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Abstract

We study the zeta-function regularization of functional determinants of Laplace and Dirac-type oper-

ators in two-dimensional Euclidean AdS2 space. More specifically, we consider the ratio of determinants

between an operator in the presence of background fields with circular symmetry and the free operator

in which the background fields are absent. By Fourier-transforming the angular dependence, one obtains

an infinite number of one-dimensional radial operators, the determinants of which are easy to compute.

The summation over modes is then treated with care so as to guarantee that the result coincides with the

two-dimensional zeta-function formalism. The method relies on some well-known techniques to compute

functional determinants using contour integrals and the construction of the Jost function from scatter-

ing theory. Our work generalizes some known results in flat space. The extension to conformal AdS2

geometries is also considered. We provide two examples, one bosonic and one fermionic, borrowed from

the spectrum of fluctuations of the holographic 1
4 -BPS latitude Wilson loop.
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1 Introduction

The AdS/CFT correspondence is, in its simplest form, a strong/weak duality where weakly couple gravity

is equivalent to strongly coupled field theory [1]. For some time much of the effort was focused on this

window. Exploring and understanding the full power of the AdS/CFT correspondence requires the need

2



to go decisively beyond the leading order agreement. Going beyond the leading order is a time-honored

tradition in physics; it suffices to recall that the leading energy levels in the hydrogen atom can be obtained

using the Bohr model which lacks a proper description of the relevant degrees of freedom. Supersymmetric

localization techniques in field theory have now provided predictions for the gravity results beyond the

leading answer [2] setting the stage for systematic explorations beyond the leading order.

For general observables, semiclassical physics is our only systematic approach to probe the AdS/CFT

correspondence beyond the leading classical limit. The main precept of semi-classical physics consists

in integrating quadratic quantum fluctuations around a well-defined classical background. When we get

down to practical evaluations, however, we must face the sometimes messy process of treating divergences,

as typical of quantum field theory but now with the added intricacies of being in curved space-time.

Determining the semiclassical one-loop effective action is equivalent, by definition, to the computation of

determinants.

There are many situations in the AdS/CFT correspondence where one ends up comptuting determinants

in AdS2 and its generalizations. The original discussion of the holographic dual to the 1
2 -BPS Wilson loop

made used of AdS2 determinants for the first time [3]. The list of one-loop effective action problems that

can be tackled exploiting the fact that AdS2 is a homogeneous space is rather large. For example, it

naturally includes the one-loop effective actions of supersymmetric D3 and D5 branes dual to Wilson loops

in N = 4 SYM in the symmetric and anti-symmetric representations, respectively [4, 5]. Given that the

worldvolume of these configurations are AdS2×S2 and AdS2×S4, the one-loop effective actions reduce also

to determinants on AdS2 [6, 7, 8]. A similar class of one-loop effective action appears also in the context

of ABJM [9]. In the context of localization of supersymmetric field theories there have been some natural

appearances of AdS2 [10, 11, 12, 13]. Determinants of AdS2 operators have also figured prominently in

logarithmic corrections to the entropy of extremal black holes [14]. When the worldvolume geometry is not

AdS2 new methods need to be developed; we have recently discussed in fair detail the case of the 1
4 -BPS

holographic Wilson loop [15] using the results of the present paper.

Motivated by the above richness of applications, in this manuscript we discuss determinants of general

Laplace and Dirac operators in asymptotically AdS2 spacetimes. We use the regularization method chosen

par excellence in curved spaces: ζ-function regularization. These methods have a long an fruitful history,

dating back over four decades, starting with the pioneering works of [16, 17]; for a more complete list

of references see [18]. Much of our exposition and results follows quite closely the vast literature in the

subject of functional determinants which has a very solid branch anchored in the more mathematical
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tradition starting in [19]; for a more complete list of references see [20]. In the bulk of the paper we make

an effort to help the interested reader find the original versions of our arguments in the literature. We

owe a particularly great debt to the work of Dunne and Kirsten [21] from which we have borrowed even

the idea of the title of our manuscript. Our work could be simply described as an extension of theirs to

the case of asymptotically AdS2 spacetime rather than flat space. We have, nevertheless, chosen to be as

systematic and self-contained as possible in our presentation and results for the benefits of a string-theory

oriented exposition.

In order to avoid getting lost in technical details and to highlight our main results for the benefit of

the pragmatic reader, we will present the main results first and postpone their derivation for later.

The paper is organized as follows. In section 2 we summarize the main results of our work, namely, we

present ζ-function regularize of radial Laplace-like operators. In section 3 we present a number of explicit

examples. The systematic derivation of our results is developed in section 4. We conclude in section 5

where we also point out some interesting directions that can be pursued in relations to the current work.

2 Main results and discussion

2.1 Preamble

Throughout this paper we will work on the disk model of Euclidean AdS2 (or H2) with metric

ds2 = L2
(
dρ2 + sinh2 ρ dτ2

)
, ρ ≥ 0 , τ ∼ τ + 2π . (2.1)

For simplicity we set L = 1 but we will reinstate the radius in the final expressions. We are interested in

Laplace and Dirac-type operators defined in the geometry (2.1) in the presence of additional background

fields. Specifically, we consider operators of the form

O = −gµνDµDν +m2 + V , (bosons)

O = −i
(
/D + /∂Ω

)
− iΓ01 (m+ V ) +W , (fermions)

(2.2)

(2.3)

where the covariant derivative Dµ = ∇µ − iqAµ includes a U(1) gauge field. Here m and q are arbitrary

mass and charge parameters, respectively. It should be clear from the outset that, even though we use the

same notation, m, q, V and Aµ need not be the same for bosons and fermions. In the latter case we have

included an extra connection, dΩ (notice the absence of i, thus implying it cannot be gauged away), whose
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origin is motivated by thinking of these operators as coming from some other geometry that is conformal

to AdS2. We also clarify that W and V are not matrix-valued. Rather, they are scalar functions.

Our goal is to compute the ratio of determinants of the operators (2.2) and (2.3) with the corresponding

free operators obtained by setting Aµ = Ω = V = W = 0. For generic choices of the background fields, this

is an extremely difficult task and can only be handled on a case by case basis. Considerable progress can

be made, however, if one assumes circular symmetry. Consequently, we restrict ourselves to configurations

where Aρ = 0 and Aτ = A(ρ), as well as V = V (ρ), W = W (ρ) and Ω = Ω(ρ). The condition Aρ = 0 is

actually a gauge choice, while the remaining assumptions imply circular symmetry.

A recurring notion in the following sections is the regularity of the eigenfunctions of the operators

in question. Accordingly, the background fields must also be regular. Given the topology of AdS2, this

translates to

A(ρ) −→
ρ→0

ρ1+ε , ∂ρΩ(ρ) −→
ρ→0

ρε , ε ≥ 0 , (2.4)

so that the 1-forms A(ρ)dτ and ∂ρΩ(ρ)dρ are well-defined at the origin. At infinity the gauge field and

connection behave like

A(ρ) −→
ρ→∞

A∞ , ∂ρΩ(ρ) −→
ρ→∞

0 . (2.5)

On the other hand, the potentials are assumed to decay at least as

V (ρ) −→
ρ→∞

e−ρ

ρ2+ε
W (ρ) −→

ρ→∞

e−
ρ
2

ρ1+ε
. (2.6)

Simply put, the background fields must behave in such a way that all the integrals appearing below are

finite. These fall-off conditions imply that the operators become effectively free for large ρ,

O −→
ρ→∞

Ofree , (2.7)

except for the presence of a constant gauge field, which does not affect in any substantial way the validity

of the results.

The spectral problem at hand is intrinsically two-dimensional but the assumption of circular symmetry

reduces it to a one-dimensional calculation. Upon Fourier-transforming the τ dependence the relevant

radial operators become

Ol = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

(l − qA)2

sinh2 ρ
+m2 + V , l ∈ Z , (bosons)

Ol = −iΓ1

(
∂ρ +

1

2
coth ρ+ ∂ρΩ

)
+ Γ0

(l − qA)

sinh ρ
− iΓ01 (m+ V ) +W , l ∈ Z+

1

2
. (fermions)

(2.8)

(2.9)
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As a first attempt to reconstruct the full determinant one could write

ln
detO

detOfree

?
=

∞∑
l=−∞

ln
detOl

detOfree
l

. (2.10)

The trouble with this expression, however, is that, even though the ratio detOl
detOfree

l

is well defined, the sum

over Fourier modes typically diverges. To give it meaning one could, for example, regulate the sum by

imposing a sharp cutoff at |l| = Λ and subtract the divergent pieces. In some contexts, an underlying

symmetry might even cancel the divergences altogether. A cutoff regularization, however, might conflict

with symmetries of curved spaces, in particular diffeomorphism invariance, rendering this approach not

entirely satisfying. A more geometric approach is desirable.

One would like to insist on the idea of reconstructing the two-dimensional determinants as a product

over one-dimensional ones, since the latter are relatively easy to compute. The purpose of this work is to

provide a regularization scheme that coincides with the two-dimensional ζ-function formalism, that is,

ln
detO

detOfree
≡ −ζ̂ ′O(0)− ln(µ2)ζ̂O(0) , ζ̂O(s) ≡ ζO(s)− ζfree(s) , (2.11)

where µ is a mass scale that parametrizes the ambiguity in the renormalization of the determinant. The

same definitions apply to the radial operators Ol, although the renormalization scale is absent in one

dimension. For fermions, we define the determinant and ζ-function of the first order operator in terms of

the squared one as

detO ≡
(
detO2

) 1
2 , ζO(s) ≡ 1

2
ζO2(s) . (2.12)

In this context, the correct version of (2.10) is

ζO(s) =
∞∑

l=−∞
ζOl(s) . (2.13)

This relation is as usual generically not well-defined in the entire complex s-plane, only for large enough

Re s. The problem in the present work then boils down to finding the analytic continuation to s = 0 of

the whole sum and not each individual term separately.
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2.2 Results

Concerning the bosonic case, our main result is

ln
detO

detOfree
= ln

detO0

detOfree
0

+
∞∑
l=1

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l
ζ̂O(0)

)
− 2 (ln (µL) + γ) ζ̂O(0)

+

∫ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)
V − q2

∫ ∞
0

dρ
A2

sinh ρ

ζ̂O(0) = −1

2

∫ ∞
0

dρ sinh ρ V ,

(2.14)

where γ ≈ 0.57721 is the Euler-Mascheroni constant. In turn, the ratio of radial determinants for each

Fourier mode can be computed as

ln
detOl

detOfree
l

= lim
ρ→∞

ln
ψl(ρ)

ψfree
l (ρ)

, (2.15)

where ψl(ρ) is the solution to the homogeneous equation for Ol that is regular at ρ = 0,

Olψl = 0 , ψl(ρ) −→
ρ→0

ρ|l| . (2.16)

The normalization is chosen so that the leading coefficient in the small ρ expansion matches that of the

free solution appearing in the denominator1 of (2.15).

