

Integral Transforms and Special Functions

ISSN: 1065-2469 (Print) 1476-8291 (Online) Journal homepage: http://www.tandfonline.com/loi/gitr20

A Liouville theorem for some Bessel generalized operators

Vanesa Galli, Sandra Molina & Alejandro Quintero

To cite this article: Vanesa Galli, Sandra Molina & Alejandro Quintero (2018) A Liouville theorem for some Bessel generalized operators, Integral Transforms and Special Functions, 29:5, 367-383, DOI: 10.1080/10652469.2018.1441295

To link to this article: https://doi.org/10.1080/10652469.2018.1441295

	Published online: 22 Feb 2018.
	Submit your article to this journal 🗷
ılıl	Article views: 21
Q ^L	View related articles 🗹
CrossMark	View Crossmark data ぴ

Research Article

A Liouville theorem for some Bessel generalized operators

Vanesa Galli, Sandra Molina and Alejandro Quintero

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina

ABSTRACT

In this paper we establish a Liouville theorem in \mathcal{H}'_{μ} for a wider class of operators in $(0,\infty)^n$ that generalizes the n-dimensional Bessel operator. We will present two different proofs, based in two representation theorems for certain distributions 'supported in zero'.

ARTICLE HISTORY

Received 16 September 2017 Accepted 13 February 2018

KEYWORDS

Liouville theorem; Bessel operator; Hankel transform

AMS CLASSIFICATIONS

46F12; 47F05; 42A38; 44A05

1. Introduction

Liouville type theorems have been studied in many works under different contexts. In analytic theory, Liouville theorems stated that a bounded entire function reduces to a constant. A first version of Liouville theorem in distributional theory is due to L. Schwartz [1], and assert that any bounded harmonic function in \mathbb{R}^n is a constant.

Currently, this result has been generalized in many directions. A well known generalization states that:

Let $L = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$ be a linear differential operator with constant coefficients such that $\sum_{|\alpha| \le m} a_{\alpha} (2\pi i \xi)^{\alpha} \ne 0$ for all $\xi \in \mathbb{R}^n - \{0\}$. If a tempered distribution u, solves Lu = 0, then u is a polynomial function. In particular, if u is bounded then it reduces to a constant.

In this work, we established a Liouville type theorem for a large class of operators in $(0, \infty)^n$, that are lineal combinations of operators

$$S^{k} = S_{\mu_{1}}^{k_{1}} \circ \dots \circ S_{\mu_{n}}^{k_{n}}, \tag{1.1}$$

where k is a multi-index, $k = (k_1, ..., k_n)$, $\mu_i \in \mathbb{R}$, $\mu_i \ge -1/2$ and

$$S_{\mu_i} = \frac{\partial^2}{\partial x_i^2} - \frac{4\mu_i - 1}{4x_i^2}.$$
 (1.2)

The operators given by linear combination of (1.1) contain as a particular case the n-dimensional operator defined in [2] and given by:

$$S_{\mu} = \Delta - \sum_{i=1}^{n} \frac{4\mu_{i}^{2} - 1}{4x_{i}^{2}},$$
(1.3)

where $\mu = (\mu_1, \dots, \mu_n)$ and S_{μ} is a *n*-dimensional version of the well know Bessel operator

$$S_{\alpha} = \frac{d^2}{dx^2} - \frac{4\alpha^2 - 1}{4x^2}.$$
 (1.4)

This operators were introduced in relation to the Hankel transform given by

$$h_{\alpha}f(y) = \int_{0}^{\infty} f(x)\sqrt{xy}J_{\alpha}(xy) dx$$
 (1.5)

with $\alpha \ge -1/2$, for 1-dimensional case and the *n*-dimensional case

$$(h_{\mu}\phi)(y) = \int_{(0,\infty)^n} \phi(x_1,\dots,x_n) \prod_{i=1}^n \{\sqrt{x_i y_i} J_{\mu_i}(x_i y_i)\} dx_1 \dots dx_n$$
 (1.6)

with $\mu = (\mu_1, \dots, \mu_n)$, $\mu_i \ge -1/2$, $i = 1, \dots, n$. And J_{ν} represents the Bessel functions of the first kind and order ν .

Bessel operators (1.3) and (1.4) and Hankel Transforms (1.5) and (1.6) were studied on Zemanian spaces \mathcal{H}_{μ} and \mathcal{H}'_{μ} in [2–4].

