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Abstract
The β phase of the ternary alloy Cu–Al–Mn, with bcc structure, displays an
interesting variety of long-range atomic ordering and magnetic transitions.
In this work, we present a model that allows an accurate reproduction of
the measured critical temperatures for alloys with compositions along the
pseudobinary line Cu3Al ↔ Cu2AlMn. The method is based on the Monte
Carlo technique, allowing simultaneous evolution of the atomic distribution
and the magnetic state. The configurational part of the energy is represented
with a three-state Hamiltonian; the six interchange energies that govern the
chemical interactions between nearest and next-nearest neighbours atoms have
been determined. The magnetic counterpart is modelled by means of an Ising
model. The predicted Curie temperatures agree well with the experimental
values when it is assumed that the crystal configuration remains fixed and with
the maximum possible degree of atomic ordering. The effects of configurational
disorder on the magnetic transition have been evaluated.

Keywords: Cu–Al–Mn, atomic ordering, magnetism, Monte Carlo simulations

(Some figures may appear in colour only in the online journal)

1. Introduction

The ternary alloy Cu–Al–Mn belongs to a family of Cu-based alloys (Cu–Zn–Al, Cu–Al–Be,
Cu–Al–Ni) which present, under certain conditions, a martensitic transformation. This is a
diffusionless solid-to-solid transition: by means of small cooperative atomic displacements,
the material changes its structure and crystallographic orientation. The technological interest
in the alloys that display this kind of transformation is connected to the presence of certain
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Figure 1. The general bcc lattice and the four interpenetrating fcc sublattices in which
it is subdivided.

thermomechanical properties such as shape memory effect, pseudoelasticity and high damping
capacity [1–4].

Owing to the diffusionless character of the martensitic transformation, the low-temperature
phase (martensite) inherits the atomic distribution of the high-temperature phase (austenite).
The atomic distribution present in the parent phase affects the properties of the transformation
and the resulting martensitic structure. In the Cu-based alloys, the austenitic βphase displays
a more or less complex sequence of long-range ordered (lro) configurations, derived from a
bcc primitive lattice. The study of the type and degree of atomic order at given conditions of
temperature and composition has interest from both the fundamental and the applied points of
view.

The typical ordered structures occurring in this system are shown in figure 1. The bcc
primitive lattice is subdivided into four interpenetrating fcc sublattices, I–IV, and the occupation
probabilities pα

i for an atom of type i (i = Cu, Mn or Al) in the αth lattice (α = I–IV) are
defined. The disordered (or short-range ordered) A2 configuration is characterized by the
relation,

pI
i = pII

i = pIII
i = pIV

i = ci, (1a)

with ci the atomic fraction of the ith element.
A structure with order in nearest neighbours, B2, is often present at intermediate

temperatures. The B2 configuration is defined by

pI
i = pII

i �= pIII
i = pIV

i . (1b)

Other usual configurations, ordered both in nearest and next-nearest neighbours, are DO3, with
an atomic distribution given by

pI
i = pII

i = pIII
i �= pIV

i , (1c)

and L21,

pI
i = pII

i �= pIII
i �= pIV

i . (1d)

A number of experimental studies about long-range ordering transitions in β Cu–Al–Mn have
been carried out in the past [5–9]. Most of this research has been devoted to the pseudobinary
line of compositions Cu3Al ↔ Cu2AlMn [5, 6], although alloys with compositions belonging

2



Modelling Simul. Mater. Sci. Eng. 22 (2014) 085007 A Alés and F Lanzini

to the lines Cu3Al ↔ Cu3Mn2 [8, 9], Cu3Al ↔ Mn [9] have also been studied. Kainuma
et al [7] measured the critical temperatures for a great number of compositions, mostly
corresponding to fixed Al atomic percentages of 10%, 15% and 20%.