Similarly, for fermionic operators we get

ln
detO

detOfree
=
∞∑
l= 1

2

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l + 1
2

ζ̂O(0)

)
− 2 (ln (µL) + γ) ζ̂O(0)

+

∫ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)(
(m+ V )2 −W 2 −m2

)
− q2

∫ ∞
0

dρ
A2

sinh ρ

−
∫ ∞

0
dρ sinh ρW 2 ,

ζ̂O(0) = −1

2

∫ ∞
0

dρ sinh ρ
(

(m+ V )2 −W 2 −m2
)
,

(2.17)

where

ln
detOl

detOfree
l

= lim
ρ→∞

(
ln

ψ
(i)
l (ρ)

ψ
(i) free
l (ρ)

+ Ω(ρ)− Ω(0)

)
. (2.18)

1This is completely analogous to the usual initial conditions ψ(0) = 0, ψ′(0) = 1 imposed on the homogeneous functions

appearing in the Gelfand-Yaglom method. In two and higher dimensions, however, the centrifugal barrier implies that the

regular solution actually vanishes as a power law depending on the Fourier mode, so ψ′(0) = 1 must be generalized.
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Here ψ
(i)
l (ρ) is any of the two components of the regular spinor solution to the first order homogeneous

equation,

Olψl = 0 , ψl(ρ) −→
ρ→0

ρ|l|−
1
2 . (2.19)

The small ρ behavior is displayed only for the leading component2. As for bosons, this component should

be normalized so that its behavior at the origin coincides with that of the free solution to be inserted in

(2.18). We stress that any of the two components can be used in (2.18).

A few comments are in order. Our results are simple generalizations of those in flat space [21]; mainly

replace ρ → sinh ρ for the radial dependence and ρ dρ → sinh ρ dρ in the integration measure. This is

related to the fact that, by construction, zeta-function regularization is diffeomorphism invariant, even

though expressions (2.14) and (2.17) are written in a particular coordinate system. Also, it is reassuring

to check that ζ̂O(0) coincides with the general formula in terms of the Seeley coefficient [3, 22] (see also

appendix A)

ζ̂O(0) = a2(1|O)− a2(1|Ofree) . (2.20)

Another important point is that in an infinite space such as AdS2 there is actually no freedom in choosing

the boundary conditions once one imposes that the eigenfunctions are regular everywhere. An intermediate

step in the derivation (2.14) and (2.17) involves putting the system in a finite box of radius R where

boundary conditions are indeed relevant. However, the R→∞ limit eliminates all traces of these.

As one would expect from circular symmetry, the two-dimensional determinants can be written as a

sum of one-dimensional radial determinants. It is important to emphasize, however, that all results are

finite and do not require further regularization. It is still useful to compare with the momentum cut-off

prescription widely used in context of holographic Wilson loops [23][24][25][26]. To that end, we notice that

the sums over Fourier modes in (2.14) and (2.17) are rendered finite by the presence of the term 1
l ζ̂O(0),

ζ̂O(0)

Λ∑
l=1

1

l
= ζ̂(0) (ln Λ + γ) +O(Λ−1) , (2.21)

which cancels a ln Λ divergence in (2.10). It was not obvious a priori that the correct coefficient was ζ̂O(0).

In the fermionic case, it is also crucial to include the Ω term in (2.18) so that the sum is free of linear

2The other component goes as ρ|l|+
1
2 with a coefficient that depends on the behavior of the potentials at the origin (see

(4.74)).
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divergences. In retrospect, this justifies the rescaling of the boundary conditions done in [25]. Finally, zeta-

function regularization systematically fixes all the finite terms in (2.14) and (2.17) that depend explicitly

on the background fields, which a cut-off method could not possibly foresee.

2.3 Conformal AdS2 spaces

A simple generalization of the methods presented here include functional determinants defined on spaces

that are conformally equivalent to AdS2, namely,

ds2
M = Mds2 , (2.22)

where the conformal factor M is smooth everywhere so as to not change the topology3. The Laplace and

Dirac operators in the two geometries, are related by using

ea
M

=
√
Mea, wab

M
= wab − 1

2M

(
∂aMeb − ∂bMea

)
, (2.23)

where ∂aM = eaµ∂µM and e
a
µe
µ
b = δ

a
b . Some Dirac matrix algebra then shows

∇2
M

=
1

M
∇2, /∇M =

1√
M

(
/∇+

/∂M

4M

)
. (2.24)

This leads us to consider more general operators of the form

OM = M−1O , O = −gµνDµDν +m2 + V , (bosons)

OM = M−
1
2O , O = −i

(
/D + /∂Ω

)
− iΓ01 (m+ V ) +W , (fermions)

(2.25)

(2.26)

where O is defined in the AdS2 geometry as before. Notice that any potential terms originally appearing in

OM = −D2
M + · · · or OM = −i /DM + · · · will need to be rescaled by M or M

1
2 in order to write them in this

fashion. In the fermionic case there is an additional contribution 1
4
/∂ lnM coming from the spin connection

in (2.24), which we have absorbed in /∂Ω. As before we assume that the conformal factor depends only

on the radial coordinate; circular symmetry would otherwise be lost. The gauge field is unaffected by the

rescaling.

3Of course, any two-dimensional geometry is conformally equivalent to any other two-dimensional geometry. This is,

however, a local statement. The emphasis here is that the conformal factor does not blow up anywhere so the topology is still

that of a disk.
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The determinants of OM and O are connected by the standard Weyl anomaly calculation (see appendix

A). Taking the ratio with the free operator on AdS2 we find

ln

(
detOM
detOfree

)
= ln

(
detO

detOfree

)
+

1

4π

∫
d2σ
√
g lnM

[
m2 + V − 1

6
R+

1

12
∇2 lnM

]
(2.27)

for bosons, while for fermions the anomaly reads

ln

(
detOM
detOfree

)
= ln

(
detO

detOfree

)
+

1

4π

∫
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
. (2.28)

In each expression the first term on the right hand side can be computed using the results of the previous

section. The second term accounts for the rescaling. We have assumed that M → 1 as ρ→∞ so the space

is asymptotically AdS2, which explains the absence of boundary terms.

3 Examples

In this section we apply the methods developed here to two examples borrowed from the literature on

holographic Wilson loops [27, 24, 25]. See also [15].

3.1 Bosons

For the bosonic case we take

OM = M−1O , O = −gµνDµDν + V , Dµ = ∇µ + iAµ , (3.1)

with

M(ρ) = 1 +
sin2 θ(ρ)

sinh2 ρ
, A(ρ) = 1− 1 + cosh ρ cos θ(ρ)

cosh ρ+ cos θ(ρ)
, V (ρ) = −∂ρA(ρ)

sinh ρ
. (3.2)

The function θ(ρ) is given by

sin θ(ρ) =
sinh ρ sin θ0

cosh ρ+ cos θ0
, (3.3)

where 0 ≤ θ0 ≤ π
2 is a parameter. The free operator corresponds to

Ofree ≡ O|
θ0=0

= OM |θ0=0
= −∇2 . (3.4)
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Let us use our result (2.14) to compute the ratio of determinants between O and Ofree. We will include

the effect of the Weyl anomaly in (2.27) at the end. First,

ζ̂O(0) = −1

2

∫ ∞
0

dρ sinh ρ V

= sin2 θ0

2
.

(3.5)

Similarly, ∫ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)
V = −1

2
θ0 sin θ0 + cos θ0 ln cos

θ0

2
, (3.6)

and ∫ ∞
0

dρ
A2

sinh ρ
= − sin2 θ0

2
− 2 ln cos

θ0

2
. (3.7)

Next, notice that the general solution to the differential equation

Olψl = 0 , Ol = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

(l +A)2

sinh2 ρ
− ∂ρA

sinh ρ
, l ∈ Z , (3.8)

is

ψl(ρ) =
(

tanh
ρ

2

)−l
e−W(ρ)

(
C1 + C2

∫
dρ
(

tanh
ρ

2

)2l e2W(ρ)

sinh ρ

)
, ∂ρW(ρ) =

A(ρ)

sinh ρ
. (3.9)

Since W(ρ) is finite at ρ = 0, we see that for l < 0 the regular solution corresponds to C2 = 0, whereas for

l > 0 we must set C1 = 0. Making sure that the normalization is the same as for the free solution we find

ψl(ρ) =



cos θ02
(
2 tanh ρ

2

)−l
(cosh ρ+ 1)√

cosh2 ρ+ 2 cosh ρ cos θ0 + 1
l ≤ 0

(
2 tanh ρ

2

)l√
cosh2 ρ+ 2 cosh ρ cos θ0 + 1

(l + 2) cos θ02 (cosh ρ+ 1)

(
l +

2 (cosh ρ+ 1)2 cos2 θ0
2

cosh2 ρ+ 2 cosh ρ cos θ0 + 1

)
l ≥ 0

. (3.10)

Thus,

ln
detOl

detOfree
l

=


ln cos

θ0

2
l ≤ 0

− ln cos
θ0

2
+ ln

(
l + 2 cos2 θ0

2

l + 2

)
l ≥ 0

. (3.11)
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Happily, the sum over Fourier modes can be computed in closed form. Indeed,

∞∑
l=1

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l
ζ̂O(0)

)
=
∞∑
l=1

(
ln

(
l + 2 cos2 θ0

2

l + 2

)
+

2

l
sin2 θ0

2

)

