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We examine distinct measures of fermionic entanglement in the exact ground state of a finite
superconducting system. It is first shown that global measures such as the one-body entanglement
entropy, which represents the minimum relative entropy between the exact ground state and the
set of fermionic gaussian states, exhibit a close correlation with the BCS gap, saturating in the
strong superconducting regime. The same behavior is displayed by the bipartite entanglement
between the set of all single particle states k of positive quasimomenta and their time reversed
partners k̄. In contrast, the entanglement associated with the reduced density matrix of four single
particle modes k, k̄, k′, k̄′, which can be measured through a properly defined fermionic concurrence,
exhibits a different behavior, showing a peak in the vicinity of the superconducting transition for
states k, k′ close to the fermi level and becoming small in the strong coupling regime. In the latter
such reduced state exhibits, instead, a finite mutual information and quantum discord. And while
the first measures can be correctly estimated with the BCS approximation, the previous four-level
concurrence lies strictly beyond the latter, requiring at least a particle number projected BCS
treatment for its description. Formal properties of all previous entanglement measures are as well
discussed.

I. INTRODUCTION

Quantum entanglement is an essential feature of quan-
tum mechanics. The basic notion was developed for sys-
tems of distinguishable components [1–4], where it has
been extensively investigated [5–7], playing a key role in
fundamental quantum information processing tasks [8, 9].
On the other hand, the theory of entanglement for sys-
tems of indistinguishable components such as fermions,
is more recent [10–32], and is subject to some debate
[33]. There are essentially two distinct approaches. One
is based on the entanglement between modes [16–20, 31].
Here the subsystems are defined in terms of subsets of
single particle modes, and entanglement depends obvi-
ously on the choice of basis for the single particle state
space and then on the choice of modes for each subsys-
tem. The other, known as entanglement between parti-
cles [10–15, 21–26] considers the indistinguishable con-
stituents as subsystems and entanglement is defined be-
yond antisymmetrization, such that a Slater determinant
is not entangled.

In [27] we defined a one-body entanglement entropy for
fermion systems, which for pure states is determined by
the one-body density matrix and vanishes if and only if
(iff) the state is a Slater determinant. It can be obtained
from a single particle mode entanglement measure after
optimization over all possible bases of the single particle
space. The approach can be directly extended to deal
with states with no fixed fermion number (though still
having fixed number parity [34]), in which case it van-
ishes iff the state is a quasiparticle vacuum. In the case
of a single particle space of dimension 4, the approach is
an extension of the entanglement measure developed in
[10] for pure states with fixed fermion number, and pro-
vides a lower bound to the entanglement associated with
any bipartition of the single particle space [31]. In such
space its convex roof extension can also be analytically

evaluated for any mixed state in terms of the fermionic
concurrence [10, 27].

The aim of this work is to analyze the previous general
measures of fermionic entanglement in the exact ground
state of a finite superconducting system. Previous stud-
ies of entanglement in such systems focused mainly on
the formal properties of pairing correlations [15] or on
the Bardeen-Cooper-Schrieffer (BCS) state [20, 35–37],
using in this case methods and measures specifically de-
vised for such state. Here we first show that the one-body
entanglement entropy is in the present system a direct in-
dicator of pairing correlations, reflecting essentially the
BCS gap and saturating in the strong superconducting
regime. It is also shown to be closely related to the bipar-
tite mode entanglement between the Ω states k and their
time-reversed partners, becoming strictly proportional to
it at the BCS level. On the other hand, the fermionic en-
tanglement associated with four single particle modes kk̄,
k′k̄′, exhibits a different behavior. This quantity is de-
termined by a mixed reduced state with no fixed fermion
number yet fixed (even) number parity, and can be explic-
itly evaluated through the fermionic concurrence defined
in [27]. It shows a peak in the vicinity of the ground
state superconducting transition for levels k, k′ close to
the Fermi level, becoming then small in the strong super-
conducting regime (if the system size is not too small).
In the latter, this reduced state exhibits instead classi-
cal and discord-type [38–41] correlations, leading to a
finite mutual information and quantum discord. We also
discuss the BCS description of these quantities, showing
that it can indeed provide a correct estimation of the first
measures in the superconducting phase, although it fails
to describe the four-mode fermionic concurrence, which
is identically zero in BCS for all coupling strengths. This
quantity is shown to require at least a projected BCS
treatment.

In sec. II we first discuss the main properties of the em-
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ployed fermionic entanglement measures, some of them
not included in [27, 31], showing in particular their direct
relation with the minimum relative entropy to a fermionic
gaussian state. It is also shown that in the case of four
single particle modes, their extension to mixed states also
warrants, if non-zero, a finite bipartite mode entangle-
ment for any partition of the single particle space. The
application of these measures to the exact ground state
of a finite superconducting system is discussed in sec.
III A, where their behavior as a function of the pairing
coupling strength is analyzed. Their description through
the BCS approximation is discussed in III B, which also
includes a simple projected (before variation) BCS treat-
ment, necessary for describing the four-mode fermionic
concurrence. Other quantities like the mutual informa-
tion and quantum discord of four single particle modes,
are also discussed in III and in the Appendices, which
contain additional details. Exact analytic expressions for
the strong coupling regime are as well provided.

II. FORMALISM

A. One-body entanglement entropies

We consider a fermion system described by a single

particle space H, spanned by fermion operators ci, c
†
i ,

i = 1, . . . , d, satisfying the anticommutation relations

{ci, c†j} = δij , {ci, cj} = {c†i , c
†
j} = 0. Given a pure state

|Ψ〉 of this system, the set of averages

ρspij = 〈c†jci〉 ≡ 〈Ψ|c†jci|Ψ〉 , (1)

form the one-body density matrix ρsp = 1 − 〈cc†〉 (c =
(c1, . . . , cd)

t). It plays the role of a “reduced” density
matrix which determines the average of any one-body

operator Ô = c
†Oc =

∑

i,j Oijc
†
icj : 〈Ô〉 = tr [ρspO],

with tr denoting the trace in the single particle space.
In [27] we have defined an associated one-body entan-

glement entropy,

E(|Ψ〉) = tr [h(ρsp)] =
∑

i

h(fi) , (2)

h(fi) = −fi log2 fi − (1− fi) log2(1− fi) , (3)

where fi = 〈a†iai〉 are the eigenvalues of ρsp and a = U †
c

is the set of fermion operators diagonalizing ρsp, such

that 〈a†jai〉 = (U †ρspU)ij = fiδij , with U
†U = 1.

Eq. (2) vanishes iff fi = 0 or 1 ∀ i, i.e., iff |Ψ〉 is a

Slater determinant (|Ψ〉 = [
∏

i(a
†
i )

fi ]|0〉), and remains
obviously invariant under one-body unitary transforma-
tions |Ψ〉 → exp[−ic†Oc]|Ψ〉 (O† = O), which just lead
to a unitary transformation of ρsp (ρsp → e−iOρspeiO).
It is also the minimum, over all single particle bases, of
the entropy determined by the average occupation of the
corresponding single particle states [27]:

E(|Ψ〉) = Min
{ci}

∑

i

h(〈c†i ci〉) , (4)

with h(〈c†i ci〉) representing the entanglement entropy of a
single particle mode with the remaining modes (see also
sec. II B).
Eq. (2) also admits other interpretations. It can be

regarded as the von Neumann entropy S(ρ′), in the grand
canonical ensemble, of the independent fermion density
operator ρ′ which reproduces the whole single particle
density matrix determined by |Ψ〉: If