The space \mathcal{H}_{μ} is a space of functions $\phi \in C^{\infty}((0,\infty)^n)$ such that for all $m \in \mathbb{N}_0$, $k \in \mathbb{N}_0^n$ verifies

$$\gamma_{m,k}^{\mu}(\phi) = \sup_{x \in (0,\infty)^n} |(1 + \|x\|^2)^m T^k \{x^{-\mu - 1/2} \phi(x)\}| < \infty, \tag{1.7}$$

where $-\mu - 1/2 = (-\mu_1 - 1/2, \dots, -\mu_n - 1/2)$ and the operators T^k are given by $T^k = T_n^{k_n} \circ T_{n-1}^{k_{n-1}} \circ \dots \circ T_1^{k_1}$, where $T_i = x_i^{-1}(\partial/\partial x_i)$. Thus \mathcal{H}_{μ} is Frèchet space. The dual space of \mathcal{H}_{μ} is denoted by \mathcal{H}'_{μ} .

In [2] the authors proved that S_{μ_i} are continuous from \mathcal{H}_{μ} into itself for all $i=1,\ldots,n$ and self-adjoint lineal mappings. This fact also implies that the operator $S^k=S^{k_n}_{\mu_n}\ldots S^{k_1}_{\mu_1}$ is continuous from \mathcal{H}_{μ} into itself. Then, since they are self-adjoints the generalized operators can be extended to \mathcal{H}'_{μ} by

$$(S_{u,f},\phi) = (f,S_{u,\phi})$$
 and $(S^k f,\phi) = (f,S^k \phi), \quad f \in \mathcal{H}'_u, \quad \phi \in \mathcal{H}_u.$ (1.8)

The generalized Hankel transformation $h_{\mu}f$ of $f \in \mathcal{H}'_{\mu}$ is defined by

$$(h_{\mu}f,\phi)=(f,h_{\mu}\phi), \quad f\in\mathcal{H'}_{\mu}, \quad \phi\in\mathcal{H}_{\mu}$$

for $\mu \in [-1/2, \infty)^n$. Then h_{μ} is an automorphism onto \mathcal{H}_{μ} and \mathcal{H}'_{μ} and $h_{\mu} = (h_{\mu})^{-1}$. The Hankel transform and Bessel operator are related by $h_{\mu}(S_{\mu}) = -\|y^2\|h_{\mu}$ in \mathcal{H}_{μ} and \mathcal{H}'_{μ} .

Now we shall describe the main result of this work.

Theorem 1.1: Let P[x] be a polynomial in n-variables such that $\sum_{|\alpha| \le N} a_{\alpha} x^{\alpha} \ne 0$ for all $x \in \mathbb{R}^n - \{0\}$ and all its coefficients have the same sign. Let L be the operator $L = \mathbb{R}^n$ $\sum_{|\alpha| \leq N} (-1)^{|\alpha|} a_{\alpha} S^{\alpha}$. If $f \in \mathcal{H}'_{\mu}$ and

$$Lf = 0, (1.9)$$

then there exists a polynomial in n-variables Q such that $f(x) = x^{\mu+1/2}Q[x_1^2, \dots, x_n^2]$.

Corollary 1.2: If f is a classical solution of (1.9) of slow growth then there exists a polynomial in n-variables Q such that $f(x) = x^{\mu+1/2}Q[x_1^2, \dots, x_n^2]$. In particular if f is bounded then f is a constant.

Remark 1.1: The cases $\mu = (\mu_1, \dots, \mu_n) = (1/2, \dots, 1/2)$ or $(-1/2, \dots, -1/2)$ produce in (1.3) the Laplacian operator in $(0, \infty)^n$.

This paper is organized as follows. In Section 2, we present some notational conventions that will allow us to simplify the presentation of our results. In Section 3 we propose a characterization of a certain family of functions on the multiplier space \mathcal{O} of the *n*-dimensional space \mathcal{H}_{μ} that extends the result proved by Zemanian in [4]. In Sections 4 and 5 we give two different proofs of Theorem 1.1.

2. Preliminaries and notations

In this section we summarize without proof the relevant material on Hankel transforms and the Zemanian spaces studied in [2,3,5].

