ (x)dx
]Rd
< Crap |:f / tA(x,,)(ul%Ptoq&)dxdt
R4 JO
+ / / 1o Ve || Vi) PP pldxdt / / tu} PY(¢p)dxdt
Rd 0 Rd 0

o0 o0
+ / / E A (b dxdt + / / {1105 [Vt |V oy b d
R4 Jo R4 Jo

o0
+/ / tu§¢dxdt:|.
R Jo

Considering that the classical g—function for harmonic functions is bounded on
L4(R?) (see [S1]), and proceeding as in the proof of (i) above, we get that

lgo (NI, < (2Ckap.p + 1) 1f1,

holds whenever d < b + 2, 2k > b — d + 3, with a constant depending on the
dimension d in this case O

Lemmas 2 and 4 imply the following theorem:

Theorem 1. The functions g, and gé introduced in Definition 1 satisfy

185 (O lzr@ay < I86(Hllray < ClLf Izr@ey,
for 1 < p < oo, under the following conditions:

(i) ifd > b+ 3 the function f(x) belongs to L?(R?) and the constant C depends
on p, b and not on the dimension d,
and

(ii) ifd < b+ 2 the function f(x) belongs to L?(RY) and ¢, =< f, hy >= 0 for
every |a| < k — 1, where the non negative integer k satisfies 2k > b — d + 3,
and the constant C depends on p, k,d and b.

Proof. The first inequality is obvious. The second inequality is a consequence of
Lemma?2for1l < p <2 and of Lemma4 for4 < p < oco.Thecase2 < p < 4
follows by interpolation O

3. Littlewood-Paley g —functions of higher order

Let H be a Hilbert space and f(x) an H—valued strongly measurable function
defined on R?. As usual, we say that the function f € L7 (R?) if and only if
Il f)la € LP(RY). Let us denote the norm in L, (R?) by

1/p
11 oy = (/R T dx) |
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If S € R? is a measurable set, f ¢ J (x)dx will stand for the integral of f(x) in the
sense of Bochner (see [Y], page 132). Let us consider the kernel G, (x, y) defined
in (2.3). Given f € LZ(Rd ) and b an integer, we define the “Poisson” integral of
f(x)asin (2.11)

PP f(x) = (/Rd e Gi(x, y)f(y)dy) 5265 ds,

t o
AT /o
if d > b + 1. In the case when d < b, we define P,” f(x) by the same formula
but we ask f(x) to satisfy the condition ¢, = fRd Fhy(y)dy = 0 for every
o, || <k — 1, where k is a positive integer such that 2k > b — d + 2. As before,
we have the expansion

o0
PLf(x) =) e @t d=D N b (), (3.1)
n=0 la|=n

where ¢y = o f(1ha()dy € H.
It is easy to check that for 1 < |i| <d

.Aiha(x) = \/205|i\ +1-— Sg(i) hotfsg(i)em(x)

and as before,
d
=5
Using the expansion (3.1) it is easy to verify that for + > 0 we can define
A; PP f(x) € H,—d < i <d, in such a way that

Ao

< APl f(x),v>p= APl (< f(), v >m)(x),

holds for every v € H and every x € R¢.
Let Sy, be the linear application from LZ(R‘[ ) into H*¢*! —valued function
defined on R? given by

d d
Supf ) ={Sup,; fO),__,={tAP FOO),__,
Then, we define the Littlewood-Paley function gy j as

., 1/2
o0 dt
enNw = [ 3 1S sl

j=—d
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Remark 1. For H = R we have that g ;( f) is equal to the function g,(f) given
in Definition 1. By Theorem 1 we have that

1/2

dt
gx (| o, = wo f O < CIfllpra
l&ms (A o gy ™ fS s =
j=—d LP(RY)

3.2)

holds for 1 < p < oo and d > b + 3, with a constant C not depending on
the dimension d. For the case d < b + 2, the inequality (3.2) holds provided that
f f(hy(y)dy = 0forevery « such that || < k— 1, with k an integer satisfying
2k > b — d + 3, but this time the constant C depends on the dimension d.

The following theorem due to J. L. Krivine allows us to extend (3.2) to
H —valued functions.

Theorem 2. Given two Banach lattices A and B and a bounded linear operator

T : A — B, we have that for any sequence fi, fa,--+, fu, - € A,
1/2 1/2
> 2 > 2
il <GITI || D1/l :
j=1 B j=1 A

where G is the Grothendieck’s universal constant, which satisfies 1 < G < 2.

For a proof of this theorem see [Kr] or [LT].
The following theorem generalizes (3.2) for H —valued functions.