= − ln Γ

(
2 cos2 θ0

2

)
− 2 ln cos

θ0

2
+ 2γ sin2 θ0

2
. (3.12)

Notice that were it not for the ζ̂O(0)-term, the sum would have been divergent, which is precisely the

situation faced in [23, 24, 25]. Putting everything together we arrive at

ln
detO

detOfree
= − ln Γ

(
2 cos2 θ0

2

)
+ 2 cos2 θ0

2
ln cos

θ0

2
+ sin2 θ0

2
− 1

2
θ0 sin θ0

= −γ
2
θ2

0 +

(
19

96
+

γ

24
− π2

48

)
θ4

0 +O
(
θ6

0

)
, (3.13)

where we have set µ = 1 for simplicity. Finally, we compute the Weyl anomaly relating the determinants

of OM and O. It reads

1

4π

∫
d2σ
√
g lnM

[
V − 1

6
R+

1

12
∇2 lnM

]
=

(
1

3
+ 2 cos2 θ0

2

)
ln cos

θ0

2
− 1

2
sin2 θ0

2
+

1

2
θ0 sin θ0 . (3.14)

Combining this with the previous expression we find

ln
detOM
detOfree

= − ln Γ

(
2 cos2 θ0

2

)
+

(
1

3
+ 4 cos2 θ0

2

)
ln cos

θ0

2
+

1

2
sin2 θ0

2

=

(
1

12
− γ

2

)
θ2

0 +

(
101

576
+

γ

24
− π2

48

)
θ4

0 +O
(
θ6

0

)
. (3.15)

The reason we have expanded our results for small θ0 is to compare them against the perturbative

technique developed in [28]. While we spare the details of the calculation, we confirm that the leading

terms in (3.13) and (3.15) are in fact reproduced, independently, by this method. It would be interesting to

extend the perturbative method to next order in the expansion parameter and check that it also reproduces

the O
(
θ4

0

)
terms.

3.2 Fermions

As a fermionic example we consider the operator

OM = M−
1
2O , O = −i

(
/D +

1

4
/∂ lnM

)
− iΓ01 (1 + V ) +W , Dµ = ∇µ +

i

2
Aµ , (3.16)
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where M(ρ) and A(ρ) are the same as before and

V (ρ) =
1√
M(ρ)

− 1 , W (ρ)=
sin2 θ(ρ)√
M(ρ) sinh2 ρ

. (3.17)

The free operator reads

Ofree = O|
θ0=0

= OM |θ0=0
= − /∇− iΓ01 . (3.18)

This time the relevant formulas are (2.17) and (2.28). We find

ζ̂O(0) = −1

2

∫ ∞
0

dρ sinh ρ
(

(m+ V )2 −m2 −W 2
)

= sin2 θ0

2
,

(3.19)

(3.20)

as well as ∫ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)(
(m+ V )2 −W 2 −m2

)
= 2 cos θ0 ln cos

θ0

2
, (3.21)

together with ∫ ∞
0

dρ sinh ρW 2 = 2 sin2 θ0

2
− 1

2
θ0 sin θ0 , (3.22)

and

lim
ρ→∞

(Ω(ρ)− Ω(0)) = lim
ρ→∞

1

4
ln

(
M(ρ)

M(0)

)
=

1

2
ln cos

θ0

2
(3.23)

The integral involving the gauge field is the same as in the bosonic example. Solving the differential

equation, however, is more involved in this case given the spinor structure of the fields. The radial problem

is

Olψl = 0 , Ol = −iσ1

(
∂ρ +

1

2
coth ρ+

1

4
∂ρ lnM

)
− 1

sinh ρ
σ2

(
l +

1

2
A
)

+ σ3 (1 + V ) +W , (3.24)

with l ∈ Z+ 1
2 . Letting

ψl(ρ) =

(
ul(ρ)

vl(ρ)

)
, (3.25)

we can solve algebraically for ul(ρ) to find4

− 1

sinh ρ
∂ρ (sinh ρ ∂ρvl(ρ)) +

(l + B)2

sinh2 ρ
vl(ρ)− ∂ρB

sinh ρ
vl(ρ) = 0 , (3.26)

4Notice that M = (1 + V +W )2 which considerably simplifies the calculations.
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where

B =
1

2
A− sinh ρ

(
1

2
coth ρ+

1

4
∂ρ lnM

)
. (3.27)

Equation (3.26) has the same form as its bosonic counterpart (3.8), but we write its general solution slightly

differently,

vl(ρ) =
(

tanh
ρ

2

)−l+ 1
2
e−W(ρ)

(
C1 + C2

∫
dρ
(

tanh
ρ

2

)2l−1 e2W(ρ)

sinh ρ

)
, ∂ρW(ρ) =

B(ρ) + 1
2

sinh ρ
. (3.28)

When defined in this way, the prepotential W is finite at ρ = 0, making the analysis simpler. We then get

u
(−)
l (ρ) =

(
2 tanh ρ

2

)−l− 1
2(

l − 1
2

) √
2 (cosh ρ+ cos θ0)

cosh2 ρ+ 2 cosh ρ cos θ0 + 1

(
l +

1

2
− cosh2 ρ+ 2 cosh ρ cos θ0 + 1

2 (cosh ρ+ cos θ0)

)
,

v
(−)
l (ρ) =

i
(
2 tanh ρ

2

)−l− 1
2 sinh ρ

2
(
l − 1

2

) √
2

cosh ρ+ cos θ0
,

(3.29)

(3.30)

for l ≤ −1
2 , and

u
(+)
l (ρ) =

i
(
2 tanh ρ

2

)l+ 1
2

2 cos θ02

√
(cos θ0 + cosh ρ)

(
1 + 2 cos θ0 cosh ρ+ cosh2 ρ

)
(2l + 1)(2l + 3)

× (2 cos θ0 + (2l + 1) cos θ0 + cosh ρ (2l + 1 + 2 cos θ0) (2 cos θ0 + cosh ρ)) , (3.31)

v
(+)
l (ρ) =

(
2 tanh ρ

2

)l+ 1
2 (2l − 1)

cos θ02 sinh ρ
√

2 (cos θ0 + cosh ρ)(2l + 1)

×

(
cos θ0 +

(2l + 1 + cos θ0)
(
1 + (2l + 1) cosh ρ+ cosh2 ρ

)
(2l − 1)(2l + 3)

)
, (3.32)

for l ≥ 1
2 . The overall normalization constants have been chosen so that the behavior at the origin coincides

with (4.74) for l ≥ 1
2 and (4.75) for l ≤ −1

2 .

Expanding for ρ → ∞ and making the quotient with the free solutions we can compute the sum over

Fourier modes, which yields

∞∑
l= 1

2

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l + 1
2

ζ̂O(0)

)
=
∞∑
l= 1

2

(
ln

(
l + 1

2 + cos θ0

l + 3
2

)
+

2

l + 1
2

sin2 θ0

2

)

= − ln Γ

(
2 cos2 θ0

2

)
+ 2γ sin2 θ0

2
. (3.33)
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Note that the sum is rendered finite due to the presence of both the ζ̂O(0) and the (Ω(∞)− Ω(0)) terms.

Collecting all the pieces, we finally obtain

ln
detO

detOfree
= − ln Γ

(
2 cos2 θ0

2

)
+

(
1

2
+ 2 cos θ0

)
ln cos

θ0

2
− 7

4
sin2 θ0

2
+
θ0

2
sin θ0

=
1

2

(
1

2
− γ
)
θ2

0 +
1

384

(
57 + 16γ − 8π2

)
θ4

0 + O
(
θ6

0

)
, (3.34)

where we have set µ = 1 for simplicity. In order to obtain the determinant of OM (θ0), we still have to

compute the Weyl anomaly contribution, which in this case reads

1

4π

∫
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
=

7

4
sin2 θ0

2
+

11

6
ln cos

θ0

2
(3.35)

thus arriving to the following expression

ln
detOM
detOfree

= − ln Γ

(
2 cos2 θ0

2

)
+ 2 cos θ0 ln cos

θ0

2
+

7

3
ln cos

θ0

2
+
θ0

2
sin θ0

=
1

2

(
11

12
− γ
)
θ2

0 +
1

576

(
59 + 24γ − 12π2

)
θ4

0 + O
(
θ6

0

)
. (3.36)

Note the first term is in perfect agreement with the perturbative result reported in [28]. As in the bosonic

case, it would be interesting to check the next order in (3.36) by extending the perturbative analysis

proposed in [28] up to O
(
θ4

0

)
.

4 Derivation

Having discussed the results of the paper and some simple examples, in this section we provide a detailed

derivation of equations (2.14) and (2.17). The procedure essentially mimics the approach taken for flat

space in [21]. For the treatment of fermionic determinants we follow [29, 30]. We point the reader to

these references for any omitted details, although we do try to make the discussion self-contained. See also

[31, 21, 30, 18, 32].

The main goal is to find the analytic continuation of expression (2.13) to s = 0. This is achieved in

three steps: i) finding a useful integral representation of the radial zeta functions using scattering data; ii)

give meaning to the sum over Fourier modes when evaluated at s = 0 by an appropriate subtraction; iii)

analytically continue the subtracted terms via Riemann zeta-function.
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Before we proceed, a brief comment on notation. It is customary to parametrize the eigenvalues of the

AdS2 operators (2.2) and (2.3) by

λ(ν) = ν2 + ν2
0 , ν0 =

√
1

4
+m2 , (bosons)

λ(ν) = ±
√
ν2 + ν2

0 , ν0 = m, (fermions)

(4.1)

(4.2)

and we adhere to this notation through the rest of the paper. As will become clear below, the variable ν

has the interpretation of a radial momentum.

4.1 ζ-function as a contour integral

Consider the bosonic operator (2.2). We assume it to be Hermitian and positive definite. Suppose for the

moment that the eigenvalues are discrete. This can be achieved by putting the system in a finite spherical

box of radius R and eventually taking R → ∞. For simplicity, we exclude the possibility of zero modes.