ρ′ = Z−1 exp[−c
†Λc] = Z−1 exp[−

∑

i

λia
†
iai] , (5)

with Z = Tr exp[−c
†Λc] =

∏

i(1+e
−λi) and λi the eigen-

values of the matrix Λ, then

S(ρ′) = −Tr [ρ′ log2 ρ
′] =

∑

i

h(fi) , (6)

where fi = Tr[ρ′a†iai] = [1 + eλi ]−1. Eq. (6) will then
coincide with (2) provided these fi’s are identical with
the eigenvalues of the single particle density matrix (1),
i.e., provided

1− tr[ρ′cc†] = [1+ exp(Λ)]−1 = ρsp , (7)

which implies Λ = ln[(ρsp)−1 − 1].
This result shows that Eq. (2) is in fact the relative en-

tropy [43, 44] (in the grand canonical ensemble) between
the pure state ρ = |Ψ〉〈Ψ| and the state (5) which sat-
isfies (7), since S(ρ) = 0 and (7) implies Tr[ρ log2 ρ

′] =
Tr[ρ′ log2 ρ

′]:

S(ρ||ρ′) ≡ −Tr [ρ(log2 ρ
′ − log2 ρ)] (8)

= S(ρ′) = tr [h(ρsp)] . (9)

Moreover, as shown in Appendix A, Eq. (9) is also the
minimum relative entropy (in the grand canonical ensem-
ble) between ρ and any operator of the form (5):

Min
ρ′

S(ρ||ρ′) = tr [h(ρsp)] . (10)

Hence, Eq. (2) is a measure of the minimum distance be-
tween ρ and the set of operators of the form (5) (fermionic
gaussian states commuting with N).
Extension to quasiparticles. If the state |Ψ〉 does not

have a fixed fermion number N =
∑

i c
†
i ci, (but has a def-

inite number parity eiπN = ±1, in agreement with the
parity superselection rule [34]), we can define a gener-
alized one-body entanglement entropy [27] based on the
extended one-body density matrix ρqsp, which contains

the contractions κij = 〈cjci〉 and −κ∗ij = 〈c†jc
†
i 〉:

Eqsp(|Ψ〉) = −tr[ρqsp log2 ρ
qsp] =

∑

i

h(f̃i) , (11)

ρqsp = 1−
〈(

c

c
† t

)

(

c
†

c
t
)

〉

=

(

ρsp κ
−κ∗ 1− (ρsp)∗

)

.(12)

Here f̃i = 〈ã†i ãi〉 and 1 − f̃i = 〈ãiã†i 〉 are the eigenvalues

of ρqsp (which always come in pairs (f̃i, 1− f̃i)), with ãi
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the fermion quasiparticle operators diagonalizing ρqsp, re-

lated to the original operators ci, c
†
i through a Bogoliubov

transformation [45]. Eq. (11) reduces to (2) iff κ = 0, and
vanishes iff |Ψ〉 is a Slater determinant or also a quasi-
particle vacuum (or equivalently, a quasiparticle Slater
determinant, which can be always written as a quasi-
particle vacuum through a particle-hole transformation).
Eq. (11) remains invariant under arbitrary particle hole

transformations (ci → c†i for some single particle states
i), as well as arbitrary Bogoliubov transformations [27].
It is the minimum, over all single quasiparticle bases, of
the sum of the entanglement entropies of all single quasi-
particle modes [27].
Eq. (11) is also the minimum relative entropy between

ρ and any fermionic gaussian state, i.e.. any ρ′ which is
the exponent of a generalized one-body operator:

Min
ρ′

S(ρ||ρ′) = −Tr[ρqsp log2 ρ
qsp] , (13)

ρ′ = Z−1 exp[−c
†Λc− 1

2
(c†Γc† t + c

tΓ†
c)] (14)

= Z̃−1 exp

[

−(c† ct)L
(

c

c
† t

)]

, L =

(

Λ Γ
−Γ∗

1− Λ∗

)

.

The minimum (13) is reached for that ρ′ which repro-
duces the full ρqsp, i.e., that satisfying

1− tr

[

ρ′
(

c

c
† t

)

(c† ct)

]

= [1 + exp(L)]−1 = ρqsp ,

which implies L = ln[(ρqsp)−1 − 1] and hence S(ρ′) =
−tr[ρqsp log2 ρ

qsp].

B. Entanglement of bipartitions of the single

particle space

Given a decomposition HA ⊕ HB of the single parti-
cle space H in orthogonal subspaces of finite dimension
dA, dB = d − dA, we may expand |Ψ〉 in a set of Slater
determinant in HA and HB as |Ψ〉 =

∑

µ,ν αµν |µν〉,
where |µν〉 = [

∏

i∈A(c
†
i )

nν
i ][

∏

j∈B(c
†
j)

nµ
j ]|0〉, with nν

i =
0, 1 the occupation number of single particle state i
in Slater determinant ν. The reduced states associ-
ated with these single particle subspaces are [29] ρA =
∑

µ,µ′(αα†)µµ′ |µ〉〈µ′| and ρB =
∑

ν,ν′(αtα∗)νν′ |ν〉〈ν′|,
which reproduce all expectation values of operators con-
taining creation and annihilation operators acting just
on these subspaces. They are normalized mixed states
with the same non-zero eigenvalues λk, given by the sin-
gular values of the matrix α. Their entropies S(ρA) =
S(ρB) = −∑

k λk log2 λk represent the entanglement en-
tropy E(A,B) associated with this partition [27, 29].
For states |Ψ〉 having definite fermion number, ρA(B)

will commute with the local fermion number NA(B) =
∑

i∈A(B) c
†
ici, but will in general be a mixture of states

with different particle number (it will be represented by
a 2dA(B) × 2dA(B) matrix). Similarly, if |Ψ〉 has definite

number parity, ρA(B) will commute with the local number

parity eiπNA(B) , being a mixture of even and odd states.
For instance, if HA involves just one single particle

level i, ρA ≡ ρi will be determined by the average occu-

pation 〈c†i ci〉:

ρi =

(

〈c†ici〉 0

0 〈cic†i 〉

)

, (15)

in the basis {c†i |0〉, |0〉}, with 〈cic†i 〉 = 1− 〈cic†i 〉 (〈ci〉 = 0
due to number parity conservation). Its entropy S(ρi) =

h(〈c†i ci〉) represents the entanglement entropy of such
mode with the remaining modes. A single particle ba-
sis where S(ρi) = 0 ∀ i exists iff Eq. (2) vanishes. And a
single quasiparticle basis with the same property exists
iff Eqsp(|Ψ〉) = 0.
Similarly, if HA comprises a pair of levels i 6= j, then

ρij =











〈c†i cic
†
jcj〉 0 0 〈cjci〉

0 〈c†i cicjc
†
j〉 〈c†jci〉 0

0 〈c†i cj〉 〈cic†i c
†
jcj〉 0

〈c†i c
†
j〉 0 0 〈cic†icjc

†
j〉











,

(16)

in the basis {c†ic
†
j|0〉, c

†
i |0〉, c

†
j|0〉, |0〉}. This reduced state

(Tr ρij = 1) determines the average of any operator in-

volving just ci, cj , c
†
i , c

†
j , and its entropy S(ρij) is the en-

tanglement entropy of this pair of single particle modes
with the remaining modes. The outer (inner) block of
ρij corresponds to positive (negative) pair number par-
ity. In contrast with ρi, ρij is not fully determined by
ρqsp since its diagonal elements (i.e. the probabilities of
finding none, one or both levels occupied) involve two-
body contractions. Nonetheless, if ci, cj are operators
diagonalizing ρqsp (ci(j) → ãi(j)), ρij is obviously diago-
nal and E(|Ψ〉) = 0 or Eqsp(|Ψ〉) = 0 implies S(ρij) = 0
for such operators (just one of the diagonal elements will
be non-zero).
Note also that S(ρij) depends on the subspace spanned

by the single particle levels i, j, but not on the particular
choice of states i, j within this subspace: Any unitary or

Bogoliubov transformation involving just ci, c
†
i , cj , c

†
j will

leave such entropy invariant.