We now present some notational conventions that will allow us to simplify the presentation of our results. We denote by $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ elements of $(0,\infty)^n$ or \mathbb{R}^n . Let \mathbb{N} be the set $\{1,2,3,\ldots\}$ and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}, \|x\| = (x_1^2 + \cdots + x_n^2)^{1/2}$. The notations x < y and $x \le y$ mean, respectively, $x_i < y_i$ and $x_i \le y_i$ for i = 1, ..., n. Moreover, x = a for $x \in \mathbb{R}^n$, $a \in \mathbb{R}$ means $x_1 = x_2 = \ldots = x_n = a$, $x^m = x_1^{m_1} \ldots x_n^{m_n}$ and e_j for $j=1,\ldots,n$, denotes the members of the canonical basis of \mathbb{R}^n . An element $k=1,\ldots,n$ $(k_1,\ldots,k_n)\in\mathbb{N}_0^n=\mathbb{N}_0\times\mathbb{N}_0\times\cdots\times\mathbb{N}_0$ is called multi-index. For k,m multi-index we set $|k| = k_1 + \cdots + k_n$ the length of the multi-index.

Also we will note

$$k! = k_1! \dots k_n!, \quad \binom{k}{m} = \binom{k_1}{m_1} \dots \binom{k_n}{m_n} \quad \text{for } k, m \in \mathbb{N}_0^n.$$

Remark 2.1: Let k be a multi-index and θ , φ differenciable functions up to order |k|, the following equality is valid

$$T^{k}\{\theta.\varphi\} = \sum_{j=0}^{k} {k \choose j} T^{k-j}\theta.T^{j}\varphi, \qquad (2.1)$$

where '' denote the usual product of functions, $\binom{k}{i}$ and $\sum_{j=0}^{k}$ must be interpreted as in the previous section for j = 0 = (0, ..., 0).

Remark 2.2: If e_i is an element of the canonical base of \mathbb{R}^n , since $S^{e_i} = S^0_{\mu_n} \dots S^1_{\mu_i} \dots S^0_{\mu_1} = S_{\mu_i}$, then $\sum_{i=1}^n S^{e_i} = \sum_{i=1}^n S_{\mu_i} = S_{\mu}$.

In [6] was defined the generalized function δ_{α} , as

$$(\delta_{\alpha}, \phi) = C_{\alpha} \lim_{x \to 0^+} x^{-\alpha - 1/2} \phi(x), \tag{2.2}$$

where $C_{\alpha} = 2^{\alpha} \Gamma(\alpha + 1)$. The distribution given by (2.2) can be extended in the same way to the *n*-dimensional case. Moreover we can consider the following distribution

$$(T^k \delta_{\mu}, \phi) = C_{\mu} \lim_{\substack{x \to 0 \\ x_i > 0}} T^k \{ x^{-\mu - 1/2} \phi(x) \}, \tag{2.3}$$

where k is a multi-index, $\mu \in \mathbb{R}^n$ and C_{μ} is a constant depending on μ given by $C_{\mu} = \prod_{i=1}^n 2^{\mu_i} \Gamma(\mu_i + 1)$. The generalized function (2.3) is well defined as it can be seen in the proof of Lemma 3.1. Let $\phi \in \mathcal{H}_{\mu}$, since

$$|(T^k \delta_{\mu}, \phi)| = \left| C_{\mu} \lim_{\substack{x \to 0 \\ x_i > 0}} T^k \{ x^{-\mu - 1/2} \phi(x) \} \right| \le C_{\mu} \sup_{x \in (0, \infty)^n} |T^k \{ x^{-\mu - 1/2} \phi(x) \}| = C_{\mu} \gamma_{0, k}^{\mu}(\phi),$$

then $T^k \delta_{\mu}$ lies in \mathcal{H}'_{μ} . Moreover,

$$h_{\mu}T^{k}\delta_{\mu} = C_{k}^{\mu} t^{\mu+2k+1/2} \quad \text{in } \mathcal{H}'_{\mu},$$
 (2.4)

where $C_k^{\mu}=(-1)^{|k|}(C_{\mu}/C_{\mu+k})$. Indeed, since the well known formula $(\mathrm{d}/\mathrm{d}z)(z^{-\alpha}J_{\alpha})=-z^{-\alpha}J_{\alpha+1}$ is valid for $\alpha\neq -1,-2,\ldots$, if we consider $k=e_j$, then