The spectrum then consists of a finite number of (bound) states with 0 < λ < ν2
0 and an infinite number

of (scattering) states with λ > ν2
0 . The zeta-function is symbolically defined as

ζO(s) ≡
∑
n

λ−sn , (4.3)

where n runs over the full spectrum. Although obviously not valid at s = 0, this representation of ζO(s)

does have meaning in regions of the complex s-plane where the sum converges5, and motivates the definition

(2.11) of the regularized determinant6. However, in order to compute the quantities ζO(0) and ζ ′O(0) one

must first analitically continue the sum to an expression that is well-defined at the origin. Precisely,

the main objective in this section is to provide the details of the continuation procedure for operators

in AdS2 displaying circular symmetry. Under these conditions the spectral problem is separable and the

zeta-function can always be written as

ζO(s) =
∑
l∈Z

ζOl(s) , ζOl(s) ≡
∑
i

λ−s(l,i) , (4.4)

where i labels the eigenvalues of the radial operators Ol given in (2.8). In general, it is not enough to simply

continue ζOl(s) to s = 0 and then sum over Fourier modes since the resulting series will be divergent.

5If λn ∼ nk, k > 0 for n→∞, then Re s > 1
k

.
6The mass scale µ appears because of the rescaling λ→ µ2λ needed to make the eigenvalues dimensionless in (4.3).
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The first step is to find a more suitable representation of the zeta-function. This can be done by

trading the sum over i in (4.4) for a contour integral via the residue theorem. In terms of the momentum

ν introduced in (4.1), the zeta-function for the radial operators can be written as [33]

ζOl(s) =

∮
γ

dν

2πi

(
ν2 + ν2

0

)−s
∂ν ln fl(ν) , (4.5)

where fl(ν) is a holomorphic function that has simple zeros at the location of the eigenvalues λ(l,i) =

ν2
(l,i) + ν2

0 and γ is a path enclosing them all (see figure 4.1). The logarithm is there to ensure that the

Figure 1: Left: contour in the complex ν-plane for the integral (4.5). Right: after deforming the contour,

the integral is performed over the branch cut at the positive imaginary axis.

residue at each pole is equal to 1. How do we find such a function fl(ν)? Imagine solving the differential

equation Olψ = λ(ν)ψ. Being second order, it will have two independent solutions. These will depend

on ν, which at this point is an unspecified parameter. The first consideration we need to make is that

we restrict the spectral problem to functions that are smooth everywhere. In particular, for AdS2, this

means regularity7 at ρ = 0. Up to an overall normalization, there is a unique solution satisfying this

7Moreover, near the origin the operator reduces to that in flat space and the AdS features become irrelevant.
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requirement. Call it φ(l,ν)(ρ). The second observation is that the actual eigenvalues are determined by the

boundary conditions. For the Dirichlet case, for example, we impose φ(l,ν)(R) = 0. This relation should

be understood as an equation for ν, having in general infinitely many solutions ν = ν(l,i). Extending the

domain to the entire complex ν-plane, we identify fl(ν) ≡ φ(l,ν)(R). Indeed, this function has a simple

zero whenever ν corresponds to one of the eigenvalues of the operator Ol.
The countour integral can be manipulated using standard techniques of complex analysis. To that end,

notice that the function
(
ν2 + ν2

0

)−s
has branch points at ν = ±iν0. We choose to place the branch cuts

along the imaginary axis, as shown in figure 4.1. Taking into account the symmetry ν → −ν we can deform

the path so that it surrounds one of the cuts. The integrand then picks up a phase e±iπs on each side of

the cut and we find

ζOl(s) =
sinπs

π

∫ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν lnφ(l,iν)(R) . (4.6)

The above representation of the zeta-function is typically not defined at s = 0 due to the large ν behavior

of φ(l,iν), and its analytic continuation will depend on the details of the operator at hand.

The behavior improves if we subtract the contribution of some reference (free/solvable) operator8 so

that the difference becomes

ζ̂Ol(s) ≡ ζOl(s)− ζfree(s) =
sinπs

π

∫ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν ln

φ(l,iν)(R)

φfree
(l,iν)(R)

. (4.7)

This subtraction is further justified by remembering that we are mainly interested in the R → ∞ limit,

where additional divergences related to the IR cutoff R appear. The integral at s = 0 is now finite and we

can write

ζ̂ ′Ol(0) = − ln
φ(l,iν0)(R)

φfree
(l,iν0)(R)

+ lim
ν→∞

ln
φ(l,iν)(R)

φfree
(l,iν)(R)

, ζ̂Ol(0) = 0 . (4.8)

Such a simple expression for the derivative of the zeta-function is valid only because the radial operators

Ol are one-dimensional. Notice from (4.1) that λ(iν0) = 0, so the function φ(l,iν0)(ρ) is the regular solution

to the homogeneous equation Olψ = 0. This equation is typically much easier to solve than the full

eigenvalue problem, if not analytically, numerically. The large ν limit, on the other hand, will be shown to

vanish in the bosonic case after a proper normalization. Of course, this is nothing but the Gelfand-Yaglom

representation of one-dimensional determinants [34, 33]. For d = 2 we still need to sum over Fourier modes.

As mentioned above, the sum is divergent at s = 0, so we are not ready yet. Nonetheless, ζ̂ ′Ol(0) will appear

in the final answer.

8At large energies the interactions become irrelevant and one expects φ(l,iν)(R) to be proportional to φfree
(l,iν)(R).
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A similar line of reasoning can be followed for other boundary conditions, even in presence of zero modes,

leading to analogous formulas for ζ̂O(s) [33, 21, 34]. Indeed, with a few modifications, it can also be applied

for the fermionic operators (2.3) [30, 35]. In this case, since the differential equation is first order, only

half of the components of the spinor eigenfunctions can be constrained by the (local) boundary conditions.

A standard choice are bag boundary conditions [22]. Another subtlety is that fermionic operators usually

posses negative eigenvalues, leading to an ambiguity in the definition of the zeta-function. This ambiguity

can be avoided by considering instead the squared operator, which is second order and is assumed to have

a strictly positive spectrum. It is important to emphasize, however, that the eigenvalues of O2 should

already be determined by those of O. In other words, no additional or incompatible boundary conditions

should be imposed on the second half of the eigenspinors when dealing with the second order operator.

This last statement means that in the countour representation of ζO2
l
(s), it is enough to consider the regular

solution to the eigenvalue problem Olψ = λ(ν)ψ and not O2
l ψ = λ(ν)2ψ. For convenience we explicitly

separate the positive and negative eigenvalue sectors and write

ζ̂O2
l
(s) =

sinπs

π

∫ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν

(
ln
φ+

(l,iν)(R)

φ+ free
(l,iν) (R)

+ ln
φ−(l,iν)(R)

φ− free
(l,iν) (R)

)
. (4.9)

Here φ±(l,ν)(R) is some combination, determined by the choice of boundary conditions, of the components of

the regular solution to the first order equation Olψ± = ±
√
ν2 + ν2

0 ψ
±. The spectrum of the free massive

Dirac operator is symmetric, so φ+ free
(l,ν) (R) = φ− free

(l,ν) (R), but this is not necessarily the case for interacting

operators. Notice the appearance of λ(ν)−2s as opposed to λ(ν)−s, meaning that we are squaring the

eigenvalues and therefore computing ζ̂O2
l
(s). Evaluating at s = 0 we get

ζ̂ ′O2
l
(0) = − ln

φ+
(l,iν0)(R)

φ+ free
(l,iν0)(R)

− ln
φ−(l,iν0)(R)

φ− free
(l,iν0)(R)

+ lim
ν→∞

(
ln
φ+

(l,iν)(R)

φ+ free
(l,iν) (R)

+ ln
φ−(l,iν)(R)

φ− free
(l,iν) (R)

)
, ζ̂O2

l
(0) = 0 . (4.10)

Again, the computation of the zeta-function for the full fermionic operator requires a summation over the

(half-integer) Fourier modes, so we are not allowed to take s = 0 at this moment.

4.2 Free eigenfunctions, Jost function and boundary conditions

We are interested in operators of the form (2.2) and (2.3) for which the background fields decay sufficiently

fast at infinity, so that they become effectively free. Therefore, it is not surprising that the free eigenfunc-

tions play a preponderant role in the analysis. Their exact form will be displayed below. For the moment

we focus on some of their properties.
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Let h
(l,ν)
± (ρ) be the two linearly independent eigenfunctions of the operator Ofree

l . They satisfy

Ofree
l h

(l,ν)
± (ρ) = λ(ν)h

(l,ν)
± (ρ) , (4.11)

where the eigenvalues are parametrized as in (4.1). In the fermionic case these are actually two-component

eigenspinors and should carry an additional label specifying the sign of the eigenvalues. The notation ±
refers to the fact that, asymptotically, these solutions become in- and out-going waves,

h
(l,ν)
± (ρ) ∼ e(−

1
2
±iν)ρ , ρ→∞ , (4.12)

as follows directly from the differential equation. Square-integrability requires that ν ∈ R; the modulating

factor e−
ρ
2 is compensated by the integration measure

√
g = sinh ρ ∼ eρ, yielding a plane wave orthogonality

relation. It is important to mention, however, that neither h
(l,ν)
+ (ρ) nor h

(l,ν)
− (ρ) are regular at ρ = 0, and

therefore not actually square-integrable. Rather, after an appropriate choice of relative normalizations, the

free regular solution is given by the combination

φfree
(l,ν)(ρ) =

i

2

(
h

(l,ν)
− (ρ)− h(l,ν)

+ (ρ)
)
. (4.13)

Its small ρ expansion is again dictated by the differential equation and reads

φfree
(l,ν)(ρ) ∼ ρ|l| , ρ→ 0 , (bosons)

φfree
(l,ν)(ρ) ∼ ρ|l|−

1
2 , ρ→ 0 , (fermions)

(4.14)

(4.15)

For fermions only for the leading component is shown; the other component goes like ρ|l|+
1
2 . The overall

constant will depend on the exact normalization of h
(l,ν)
± , the choice of which is arbitrary.

Consider now the interacting case. In general, finding the regular solution is prohibitively complicated.