Despite this considerable amount of experimental information, a clear picture of the phase
diagram is still lacking. Whereas it is well established that the alloys richer in Mn (say, with
cMn > 10 at%) experience a two-step ordering process A2 ↔ B2 ↔ L21, as the Mn content is
reduced the situation becomes less clear. In some works, a double transition is also proposed
for alloys with very low Mn content [6–8], and even for the limiting binary Cu–Al. However,
studies on Cu–Al [10], and diluted ternary Cu–Al–X systems [9,11–13] indicate that, in both
cases, there is a single A2 ↔ DO3 (L21) transformation. This conflict can be attributed,
primarily, to the complications associated with the experimental assessment of this region
of the phase diagram. For instance, in Cu–Al, the ordering of the β phase takes place at
temperatures at which it is unstable against decomposition into the equilibrium α (fcc) and
γ (complex cubic) phases [10, 14]. The measured ordering temperature in Cu3Al is around
810 K, but its lower stability limit is 840 K [15]. Thus, measurements of the ordering reactions
require very careful experimental procedures and detailed analysis.

Since most of the evidence indicates that in Cu–Al the lro is established by a single
reaction A2 ↔ DO3, while it is clear that for ternary alloys with a considerable amount of Mn
the ordering occurs in two steps A2 ↔ B2 ↔ L21, an interesting question that arises is about
the Mn content at which the splitting from one to two ordering transitions takes place.

A feature that distinguishes Cu–Al–Mn from other Cu-based shape memory alloys is
the existence of magnetic properties. Magnetism originates at the Mn atoms, which have a
localized magnetic moment of ∼4 µB [16, 17]. The stoichiometric Cu2AlMn (Heusler alloy) is
ferromagnetic, with a relatively high Curie temperature of ∼630 K [18]. It has been suggested
that the magneto-crystalline coupling can lead to the magnetic control of the shape-memory
effect [19, 20].

This work has several objectives. Firstly, we present a model able to reproduce the
chemical ordering temperatures for alloys with compositions along the pseudobinary line
Cu3Al ↔ Cu2AlMn. The model is based on a set of pairwise interactions (interchange
energies) in nearest and next-nearest neighbours, whose values are determined by fitting to
experimental data. Although other authors have previously made efforts in this direction [8, 9],
we follow here a different approach, whose advantages will be discussed below. The thermal
evolution of the atomic configuration is studied by means of Monte Carlo simulations based
on the Blume–Emery–Griffiths model [21]. Secondly, we present a simple model to describe
the magnetic ordering temperatures in alloys with compositions close to Cu2AlMn. Numerical
values for the magnetic exchange integrals in first and second neighbours of the Mn fcc
sublattice are determined, combining results of ab initio calculations and experimental data.
The model allows a satisfactory reproduction of the experimental Curie temperatures. Finally,
we analyse the interplay between chemical and magnetic ordering.

This paper is organized as follows. In section 2 we describe the implementation of the
numerical methods. In section 3 the result of our calculations are presented and discussed, and
in section 4 the main conclusions are outlined.

2. Methods

2.1. Monte Carlo simulations

The Monte Carlo method [22, 23] is based on the simulation of the alloy configuration
in a computational crystal. This is one of the most powerful methods for the study of
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thermodynamical properties in alloys [24, 25]. This technique allows obtaining ‘quasi-exact’
information [25] about several properties associated with the alloy configuration.

In the present work, simulations were performed on virtual crystals comprising
N = 2 × 323 sites under periodic boundary conditions. The sites in the box were sequentially
visited; at every site the possibility of inverting the magnetic moment and/or interchanging
the local atom with one of their nearest neighbours was evaluated. At each temperature, a
minimum of 5 × 104 Monte Carlo steps (interchange attempts per atom) were performed,
in order to ensure thermal equilibration. A few additional runs with random selection of the
visited sites were made; the results perfectly agree with the ones obtained within the sequential
procedure. This test allows concluding that no undesirable correlations effects are introduced
by the method used in this work.

In order to simulate the atomic occupation, a variable σi was associated to each site i in
the lattice, σi = +1, 0 or −1, depending on whether the site i was occupied by a Cu, Mn or Al
atom, respectively. The evolution of the atomic configuration was simulated by considering
the direct interchange between a given atom and one of their eight nearest neighbours, chosen
at random. The probability of interchange obeyed the Metropolis criterion [26]:

pint = min {1, exp (−�Hconf/kBT )} ,

where kB is the Boltzmann constant, T the absolute temperature and the difference in
configurational energy, �Hconf , was calculated by means of the Blume–Emery–Griffiths (BEG)
Hamiltonian [21]:

Hconf =
∑

s

∑
<ij>

{
Jsσiσj + Ksσ

2
i σ 2

j + Ls

(
σ 2

i σj + σiσ
2
j

)}
. (2)

In the preceding expression, the index s refers to the sth coordination sphere; all the pairs
<ij> placed as sth neighbours are included in the summation. As is usual in the treatment of
this family of alloys, only chemical interactions between nearest (s = 1), and next nearest
neighbours (s = 2) were included in the model; the interactions between more distant pairs
were assumed to be zero.