$$\begin{split} &(h_{\mu}T_{j}\delta_{\mu},\phi) = (T_{j}\delta_{\mu},h_{\mu}\phi) = C_{\mu} \lim_{\substack{x \to 0 \\ x_{i} > 0}} T_{j}\{x^{-\mu-1/2}h_{\mu}\phi(x)\} \\ &= C_{\mu} \lim_{\substack{x \to 0 \\ x_{i} > 0}} x_{j}^{-1} \partial/\partial x_{j} \left\{ \int_{(0,\infty)^{n}} t^{\mu+1/2}\phi(t_{1},\ldots,t_{n}) \prod_{i=1}^{n} \{(x_{i}t_{i})^{-\mu_{i}}J_{\mu_{i}}(x_{i}t_{i})\} dt_{1} \ldots dt_{n} \right\} \\ &= C_{\mu} \lim_{\substack{x \to 0 \\ x_{i} > 0}} x_{j}^{-1} \left\{ \int_{(0,\infty)^{n}} t^{\mu+1/2}\phi(t_{1},\ldots,t_{n}) \partial/\partial x_{j} \left\{ \prod_{i=1}^{n} \{(x_{i}t_{i})^{-\mu_{i}}J_{\mu_{i}}(x_{i}t_{i})\} \right\} dt_{1} \ldots dt_{n} \right\} \\ &= -C_{\mu} \lim_{\substack{x \to 0 \\ x_{i} > 0}} \int_{(0,\infty)^{n}} t^{\mu+2e_{j}+1/2}\phi(t_{1},\ldots,t_{n}) [(x_{j}t_{j})^{-(\mu_{j}+1)}J_{\mu_{j}+1}(x_{j}t_{j})] \\ &\times \prod_{\substack{i=1 \\ i \neq j}} \{(x_{i}t_{i})^{-\mu_{i}}J_{\mu_{i}}(x_{i}t_{i})\} dt_{1} \ldots dt_{n} \\ &= -C_{\mu} \left\{ C_{\mu_{j}+1} \prod_{\substack{i=1 \\ i \neq j}}^{n} C_{\mu_{i}} \right\}^{-1} \int_{(0,\infty)^{n}} t^{\mu+2e_{j}+1/2}\phi(t_{1},\ldots,t_{n}) dt_{1} \ldots dt_{n} \\ &= \left(-\frac{C_{\mu_{j}}}{C_{n+1}} t^{\mu+2e_{j}+1/2}, \phi \right). \end{split}$$

Therefore the assertion is true for $k = e_i$. The general case follows in a similar way. Indeed, let $r \in \mathbb{N}_0$ and let us observe that

$$T_{j}^{r} \left\{ t^{\mu+1/2} \prod_{i=1}^{n} \{ (x_{i}t_{i})^{-\mu_{i}} J_{\mu_{i}}(x_{i}t_{i}) \} \right\}$$

$$= (x_{j}^{-1} \partial / \partial x_{j})^{r} \left\{ t^{\mu+1/2} \prod_{i=1}^{n} \{ (x_{i}t_{i})^{-\mu_{i}} J_{\mu_{i}}(x_{i}t_{i}) \} \right\}$$

$$= (-1)^{r} t^{\mu+2r e_{j}+1/2} (x_{j}t_{j})^{-(\mu_{j}+r)} J_{\mu_{j}+r}(x_{j}t_{j}) \prod_{\substack{i=1\\i\neq j}}^{n} \{ (x_{i}t_{i})^{-\mu_{i}} J_{\mu_{i}}(x_{i}t_{i}) \}, \qquad (2.5)$$