Nevertheless, there are two statements that are generally true. The first is that, precisely because it is

regular, the behavior of φ(l,ν)(ρ) at ρ = 0 is the same as for the free solution. The second property stems

from the previous observation that the operators become free for large ρ, meaning that the regular solution

can be expanded as9

φ(l,ν)(ρ) −→
ρ→∞

i

2

(
gl(ν)h

(l,ν)
− (ρ)− ḡl(ν)h

(l,ν)
+ (ρ)

)
. (4.16)

9Given that the gauge field goes to a constant A(ρ) → A∞ for ρ → ∞, the asymptotics of the regular solution is more

naturally expanded in terms of the shifted eigenfunctions h
(l−A∞,ν)
± (ρ). At large ρ, however, these differ from their un-shifted

version only by a normalization, making the definition (4.16) of the Jost function still viable.
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This is only true asymptotically, of course. The coefficient gl(ν) is called Jost function and plays a central

part in the calculation of functional determinants. In fact, the the ratio ln (gl(ν)/ḡl(ν)) is precisely the

phase shift from scattering theory that determines the density of eigenvalues. In the free case the above

relation becomes exact with gfree
l (ν) = 1.

Let us use the properties we have just discussed to see what happens to the zeta-function when we take

the infinite space limit R→∞. To this purpose, note that for imaginary values of the radial momentum,

the function h
(l,iν)
+ (R) is exponentially decaying, whereas h

(l,iν)
− (R) blows up. Therefore, the ratio between

the regular interacting solution and the free one becomes

lim
R→∞

φ(l,iν)(R)

φfree
(l,iν)(R)

= gl(iν) . (4.17)

This gives the following expression for the zeta-function of the bosonic operator (2.2)

ζ̂O(s) =
sinπs

π

∑
l∈Z

∫ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν ln gl(iν) . (4.18)

A similar simplification occurs in the fermionic case (2.3), yielding

ζ̂O2(s) =
sinπs

π

∑
l∈Z+ 1

2

∫ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν ln gl(iν) , (4.19)

where ln gl(iν) ≡ ln g+
l (iν) + ln g−l (iν) includes the contribution from the positive and negative eigenvalue

sectors. Technically, the above expressions define the zeta function in terms of scattering data.

Besides the introduction of the Jost function in the two formulas above, the R→∞ limit has another,

crucial, consequence on the zeta function: it makes the dependence on the specific choice of boundary

conditions disappear. Take for example the case of Neumann boundary conditions. The only modification

one needs to make in ζ̂O(s) is the replacement φ(l,iν)(R)→ ∂ρφ(l,iν)(R). It is easy to see that upon taking

the ratio with the corresponding free solution, the large R limit will again be given by the Jost function.

The same is true for more general boundary conditions and for spinor fields. We then conclude that the

determinants in AdS2 are insensitive to the choice of boundary conditions one makes in the intermediate

step of putting the system in a finite box.

As pointed out several times already, the sum over Fourier modes is ill-defined for s = 0. In what

follows, we will perform the analytic continuation of (4.18) and (4.19). The general strategy is to subtract

as many terms as necessary inside the integral such that the series becomes convergent at s = 0. The
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dangerous region is obviously l → ∞, but also ν ∼ l → ∞, so the calculation involves extracting the

asymptotic behavior of gl(iν) in this regime. This can be done by constructing a representation of the

Jost function in terms of the free eigenfunctions h
(l,ν)
± (ρ), the Green’s function for the free operator and

the background fields. The subtracted terms need to be added back and the analytic continuation is done

using the well-known properties of the Riemann zeta-function.

4.3 Bosons

In this section we exhibit the derivation of (2.14). We split the radial operator (2.8) into a free part and

an interaction,

Ol = Ofree
l + U(ρ) , U(ρ) = V (ρ) +

A(ρ)2

sinh2 ρ
− 2lA(ρ)

sinh2 ρ
. (4.20)

where the free operator is given by

Ofree
l = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

l2

sinh2 ρ
+m2 , l ∈ Z . (4.21)

It will be important in what follows to keep in mind that there is a l-dependent term in the potential U(ρ).

4.3.1 Free eigenfunctions

The bosonic free eigenfunctions satisfying (4.11) read

h
(l,ν)
± (ρ) =

√
2

πν

∣∣∣∣∣ Γ (1 + iν)

Γ
(

1
2 + iν + |l|

)∣∣∣∣∣ e−iπ|l|Q|l|− 1
2
∓iν(cosh ρ) ,

(
h

(l,ν)
±

)∗
= h

(l,ν)
∓ , (4.22)

where Q
|l|
− 1

2
∓iν(cosh ρ) are associated Legendre functions of the second kind. The condition that ν ∈ R is

necessary for square-integrability, as can be seen from the asymptotic expansions

h
(l,ν)
± (ρ) ≈

√
2

ν

∣∣∣∣∣ Γ (1 + iν)

Γ
(

1
2 + iν + |l|

)∣∣∣∣∣ Γ
(

1
2 ∓ iν + |l|

)
Γ (1∓ iν)

e(−
1
2
±iν)ρ , ρ→∞ . (4.23)

The combination

φfree
(l,ν)(ρ) ≡ i

2

(
h

(l,ν)
− (ρ)− h(l,ν)

+ (ρ)
)

=

√
πν

2

∣∣∣∣∣Γ
(

1
2 + iν + |l|

)
Γ (1 + iν)

∣∣∣∣∣P−|l|− 1
2
±iν (cosh ρ) , (4.24)

22



namely, the imaginary part of the eigenfunctions, is proportional to the associated Legendre function of

the first kind and is regular at ρ = 0 with

φfree
(l,ν)(ρ) ≈

√
πν

2

∣∣∣∣∣Γ
(

1
2 + iν + |l|

)
Γ (1 + iν)

∣∣∣∣∣ 1

Γ (1 + |l|)

(ρ
2

)|l|
, ρ→ 0 . (4.25)

As a matter of convenience, the normalization of the eigenfunctions has been chosen so that their Wronskian

is independent of ν:

h
(l,ν)
− (ρ)∂ρh

(l,ν)
+ (ρ)− h(l,ν)

+ (ρ)∂ρh
(l,ν)
− (ρ) =

2i

sinh ρ
. (4.26)

Regardless of the normalization, this property allows us to construct the Green’s function

G(l,ν)(ρ, ρ′) =
i

2
sinh ρ′

(
h

(l,ν)
− (ρ)h

(l,ν)
+ (ρ′)− h(l,ν)

+ (ρ)h
(l,ν)
− (ρ′)

)
θ(ρ− ρ′)

= sinh ρ′
(
φfree

(l,ν)(ρ)h
(l,ν)
+ (ρ′)− φfree

(l,ν)(ρ)h
(l,ν)
− (ρ′)

)
θ(ρ− ρ′) ,

(4.27)

which satisfies (
Ofree
l − λ(ν)

)
G(l,ν)(ρ, ρ′) = −δ(ρ, ρ′) . (4.28)

Finally, we need to continue the eigenfunctions to imaginary momentum, ν → iν, and extract their

asymptotic behavior for l→∞ and fixed α ≡ ν
|l| with 0 < α < 1. We find

h
(l,iν)
+ (ρ) ≈

√
α

π| sin (πν) |
(
1− α2

) ν+|l|
2
(
α2 sinh2 ρ+ 1

)− 1
4 e−|l|η(ρ) ,

φfree
(l,iν)(ρ) ≈ i

√
α| sin (πν) |

π

(
1− α2

)− ν+|l|
2
(
α2 sinh2 ρ+ 1

)− 1
4 e|l|η(ρ) ,

(4.29)

(4.30)

where

η(ρ) = α ln

(
α cosh ρ+

√
1 + α2 sinh2 ρ

)
− ln

(
cosh ρ+

√
1 + α2 sinh2 ρ

)
+ ln sinh ρ . (4.31)

4.3.2 Regular solution and Jost function

In order to compute the zeta-function using (4.18), we first need to construct a solution to the eigenvalue

problem that is regular at the origin. With the help of the free Green’s function (4.27), we can invert the

differential equation and write it in Lippmann-Schwinger form,

φ(l,ν)(ρ) = φfree
(l,ν)(ρ) +

∫ ρ

0
dρ′G(l,ν)(ρ, ρ′)U(ρ′)φ(l,ν)(ρ

′) . (4.32)
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In principle the integral above extends to ρ′ →∞, but our choice of Green’s function truncates it to ρ′ ≤ ρ.

This choice is dictated by the fact that we want to control the behavior of the solution at ρ = 0 to ensure

that it is regular. Notice that G(l,ν)(ρ, ρ) = 0, so the normalization φ(l,ν)(ρ) ≈ φfree
(l,ν)(ρ), with the same

leading coefficient in the series expansion, is fixed by the integral equation.

Replacing the Green’s function (4.27) in (4.32), taking ρ → ∞ and by means of (4.16), we arrive to

the following expression for the Jost function

gl(ν) = 1 +

∫ ∞
0

dρ sinh ρ h
(l,ν)
+ (ρ)U(ρ)φ(l,ν)(ρ) . (4.33)

Of course, this expression still involves the unknown function φ(l,ν)(ρ) and can be solved iteratively as an

expansion in powers of the potential U . However, as we will confirm below, it is sufficient to solve for the

regular solution only up to second order. After some algebra one gets10

ln gl(ν) =

∫ ∞
0

dρ sinh ρ h
(l,ν)
+ (ρ)U(ρ)φfree

(l,ν)(ρ)

−
∫ ∞

0
dρ sinh ρ

(
h

(l,ν)
+ (ρ)

)2
U(ρ)

∫ ρ

0
dρ′ sinh ρ′

(
φfree

(l,ν)(ρ
′)
)2
U(ρ′) +O(U3) ,

(4.34)

where we have taken the logarithm since that is what actually enters in the ζ-function.

The next step involves continuing the Jost function to imaginary values of the radial momentum and

extracting its limiting behavior for large ν and large l. Remember that the goal is to subtract from ln gl(iν)

as many terms as necessary so that the sum over Fourier modes in (4.18) becomes convergent at s = 0.