Theorem 3. Let H be a Hilbert space. Then, for 1 < p < o0 it follows that

1/2

leus (O 1o, = Z |Ss.0. f(x>}|2 a < GCIflr g

, LP(R4) — J — Ly [RY)
i= LP(R4)

with the same restrictions on d, b and k as in the case when H = R, C the con-

stant of that case (see Remark 1) and G the Grothendieck’s universal constant.

We observe that GC does not depend on the Hilbert space H.

Proof. Let {v,} be an orthonormal basis of the Hilbert space H. Then,
fx) = Z fr)v, and [ f )7 = Z | fu0)

Thus,
172

[ Isunsseol,

j=—d LP(Rd)
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1/2

N ~/0 Z Z|8Rb]fn(x)|2 a

j=—d n

& ar\"”
= (Z/ ||SR,bfn(x)H§g2d+1 _>
n 0 t

Since by Theorem 1, Sg j is a linear operator from the Banach lattice A = L? (RY)

into the Banach lattice B = Lp 2 1 (0,00, dr /t)(Rd) we can apply Theorem 2

LP(Rd)

LP(Rd)

obtaining

> ar\'”’
<Z/ HSR,bfn(x)”]%ZdJrl _>
n Y0 4

Lr(R4)

1/2
<GCpyp (Z |fn(x>|2>

=GCpp I fllLr ®e

LP (R4)

Given a positive integer m and f € L%, (R?), we introduce
m,H,hf(-x) = {thl'l'AlQ . 'Aim P[ f(x)}—dfl-l.l‘z,...,imfd

and the Littlewood-Paley g—functions g, g5 y g,il’ u.» given by

d
g1 (f)(x)? —/ oo AAL AL P PO t,
—d<iy i, in<d
and
d ol gmpb 24
a0 = [z eyl = [T T ] S
0 t H t

We observe thatif m = 1, g1 g ,(f) coincides with the gy ,(f) already defined.
For the function g, g » we have the following theorem:

Theorem 4. Let 1 < p < 00, b an integer, m a positive integer and H a Hilbert
space. Then, the inequality

|gm.e1.6CH | 1o ey < CUFlLp @) (3.3)

holds, ford > b+2m+ 1, with a constant C depending on p, b and m, but not on
the dimension d. For the case d < b+2m, if f(y) satisfies that f fO)Yhe(M)dy =
0 forevery a, |a| < k — 1, where k is an integer satisfying 2k > b+2m —d + 1,
the inequality (3.3) holds but the constant C also depends on the dimension d.
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Proof. For m = 1 the inequality (3.3) holds by Theorem 3.

Let us assume that the inequality (3.3) is valid for m then, we shall show that
it holds por m + 1.

Given a Hilbert space H let K the Hilbert space defined as

hekK if and only if
h={ i1,i2,. zm(t)}

—d <ij,iy,....in <d,0<t<ooandh; i i

Im

(t)e H

with the norm

) o0 2 dt
l7ll% Z/o Z ([ ) 7 <o

—d<i,in,....in<d

The Hilbert space K we have just defined is usually denoted as

K =121, (0,00), 4).
By Theorem 3, we have that for every a

1/2

d
10 g = | | [ 5 ISkaspl &

j=—d LP(Rd)

=< GCp,a ||h||LZ(Rd)

holds, where the constant C), , does not depend on the Hilbert space H.
Now, we consider the K —valued function 4 (x), defined on R?, as

h(x) = Spupf @) ={t"Ay A, .. AP FO)_,_ . €K.

—d<iy,iz,....in<d

Then, we obtain

S1.k.ah(x) = {Sl K,a jh(-x)}]_ d
= {s A, P Ay, . A Pff(x)}_diil’_'_,imd ,

and therefore

d
g1.x.a(h)(x)? —/ Z |81k ih @[ =
j=—d
dtd
/ / s B Ay A BE PO | S

—d<iy,ip,. lm+1<d
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Letey, ey, ..., e, be the standard basis of R" and ¢y = 0. For each multi-index
(2, ..y imp) With |ij] < d, 2 < j <m+ 1let £ = Y " 5g(i,). Obviously,
[€] < m. Then, it follows that

b
l‘m.Aiz R Aim-H Pt ho(x)
= t"e (i i —Qlal+d—b)'/?t
=tc (12, ey lm_;,_]’a) e h(a—Zf;’izl Sg(in)eh'n\)(X),
with ¢ (ip, ..., im+1, @) = 0in the case when any component of o — Z;"izl sg(iy)

e|i,| turn out to be negative. Consequently,

S.A,'l Ps—2€+bthi2 LA

Im+1

PPhy(x)

12
+d+2/é—b) s

— st A, e—(2‘a—2nmizl 58 (in)ejiy|
= i

. ) _ NV
X C(iny ..y imyr, ) e GlalHd=0r" 1y

(Ol I vg(zn)g“n‘)(x).