C. Entanglement of subspaces of the single particle

space

Let us now consider the entanglement of a reduced
state ρA of a single particle subspace HA. For reduced
states which commute with the local fermion numberNA,
we define the associated one-body entanglement of for-
mation as

E(ρA) = Min∑
α qα|ΨA

α 〉〈ΨA
α |=ρA

qαE(|ΨA
α 〉) , (17)

where qα ≥ 0,
∑

α qα = 1 and the minimization is over
all representations of ρA as a convex combination of pure



4

states in HA with definite fermion number. Eq. (17)
vanishes iff ρA can be written as a convex mixture of
Slater Determinants. Similarly, we define the generalized
one-body entanglement of formation as

Eqsp(ρA) = Min∑
α qα|ΨA

α 〉〈ΨA
α |=ρA

qαE
qsp(|ΨA

α 〉) , (18)

where the minimization is now over all representations
of ρA as convex combination of pure states with definite
number parity. Eq. (18) vanishes iff ρA can be written as
a convex mixture of quasiparticle vacua or Slater Deter-
minants.
It is first apparent that if the full state |Ψ〉 is a quasi-

particle vacuum or Slater determinant, then Eqsp(ρA) =
0 for any subspace HA: In this case all averages involved
in the construction of ρA can be determined through
Wick’s theorem [45], and hence expressed in terms of the
elements of ρqsp involving this subspace. Therefore, ρA
can be written as the exponent of a suitable generalized
one-body operator of the form (14) providing the same
ρqsp for this subspace, and will then be a convex com-
bination of quasiparticle Slater Determinants or vacua.
A non-zero value of Eqsp(ρA) is then indicative of corre-
lations beyond those provided by a global quasiparticle
vacuum. Similarly, if |Ψ〉 is a standard Slater determi-
nant then E(ρA) = 0, since in this case κ = 0 and ρA
can then be written as an operator of the form (5).
It is also apparent that for a single level i, E(ρi) =

Eqsp(ρi) = 0 for any |Ψ〉. Similarly, for two single particle
levels we always have Eqsp(ρij) = 0, since any pure state
with fixed number parity in a two-dimensional single par-
ticle space (such as the eigenstates of ρij) can be written
as a quasiparticle vacuum or Slater determinant [27, 29].
And if 〈cicj〉 = 0 (i.e. [ρij , Nij ] = 0) then E(ρij) = 0.
The same property holds for three distinct levels i, j, k
for the same reason: Any pure state with fixed number
parity in a three-dimensional single particle space can be
written as a quasiparticle vacuum or Slater determinant
[27], implying Eqsp(ρijk) = 0 (and also E(ρijk) = 0 if
[ρijk, Nijk] = 0).
The first non-trivial case is that of four distinct single

particle levels i, j, k, l, in which case a closed expression
for the one-body entanglement of formation for any state
ρijkl with fixed number parity was obtained in [27], ex-
tending the results of [10] for states with fixed fermion
number. The result is

Eqsp(ρijkl) = −4
∑

ν=±

fν log fν , f± =
1±

√
1−C2(ρijkl)

2 ,

(19)
where C is the corresponding fermionic concurrence [10,
27],

C(ρijkl) = Max[2λmax − TrR(ρijkl), 0] , (20)

with λmax the largest eigenvalue of R(ρ) =
√

ρ1/2ρ̃ρ1/2

and ρ̃ = Tρ∗T in a standard basis. The operation T is
given explicitly in Appendix B (note that ρijkl and T are
represented by 8× 8 matrices).

For a pure ρijkl = |Ψ〉〈Ψ|, C2 becomes a quadratic
entropy of the corresponding four-level ρqsp: C2(|Ψ〉) =
1
2Trρ

qsp(1 − ρqsp) = 4f+f−, with f+, f− = 1 − f+ the
(four-fold degenerate) eigenvalues of ρqsp [27]. For a
mixed ρijkl , the result (20) coincides with the convex roof
extension of C(|Ψ〉) [Eq. (18) with Eqsp(|ΨA

α 〉) replaced
by C(|ΨA

α 〉)]. If ρijkl commutes with number parity but
contains components of both parities, it can be written
as a mixture

∑

p=± qpρ
p
ijkl of two mixed states with def-

inite number parity and Eqsp(ρijkl) can be evaluated as
the average of the expressions for each parity [27].
We can also consider bipartitions (A1, A2) of the HA

subspace, with A1 and A2 of nonzero dimension and de-
termined by a given choice of levels in some single particle
basis of HA, and examine the associated bipartite entan-
glement in the state ρA1,A2 . Such state will be separable
iff it can be written as a convex combination of pure
product states (with definite number parity) in A1 and
A2, and entangled otherwise. While there is in general
no relation between this entanglement and Eqsp(ρA), in
the case of four single particle levels, it was shown in [31]
that for a pure ρijkl = |Ψ〉〈Ψ|, the quantity 1

4E
qsp(|Ψ〉)

provides a lower bound to the entanglement entropy of
any bipartition of the single particle space.
For a general ρijkl, we now show the following Lemma,

which relates the fermionic concurrence (19) with the
entanglement of a bipartition: For a general four-level
fermionic state ρijkl commuting with number parity and
satisfying C(ρijkl) > 0, any bipartition of Hijkl (like
(ij − kl) or i − jkl) is entangled.
Proof: If ρijkl were separable for a given bipartition
A1 −A2, it could be written as a convex combination of
pure product states |µA1〉〈µA1 | ⊗ |νA2〉〈νA2 |, with |µA1〉,
|νA2〉 having definite number parity. But since they
are definite number parity pure states in a single par-
ticle space of dimension d ≤ 3, they are necessarily a
Slater determinant or quasiparticle vacuum, as discussed
above. Consequently, ρijkl can be written as a convex
combination of Slater determinant or quasiparticle vacua
|µA1νA2〉〈µA1νA2|, of definite number parity, entailing
C(ρijkl) = 0. Thus, C(ρijkl) > 0 ensures that any bipar-
tition of HA is entangled, for any choice of single particle
or quasiparticle basis of this subspace.

III. APPLICATION TO A FINITE PAIRING

SYSTEM

A. Exact results

We now consider a fermion system with a single par-
ticle space H of finite dimension 2Ω, spanned by Ω or-
thogonal single particle states k and the corresponding
Ω time-reversed states k̄. We consider in such space a
pairing Hamiltonian of the form

H =
∑

k

εk(c
†
kck + c†

k̄
ck̄)−

∑

k,k′

Gkk′c†k′c
†

k̄′
ck̄ck , (21)



5

where εk are the single particle energies (the same for k
and k̄ states) and the pairing interaction moves pairs of
fermions from k, k̄ to k′, k̄′. We will focus on an equally
spaced single particle spectrum εk+1 − εk = ε ∀ k, with
a constant coupling strength Gkk′ = G ≥ 0 ∀ k, k′, and
examine the half-filled case where the number of fermions
is N = Ω, with Ω even.
The exact ground state will then be a linear combina-

tion of Slater Determinants with fixed fermion number
N and fully occupied or empty pairs (k, k̄):

|Ψ〉 =
∑

ν

αν [
∏

k

(c†kc
†

k̄
)n

ν
k ]|0〉 , (22)

where nν
k = 0, 1 indicates the occupation of pair k, k̄

(
∑

k n
ν
k = N/2) and ν = 1, . . . ,

(

Ω
N/2

)

runs over these

Slater Determinants (
∑

ν |α2
ν | = 1). This state leads to a

single particle density matrix which remains strictly di-

agonal in the unperturbed single particle basis: 〈c†kck̄′〉 =
0 ∀ k, k′ and

〈c†kck′ 〉 = 〈c†
k̄
ck̄′〉 = δkk′fk , (23)

where fk = 〈c†kck〉 = 〈c†
k̄
ck̄〉 =

∑

ν |α2
ν |nν

k is the average

occupation of single particle state k or k̄ in the exact
ground state (22) (2

∑

k fk = N). Since no off-diagonal
terms arise, these fk are the eigenvalues of ρsp.