The parameters Js , Ks and Ls in equation (2) are defined as

Js = 1

4
W

(s)
CuMn, Ks = 1

4

(
2W

(s)

CuAl + 2W
(s)

MnAl − W
(s)
CuMn

)
, Ls = 1

4

(
W

(s)

CuAl − W
(s)

MnAl

)
,

(3)

where W
(s)
AB = −2V

(s)
AB + V

(s)
AA + V

(s)
BB are the interchange energies for A and B atoms placed as

sth neighbours, being V
(s)

AB the corresponding interatomic potential. The interchange energies
W

(s)
AB are the quantities that ultimately determine the crystalline behaviour of the alloy: positive

values imply ordering tendency, and negative ones lead to segregation.
In order to simulate the magnetic configuration of the alloy, a second variable Si was

assigned to each site i in the lattice. This variable represents the magnetic state of the atom
placed at i, and can take one of the values Si = ±S or 0. For the non-magnetic elements
Cu and Al, Si = 0, whereas for the Mn atoms Si took the values +S or −S. The simulation
of the magnetic evolution was performed by evaluating, at each Mn site, the probability of
performing a spin flip Si → −Si . As above, this probability was given by the Metropolis
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formula,

pflip = min
{
1, exp

(−�Hmagn/kBT
)}

,

with �Hmagn given by the Ising model

Hmagn = −
∑

s

∑
〈ij〉

JM
s SiSj . (4)

Here, JM
s is the magnetic coupling between the magnetic atoms placed as sth neighbours.

Three kinds of simulations were performed. First, a series of simulations analysing the
evolution of configurational order and ignoring the magnetic interactions was made. The
critical temperatures obtained in the simulations were fitted to the experimental values; in this
way, a set of six interchange chemical energies W

(s)
AB (s = 1, 2) was determined. Secondly,

we performed simulations of the magnetic ordering on lattices with fixed atomic arrangement.
It was assumed that the distribution corresponded to the maximum degree of atomic order
attainable for each composition. Finally, simulations in which both the atomic and magnetic
configurations were free to evolve were done. At each atomic site, the possibility of inversion
of the magnetic moment was first evaluated and the interchange with a neighbouring site was
considered next.

2.2. First principles calculations

Electronic structure calculations based on the density functional theory (DFT) [27] were carried
out using the pseudopotential method and a plane wave basis set. The calculations have been
performed within the Quantum Espresso 5.0.2 code [28]. The interactions of the atomic core
and the valence electrons were described by ultrasoft pseudopotentials [29]. The exchange-
correlation term was approximated by spin-polarized generalized gradient approximation
(GGA) according to the Perdew–Burke–Ernzerhof (PBE) parametrization [30]. The plane-
wave basis cut-off energy was set to 40 Ry (400 Ry for the electronic density). Brillouin zone
integration was performed with a 10 ×10 ×10 k-point grid automatically generated following
the convention of Monkhorst and Pack [31]. The convergence threshold for the electronic
energy was set to 10−5 Ry.

3. Results and discussion

3.1. Atomic ordering

3.1.1. Determination of the interchange energies. The first objective of the present work was
the determination of a set of chemical interchange energies W

(s)
AB that allows the reproduction

of the experimental order–disorder temperatures. As stated above, and as is usual in studies
of ordering in Cu-based shape memory alloys [8, 9, 11, 13, 32–35], the model includes
only pairwise interactions between nearest and next-nearest neighbours. Neither interactions
between more distant pairs nor multi-body terms have been taken into consideration.