then (2.5) yields

$$\begin{split} &(h_{\mu}T_{j}^{r}\delta_{\mu},\phi) = (T_{j}^{r}\delta_{\mu},h_{\mu}\phi) = C_{\mu}\lim_{\substack{x \to 0 \\ x_{i} > 0}} T_{j}^{r}\{x^{-\mu-1/2}h_{\mu}\phi(x)\} \\ &= C_{\mu}\lim_{\substack{x \to 0 \\ x_{i} > 0}} (x_{j}^{-1}\partial/\partial x_{j})^{r} \left\{ x^{-\mu-1/2} \int_{(0,\infty)^{n}} \phi(t_{1},\ldots,t_{n}) \prod_{i=1}^{n} \{\sqrt{x_{i}t_{i}}J_{\mu_{i}}(x_{i}t_{i})\} \, \mathrm{d}t_{1} \ldots \mathrm{d}t_{n} \right\} \\ &= C_{\mu}\lim_{\substack{x \to 0 \\ x_{i} > 0}} (x_{j}^{-1}\partial/\partial x_{j})^{r} \left\{ \int_{(0,\infty)^{n}} t^{\mu+1/2}\phi(t_{1},\ldots,t_{n}) \prod_{i=1}^{n} \{(x_{i}t_{i})^{-\mu_{i}}J_{\mu_{i}}(x_{i}t_{i})\} \, \mathrm{d}t_{1} \ldots \mathrm{d}t_{n} \right\} \\ &= (-1)^{r} C_{\mu}\lim_{\substack{x \to 0 \\ x_{i} > 0}} \int_{(0,\infty)^{n}} t^{\mu+2r} e_{j} + 1/2 \phi(t_{1},\ldots,t_{n})(x_{j}t_{j})^{-(\mu_{j}+r)} J_{\mu_{j}+r}(x_{j}t_{j}) \\ &\times \prod_{\substack{i=1 \\ i \neq j}} \{(x_{i}t_{i})^{-\mu_{i}}J_{\mu_{i}}(x_{i}t_{i})\} \, \mathrm{d}t_{1} \ldots \mathrm{d}t_{n} \\ &= (-1)^{r} C_{\mu} \left\{ C_{\mu_{j}+r} \prod_{\substack{i=1 \\ i \neq j}} C_{\mu_{i}} \right\}^{-1} \int_{(0,\infty)^{n}} t^{\mu+2r} e_{j} + 1/2 \phi(t_{1},\ldots,t_{n}) \, \mathrm{d}t_{1} \ldots \mathrm{d}t_{n} \\ &= \left((-1)^{r} \frac{C_{\mu_{j}}}{C_{\mu_{j}+r}} t^{\mu+2r} e_{j} + 1/2}, \phi \right). \end{split}$$

For the general case, if we compute for $j \neq k \in \{1, ..., n\}$ and $r, m \in \mathbb{N}_0$ then we obtain that

$$(h_{\mu}T_{j}^{r}T_{k}^{m}\delta_{\mu},\phi) = (T_{j}^{r}T_{k}^{m}\delta_{\mu},h_{\mu}\phi) = \left((-1)^{r+m}\frac{C_{\mu_{j}}C_{\mu_{k}}}{C_{\mu_{j}+r}C_{\mu_{k}+m}}t^{\mu+2re_{j}+2me_{k}+1/2},\phi\right),$$

and the result follows.

3. Some results about Taylor's expansions and a special family of multipliers in \mathcal{H}_{μ}

In this section we extend the characterization obtained by Zemanian in [4] related to Taylor's expansions of functions in \mathcal{H}_{μ} . Moreover we give a result which improve Lemma 3.2 in [5].

Lemma 3.1: Let $\mu \in \mathbb{R}^n$. Then ϕ is a member of \mathcal{H}_{μ} if and only if it satisfies the following three conditions:

- (i) $\phi(x)$ is a smooth complex valued function on $(0, \infty)^n$.
- (ii) For each $r \in \mathbb{N}_0$

$$x^{-\mu-1/2}\phi(x) = a_0 + \sum_{|k_1|=1} a_{2k_1} x^{2k_1} + \sum_{|k_2|=2} a_{2k_2} x^{2k_2} + \cdots$$
$$+ \sum_{|k_r|=r} a_{2k_r} x^{2k_r} + R_{2r}(x), \tag{3.1}$$

where

$$a_{2k_r} = \frac{1}{2^r k_r!} \lim_{\substack{x \to 0 \\ x_r > 0}} T^{k_r} \{ x^{-\mu - 1/2} \phi(x) \}, \tag{3.2}$$

and the remainder term $R_{2r}(x)$ satisfies

$$T^k R_{2r}(x) = o(1)$$
 $x \underset{x_i > 0}{\to} 0$ (3.3)

for k multi-index such that |k| = r.

(iii) For each multi-index k_r , $D^{k_r}\phi(x)$ is of rapid descent as $|x| \to \infty$.