Clearly we can discard all terms that decay faster than l−1. Introducing the asymptotic expansions of the

eigenfunctions given in (4.29) and (4.30) into (4.34) we obtain

ln gl(iν) =
1

2|l|

∫ ∞
0

dρ
sinh ρU(ρ)√
α2 sinh2 ρ+ 1

− 1

4l2

∫ ∞
0

dρ
sinh ρU(ρ)e−2|l|η(ρ)√

α2 sinh2 ρ+ 1

∫ ρ

0
dρ′

sinh ρ′U(ρ′)e2|l|η(ρ′)√
α2 sinh2 ρ′ + 1

+O(l−2) .

(4.35)

Notice that the first line involves a term of order O(l0) coming from (4.20). However, this will cancel

when summing over positive and negative Fourier modes. By the same token, subleading contributions to

eigenfunctions where not considered in (4.29) and (4.30), as they are insensitive to the sign of l. A priori,

10Use ln
(
1 + ax+ bx2

)
= ax+

(
b− 1

2
a2
)
x2 +O(x3) and

∫ b

a

dxf(x)

∫ x

a

dyf(y) =
1

2

(∫ b

a

dxf(x)

)2

.
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the second line also involves a O(l0) term, but this is really not so. It can be seen that in the saddle point

approximation, which is justified in the limit we are studying, the integral over ρ′ yields∫ ρ

0
dρ′

sinh ρ′U(ρ′)e2|l|η(ρ′)√
α2 sinh2 ρ′ + 1

≈ 1

2|l|
sinh2 ρU(ρ)e2|l|η(ρ)

α2 sinh2 ρ+ 1
+O(l−2) . (4.36)

Since each nested integral results in a factor of 1/l, higher orders in U in the Lippmann-Schwinger expansion

(4.32) are not necessary for the subtraction. This way we arrive at the following expression for the

asymptotic behavior of the Jost function

ln gasym
l (iν) + ln gasym

−l (iν) ≡ 1

|l|

∫ ∞
0

dρ
sinh ρ V (ρ)(

1 + α2 sinh2 ρ
) 1

2

+
α2

|l|

∫ ∞
0

dρ
sinh ρA(ρ)2(

1 + α2 sinh2 ρ
) 3

2

. (4.37)

Recall that the dependence on the radial momentum enters through α = ν/|l|. One can easily see that

lim
ν→∞

(
ln gasym

l (iν) + ln gasym
−l (iν)

)
= 0 . (4.38)

Similarly, expanding 4.34 for large ν and fixed l one finds11

lim
ν→∞

ln gl(iν) = 0 . (4.39)

The fact that this limit vanishes is a consequence of the choice of normalization of the regular solution.

4.3.3 Analytic continuation

The analytic continuation of the zeta-function (4.18) to s = 0 is achieved by splitting the sum as

ζ̂O(s) = ζ̂f (s) + ζ̂d(s) , (4.40)

where

ζ̂f (s) =
sinπs

π

∫ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν ln g0(iν)

+
sinπs

π

∞∑
l=1

∫ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν
(
ln gl(iν) + ln g−l(iν)− ln gasym

l (iν)− ln gasym
−l (iν)

)
,

ζ̂d(s) =
sinπs

π

∞∑
l=1

∫ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν
(
ln gasym

l (iν) + ln gasym
−l (iν)

)
.

(4.41)

(4.42)

11We omit the explicit expansions of the eigenfunctions in this limit since they are even simpler than the ones presented

above.
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Here we have separated the mode l = 0 and combined the l > 0 and l < 0 terms into a single sum. The

main point is that ζf (s) is now convergent at s = 0, since by construction of gasym
l (iν) it goes as O(l−2)

for l→∞. Thus, we can simply take its derivative and evaluate

ζ̂f (0) = 0 ,

ζ̂ ′f (0) = − ln g0 (iν0)−
∞∑
l=1

(
ln gl (iν0) + ln g−l (iν0)− ln gasym

l (iν0)− ln gasym
−l (iν0)

)
.

(4.43)

(4.44)

Again, ζ̂ ′f (0) is guaranteed to be finite. On the other hand, ζd(s) is still divergent at s = 0 and needs

continuation. The improvement is that this sum is easier to handle. Indeed, the general formulas∫ ∞
a

dx
(
x2 − a2

)−s d

dx

((
1 + b2x2

)−n/2)
= −

Γ
(
s+ n

2

)
Γ (1− s) b2s

Γ
(
n
2

)
(1 + a2b2)s+

n
2

,

∫ ∞
a

dx
(
x2 − a2

)−s d

dx

(
x2
(
1 + b2x2

)−n/2)
= −

Γ
(
s+ n

2 − 1
)

Γ (1− s) b2(s−1)
(
(n− 2) a2b2 − 2s

)
2Γ
(
n
2

)
(1 + a2b2)s+

n
2

,

(4.45)

(4.46)

allow us to explicitly perform the integration over the radial momentum and find

ζd(s) = −
Γ
(
s+ 1

2

)
Γ (1− s)

Γ
(

1
2

) ∫ ∞
0

dρ (sinh ρ)2s+1

(
V (ρ)R1(s, ρ) +

A(ρ)2

sinh2 ρ
R2(s, ρ)

)
, (4.47)

where

R1(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(
1 +

ν2
0 sinh2 ρ

l2

)−(s+ 1
2)
,

R2(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(
ν2

0 sinh2 ρ

l2
− 2s

)(
1 +

ν2
0 sinh2 ρ

l2

)−(s+ 3
2)
.

(4.48)

(4.49)

In order to continue these sums, we again subtract and add back the asymptotic behavior of the summand

that makes the series divergent when s = 0, namely,

R1(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(1 +
ν2

0 sinh2 ρ

l2

)−(s+ 1
2)
− 1

+
sinπs

π

∞∑
l=1

1

l1+2s
,

R2(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(ν2
0 sinh2 ρ

l2
− 2s

)(
1 +

ν2
0 sinh2 ρ

l2

)−(s+ 3
2)

+ 2s

− 2s sinπs

π

∞∑
l=1

1

l1+2s
.
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Recognizing the last term in each expression as the Riemann zeta function, we arrive at

R1(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(1 +
ν2

0 sinh2 ρ

l2

)−(s+ 1
2)
− 1

+
sinπs

π
ζR(2s+ 1) ,

R2(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(ν2
0 sinh2 ρ

l2
− 2s

)(
1 +

ν2
0 sinh2 ρ

l2

)−(s+ 3
2)

+ 2s


− 2s sinπs

π
ζR(2s+ 1) .

(4.50)

(4.51)

Since each sum in square brackets is now convergent for s = 0, we readily find12

R1(0, ρ) =
1

2
, R′1(0, ρ) =

∞∑
l=1

1

l

[(
1 +

ν2
0 sinh2 ρ

l2

)− 1
2

− 1

]
+ γ ,

R2(0, ρ) = 0 , R′2(0, ρ) = ν2
0 sinh2 ρ

∞∑
l=1

1

l3

(
1 +

ν2
0 sinh2 ρ

l2

)− 3
2

− 1 .

(4.52)

(4.53)

This is the desired continuation. Then,

ζ̂d(0) = −1

2

∫ ∞
0

dρ sinh ρ V (ρ) , (4.54)

and

ζ̂ ′d(0) = −
∫ ∞

0
dρ sinh ρ

(
ln

(
sinh ρ

2

)
+ γ

)
V (ρ) +

∫ ∞
0

dρ
A(ρ)2

sinh ρ

−
∞∑
l=1

1

l

∫ ∞
0

dρ sinh ρ

[(
1 +

ν2
0 sinh2 ρ

l2

)− 1
2

V (ρ)− V (ρ)− ν2
0

l2

(
1 +

ν2
0 sinh2 ρ

l2

)−1

A(ρ)2

]

= −
∫ ∞

0
dρ sinh ρ

(
ln

(
sinh ρ

2

)
+ γ

)
V (ρ) +

∫ ∞
0

dρ
A(ρ)2

sinh ρ

−
∞∑
l=1

(
ln gasym

l (iν0) + ln gasym
−l (iν0)− 1

l

∫ ∞
0

dρ sinh ρ V (ρ)

)
.

(4.55)

12Actually, R2(s, ρ) was already convergent at s = 0. However, its term by term derivative was not, so the procedure was

still necessary.
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In the last step we have recognized the asymptotic form (4.37) of the Jost function evaluated at ν = ν0.

Combining the expressions for ζ̂f (0), ζ̂d(0), ζ̂ ′f (0) and ζ̂ ′d(0) we arrive at

ζ̂O(0) = −1

2

∫ ∞
0

dρ sinh ρ V (ρ) ,

ζ̂ ′O(0) = − ln g0 (iν0)−
∞∑
l=1

(
ln gl (iν0) + ln g−l (iν0) +

2

l
ζ̂(0)

)
+ 2γζ̂(0)

−
∫ ∞

0
dρ sinh ρ ln

(
sinh ρ

2

)
V (ρ) +

∫ ∞
0

dρ
A(ρ)2

sinh ρ
.

(4.56)

(4.57)

Notice that ln gasym
l (iν0) cancels out at the end so it is no longer needed. Finally, by means of (4.17), (4.8)

and (4.39), gl(iν0) is identified with the determinant of the radial operator Ol and the full renormalized

determinant (2.11) becomes our main result (2.14). Once the radius of AdS2 is reinstated, the dimensionless

quantity Lµ appears.