1. One-body entanglement entropy and global bipartite
entanglement

The exact one-body entanglement entropy (2) then be-
comes

E(|Ψ〉) = 2
∑

k

h(fk) , (24)

where h(fk) = −fk log2 fk − (1 − fk) log2(1 − fk) repre-
sents the entropy S(ρk) of the single mode density [Eq.
(15)]

ρk = ρk̄ =

(

fk 0
0 1− fk

)

, (25)

i.e., the single mode entropy. We remark that for the
exact ground state, E(|Ψ〉) = Eqsp(|Ψ〉) since |Ψ〉 has a
fixedN . We also note that h(fk) is an increasing function
of the occupation number fluctuation

〈n2
k〉 − 〈nk〉2 = fk(1− fk) =

1
4S2(ρk) , (26)

where S2(ρ) = 2Tr [ρ(1− ρ)] is the quadratic (also called
linear) entropy. Eq. (26) is then also a measure of single
mode entanglement. The relation between entanglement
and fluctuations (and also higher order cumulants) has
been discussed in detail in [47].
A plot of (24) for the exact ground state (obtained by

diagonalization of H) of a system with 2Ω = 32 single

Exact
BCS
D�g

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

G�ε

E
�2
W

FIG. 1. Intensive one body entanglement entropy
E(|Ψ〉)/(2Ω) (Eq. (24), dimensionless), in the ground state
of the Hamiltonian (21) as a function of the (dimensionless)
scaled coupling strength G/ε (ε is the single particle level
spacing) for 2Ω = 32 single particle levels and N = Ω. Ex-
act and BCS results are depicted. The scaled BCS gap ∆/g,
with g = GΩ/2, is also shown. All quantities approach 1 for
G/(Ωε) → ∞. BCS results vanish for G < Gc. Quantities
plotted are dimensionless in all figures.

particle states is depicted in Fig. 1. This entropy, which
measures the deviation of (22) from a Slater determinant,
is seen here to be a direct indicator of pairing correlations,
becoming nonzero for all G > 0 and large in the BCS
superconducting phase G > Gc (see III B). Its behavior
for G > Gc resembles in fact that of the scaled BCS
gap ∆/G (also depicted). Pairing correlations smooth
out the original Fermi surface, leading to finite average
occupations 0 < fk < 1/2 for single particle levels above
the Fermi level, which increase with increasing G, and
1/2 < fk < 1 for levels below the Fermi level, which
decrease with increasing G. Then each term h(fk) in
the sum (24) increases as G increases, giving rise to the
previous behavior of E(|Ψ〉). While for G > Gc these
effects can be correctly described with the BCS approach,
in a finite system pairing effects in the exact ground state
become also visible within the weak coupling sector 0 <
G < Gc, where BCS results vanish. For any G > 0 and
finite Ω, the coupling will mix all states in the expansion
(22), leading to αν > 0 ∀ ν and hence to 0 < fk < 1
∀ k. The state (22) will then cease to be a strict Slater
determinant as soon as G increases from 0 (see also end
of Appendix C).

As seen in Fig. 2, the increase with G of the single mode
entropies h(fk) will obviously be initially more rapid for
levels close to the Fermi level, since their occupation will
be more strongly affected by the coupling. The occu-
pation number fluctuation fk(1 − fk) rapidly increases
for these levels, leading to a larger h(fk). The finite
value of E(|Ψ〉) for 0 < G < Gc is precisely due to the
non-negligible contributions h(fk) from levels close to the
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FIG. 2. The entanglement entropy Sk = S(ρk) = h(fk) of a
single particle mode k with the rest of the system, for a level
closest to the Fermi level (k = Ω/2) (a) and most distant from
the Fermi level (k = 1) (b), in the system of Fig. 1. Exact
and BCS results are depicted.

Fermi-level (curve (a) in Fig. 2). Nonetheless, for suffi-
ciently large G all levels reached by the coupling become
significantly affected.
In the strong pairing limit G ≫ Ωε, E(|Ψ〉) and all

h(fk) saturate for N = Ω, reaching their upper bounds:
In this limit each term in the sum (22) will have the same
weight, implying, for N = Ω,

αν →
G/(Ωε)→∞

1
√

(

Ω
Ω/2

)

. (27)

Eq. (27) leads to fk → 1/2 and hence to h(fk) → 1
∀ k (entailing maximum fluctuation fk(1 − fk) → 1/4),
implying E(|Ψ〉) → 2Ω.
The entanglement generated by the pairing correla-

tions can also be seen at the bipartite level, by consider-
ing the bipartition of the full single particle space formed
by the Ω single particle states k and the Ω single particle
states k̄ (H = HΩ ⊕HΩ̄). For such partition the expres-
sion (22) is already the Schmidt decomposition of |Ψ〉,
since each term in the sum involves orthogonal Slater
Determinants at each side. The associated entanglement
entropy is then

EΩ−Ω̄(|Ψ〉) = −
∑

ν

|α2
ν | log2 |α2

ν | . (28)

At the BCS level, this entropy is, remarkably, just half
the one-body entropy (24) (see Eq. (43)). In the exact
result, this relation holds approximately for finite Ω. Eq.
(28) also increases with increasing G/ε and saturates for
G/(Ωε) → ∞, where it reaches its upper bound com-

patible with a fixed N : Emax
Ω−Ω̄

= log2
(

Ω
Ω/2

)

for N = Ω.

When scaled to its maximum value, EΩ−Ω̄/E
max
Ω−Ω̄

lies in

fact very close to E(|Ψ〉)/(2Ω), as seen in Fig. 3. Note

also that for large Ω, i.e. for a system with a large num-
ber N = Ω of particles, log2

(

Ω
Ω/2

)

≈ Ω at leading order,

which is half the saturation value of E(|Ψ〉). This entails
EΩ−Ω̄ = 1

2E(|Ψ〉) in this limit, as in BCS.

E�2W

E �Em-
W-W

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
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�E

m

FIG. 3. The exact intensive one-body entanglement entropy
(solid line) together with the bipartite Ω−Ω̄ entanglement en-
tropy (28) between all modes k and their time-reversed part-
ners k̄ (dashed line), scaled to its maximum value, in the
system of Fig. 1. In BCS these two quantities are identical.