Other authors have previously proposed numerical values for the interchange energies.
Prado et al [8] fitted experimental order–disorder temperatures using analytical expressions
within a modified Bragg–Williams–Gorski (BWG) model [36]. The values obtained for the
interchange energies are detailed in table 1. It should be noted that these authors assumed a
double ordering transition even in the limiting binary Cu3Al. Later, Obradó et al [9] fitted the
experimental data from [5] for alloys with compositions along the line Cu3Al ↔ Cu2AlMn.
These authors used an inverse Monte Carlo scheme based on a simplified version of the BEG
Hamiltonian, equation (2). In order to reduce the number of adjustable parameters, they
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Table 1. Pair interchange energies proposed for other authors and those obtained in the
present work. Units are kelvin degrees; the numerical values are obtained dividing the
interchange energies by the Boltzmann constant.

W
(1)

CuAl W
(5)

CuAl W
(1)

CuMn W
(5)

CuMn W
(1)

MnAl W
(5)

MnAl

(K) (K) (K) (K) (K) (K) Reference

1605 856 1266 353 2144 1168 [8]
1552 1008 388 −175 388 679 [9]
1660 920 600 200 700 800 This work

imposed three arbitrary restrictions to the interchange energies, by taking K1, K2 and L1 in
equation (3) equal to zero.

In the present work we have determined a new set of nearest and next-nearest neighbours
energies following a procedure similar to that used in [9]—i.e. an inverse Monte Carlo
scheme—although with some remarkable differences. First, it should be noted that the number
of adjustable parameters (six) is relatively high. In order to reduce the number of parameters
without resorting to unphysical simplifications, we have taken advantage of the fact that the
interchange energies for Cu–Al pairs are well known. Their values have been estimated by
several authors, using different analytical or numerical methods and data from different ternary
Cu–Al–X systems [8, 9, 11, 13,32–35]. The calculated values range from 1030 K to 1660 K
for W

(1)

CuAl, and from 540 K to 1008 K for W
(5)

CuAl; usually, the mean field (BWG) approximation
gives lower estimates than more elaborate methods. Although the range of published values
is considerable, the general agreement indicates that the interchange energies are not only
parameters of a given model or alloy system, but they also have a physical meaning [9].
Particularly, it has been shown in [37] that the values proposed in [13] to model the transition
temperatures in Cu–Al–Zn, also satisfactorily reproduces the topology of the A2 + DO3 two-
phase field in Cu–Al. Therefore, we have taken for the Cu–Al interchange energies the values
calculated in [13]: W

(1)

CuAl = 1660 K and W
(5)

CuAl = 920 K.
The four remaining unknowns were determined by an iterative procedure of successive

approximations, fitting alternately the experimental transition temperatures TA2↔B2 and
TB2↔L21 of alloys with compositions along the line Cu3Al ↔ Cu2AlMn. The obtained
results are listed in table 1. It is evident that, whereas the interchange energies for the Cu–Al
pairs are consistent with the results of other authors, the values for Cu–Mn and Mn–Al differ
significantly. This could be attributed to the uncertainty in the experimental data and the use
of different theoretical approaches.

3.1.2. Atomic ordering temperatures.

Line Cu3Al ↔ Cu2AlMn. The calculated critical temperatures for atomic ordering are
displayed in figure 2, and compared with experimental values from [5, 7, 13]. The critical
temperatures were determined by analysing the thermal evolution of the long-range ordered
parameters defined below and shown in figure 3. According with the discussion in section 1,
we discarded, from [7], the experimental data corresponding to Mn contents below 10 at%. The
calculated results closely agree with the experimental ones for compositions close to Cu3Al
and Cu2AlMn. At intermediate compositions TA2↔B2 seems to be slightly underestimated by
the simulations; we understand, however, that more experimental information in this region of
the phase diagram is needed in order to draw a definitive conclusion.

6



Modelling Simul. Mater. Sci. Eng. 22 (2014) 085007 A Alés and F Lanzini

Figure 2. Experimental and calculated ordering temperatures along the pseudobinary
line Cu3Al ↔ Cu2AlMn. Lines through the experimental data are just guides to the
eye.