Proof: Since $\phi(x) \in \mathcal{H}_{\mu}$ condition (i) is satisfied by definition. For a multi-index k let us consider the smooth function in $(0, \infty)^n$ given by

$$\psi(x) = \psi(x_1, \dots, x_n) = T^k \{ x^{-\mu - 1/2} \phi(x) \}. \tag{3.4}$$

Let us see that the coefficients given by (3.2) are well defined, that is,

$$\lim_{\substack{(x_1,\dots,x_n)\to(0,\dots,0)\\x_i>0}} \psi(x_1,\dots,x_n) < \infty.$$
 (3.5)

Since

$$\left| \frac{\partial^n}{\partial x_n \dots \partial x_1} \psi(x) \right| \le M|x_1 x_2 \dots x_n|, \tag{3.6}$$

if (a_1, \ldots, a_n) in $[0, \infty)^n$ such that there exist $1 \le j \le n$ and $a_j = 0$ then

$$\lim_{\substack{(x_1,\dots,x_n)\to(a_1,\dots,a_n)\\x_i>0}}\frac{\partial^n}{\partial x_n\dots\partial x_1}\psi(x)=0,$$

then $(\partial^n/(\partial x_n \dots \partial x_1))\psi(x)$ is C^{∞} in $(0,\infty)^n$, continuous in $[0,\infty)^n$ and consequently integrable in $[0,1]^n$.

Moreover,

$$\int_{1}^{x_{1}} \dots \int_{1}^{x_{n}} \frac{\partial^{n}}{\partial y_{n} \dots \partial y_{1}} \psi(y_{1}, \dots, y_{n}) \, \mathrm{d}y_{n} \dots \mathrm{d}y_{1} = \psi(x_{1}, \dots, x_{n}) + \sum_{\lambda} a_{\lambda} \psi(b_{\lambda})$$
(3.7)

with $a_{\lambda} = 1$ or -1 and $b_{\lambda} = (b_{\lambda_1}, \dots, b_{\lambda_n})$ with $b_{\lambda_i} = x_i$ or $b_{\lambda_i} = 1$. Let us see now $\lim_{(x_1,\dots,x_n)\to(0,\dots,0)} \psi(b_{\lambda}) < \infty$. First, let us consider b_{λ} such that $b_{\lambda_j} = 1$ if

 $j \neq i$ and $b_{\lambda_i} = x_i$. Since $|(\partial/\partial y_i)\psi(y_1,\ldots,y_n)| \leq M|y_i|$,

$$\lim_{x_i\to 0}\int_1^{x_i}\frac{\partial}{\partial y_i}\psi(1,\ldots,y_i,\ldots,1)\,\mathrm{d}y_i<\infty.$$

So, $\lim_{x\to 0} \psi(1,\ldots,x_i,\ldots,1) < \infty$.

Now let us see that $\lim_{x\to 0} \psi(1,\ldots,x_i,1,\ldots,1,x_i,\ldots,1) < \infty$. In fact $|(\partial/\partial x_i\partial x_i)\psi|$ $(1,\ldots,1,x_i,1,\ldots,1,x_j,\ldots,1)| \leq M|x_ix_j|.$

Then $(\partial/\partial x_i\partial x_j)\psi(1,\ldots,1,x_i,1,\ldots,1,x_j,\ldots,1)$ is integrable in $[0,1]^2$ and

$$\int_{1}^{x_{j}} \int_{1}^{x_{i}} \frac{\partial}{\partial y_{i} \partial y_{j}} \psi(1, \dots, 1, y_{i}, 1, \dots, 1, y_{j}, \dots, 1) \, dy_{i} \, dy_{j}$$

$$= \psi(1, \dots, x_{i}, \dots, x_{j}, \dots, 1) - \psi(1, \dots, x_{i}, \dots, 1, \dots, 1)$$

$$- \psi(1, \dots, 1, \dots, x_{i}, \dots, 1) + \psi(1, \dots, 1).$$

Then, taking limit when $x \to 0$ to both sides of the previous formula we obtain that $\lim_{x\to 0} \psi(1,\ldots,x_i,\ldots,x_i,\ldots,1) < \infty.$

If we continuous this process recursively, in the (n-1) step then we obtain that $\lim_{x\to 0} \psi(b)$ is finite if $b=(1,x_2,\ldots x_n)$, or $(x_1,1,\ldots,x_n)$, etc. Finally from (3.7) we deduce (3.5).