4.4 Fermions

We now move on to the derivation of the fermionic expression (2.17). As in the bosonic case, the full

operator splits into

Ol = Ofree
l − iΓ01U(ρ) , U(ρ) = −Γ0 ∂ρΩ(ρ)− i q Γ1

A(ρ)

sinh ρ
+ V (ρ)− iΓ01W (ρ) . (4.58)

The matrix −iΓ01 in front of U is a matter of convenience. The free fermionic radial operator is

Ofree
l = −iΓ1

(
∂ρ +

1

2
coth ρ

)
+ Γ0

l

sinh ρ
− iΓ01m, l ∈ Z+

1

2
. (4.59)

From now on we will work with the following representation of the Dirac matrices,

Γ0 = −σ2 , Γ0 = σ1 ⇒ −iΓ01 = σ3 . (4.60)

4.4.1 Free eigenfunctions

Unlike the bosonic case, the free operator (4.59) has positive and negative eigenvalues. It is sufficient,

however, to restrict ourselves to λ > 0, since the λ < 0 sector can be obtained from the former by a simple

operation. The eigenfunctions for l ≥ 1
2 and l ≤ −1

2 are also related to each other, so we will work with

strictly positive Fourier modes. This is not to say that we are neglecting three out of the four possible

sectors.
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The spinor eigenfunctions satisfying (4.11) with λ > 0 and l ≥ 1
2 read

h
(l,ν)
± (ρ) =

√
Γ
(
l + 1

2 ∓ iν
)

Γ
(

1
2 ± iν

)
Γ
(
l + 1

2 ± iν
)

Γ
(

1
2 ∓ iν

)√2
(

tanh
ρ

2

)l− 1
2
(

2 cosh
ρ

2

)−1±2iν
ψ

(l,ν)
± (ρ) , (4.61)

where

ψ
(l,ν)
± (ρ) =


(
λ(ν) +m

λ(ν)−m

) 1
4

tanh
ρ

2
F

(
l +

1

2
∓ iν, 1∓ iν; 1∓ 2iν;

1

cosh2 ρ
2

)

±
(
λ(ν)−m
λ(ν) +m

) 1
4

F

(
l +

1

2
∓ iν,∓iν; 1∓ 2iν;

1

cosh2 ρ
2

)
 . (4.62)

The combination

φfree
(l,ν)(ρ) ≡ i

2

(
h

(l,ν)
− (ρ)− h(l,ν)

+ (ρ)
)

=
1

Γ
(
l + 1

2

)√π

2

∣∣∣∣∣Γ
(
l + 1

2 ∓ iν
)

Γ
(

1
2 ∓ iν

) ∣∣∣∣∣ (tanh
ρ

2

)l− 1
2
(

cosh
ρ

2

)−1+2iν
ψ(l,ν)(ρ) , (4.63)

with

ψ(l,ν)(ρ) =


− ν

l + 1
2

(
λ(ν) +m

λ(ν)−m

) 1
4

tanh
ρ

2
F

(
l +

1

2
− iν, 1− iν; l +

3

2
; tanh2 ρ

2

)
i

(
λ(ν)−m
λ(ν) +m

) 1
4

F

(
l +

1

2
− iν,−iν; l +

1

2
; tanh2 ρ

2

)
 , (4.64)

is regular at the origin. As before, the condition ν ∈ R is imposed by square-integrability. The solutions

for the remaining three sectors can be obtained by simple operations, namely,

l ≤ −1

2
, λ(ν) > 0 −→ (iσ1)h

(−l,ν)
± (ρ)

∣∣∣
m→−m

,

l ≥ 1

2
, λ(ν) < 0 −→ (iσ2)h

(l,ν)
± (ρ) ,

l ≤ −1

2
, λ(ν) < 0 −→ (iσ3)h

(−l,ν)
± (ρ)

∣∣∣
m→−m

.

(4.65)

The normalization of the eigenspinors has been chosen so that they satisfy

h
(l,ν)
− (ρ)h

(l,ν)
+ (ρ)

T
− h(l,ν)

+ (ρ)h
(l,ν)
− (ρ)

T
=

2iσ2

sinh ρ
, (4.66)

in all four sectors. This identity allow us to construct the Green’s function

G(l,ν)(ρ, ρ′) =
i

2
sinh ρ′

[
h

(l,ν)
− (ρ)h

(l,ν)
+ (ρ′)

T
− h(l,ν)

+ (ρ)h
(l,ν)
− (ρ′)

T
]
σ3 θ(ρ− ρ′) ,

= sinh ρ′
[
φfree

(l,ν)(ρ)h
(l,ν)
+ (ρ′)

T
− h(l,ν)

+ (ρ)φfree
(l,ν)(ρ

′)
T
]
σ3 θ(ρ− ρ′) ,

(4.67)
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which satisfies (
Ofree
l − λ(ν)

)
G(l,ν)(ρ, ρ′) = −δ(ρ, ρ′) . (4.68)

Notice that

G(l,ν)(ρ, ρ) = − i
2
σ1 , (4.69)

as follows from the coincidence limit of the step function. Since we will need them shortly, we present

the asymptotic behavior of the solutions h
(l,iν)
+ (ρ) and φfree

(l,iν)(ρ) in the region where (l + 1
2) → ∞ and

ν = α(l + 1
2) with 0 < α < 1,

h
(l,iν)
+ (ρ) ≈ F(ρ) e−(l+ 1

2
)η(ρ)

 1 + 1
l+ 1

2

(
A(ρ)− im

2α

)
−1+
√

1+α2 sinh2 ρ
α sinh ρ

(
1 + 1

l+ 1
2

(
B(ρ) + im

2α

))
 ,

φfree
(l,iν)(ρ) ≈ G(ρ) e(l+ 1

2
)η(ρ)

 1 + 1
l+ 1

2

(
C(ρ)− im

2α

)
−1+
√

1+α2 sinh2 ρ
α sinh ρ

(
1 + 1

l+ 1
2

(
D(ρ) + im

2α

))
 ,

(4.70)

(4.71)

where η(ρ) was defined in (4.31) and the rest of the functions involved satisfy the relations

F(ρ)G(ρ) =
iα

2
√

1 + α2 sinh2 ρ
, B(ρ) = A(ρ) +

1 +
√

1 + α2 sinh2 ρ

2(1 + α2 sinh2 ρ)

C(ρ) = −A(ρ) , D(ρ) = −A(ρ)− −1 +
√

1 + α2 sinh2 ρ

2(1 + α2 sinh2 ρ)

(4.72)

As we will show below, the explicit forms of the functions F(ρ), G(ρ) and A(ρ) do not play any role in the

computation, so we do not present them here. Notice that we have included the first sub-dominant term.

4.4.2 Regular Solution and Jost function

We now consider the eigenvalue problem for the full operator (4.58). The regular solution is constructed

using the Lippmann-Schwinger equation, with the help of the free Green’s function (4.67),

φ(l,ν)(ρ) = φfree
(l,ν)(ρ) +

∫ ρ

0
dρ′G(l,ν)(ρ, ρ′)σ3 U(ρ′)φ(l,ν)(ρ

′) . (4.73)
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Naively one would think that φ(l,ν)(ρ) −→ φfree
(l,ν)(ρ) as ρ → 0. However, a more careful analysis reveals

that13

φ(l,ν)(ρ) ≈ φfree
(l,ν)(ρ) +G(l,ν)(ρ, ρ)σ3 U(ρ)

∫ ρ

0
dρ′φfree

(l,ν)(ρ
′)

≈ i

Γ
(
l + 1

2

)√π

2

∣∣∣∣∣Γ
(
l + 1

2 − iν
)

Γ
(

1
2 − iν

) ∣∣∣∣∣ (ρ2)l− 1
2

(
λ−m
λ+m

) 1
4

 i
λ+m+ V (0)−W (0)

2l + 1
ρ

1

 . (4.74)

This is consistent with the behavior obtained by studying the differential equation near the origin. Accor-

dingly, for l ≤ −1
2 and λ > 0, we have

φ(l,ν)(ρ) ≈ 1

Γ
(
|l|+ 1

2

)√π

2

∣∣∣∣∣Γ
(
|l|+ 1

2 − iν
)

Γ
(

1
2 − iν

) ∣∣∣∣∣ (ρ2)|l|− 1
2

(
λ+m

λ−m

) 1
4

 1

i
λ−m− V (0)−W (0)

2|l|+ 1
ρ

 , (4.75)

and similarly for the remaining two sectors. At any rate, the normalization of the regular solution is fixed

by the normalization of the free eigenfunctions (4.61).

The Jost function can be extracted from the large ρ behavior of the solution by means of its definition

(4.16). A direct evaluation yields14

gl(ν) = 1 +

∫ ∞
0

dρ′ sinh ρ′h
(l,ν)
+ (ρ′)TU(ρ′)φ(l,ν)(ρ

′) . (4.76)

As in the bosonic case, it will be sufficient to retain terms up to second order in the potential U(ρ) so that

ln gl(ν) =

∫ ∞
0

dρ sinh ρ h
(l,ν)
+ (ρ)TU(ρ)φfree

(l,ν)(ρ)

−
∫ ∞

0
dρ sinh ρ h

(l,ν)
+ (ρ)TU(ρ)h

(l,ν)
+ (ρ)

∫ ρ

0
dρ′ sinh ρ′ φfree

(l,ν)(ρ
′)TU(ρ′)φfree

(l,ν)(ρ
′) + O(U3) .

(4.77)

We now need to continue the Jost function to imaginary radial momentum and extract its asymptotic

behavior in the region
∣∣l + 1

2

∣∣→∞ and ν = α
∣∣l + 1

2

∣∣ (0 < α < 1). In the sector of positive l and positive

λ we can make use of the asymptotic expansions presented above. The calculation proceeds much like

the bosonic case with the proviso that the eigenfunctions have spinorial structure. However, the fermionic

13Both G(l,ν)(ρ, ρ) and U(ρ) are finite at ρ = 0, so the leading behavior is dictated by φfree
(l,ν)(ρ).

14As in the bosonic case, the effect of the shift in the Fourier mode due to the constant asymptotic value of the gauge field

can be absorbed in the definition of the Jost function.
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potential is l-independent and now subleading orders in (4.70)-(4.71) do contribute. Again resorting to a

saddle point approximation we find

ln g+
l (iν) =

iα

2

∫
dρ

sinh ρ
(
U

(0)
hφ + 1

l+ 1
2

U
(1)
hφ

)
√

1 + α2 sinh2 ρ
+

α2

4(2l + 1)

∫ ∞
0

dρ
sinh3 ρUhh Uφφ

(1 + α2 sinh2 ρ)
3
2

+O
(
l−2
)
, (4.78)

where

U
(0)
hφ = (U11 − U22)− 1

α sinh ρ
(U12 + U21)−

√
1 + α2 sinh2 ρ

α sinh ρ
(U12 − U21) , (4.79)

U
(1)
hφ = − im

α
(U11 + U22)− U22

1 + α2 sinh2 ρ
+

α sinh ρ

2(1 + α2 sinh2 ρ)
(U12 + U21) ,

Uhh = U11 + U22

(
−1 +

√
1 + α2 sinh2 ρ

α sinh ρ

)2

+
−1 +

√
1 + α2 sinh2 ρ

α sinh ρ
(U12 + U21) ,

Uφφ = U11 + U22

(
1 +

√
1 + α2 sinh2 ρ

α sinh ρ

)2

− 1 +
√

1 + α2 sinh2 ρ

α sinh ρ
(U12 + U21) .