Figure 3. Thermal evolution of the long-range order for six alloys with compositions
along the line Cu3Al↔Cu2AlMn (fixed 25 at% Al): (a) Cu3Al; (b) 5 at% Mn; (c) 10 at%
Mn; (d) 15 at% Mn; (e) 20 at% Mn; (f ) Cu2AlMn. Note the different horizontal and
vertical scales.
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The compositions represented in figure 3 correspond to a fixed content of 25% at Al,
from Cu3Al (figure 3(a)) to Cu2AlMn (figure 3(b)). It can be appreciated the way in which
the number and nature of ordering transitions change as the copper atoms are replaced with
manganese. In the binary Cu3Al, there is single transition, from the A2 configuration towards
a structure ordered in first and second neighbours, DO3. The same occurs for an alloy with
2.5 at% Mn. For 5% at. Mn (figure 3(b)), the transition splits into two reactions taking place at
close temperatures: the ordering to a B2 configuration is followed, a few degrees below, by the
ordering of next-nearest neighbours giving rise to an L21superlattice. Further increasing the
Mn content up to 15 at%, TA2↔B2 smoothly increases, while TB2↔L21 remains almost unchanged
(figures 3(c)–(d)). Finally, above 15 at% Mn, both TA2↔B2 and TB2↔L21 show little variation
with composition.

Figure 3 also shows the different kinetic nature of the transitions. On the one hand, the
single ordering reaction arising for alloys with low Mn content is accompanied by a sudden
change in the order parameters. This agrees with the observed first-order character of the
reaction [9, 11, 13]. Instead, below the A2 ↔ B2 transition in alloys with high Mn content, the
lro parameters increase smoothly from zero, in accordance with the experimental observation
that this is a continuous transition. Also the B2 ↔ L21 transition shows a continuous character.
The values of the order parameters quantify the atomic distribution on the lattice sites. In
particular, it should be noted that both next-nearest neighbours parameters, zCu and zMn,
take positive values in the L21 configuration. It means that the preferred low-temperature
configuration is one in which Cu atoms occupy sublattices I and II (since xCu > 0 and grows
as the temperature decreases), the remaining Cu and Mn occupy sublattice III (zCu and zMn

positives) and sublattice IV is occupied by the Al atoms. The atypical thermal variation of zCu

in Cu2AlMn (figure 3(f )) can be explained as follows: below TA2↔B2 and above TB2↔L21 the
order B2 is still incomplete and the antisite Cu atoms distribute equally between sublattices
III and IV, and then zCu = 0. Below TB2↔L21 order in next-nearest neighbours is developed:
Mn and Al atoms tend to accommodate in sublattices III and IV, respectively. The antisite Cu
atoms occupy some of the sites of the Mn sublattice, resulting in zCu > 0. As the temperature
further decreases, order in nearest neighbours gradually increases, and the Cu atoms placed in
the Mn sublattice migrate to the Cu-sublattices I and II, and then zCu → 0.

Other lines of composition. The set of interchange energies proposed in table 1 has
been determined by fitting to the experimental order–disorder transition temperatures for
compositions along the line connecting Cu3Al and Cu2AlMn. This is the most extensively
studied region of the phase diagram for several reasons. Besides being particularly interesting
because it includes the Heusler alloy, in this line of compositions the electronic concentration
takes the fixed value e/a = 1.5. At this value of e/a, the bcc β phase (or the ordered
superstructures derived from it) displays its maximum range of thermal stability against other
competing phases such as α (fcc), and γ (complex cubic) [38–40].

There are, however, experimental assessments of other regions of the phase diagram. In
figure 4, the critical temperatures predicted by our model are contrasted with experimental
data taken from [9], corresponding to compositions belonging to the lines Cu3Al ↔ Mn
(figure 4(a)) and Cu3Al ↔ Cu3Mn2 (figure 4(b)).

The model captures the main characteristics of the phase diagram for these two
pseudobinary lines (for instance, correctly predict the nature of the involved phases and the
point where the splitting from one to two transitions takes place). However, there are some
quantitative discrepancies regarding the values of the critical temperatures, being the most
notorious the underestimation of TA2↔B2 for compositions along the line Cu3Al↔Cu3Mn2

(figure 4(b)). A different set of interchange energies could be proposed, which improves the
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Figure 4. Experimental and calculated order–disorder transition temperatures for alloys
with compositions along the lines (a) Cu3Al ↔ Mn; (b) Cu3Al ↔ Cu3Mn2. Dotted
lines through the experimental data are guides to the eye.

agreement between experiment and theory for the data displayed in figure 4; this leads, however,
to a wrong prediction of the critical temperatures in the Cu3Al ↔ Cu2AlMn line. The present
results indicate that a model considering only constant interactions up to second neighbours
is unable to account for the critical ordering temperatures in all the range of compositions
experimentally investigated.