Now let us make the following observation. If $r, p \in \mathbb{N}_0$

$$T_i^r x_i^{2p} = \begin{cases} 2^r r! & \text{if } r = p, \\ 2^r \frac{p!}{(p - r - 1)!} x_i^{2(p - r)} & \text{if } r < p, \\ 0 & \text{if } r > p. \end{cases}$$
(3.8)

Let *m* and *k* be multi-index such as |m| = |k| = r, then

$$T^{m}\{x^{2k}\} = \begin{cases} 2^{r}k! & \text{if } m = k, \\ 0 & \text{if } m \neq k. \end{cases}$$
 (3.9)

Upon choosing a_{2k_r} according to (3.2) and observing that

$$\lim_{\substack{x \to 0 \\ x_i > 0}} T^{k_r} R_{2r}(x) = \lim_{\substack{x \to 0 \\ x_i > 0}} T^{k_r} \left\{ x^{-\mu - 1/2} \phi(x) - \sum_{j=0}^r \sum_{|k_j| = j} a_{k_j} x^{2k_j} \right\}$$

$$= \lim_{\substack{x \to 0 \\ x_i > 0}} T^{k_r} \{ x^{-\mu - 1/2} \phi(x) \} - a_{k_r} 2^r k_r! = 0,$$

we obtain (3.3). Condition (iii) was already proved in [5, Lemma 2.1]. Conversely, if conditions (i) and (ii) hold, then $\sup_{x \in (0,1]^n} |(1+\|x\|^2) T^k \{x^{-\mu-1/2}\phi(x)\}| < \infty$.

From (2.1) it can be deduce the formula

$$T^{k}\left\{x^{-\mu-1/2}\phi(x)\right\} = x^{-\mu-1/2} \left\{ \sum_{j=0}^{k} b_{k,j} \frac{D^{j}\phi}{x^{2k-j}} \right\},$$

which implies $\sup_{x\in(1,\infty)^n}|(1+\|x\|^2)T^k\{x^{-\mu-1/2}\phi(x)\}|<\infty$ since the conditions (i) and (iii) hold. Therefore $\gamma_{m,k}^{\mu}(\phi)$ are finite for all $m\in\mathbb{N}_0$ and $k\in\mathbb{N}_0^n$ which completes the theorem.

Let \mathcal{O} be the space of functions $\theta \in C^{\infty}((0,\infty)^n)$ with the property that for every $k \in \mathbb{N}_0^n$ there exists $n_k \in \mathbb{Z}$ and C > 0 such that, $|(1 + ||x||^2)^{n_k} T^k \theta| < C$, for all $x \in (0,\infty)^n$.

For the next Lemma, we will consider polynomials of n-variables, $P[x] = P[x_1, \dots, x_n] = \sum_{|\alpha| < N} a_{\alpha} x^{\alpha}$, with $a_{\alpha} \in \mathbb{R}$.

Lemma 3.2: Let P[x] and Q[x] be polynomials of n-variables such that $Q[x] = \sum_{|\alpha| \le N} b_{\alpha} x^{\alpha} \ne 0$ for all $x \in [0, \infty)^n$ and all its coefficients have the same sign then $P[x_1^2, \ldots, x_n^2]/Q[x_1^2, \ldots, x_n^2] \in \mathcal{O}$.

Proof: Let us show that $P[x_1^2, \dots, x_n^2] \in \mathcal{O}$. We want to see that for all $k \in \mathbb{N}_0^n$ there exists $n_k \in \mathbb{Z}$ such that

$$|(1+||x||^2)^{n_k}T^kP[x_1^2,\ldots,x_n^2]|<\infty.$$
(3.10)

If $k = e_i$,

$$T^{e_i}P[x_1^2,\ldots,x_n^2] = x_i^{-1} \sum_{|\zeta| < N'} 2\zeta_i \, a_{\zeta} \, x_1^{2\zeta_1} \ldots x_i^{2\zeta_i-1} \ldots x_n^{2\zeta_n} = \tilde{P}[x_1^2,\ldots,x_n^2].$$

Any polynomial of the form $\sum_{|\beta| \le N} c_\beta \ x_1^{2\beta_1} \dots x_n^{2\beta_n}$ can be bounded in the following way

$$\left| \sum_{|\beta| \le N} c_{\beta} x_1^{2\beta_1} \dots x_n^{2\beta_n} \right| \le \sum_{|\beta| \le N} |c_{\beta}| |x_1^{2\beta_1}| \dots |x_n^{2\beta_n}| < C(1 + ||x||^2)^{|\gamma|},$$

for suitables C > 0 and a multi-index γ . So $|(1 + ||x||^2)^{-|\gamma'|} \tilde{P}[x_1^2, \dots, x_n^2]| < C$, for some multi-index γ' .