2. Entanglement of reduced states

Regarding now the reduced state ρkk̄ of a pair of modes
(k, k̄), just the outer 2× 2 even parity block in Eq. (16),

involving here the states |0〉 and c†kc
†

k̄
|0〉, will be nonzero,

since the exact ground state contains no broken pairs

and hence 〈c†kckck̄c
†

k̄
〉 = 0 = 〈c†

k̄
ck〉 = 〈ckck̄〉. Since

〈c†kc
†

k̄
ck̄ck〉 = fk, this block will then be identical to (25),

implying, ∀ k,

S(ρkk̄) = S(ρk) = S(ρk̄) = h(fk) . (29)

Thus, there is a classical-like correlation between single
particle modes k and k̄, captured by the mutual informa-
tion

Ikk̄ = S(ρk) + S(ρk̄)− S(ρkk̄) = h(fk) , (30)

which is then identical to the single mode entropy.
Nonetheless, there is no entanglement between them

since ρkk̄ is diagonal in the basis {c†kc
†

k̄
|0〉, |0〉} (this

also shows that Eqsp(ρkk̄) = E(ρkk̄) = 0, as previously
stated).
We can also omit states with broken pairs in the

reduced density matrix of four single particle modes
(kk̄, k′k̄′), k 6= k′. The (16 × 16) matrix ρkk̄k′k̄′ then
reduces to an effective 4× 4 non-zero block ρr

kk̄k′k̄′
, with

support on the even number parity states {c†kc
†

k̄
c†k′c

†

k̄′
|0〉,
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c†kc
†

k̄
|0〉, c†k′c

†

k̄′
|0〉, |0〉}:

ρrkk̄k′k̄′ =









〈nkk̄nk′k̄′〉 0 0 0

0 〈nkk̄ñk′k̄′〉 〈c†kc
†

k̄
ck̄′ck′〉 0

0 〈c†k′c
†

k̄′
ck̄ck〉 〈ñkk̄nk′k̄′ 〉 0

0 0 0 〈ñkk̄ñk′k̄′〉









(31)

Here nkk̄ = c†kckc
†

k̄
ck̄, ñkk̄ = ckc

†
kck̄c

†

k̄
are non-zero iff the

pair (k, k̄) is fully occupied or empty respectively. In con-
trast with ρkk̄, ρkk̄k′k̄′ will contain quantum correlations
due to the nonzero off-diagonal element.
Its fermionic concurrence Ckk′ ≡ C(ρkk̄k′k̄′), which

determines the entanglement of formation E(ρkk̄k′k̄′ ) =
Eqsp(ρkk̄k′k̄′) through Eq. (19), becomes, using Eq. (20),

Ckk′ = 2Max[|〈c†kc
†

k̄
ck̄′ck′ 〉| −

√

〈nkk̄nk′k̄′〉〈ñkk̄ñk′k̄′ 〉, 0] ,
(32)

which will be non-zero for G > 0. Eq. (32) also represents
here the bipartite concurrence [46] between modes kk̄ and
k′k̄′, where each “side” is analogous to a qubit (it can
be either empty or fully occupied in the ground state),
forming together a two-qubit system (see Appendix C).
The associated bipartite entanglement of formation is
just Ekk′ = Eqsp(ρkk̄k′k̄′ )/4. Thus, the fermionic en-
tanglement of ρkk̄k′k̄′ can be directly identified here with
a bipartite entanglement. It is also verified, by simple
use of Wick’s theorem, that Ckk′ vanishes identically in
the BCS approximation (see next section), so that this
entanglement lies strictly beyond the standard BCS de-
scription, in contrast with previous quantities. As stated
before, Ckk′ vanishes for all fermionic gaussian states,
which include in particular the BCS ground state. A
finite concurrence requires sufficiently strong two-body
correlations.
As seen in Fig. 4, Ekk′ exhibits, remarkably, a promi-

nent peak in the vicinity of the BCS superconducting
transition region G ≈ Gc for the pair of levels closest
to the Fermi level, becoming then small for G ≫ Gc.
This peak is obviously also present in the concurrence
Ckk′ (Ekk′ is just an increasing function of Ckk′ ), and its
height rapidly decays for levels k, k′ not too close to the
Fermi surface, disappearing for distant levels.
The previous behavior can be understood by analyz-

ing first the strong superconducting limit G/(Ωε) → ∞,
where ρr

kk̄k′k̄′
will be independent of k, k′, according to

Eq. (27): The diagonal terms 〈nkk̄nk′k̄′ 〉 and 〈ñkk̄ñk′k̄′〉
in (31), which are the probabilities of finding both pairs
fully occupied or empty become, for N = Ω/2,

〈nkk̄nk′k̄′〉 = 〈ñkk̄ñk′k̄′〉 = (Ω−2
Ω/2)
( Ω
Ω/2)

= Ω−2
4(Ω−1) , (33)

while all elements of the inner block become equal,

〈nkk̄ñk′k̄′〉 = 〈ñkk̄nk′k̄′〉 = 〈c†kc
†

k̄
ck̄′ck′〉 = ( Ω−2

Ω/2−1)
( Ω
Ω/2)

= Ω
4(Ω−1) ,

(34)
implying it will have a single non-zero eigenvalue Ω

2(Ω−1) .

a

b

c
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0.1
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FIG. 4. Entanglement of formation Ekk′ determined by the
concurrence (32) between the modes kk̄ and k′k̄′, for pairs
closest (k = Ω/2, k′ = k+1) (a) and most distant (k = 1, k′ =
Ω) (b) to the Fermi level, and also for pairs next to closest
(k = Ω/2 − 1, k′ = k + 3) (c), in the system of Fig. 1. The
BCS result for this quantity vanishes identically. The peak in
(a) occurs close to the BCS superconducting transition.

With Eqs. (33)–(34), Eq. (32) leads in this limit to

Ckk′ =
1

Ω− 1
, (35)

∀ k 6= k′, decreasing as Ω−1 for large Ω (i.e, for a
large number N = Ω of fermions) and implying Ekk′ ≈
1
2Ω

−2 log2(2Ω
√
e). Eq. (35) is in agreement with the re-

sult for fully connected systems [48] and the monogamy
property of the concurrence [49, 50] (

∑

k′ 6=k C
2
kk′ ≤

C2
k,{k′ 6=k}). All ρr

kk̄k′k̄′
become equally entangled in this

limit for k 6= k′, implying that Ckk′ should scale with
Ω−1 for large Ω.

Thus, for not too small Ω, monogamy prevents a sig-
nificant entanglement between pairs kk̄ and k′k̄′ in the
strong superconducting regime. In contrast, at the onset
of superconductivity (G ≈ Gc) just the levels k, k

′ closest
to the Fermi level are affected by the pairing correlations,
originating the initial increase and ensuing peak in the
corresponding Ckk′ and Ekk′ . As G increases further,
Ckk′ becomes appreciable for an increasing number of
pairs k 6= k′ around the Fermi level and the highest Ckk′

must then decrease to comply with monogamy require-
ments. For large Ω, Ckk′ is then significant only for k, k′

close to the Fermi level and just at the transition region,
rather than at the strong superfluid regime.

In the latter, correlations between modes kk̄ and k′k̄′

in the reduced state ρkk̄k′k̄′ do exist, but lead just to a
finite mutual information Ikk′ and finite quantum discord
Dkk′ (see appendix C), as shown in Fig. 5. In the limit
G/(Ωε) → ∞, Eqs. (33)–(34) lead to S(ρr

kk̄k′k̄′
) ≈ 1

2 (3 −
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FIG. 5. The mutual information (36) (top) and the quantum
discord (bottom) between modes kk̄ and k′k̄′, for pairs closest
(a) and most distant (b) to the Fermi level, in the system of
Fig. 1. Both quantities are significant in the superconducting
phase. The BCS estimate is now non-vanishing for G > Gc.