3.2. Magnetic ordering

3.2.1. Determination of the exchange integrals. As discussed in the Introduction to this
work, besides configurational atomic ordering, β Cu–Al–Mn also shows magnetic ordering
phenomena. The stoichiometric Cu2AlMn displays a paramagnetic to ferromagnetic transition
at a Curie temperature of about 630 K. The magnetism is originated by the magnetic moments
localized at the Mn atoms. The localized character of the magnetic moments allows us to
treat the system by means of a Heisenberg-like model [16]. In this work we have chosen,
as a first approximation, a two-states Ising Hamiltonian; this model has been extensively
employed by other authors to treat magnetism in Cu–Al–Mn [41–43]. The magnetic moments
interact through an RKKY [41, 42] type interaction. This model [44] predicts an oscillatory
and decreasing variation of the magnetic exchange integrals JM

s with the interatomic distance,
resulting in a competence between ferromagnetic and antiferromagnetic alignment tendencies.
Although the JM

s extend to considerable distances, the biggest values, corresponding to the first
coordination spheres, determine the main magnetic properties of the material, in particular its
Curie temperature TC [45]. In Cu2AlMn with perfect L21 order, the Mn atoms completely fill
one of the four fcc sublattices shown in figure 1. Closest Mn–Mn pairs (nearest and next-nearest
neighbours in the fcc sublattice) correspond to third and sixth neighbours of the primitive bcc
lattice. Thus, for the application of the magnetic Hamiltonian of equation (4), we restricted
our consideration to the terms containing JM

3 and JM
6 ; the remaining exchange integrals were

assumed to be zero. This is a reasonable assumption provided that the effects related to
imperfect order or deviations from the stoichiometry are not significative. For instance, in
Cu2AlMn the Curie temperature TC is considerably below the critical TB2↔L21 temperature.
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Figure 5. Evolution with temperature of (a) modulus of the normalized magnetization,
|m|, and (b) magnetic susceptibility χ for two alloys with compositions along the line
Cu3Al ↔ Cu2AlMn.

As can be seen in figure 3(f ), although the crystalline ordering is not fully established at
TC, the deviation from perfect order is small. Besides, since we restrict our analysis to alloys
whose Mn content is lower than 25 at%, the effects of off-stoichiometry are irrelevant provided
there is a high degree of crystalline order at the temperatures at which magnetic ordering takes
place. The same reasoning does not apply to alloys whose Mn content exceeds 25 at%, since
in this case there is always some number of Mn antisites.

The values for JM
3 and JM

6 were estimated as follows. According to the mean field theory,
the Curie temperature for the stoichiometric, perfectly ordered, alloy is given by [45–47]:

kBTC = 2S(S + 1)

3
(12JM

3 + 6JM
6 ), (5)

with S the magnetic moment. On the other hand, the difference of the ground state energies for
L21 Cu2AlMn with ferromagnetic (FM) and antiferromagnetic (AFM) magnetic configurations
is given by [45]

�E = EFM − EAFM = −8S2JM
3 . (6)

The values for �E and S were obtained from ab initio calculations, with the procedure
detailed in section 2.2. The values �E = −31.55 meV and S = 3.63µB were obtained.
The experimental Curie temperature for Cu2AlMn, TC = 630 K, was used. Equations (5) and
(6) lead to JM

3 = 0.299 meV and JM
6 = 0.210 meV. These values are comparable with the ones

reported in [45] (JM
3 = 0.333 meV and JM

6 = 0.329 meV), which lead to an overestimation
of the Curie temperature.