= |a| — ZmH sg(i,) = |a| — £, then

. m+1 .
Since | — Y "7, sg(in)eyi,

AL P AL A

Im+1

Pl hy(x)

_ _ _p)i/2 . .
= st" Aj e” CUImOTREDTs ey iy, @)
—Qlal+d—b)'/?t
e h((x m+1 Yg(ln)ehn\)(X)

M A s . —Qlal+d—b)?(t+s)
=st" A c(ia, ..., imy1,00)e€ h amy] Yg(l”)e“n‘)(x)

[ . _ _ /2 .
= st"c(iy iy, ..., ipy1, a)e” TR0

a=5 sgtinern) )
=st" Ay Ay . A lﬂh (x).
Therefore
sAL PTEP AL A PP R (X)
=st" A A, .. A, <e7(2lal+d7b)l/2(l+s)ha(x)) )
This implies that if £ = Y"*!sg (i,) , then

st" A Ay o A (PR F(O) = s A PP A LA L PP (). (B4)

Thus, if D, = {(iz,.. i) £ " sg (i) _Z},by (3.4) we get

<[ ds dt
> /0 /0 st Aiy Aiy o Ai sy ( f+sf<x>)||§,§—<g”< e (W) ().
Dy
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By a change of variables, it is easy to check that

00 oo ds dt

/ _/ ||sthi1Ai2 e 'Aierl (Plb‘l’éf(x)) ||i1 _s_
0 0 s 1
> dt

1 ©
= m/o |l AL A A (PEF@) e

In consequence, we obtain

gnrt b f () <2m@m+1) > g1 kpraeh(x).

l=—m

Then, by Theorem 3

1,606 £ O o oy = C Ml oy = € [gmns f @ p gays G5
holds for 1 < p < oo and d > b + 2m + 3, with a constant C not depending
on the dimension d. For the case d < b + 2(m + 1), the inequality (3.5) holds
provided that f f(Ohy(y)dy = 0 for every « such that |o| < k — 1, with k
an integer satisfying 2k > b 4+ 2(m 4 1) — d + 1, but this time the constant C
depends on the dimension d.

Since the conditions for case m + 1 imply the conditions for m, by the inductive
hypothesis, we get that the theorem holds for m + 1 O

Theorem 5. Let H be a Hilbert space, 1 < p < 00 and m a positive integer.
Then,

£ 112, ety < € Jm 1.6 o gga (3.6)

holds, with a constant C depending on p, b and m, but not on the dimension d in
the case whend > b + 2m + 1. For the case d < b + 2m, if f(x) satisfies the
conditions f fFO)he()dy = 0 for every o, || < k — 1, with k an integer such
that 2k > b +2m — d + 1, then (3.6) holds but the constant C also depends on
the dimension d. We observe that the constant C does not depend on the Hilbert
space H.

Proof. Let f € L (RY) N L2, (R?). We have

/ gl () () dx = / f
]Rd d 0
2

0 00
:f / p2m=1 Z (-D)"2n+d — b)m/Z e—(2n+d—b)]/2t Z cohy | dtdx
R4JO

n=0 |a|=n H

2 dt
—dx
H

" om Ptbf
ar™m

t

(x)
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2
00

=Z/ / Z(Zn—l—d pyn/2 g=(@n+d=b)'2 > Capha | didx
B loe]=n
00 oo
=Z/ i D D
0 ler|=n
- D!
S L el = S5 [ Sl as
B n=0 |a|=n

2m — 1)!
=(sz)fR 17 GOl dx.

Let
Pef= Y {f ha)ha

loe| <k—1

be the projection of f onto the finite-dimensional space generated by the functions
hy, |a| <k — 1. We have

1P flln ey < D IS o) il Lo ey

lor|<k—1

<| X lhalr@slialogs | 11 @ < CIENlLE @y
lor| <k—1
(3.7)
In consequence,

I = P fllpp ey = A+ ONFllLp ray- (3.8)

Ifd > 2m + 1 we define Pf = 0 and if d < 2m and k satisfies 2k > 2m —d + 1
we define Pf = P f. Then, it follows that

(7 — P)f”L” Rd) = C||f||L” (R9) (3.9)

By hyphotesis we assume that f> = (I — P) f,. Then, by polarization it follows
that

2m — 1)!
ZT/W < fix), fa(x) >p dx
(2m— !
E [ < 0. = Pt = dx

m p b m pb _
// < AL IR P)fz(x)> dr
Rd at™ g !