Ω−1) for large Ω, implying that the mutual information

Ikk′ ≡ S(ρkk̄) + S(ρk′k̄′)− S(ρkk̄k′k̄′ )

= h(fk) + h(fk′)− S(ρrkk̄k′k̄′ ) , (36)

approaches in this limit a finite common value ≈ 1
2 (1 +

Ω−1) for all k 6= k′. Both Ikk′ and Dkk′ are initially obvi-
ously larger for pairs k, k′ close to the fermi level, in which
case they develop a moderate peak at the transition re-
gion, but remain significant for G ≫ Gc since they are
not restricted by a monogamy property [42]. And in con-
trast with Ekk′ , they can be correctly estimated through
BCS. The finite value of the discord (whose calculation
details and asymptotic expression are discussed in Ap-
pendix C) indicates that in the strong pairing regime, the
correlations between pairs kk̄ and k′k̄′, while not lead-
ing to a significant entanglement of the reduced state,
are not fully classical either. As seen from Eqs. (31)–
(34), ρr

kk̄,k′k̄′
does not become diagonal in a product ba-

sis, having instead a maximally entangled non-degenerate
eigenstate in the inner block, which leads to the previous
non-classical effect (finite discord).
In the smallest non-trivial case Ω = 2, ρkk̄k′k̄′ = |Ψ〉〈Ψ|

becomes pure (k = 1, k′ = 2). Hence, the discord co-
incides with Ekk′ , which in turn becomes proportional

the one-body entanglement entropy and also the entropy
(28): Dkk′ = Ekk′ = EΩ−Ω̄ = E(|Ψ〉)/4 = h(fk) =
h(f ′

k), where fk and fk′ = 1 − fk are the (two-fold de-
generate) eigenvalues of ρsp (see end of Appendix C). All
previous measures then collapse to a single value.

B. The BCS description

1. Standard treatment

As is well known, the BCS approximation to the
ground state of Hamiltonian (21) relies on a state of the
form [45, 51]

|BCS〉 = [
∏

k

(uk + vkc
†
kc

†

k̄
)]|0〉, (37)

for even N , where |u2k| + |v2k| = 1. Such state is the
vacuum of quasiparticle fermion operators

ak = ukck − vkc
†

k̄
, ak̄ = vkc

†
k + ukck̄ , (38)

satisfying ak|BCS〉 = ak̄|BCS〉 = 0 together with fermion
anticommutation relations. The coefficients minimizing
〈H〉 = 〈BCS|H |BCS〉 under a fixed 〈N〉 = 2

∑

k |v2k| con-
straint can be chosen real nonnegative, and are given by
uk
vk

=
√

λk±ε̃k
2λk

, where λk =
√

ε̃2k +∆2 are the quasiparti-

cle energies, ε̃k = εk − µ, with µ the chemical potential
and ∆ = G

∑

k〈ck̄ck〉 is the BCS gap (we have dismissed
minor effects in ε̃k stemming from self-energy terms). For
〈N〉 = Ω and a uniformly spaced spectrum, µ = 1

Ω

∑

k εk.
As 〈ck̄ck〉 = ukvk = ∆/(2λk), ∆ is determined by the

gap equation

∆ = G∆
∑

k

1

2λk
. (39)

The superconducting phase corresponds to the non-
trivial solution ∆ > 0, which arises for G > Gc with

Gc =
2

∑

k
1

|ε̃k|

≈ ε

ln(Ω/2) + γ
, (40)

where the last expression holds for large Ω in the equally

spaced case (γ = −Γ′[1/2]
Γ[1/2] ≈ 1.96). For G < Gc, ∆ = 0.

While Eqsp(|BCS〉) = 0 ∀ G, as |BCS〉 is a quasiparticle
vacuum, the one-body entanglement entropy

E(|BCS〉) = tr [h(ρspBCS)] = 2
∑

k

h(fk) , (41)

is finite for G > Gc and provides an excellent approx-
imation to the exact E(|Ψ〉) = Eqsp(|Ψ〉) in the su-
perconducting phase, as seen in Fig. 1. Here ρspBCS =
〈BCS|1−cc

†|BCS〉 is the BCS single particle density ma-
trix, which is diagonal in the unperturbed single particle

basis, with eigenvalues fk = 〈c†kck〉 = 〈c†
k̄
ck̄〉 given by

fk = |v2k| =
1

2
(1− ε̃k

λk
) . (42)
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For G < Gc, v
2
k = 1 (0) for levels below (above) the

Fermi level and (41) vanishes, whereas for G > Gc, v
2
k ∈

(0, 1), smoothing the Fermi surface and leading to a finite
value of (41). This indicates the departure of (37) from a
standard Slater determinant. For G/(Ωε) → ∞ and N =
Ω, Eq. (39) leads to ∆ ≈ GΩ/2 and v2k ≈ 1

2 (1 − ε̃k/∆),

implying E(|BCS〉) ≈ 2Ω[1 −
∑

k ε̃2k
2Ω∆2 ln 2 ], which saturates

in the limit.
Eq. (42) also provides a good approximation to the

single mode entropies S(ρk) = h(fk), as seen in Fig. 2.
As stated before, each term h(fk) is an increasing func-
tion of the occupation number fluctuation fk(1 − fk),
which in BCS becomes u2kv

2
k. And the quadratic one-

body entanglement entropy S2(ρ
sp) = 4 tr [ρsp(1−ρsp)] =

8
∑

k u
2
kv

2
k is in BCS just twice the total number fluctu-

ation 〈N2〉 − 〈N〉2 [45]. Of course, this relation is not
valid in the exact ground state, for which the number
fluctuation is strictly zero.
The BCS state (37) does not have a fixed fermion num-

ber but has a definite (positive) number parity. It is in

fact of the same form (22) with αν =
∏

k v
nν
k

k u
1−nν

k

k and
nν
k = 0, 1 independent variables, such that ν = 1, . . . , 2Ω.

Thus, the entanglement entropy (28) between all modes k
and all modes k̄ reduces to the entropy of a product of Ω
independent density operators with eigenvalues |v2k| = fk
and |u2k| = 1− fk. Hence,

EΩ−Ω̄(|BCS〉) =
∑

k

h(fk) =
1

2
E(|BCS〉) . (43)

A similar relation holds approximately in the exact result
(Fig. 3). An entropy similar to (43) was defined in [20]
for the BCS state and analyzed in the continuous limit.
Considering now the reduced state of levels (kk̄),

BCS leads (using Wick’s theorem [45]) to 〈c†kckck̄c
†

k̄
〉 =

〈c†kck〉〈ck̄c
†

k̄
〉 − 〈c†kc

†

k̄
〉〈ck̄ck〉 = v2ku

2
k − (ukvk)

2 = 0 and

〈c†kc
†

k̄
ck̄ck〉 = v4k + (ukvk)

2 = fk, as in the exact case.

Hence, Eqs. (29)–(30) remain valid in BCS with fk given
by (42).
Differences arise, however, in the four level density ma-

trix (31), since Wick’s theorem implies that all quan-
tities will be a function of the fk. For k 6= k′ we
have 〈nkk̄nk′k̄′〉 = 〈nkk̄〉〈nk′ k̄′〉, 〈nkk̄ñk′k̄′ 〉 = 〈nkk̄〉〈ñk′ k̄′〉
and 〈ñkk̄ñk′k̄′〉 = 〈ñkk̄〉〈ñk′ k̄′〉, with 〈nkk̄〉 = v2k = fk,

〈ñk〉 = u2k = 1 − fk ≡ f̃k and 〈c†kc
†

k̄
ck̄′ck′〉 = ukvkuk′vk′ .

Hence, in BCS Eq. (31) becomes

ρrBCS
kk̄k′k̄′ =













fkfk′ 0 0 0

0 fkf̃k′

√

fkf̃kfk′ f̃k′ 0

0

√

fkf̃kfk′ f̃k′ f̃kfk′ 0

0 0 0 f̃kf̃k′













.