Magnetic ordering temperatures. The calculated evolution of the magnetization m and the
magnetic susceptibility χ are shown in figure 5 for two alloys with compositions belonging
to the line Cu3Al ↔ Cu2AlMn. Simulations were carried out assuming that the atomic
distribution corresponds to the maximum possible degree of L21 order: in the stoichiometric
alloy one of the fcc sublattices is fully occupied by Mn atoms. In the off-stoichiometric
case (with cMn < 25 at%) the remaining sites of the Mn sublattice where occupied with
randomly distributed Cu atoms. In figure 5, the normalized magnetization is defined as
m = (N↑ − N↓)/N , being N↑ (↓) the number of magnetic atoms in the majority (minority)
orientation, and N the total number of sites in the simulation lattice. With this definition, the
saturation value is mmax = cMn. The paramagnetic state is characterized by a net magnetization

10
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Figure 6. Measured and calculated Curie temperatures for alloys with compositions
along the line Cu3Al ↔ Cu2AlMn.

m = 0, whereas in the ferromagnetic state it is m �= 0; the Curie temperature is located at
the transition between these states. The temperature of the magnetic transformation can be
determined from the plot of the magnetic susceptibility (figure 5(b)). This is obtained from
the magnetization fluctuations as χ = 1

kBT 2

[〈
m2

〉 − 〈m〉2
]
.

The temperatures of magnetic ordering for a series of alloys Cu–Al–Mn with compositions
close to Cu2AlMn have been experimentally determined in [7]. The results of those experiments
are shown in figure 6, and compared with the predictions of the present model. There is a good
agreement between measured and calculated critical temperatures: TC grows linearly with the
Mn content.

3.3. Simultaneous atomic and magnetic ordering

In this section, the interplay between chemical and magnetic ordering is analysed. A new
series of simulations was performed, during which both the atomic distribution and the
magnetic configuration were free to evolve. The energetic parameters previously calculated
were employed. The critical temperatures obtained with this procedure are shown in figure 7,
and confronted with the experimental data.

While the temperatures for configurational order remain unaffected by the inclusion of
magnetic interactions, the predicted Curie temperatures are sensitive to an incomplete degree
of atomic order. This is better understood by comparing figures 2, 6 and 7. In figure 8, the
thermal evolution of the lro parameters and magnetization in Cu2AlMn is shown. Comparison
with figures 3(f ) and 5(a) reinforces the conclusion that the inclusion of magnetic degrees
of freedom has little effect on the evolution of the atomic distribution, while an incomplete
degree of chemical ordering leads to an appreciable decrement in the Curie temperatures.
This situation contrasts with what is found in other alloys (e.g. Ni–Fe [48], Fe–Al [49]),
in which atomic ordering and magnetism influence each other to comparable extents; the
difference is that in these systems Tc is closer to (or even higher than) the critical ordering
temperatures. Figure 8 also shows that, despite the considerable differences in the temperatures
for atomic and magnetic ordering, the atomic equilibrium distribution at the experimental Curie
temperature does not exactly correspond to a perfectly ordered lattice. Then, the values of the
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Figure 7. Critical temperatures for atomic and magnetic ordering for alloys with
compositions belonging to the line Cu3Al ↔ Cu2AlMn. Lines through the experimental
data are just guides for the eyes.

Figure 8. Thermal evolution of the configurational lro parameters in nearest (xCu,
xMn, xAl) and next-nearest (zCu, zMn) neighbours, and the modulus of magnetization
(|m|) in Cu2AlMn. Triangles are experimental values of xAl and xMn adapted from [50].

magnetic interactions, when calculated under the assumption of perfect crystalline order, are
underestimations of the actual values, and will lead to the prediction of low Curie temperatures
when this restriction is removed. The magnitude of the underestimation in TC is, according
to the data displayed in figure 7, around 10%; this would be easily solved by rescaling the
magnetic exchange interactions.

In figure 8, the calculated evolution of the nearest neighbours lro parameters below the
A2–B2 transition is compared with the experimental values obtained by McCormack et al [50].
The calculated values favourably compare with the measured ones, although a somewhat higher
thermal rate of (dis)ordering is predicted for the Mn atoms. In agreement with [50], the model
predicts that, when B2 ordering is established, the (Al + Mn) sublattices (sublattices III + IV
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Figure 9. Thermal variation of the magnetic, chemical, and total internal energy in
Cu2AlMn.

in figure 1) are preferentially occupied by the Al atoms, at the expense of Mn. In order
to clarify this point, the parameter xAl = −xCu − xMn is also plotted, with a dashed line, in
figure 8.