< /R d glﬂ,H,b<f1><x>g;,H,,,((1 — P) ) (x)dx.
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By Holder’s inequality and Theorem 4, we get

||g;1n,H,b(f1)”LP(Rd) ”grln,H,b((I — P)f2)||Lp/(Rd)

= Clgm mpUDlr@nlltd = PY L2l
H

Then, by (3.9), we get

1&m. 11,6 SO Loty 18, 1.6 (d = P) )l o gty
1
= Cligm.u.p(fDllLr@a) ||f2||LZ(Rd),

which implies the theorem O

4. Riesz transforms

In this section we apply the results obtained on the Littlewood-Paley g—functions
to prove the Theorems A and B. Obviously Theorem A is a particular case of
Theorem B. Thus we go directly to the proof of Theorem B.

Proof of the Theorem B. We recall that L = —A + |x|?, and for every positive
integer m by (1.6) we have that

L7"2hy(x) = Qla| + d) ™ hg(x).
By (1.7),if 1 < |i1], lial, ..., lim| < d,

Ril,iz,- f == AiJAiz e A,’mL_m/zf.

ey i)?l
Therefore

Rijiyinhe = Ay Aiy .. Aiy 2l +d) "y
=cC (il, i, ..oy im, Ol) (2 |O(| + d)_m/zh(a—zl'f:l xg(i,,)e\,ﬂ)‘

Classifying the family of the indexes (i1, iz, . .., i) with 1 < |iy], |ia], ..., lin] <
d, as the union of the sets D, = {(il, i, oeyim): ZZ;I sg(iy) = Z} , for —m <
£ < m, it follows that if (i1, iz, ...,i,) € Dy

Ay, 9" —Qlal+d) 2t —m/2
(,%—mP, (Ril,iz,...,imha) = am (8 A Ay o AL Qlal +d) ha)

= (—l)mAilAi2 R Aimei(zlaHd)l/ztha
= (_1)mAil'Ai2 e Aim Pl‘oha
holds. Then, we also have
am

S P (R i f) = (1" A Ay, A

PYf. 4.1)

Im
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By Minkowski’s inequality

1/2
Z |Ri1,i2,...,imf|2
L=litllizl,....lim|<d Lo @)
m 1/2
= > X IRt ST : 4.2)
l=—m Dy Lo

By Theorem 5, with b < 2m, the last expression is less than or equal to a con-

stant C times

where the constant C depends on p, b and m, but not on the dimension d in
the case d > 4m + 1, and for the case d < 4m, if f(y) satisfies the condition
[ f(he(y)dy = 0 for every , || < k — 1, with k a positive integer such that
2k > 4m — d + 1, the constant C also depends on the dimension d.

Using (4.1) and Theorem 4 with H = R and b = 0, we obtain that (4.2) is
bounded by

12
2 dt
t

—2@
atm P (Rivi..oin f)
—m<l<m

LP(Rd)

172
> dt

A 5 ean

—d<iy,in,...,im<d LP(R”’)

S C Hgm,]R,O(f)” LP(Rd) S C ||f||LI’(]Rd) .
Thus, we have shown that
1/2
2

> R f] <Clflpgs 43

1=<liillizl,....|lim1<d

Lr(Rd)

where the constant C depends on p, b and m, but not on the dimension d in
the case d > 4m + 1. For the case d < 4m, if f(y) satisfies the condition
f f(he(y)dy = 0 for every «, |a| < k — 1, with k a positive integer such that
2k > 4m — d + 1, (4.3) holds but the constant C also depends on the dimension
d.

For the case when d > 4m + 1, (4.3) proves that Theorem B holds. Now,
suppose that d < 4m and choose k such that 2k > 4m — d + 1. Let

Pkf: Z (f’ha)ha,

lor] <k—1
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be the projection of f onto the finite-dimensional space generated by the functions
hy, |a| <k — 1. Then,
H Ril,iz ..... im Pkf”Lp(Rd)
< D WA R A AL - A L7 ha |

|o|<k—1

—m/2
< X el [AiAs o A L ha | a1 ey
o] <k—1
=C ||f||Lp(Rd) . (4.4)
By Minkowski’s inequality we get
1/2
2
> Lr—y
lflills‘hlvwalimlfd Lp(]Rd)
1/2
2
< Z |Ri i P S|
L<litlli2l,-.s lim|<d Lp(Rd)
1/2
2
+ Z \Riyin...iny (I = P0) f]
L<litlli2l,-.s lim|<d LP(R[[)

which by (4.4), (4.3), (3.7) and (3.8) it is less than or equal to
C (I1Pcf I orey + I = PO fllzray) < C I fllLoay -

This shows that also in the case d < 4m the inequality (1.8) holds with a constant
Cp.m depending on the dimension d. Taking into account that for a given value
of m there are only a finite number of dimensions less than or equal to 4m the
constant C), ,, can be found in such a way that Theorem B holds O
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