As was previously mentioned, these expressions are independent of the function A(ρ) appearing in the

asymptotic expansions of h
(l,ν)
+ (ρ) and φfree

(l,ν)(ρ).

The remaining three sectors of solutions are obtained by performing the operations (4.65), which amount

to the substitutions U → (iσi)
TU(iσi) and m → ±m in the above formulæ. After summing over all four

sectors and discarding a ν-independent term we identify the potentially divergent part as

ln gasym
l (iν) + ln gasym

−l (iν) ≡ 2

l + 1
2

∫ ∞
0

dρ sinh ρ
(U11 +m) (U22 +m)−m2√

1 + α2 sinh2 ρ

+
α2

2(l + 1
2)

∫ ∞
0

dρ sinh3 ρ
(U11 − U22)2 − (U12 + U21)2(

1 + α2 sinh2 ρ
) 3

2

, (4.80)

where we made use of the definition below (4.19). Note that

lim
ν→∞

(
ln gasym

l (iν) + ln gasym
−l (iν)

)
= 0 . (4.81)

On the other hand, a similar calculation but in the limit of large ν and fixed l yields

lim
ν→∞

(ln gl (iν) + ln g−l (iν)) = 2i

∫
dρ (U21 − U12) , (4.82)

which is non-vanishing. This is an effect of the normalization (4.74).
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4.4.3 Analytic continuation

The analytic continuation of (4.19) proceeds much in the same way as for bosons. We split the sum over

Fourier modes as

ζ̂O2(s) = ζ̂f (s) + ζ̂d(s) , (4.83)

where

ζ̂f (s) =
sinπs

π

∞∑
l= 1

2

∫ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν
(
ln gl(iν) + ln g−l(iν)− ln gasym

l (iν)− ln gasym
−l (iν)

)
,

ζ̂d(s) =
sinπs

π

∞∑
l= 1

2

∫ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν
(
ln gasym

l (iν) + ln gasym
−l (iν)

)
.

(4.84)

(4.85)

The series in ζf (s) is now convergent at s = 0 and we find

ζ̂f (0) = 0 ,

ζ̂ ′f (0) = −
∞∑
l= 1

2

(
ln gl(iν0) + ln g−l(iν0)− ln gasym

l (iν0)− ln gasym
−l (iν0)− 2i (U12 − U21)

)
,

(4.86)

(4.87)

Were it not for the last term, coming from (4.82), the sum over Fourier modes would suffer from a linear

divergence. In turn, to compute ζd(s) we make use of the asymptotic form of the Jost function given in

(4.80) and the results (4.45)-(4.46) to perform the momentum integrals, thus obtaining

ζ̂d(s) =−
2Γ
(
s+ 1

2

)
Γ (1− s)

Γ
(

1
2

) ∫ ∞
0

dρ (sinh ρ)2s+1
(
(U11 +m) (U22 +m)−m2

)
R1(s, ρ) (4.88)

−
Γ
(
s+ 1

2

)
Γ (1− s)

2Γ
(

1
2

) ∫ ∞
0

dρ (sinh ρ)2s+1
(

(U11 − U22)2 − (U12 + U21)2
)
R2(s, ρ) .

The sums R1(s, ρ) and R2(s, ρ) become equal to (4.48) and (4.49), respectively, after shifting l→ l− 1
2 ∈ N

+

and using ν0 = m. The shift is a legal operation since we have not set s = 0 yet and the sums are convergent.
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Surely, the continuation of R1(s, ρ) and R2(s, ρ) is the same as before. Hence we arrive at

ζd(0) =−
∫ ∞

0
dρ sinh ρ

(
(U11 +m) (U22 +m)−m2

)
ζ̂ ′d(0) =− 2

∫ ∞
0

dρ sinh ρ

(
ln

(
sinh ρ

2

)
+ γ

) (
(U11 +m) (U22 +m)−m2

)
+

1

2

∫ ∞
0

dρ sinh ρ
(

(U11 − U22)2 − (U12 + U21)2
)

−
∞∑
l= 1

2

(
ln gasym

l (iν0) + ln gasym
−l (iν0)− 2

l + 1
2

∫ ∞
0

dρ ρ
(
(U11 +m) (U22 +m)−m2

))
,

(4.89)

where we have used the expression (4.80) to recognize ln gasym
l (iν0)+ln gasym

−l (iν0). Collecting all the pieces

we obtain

ζ̂O2(0) =−
∫ ∞

0
dρ sinh ρ

(
(U11 +m) (U22 +m)−m2

)
ζ̂ ′O2(0) =− 2

∞∑
l= 1

2

(
ln g+

l (iν0) + ln g+
−l (iν0)− i

∫
dρ (U21 − U12) +

1

l + 1
2

ζO2(0)

)
+ 2γζ̂O2(0)

− 2

∫ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)(
(U11 +m) (U22 +m)−m2

)
+

1

2

∫ ∞
0

dρ sinh ρ
(

(U11 − U22)2 − (U12 + U21)2
)
,

(4.90)

where we have made explicit that since λ(iν0) = 0, the Jost functions g+
l (iν0) and g−l (iν0) coincide. Finally,

through (4.17), (4.10) and (4.82) we identify

ζ̂ ′O2
l
(0) = −2 ln g+

l (iν0)− i
∫ ∞

0
dρ (U12 − U21) . (4.91)

Writing the potential components in terms of the background fields and recalling that ζ̂O(s) = 1
2 ζ̂O2(s) we

arrive at our main result (2.17) for the determinant of a fermionic operator.

5 Conclusions

In this manuscript we have explicitly computed the determinants for a general class of circularly-symmetric

bosonic and fermionic operators in AdS2 and spaces that are conformally AdS2. In this context there are

a number of options depending on the regularization technique used. Some widely used regularization
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techniques are not explicitly diffeormophism invariant. Our main result is to have obtained answers that

are completely aligned with the zeta-function regularization method. Consequently, and importantly, we

now have diffeormphic-invariant expressions for such determinants.

Our driving motivation has been to enlarge the arsenal of tools required to push the AdS/CFT corre-

spondence into its precision regime. An important limitation of our computation is that it exploits, in a

crucial manner, the angular symmetry of the problem. Namely, we are able to turn the problem into effec-

tively a one-dimensional one due to the symmetry. There are many problems in this class, some we have

mentioned but others are less obvious such as the one-loop correction to the anti-parallel lines. It would

be interesting, however, to have a better understanding of the form of the determinant independently of

the symmetries and ultimately a computational approach that is intrinsically two-dimensional. The drive

to less symmetric situations is not merely an academic goal. There are examples which are under control

from the localization point of view but where the symmetry is not preserved [36]. More general methods

are still needed and it would be valuable to develop them.

Precision holography has largely focused on the results provided by supersymmetric localization. It

would be great to connect with the efforts developed in the context of integrability [37],[38]. Integrability

provides a wide field to explore from the point of semi-classical gravity computations. Ultimately, one

would hope to tackle questions with less or no supersymmetry and where integrability does not play a

role. We also expect that our methods will find use in other problems possibly related to one-loop gravity

computations in the context of corrections to black hole entropy, as determinants in AdS2 have already

been found in many works starting with [14] and its sequels.
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A Weyl Anomaly

In two dimensions, for an operator of the form

OM = M−1O , O = −gµνDµDν +X , (A.1)

the dependence of detOM on M is determined by [3, 22, 39]

δM (ln detOM ) = −a2 (δ lnM |OM ) , (A.2)

where a2 is the Seeley coefficient

a2(F |OM ) =
1

4π
Tr

[∫
M
d2σ
√
g F b2(OM ) +

∫
∂M

ds
√
γ

(
F c2(OM )∓ 1

2
∂nF

)]
,

b2(OM ) = −X +
1

6
R− 1

6
∇2 lnM , c2(OM ) =

1

3

(
K − 1

2
∂n lnM

)
,

(A.3)

(A.4)

and the trace is taken over all degrees of freedom. For AdS2 the unit normal vector and the extrinsic

curvature are given by n = ∂ρ and K = gµν∇µnν = coth ρ. Integrating this relation yields

ln

(
detOM
detO

)
=

1

4π

∫
d2σ
√
g lnM Tr

(
X − 1

6
R+

1

12
∇2 lnM

)
. (A.5)

Here we have discarded boundary terms, which is justified as long as the conformal factor is everywhere

smooth with M → 1 sufficiently fast as ρ→∞. This is all that is needed for the scalar case.

The treatment of fermionic fluctuations is similar, except that the anomaly argument only works for

second order operators. So, given instead

OM = M−
1
2O , O = −i /D + Y . (A.6)

we must relate the determinants of O2
M and O2. Directly squaring leads to

O2
M = M−1O′ , O′ = −gµνD′µD′ν +X ′ , (A.7)

where

D′µ = Dµ +
i

2
θµ , θµ = ΓµY + Y Γµ +

i/∂M

2M
Γµ . (A.8)
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and

X ′ = −1

4

(
ΓµY ΓµY + Y ΓµY Γµ + ΓµY 2Γµ − 2Y 2 + ΓµY

i/∂M

2M
Γµ − i/∂M

M
Y +

i/∂M

2M
ΓµY Γµ

)
+
i

2

(
−ΓµDµY +DµY Γµ +

i

2
∇2 lnM

)
+

1

4
R− iq /F .

(A.9)

(A.10)

The corresponding Seeley coefficient reads

Tr b2(O2
M ) = Tr

(
−X ′ + 1

6
R− 1

6
∇2 lnM

)
= Tr

(
1

2
ΓµY ΓµY −

1

12
R+

1

12
∇2 lnM

)
. (A.11)

Integrating the anomaly equation yields

ln

(
detO2

M

detO2

)
=

1

4π

∫
d2σ
√
g lnM Tr

(
−1

2
ΓµY ΓµY +

1

12
R− 1

24
∇2 lnM

)
. (A.12)
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