The internal energy (chemical, magnetic, and total) of Cu2AlMn is represented in figure 9.
The contribution of chemical energy is roughly one order of magnitude higher than the magnetic
one. The influence of magnetism on the internal energy is only noticeable below the Curie
temperature. However, some short-range magnetic ordering exists above this point, as is
evident from the deviation of the magnetic energy with respect to the paramagnetic state.
The effects of short-range order on the chemical energy are also noticeable: above TA2↔B2,
there is a considerable amount of energy stored in the form of short-range correlations.
Note that the internal energy does not exhibit jumps below the critical temperatures for
atomic ordering: this is due to the continuous character of both transitions, as discussed in
sections 3.2.1.

It is known that different magnetic properties depend on the degree of order of the Mn
atoms [51–53]. For instance, the measured values for Tc in Cu2AlMn range between 590 and
641 K [7, 18, 53, 54]; the scatter may be attributed to variations in the configurational order.
Since experiments on magnetic properties are carried out under a variety of previous thermal
treatments, it should be interesting to have a measure of the degree in which the lack of perfect
ordering affects such properties. The predicted dependence of the Curie temperature with
the degree of atomic order in Cu2AlMn is shown in figure 10. Simulations were carried out
in the following way: first, the atomic configuration of the virtual crystal was equilibrated
at different temperatures Teq. Then, the temperature was varied in small steps keeping the
atomic distribution fixed, but allowing the modification of the magnetic state of the Mn atoms.
The TA2↔B2 and TB2↔L21 temperatures are indicated with dotted vertical lines in figure 10. As
expected, Tc diminishes as the amount of chemical disorder increases. For atomic distributions
corresponding to equilibrium at temperatures Teq � 600 K, the calculated Curie temperatures
are in the range of the reported experimental values. Above Teq ≈ 600 K the effects of
disordering become more notorious; experimental validation of these results will depend,
however, on the ability to retain frozen disorder by a suitable thermal treatment.

13



Modelling Simul. Mater. Sci. Eng. 22 (2014) 085007 A Alés and F Lanzini

Figure 10. Dependence of the Curie temperature, TC, with the degree of retained
configurational (dis)order in Cu2AlMn.

4. Conclusions

In summary, in this work we present a model that describes the configurational and magnetic
ordering transitions taking place in β Cu–Al–Mn. The thermal evolution of the atomic and
magnetic ordering degree was studied by means of Monte Carlo simulations. The simulations
were based on a Hamiltonian composed of two parts: a BEG Hamiltonian to model site
interchanges of neighbouring atoms, and an Ising model for the simulation of the magnetic
behaviour.

A set of constant chemical interchange energies in nearest and next-nearest neighbours
was calculated. These energies allow an accurate reproduction of the structure of the involved
phases, critical temperatures for long-range ordering, and kinetics of the transitions for alloys
with compositions along the pseudobinary line Cu3Al ↔ Cu2AlMn. For other compositions,
however, the reproduction of experimental critical temperatures is not completely satisfactory:
although more experimental information is necessary to draw a definitive conclusion, it seems
that a dependence of the interchange energies on composition (or multi-body terms) should be
included in the model.

The dependence with composition and temperature of the paramagnetic/ferromagnetic
transition temperature was modelled by means of an Ising model. The model parameters
(exchange integrals) were calculated by combining first principles calculations of the ground
state energy for ferro and antiferromagnetic L21Cu2AlMn structures, and the experimental
value of the Curie temperature. The model correctly predicts the linear dependence of the
Curie temperature with the Mn content.

Finally, by performing simulations with simultaneous variation of the atomic distribution
and the magnetic state, the interplay between both processes was analysed. It has been shown
that, whereas the atomic ordering transitions remain unaffected by the existence of magnetic
interactions, the magnetic ordering is very sensitive to the degree of configurational order.

Other authors have suggested that the magnetism of an ordered alloy may give rise to a low-
temperature phase separation between a ferromagnetic and a paramagnetic phase [43]. In the
cited work, a model normalized Hamiltonian was employed; the model was constructed based
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on the topology of the phase diagram of Cu–Al–Mn, which displays a DO3 (paramagnetic)+L21

(ferromagnetic) two-phase field at low temperatures. However, the authors did not suggest
numerical values for the chemical and magnetic interactions. The numerical values proposed
in the present work would constitute a good starting point for a more detailed study of the
influence of magnetism in the formation of this two-phase field.
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