(44)
It then has always just three non-zero eigenvalues (fkfk′ ,

f̃kf̃k′ and fkf̃k′ + f̃kfk′), which in the exact state occurs
exactly only for G/(Ωε) → ∞. These expressions lead

to |〈c†kc
†

k̄
ck̄′ck′〉| =

√

〈nkk̄nk′k̄′ 〉〈ñkk̄ñk′k̄′〉 and hence to

Ckk′ = 0 ∀ ∆ and k 6= k′, as previously stated. BCS
cannot reproduce the concurrence (32) since the latter
vanishes in any gaussian state, and hence for any |Ψ〉
which is a Slater determinant or quasiparticle vacuum,
like the BCS state (37). A finite concurrence requires
sufficiently strong two-body correlations, in order to have
a positive difference in (32).
Nonetheless, BCS still leads to a good estimate of

S(ρkk̄k′k̄′ ) and of both the mutual information Ikk′ and
quantum discord Dkk′ in the superconducting phase G >
Gc, as seen in Fig. 5. Moreover, for G/(Ωε) → ∞, fk →
1/2 ∀ k, and the exact limits Ikk′ = 1/2, S(ρkk′ ) = 3/2

and Dkk′ = 3
2 −3 log2 3

4 (see Appendix C) are obtained for
large Ω.

2. Number projected treatment

One could now ask how the finite value of the con-
currence Ckk′ can be predicted in a BCS-based scheme.
The answer lies, of course, in the number projected BCS
approximation [45], based on the state

PN |BCS〉 ∝
∑

ν

[

∏

k

v
nν
k

k u
1−nν

k

k (c†kc
†

k̄
)n

ν
k

]

|0〉 , (45)

where PN = 1
2π

∫ 2π

0 e−iφ(N̂−N)dφ is the projector onto
fixed (even) fermion number N , nν

k = 0, 1 and now
∑

k n
ν
k = N/2, with ν = 1, . . . ,

(

Ω
N/2

)

(the nν
k are no

longer independent variables). The state (45) has the
same form as the exact state (22), but with specified co-

efficients αν =
∏

k v
nν
k

k u
1−nν

k

k .
While projection after variation already improves BCS

in the superconducting phase, projection before variation
can properly describe also the normal sector G < Gc,
where standard BCS estimates vanish for all correlation
measures. We consider here a simple approach where the
form of the coefficients uk and vk in (45) is the same
as in standard BCS, but ∆ is left as a variational pa-
rameter to be determined from the minimization of the
projected average energy 〈H〉N = 〈BCS|PNH|BCS〉

〈BCS|PN |BCS〉 . Full

self-consistent methods can also be employed [52].
As seen in Fig. 6, such an approach is sufficient to

predict a finite concurrence Ckk′ , which fairly reproduces
the exact result, including the peak for pairs kk̄, k′k̄′ close
to the fermi level. The essential reason is that for ∆ > 0,
the projected state (45) is no longer gaussian, i.e. it is not
a quasiparticle vacuum nor a Slater determinant, and
Wick’s theorem no longer holds. It contains two-body
correlations and has in fact a very high overlap with the
exact ground state (22).
The effective ∆ obtained with projection before vari-

ation is positive for all G > 0 and exhibits a smooth
increase with increasing G, so that (45) will also lead
to quite accurate estimates of all other quantum corre-
lation measures shown in Figs. 1-3 and 5, including the
interval 0 < G ≤ Gc, as seen in the bottom panel of
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FIG. 6. Top: Entanglement of formation Ekk′ between modes
kk̄ and k′k̄′ for pairs closest to the Fermi level according to
exact and projected BCS results, in the system of Fig. 1. Bot-
tom: The corresponding one body entanglement entropy. The
projected BCS result is accurate for all values of G, although

the difference ∆E

2Ω
= (EBCSP−EExact)

2Ω
, depicted in the inset, is

also maximum at the transition region.

Fig. 6 for the one-body entanglement entropy. It is also
noticed that the transition region G ≈ Gc, where Ckk′

exhibits its peak, is precisely that where the discrepancy
between the exact and the projected BCS predictions is
most significant, as seen in the inset.

IV. CONCLUSIONS

We have analyzed in detail the behavior of general
fermionic entanglement measures in the exact ground
state of a finite superconducting system. The one-
body entanglement entropy, which represents the min-
imum distance (as measured by the relative entropy) to
a fermionic gaussian state, is seen to be here a close in-
dicator of pairing correlations, saturating in the strong
coupling limit and behaving like a scaled BCS gap. It is
practically proportional to the bipartite entanglement en-
tropy between all single particle modes k and their time
reversed partners k̄, being exactly proportional at the
BCS level. BCS provides in fact a good estimation of
these entropies in the whole superconducting phase.
In contrast, the entanglement of a subset of fermionic

modes, determined in general by a mixed reduced state
with no fixed fermion number, can exhibit a quite dif-
ferent behavior. The first non-trivial case was shown to
be that of four single particle modes k, k̄, k′, k̄′, whose
entanglement of formation can be evaluated through the
fermionic concurrence and can be interpreted as a bi-
partite mode entanglement. This entanglement vanishes
identically in BCS as well as in any fermionic gaussian
state. In the exact ground state it shows instead a peak in
the vicinity of the superconducting transition region for
single particle states k, k′ close to the Fermi level, which
are those most affected by the coupling at the onset of
the transition, possessing then a larger occupation num-
ber fluctuation in this region. The concurrence becomes
then small in the strong coupling regime for not too small
Ω due to monogamy restrictions. Hence, it is here an indi-
cator of the transition, reflecting the increased complex-
ity of the exact ground state in this region. It requires at
least a number projected BCS treatment for its approx-
imate description. We have also shown that while not
significantly entangled, these four modes do remain cor-
related in the strong coupling regime, exhibiting there
a finite mutual information and quantum discord, due
the non-zero off diagonal terms in the density matrix,
and showing for this reason a less noticeable peak at the
transition region. The present results provide then new
insights into the relation between fermionic entanglement
and superconducting correlations.
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Appendix A: Minimum relative entropy

Given two density operators ρ, ρ′ for a given system,
the relative entropy (8) can be written as [43, 44]

S(ρ||ρ′) = −Tr[ρ log2 ρ
′]− S(ρ) , (A1)

where S(ρ) = −Tr[ρ log2 ρ] is the von Neumann entropy.
It satisfies S(ρ||ρ′) ≥ 0, with S(ρ||ρ′) = 0 iff ρ = ρ′ [43].
Let us now consider a ρ′ of the form

ρ′ = Z−1 exp[−
m
∑

ν=1

λνOν ] , (A2)

where Z = Tr exp[−∑

ν λνOν ] and {Oν , ν = 1, . . . ,m}
is an arbitrary set of m linearly independent operators
(hermitian or comprising both Oν and O†

ν). This form
of ρ′ is that which maximizes the entropy S(ρ′) subject
to the constraint of fixed expectation values 〈Oν〉, ν =
1, . . . ,m. It is easy to show that for fixed ρ,

Min
{λν}

S(ρ||ρ′) = S(ρ′)− S(ρ) , (A3)
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with the minimum reached for those λν satisfying

Tr [ρ′Oν ] = Tr [ρOν ], ν = 1, . . . ,m , (A4)

i.e., for that ρ′ which reproduces the expectation values
determined by ρ of all operators Oν of the chosen set.
Proof: Setting 〈Oν〉ρ ≡ Tr [ρOν ], we obtain, from Eqs.
(A1)–(A2),

S(ρ||ρ′) = 1

ln 2
(

k
∑

ν=1

λν〈Oν〉ρ + lnZ)− S(ρ) . (A5)

As ∂ lnZ
∂λν

= −〈Oν〉ρ′ , equations ∂
∂λν

S(ρ||ρ′) = 0 lead to

〈Oν〉ρ′ = 〈Oν〉ρ , ν = 1, . . . ,m (A6)

in which case Eq. (A5) reduces to Eq. (A3).
It then follows that S(ρ′) ≥ S(ρ), with S(ρ′) = S(ρ)

iff ρ′ = ρ. The minimum relative entropy is then a mea-
sure of the information contained in ρ that cannot be
contained in any operator of the form (A2). If ρ is pure
and the operators Oν comprise the full set of one-body

operators c†icj , (A3) leads to Eq. (10) provided traces are
taken in the grand canonical ensemble. Similarly, if the

Oν also include the operators cicj and c†i c
†
j , (A3) leads

to Eq. (13) (again in the full grand canonical ensemble).

Appendix B: Fermionic concurrence of four single

particle states

Labeling the four single particle states i, j, k, l

as 1, 2, 3, 4, and setting |0̄〉 ≡ c†1c
†
2c

†
3c

†
4|0〉, with

|0〉 the fermionic vacuum, the operator T in
R(ρijkl) in Eq. (20) is represented, in the basis

{|0〉, c†1c†2|0〉, c†1c†3|0〉, c†1c†4|0〉,−|0̄〉, c2c1|0̄〉, c3c1|0̄〉, c4c1|0̄〉},
by the matrix [27]

T =

(

0 I4
I4 0

)

.

The same matrix holds for an odd parity state ρijkl in the

basis {c†1|0〉, c†2|0〉, c†3|0〉, c†4|0〉, c1|0̄〉, c2|0̄〉, c3|0̄〉, c4|0̄〉}.

Appendix C: Four modes reduced states as

two-qubit states and quantum discord

The ground state in (22) is a superposition of states
where pairs of modes kk̄ are either fully occupied or
empty. Following ref. [31], we could think of such pairs
as even-parity qubits and use this representation to see
the reduced state (31) of the four modes kk̄, k′k̄′, as a
mixed two-qubit state. From lemma 1 of [31] it then fol-
lows that the fermionic concurrence (32) is the Wootters
concurrence [46] of these two qubits.

Furthermore, fermion operators analogous to the Pauli
matrices can be introduced for these qubits, so that any
local operation can be described in terms of them:

σ̃x
k = c†kc

†

k̄
+ ck̄ck (C1)

σ̃y
k = −i(c†kc

†

k̄
− ck̄ck) (C2)

σ̃z
k = c†kck + c†

k̄
ck̄ − 1. (C3)

It is verified that these operators satisfy [σ̃µ
k , σ̃

ν
k′ ] =

2iδkk′ǫµνγ σ̃
γ
k and (σ̃µ

k )
2|ψ〉k = |ψ〉k for any even parity

state |ψ〉k of the pair kk̄. In terms of these operators any
mixed state of these two qubits can be written as

ρkk′ = ρkρk′ +
1

4
Cµνσ

µ
kσ

ν
k′ , (C4)

ρk =
1

2
(1 + rkµσ

µ
k ), (C5)

where rkµ = 〈σµ
k 〉 and Cµν = 〈σµ

kσ
ν
k′ 〉 − 〈σµ

k 〉〈σν
k′ 〉 is the

correlation tensor of the state. This representation turns
out to be convenient to evaluate the quantum discord
[53].
Recall that the quantum discord D(A|B) of a state

ρAB of a bipartite system of distinguishable constituents
A, B can be defined as the minimum difference of two
quantum extensions of the conditional entropy [38–40],

D(A|B) = Min
{Πj}

S(A|B{Πj})− [S(ρAB)− S(ρB)] ,(C6)

S(A|B{Πj}) =
∑

j

pjS(ρA/Πj
) , (C7)

where ρA(B) = TrB(A)ρAB is the reduced state of subsys-
tem A(B), the set {Πj} describes a local measurement on
B, pj = Tr [ρABΠj ] is the probability of result j in that

measurement and ρA/Πj
= p−1

j TrB[ρABΠj ] the condi-
tional state of A after such result is obtained. Evaluating
D(A|B) then requires to find the minimum over all local
measurements of the conditional entropy S(A|B{Πj}).
For a two qubit state and for a projective measurement

along direction k in the Bloch sphere of qubit B, the
conditional entropy (C7) reads, explicitly,

S(A|Bk) =
∑

µ=±,ν=±

pνkf(λ
µ
νk), (C8)

where f(x) = −x log2 x, pνk = 1
2 (1 + νrB · k) are the

probabilities of the two possible results of such measure-
ment and

λµνk = 1
2 (1 + µ|rA + ν Ck

1+νrB ·k |)

the eigenvalues of the ensuing conditional state ρA/νk of
qubit A. It was shown in ref. [53] that in the weakly
correlated regime, the measurement minimizing (C8) is
determined essentially by the direction of one of the sin-
gular vectors of the correlation tensor C.
Our interest here is in the state (31), which in the

present notation is an X-type state symmetric under
rotations around the z axis. It has marginal vectors
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rk(k′) parallel to the singular vector zk(k′) of C, i.e.,
rk = (0, 0, rkz) with rkz = 2〈nkk̄〉 − 1, and a correlation
tensor already diagonal in the chosen basis, with

Cxx = Cyy = 2〈c†kc
†

k̄
ck̄′ck′ 〉, (C9)

Czz = 4(〈nkk̄nk′k̄′〉 − 〈nkk̄〉〈nk′ k̄′〉) . (C10)

Therefore, the minimizing measurement in the weakly
correlated limit can be a projective measurement either
along z or along any vector k in the xy plane. Beyond
weak correlation, it is easy to show that for this state
the previous projective measurements are still stationary.
Moreover, for reduced states obtained from the ground
state of the present pairing system, we have verified that
the minimum is always obtained for a measurement along
any vector k in the xy plane, which is precisely that
determined by the pairing correlations (Eq. (C9)).

We then obtain pνk = 1
2 and λµνk = 1

2 [1+µ
√

r2kz + C2
xx]

for both ν = ±. In particular, in the strong super-
conducting regime, Eqs. (33)–(34) lead to rkz = 0 and
Cxx = Ω

4(Ω−1) , in which case Eqs. (C6)–(C8) lead to

Dkk′ ≈ 1
2 (1−

log2 3
2 )(3 + Ω−1) , (C11)

for large Ω. The discord remains then finite in this limit.

The case N = Ω = 2. The case of N = 2 fermions in
Ω = 2 twofold degenerate levels is the smallest non-trivial
pairing system. The exact ground state of the Hamil-

tonian (21) for G ≥ 0 becomes just |Ψ〉 = (αkc
†
kc

†

k̄
+

αk′c†k′c
†

k̄′
)|0〉, with k = 1, k′ = 2, αk

k′

=
√

λ±ε
2λ and

λ =
√
ε2 +G2, which is entangled for G > 0 (i.e.,

it is not a Slater determinant nor a quasiparticle vac-
uum). The state (31) becomes obviously pure, with
〈nkk̄nk′k̄′ 〉 = 〈ñkk̄ñk′k̄′〉 = 0 and 〈nkk̄ñk′k̄′〉 = |α2

k|,
〈c†k′c

†

k̄′
ck̄ck〉 = αkα

∗
k′ = G/(2λ). The concurrence (32)

reduces to C = 2|αkαk′ |, i.e.,

Ckk′ =
|G|√
ε2 +G2

, (C12)

approaching 1 for G/ε → ∞, in agreement with the
limit (35) for Ω = 2. The quantum discord then co-
incides exactly with the bipartite entanglement entropy
Ekk′ , which here is just EΩ−Ω̄, and is exactly propor-
tional to the one-body entropy E(|Ψ〉) = h(ρsp): Dkk′ =
Ekk′ = S(ρkk̄) = S(ρk′k̄′) = EΩ−Ω̄ = E(|Ψ〉)/4 =
−∑

k |α2
k| log2 |α2

k| = h(fk) = h(fk′), with Ikk′ = 2Ekk′

and fk = |α2
k|, k = 1, 2, the eigenvalues (two-fold degen-

erate) of ρsp.
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