Now let us see that $1/Q[x_1^2,\ldots,x_n^2]$ is also in \mathcal{O} . Let $Q[x]=\sum_{|\alpha|\leq N}b_\alpha x_1^{\alpha_1}\ldots x_n^{\alpha_n}$ and without loss of generality we assume that $b_\alpha\geq 0$, for all $\alpha:|\alpha|\leq N$, then

$$T^{e_i}(Q[x_1^2, \dots, x_n^2])^{-1} = (Q[x_1^2, \dots, x_n^2])^{-2} \tilde{Q}[x_1^2, \dots, x_n^2],$$
(3.11)

since Q[x] does not have any zeros in $[0, \infty)^n$ then $b_0 \neq 0$, so

$$Q[x_1^2, \dots, x_n^2] = b_0 + \sum_{0 < |\alpha| \le N} b_{\alpha} x_1^{2\alpha_1} \dots x_n^{2\alpha_n} \ge b_0,$$

therefore

$$(Q[x_1^2, \dots, x_n^2])^{-2} \le \frac{1}{b_0^2} < \infty.$$
 (3.12)

From (3.11) and (3.12), it follows (3.10) for $k = e_i$. The general case follows in a similar way.

4. Proofs of Liouville type theorem in \mathcal{H}'_{μ}

The following is a representation theorem for distributions 'supported in zero' in \mathcal{H}'_{μ} .

Theorem 4.1: Let $T \in \mathcal{H'}_{\mu}$ satisfying $(T, \phi) = 0$ for all $\phi \in \mathcal{H}_{\mu}$ with $supp(\phi) \subset \{x \in \mathcal{H}_{\mu} \}$ $(0,\infty)^n: ||x|| \ge a$ for some $a \in \mathbb{R}$, a > 0. Then there exist $N \in \mathbb{N}_0$ and scalars $c_k, |k| \le N$ such that

$$T = \sum_{|k| \le N} c_k S^k \delta_{\mu},$$

where δ_{μ} is given by (2.3) for k = 0.

Proof: The proof will follow directly from [7, Lemma 1.4.1] if we can show that there exists N_0 such that if $\phi \in \mathcal{H}_{\mu}$ satisfies $(S^k \delta_{\mu}, \phi) = 0$ for $|k| \leq N_0$, then $(T, \phi) = 0$.

Consider the family of seminorms $\{\lambda_{m,k}^{\mu}\}$ defined by (A.1) which generate the same topology in \mathcal{H}_{μ} as the family $\{\gamma_{m,k}^{\mu}\}$ (see Appendix) and let

$$\rho_R^{\mu}(\phi) = \sum_{\substack{m \leq R \\ |k| \leq R}} \lambda_{m,k}^{\mu}(\phi).$$

This family of seminorms result to be an increasing and equivalent to $\{\lambda_{m,k}^{\mu}\}$. So, given $T \in \mathcal{H}'_{\mu}$, there exist c > 0 and $N \in \mathbb{N}_0$ such that $|(T, \phi)| \leq C \rho_N^{\mu}(\phi), \phi \in \mathcal{H}_{\mu}$.

Now, let $\phi \in \mathcal{H}_{\mu}$ satisfying $(S^k \delta_{\mu}, \phi) = 0$, for all $|k| \leq N_0$, where $N_0 = 2N$ then:

$$\lim_{\substack{x \to 0 \\ x_i > 0}} x^{-\mu - 1/2} S^k \phi(x) = 0.$$

Given $\varepsilon > 0$ there exists $\eta_k > 0$ such as $|x^{-\mu - 1/2}S^k\phi(x)| < \varepsilon$, for all $x \in (0, \infty)^n$, $||x|| < \eta_k$ for all k such that $|k| < N_0$.

Set $\eta = \min_{|k| \le N_0} {\{\eta_k\}}$ and $\eta < 1$, then $|x^{-\mu - 1/2} S^k \phi(x)| < \varepsilon$, for all $x \in (0, \infty)^n$, $||x|| < \varepsilon$

Fix η^* satisfying $0 < \eta^* < \eta < 1$ and define a smooth function ψ on $(0, \infty)^n$ by $\psi(x) =$ 1 for $\{x \in (0,\infty)^n : ||x|| < \eta^*\}$ and $\psi(x) = 0$ for $\{x \in (0,\infty)^n : ||x|| \ge \eta\}$.

We claim that $\psi \in \mathcal{O}$. In fact, since $\psi \in C^{\infty}((0,\infty)^n)$ there exist $M_k > 0$ such that $|T^k\psi(x)| \leq M_k$ then there exist $n_k \in \mathbb{N}$ such that $|(1+||x||^2)^{-n_k}T^k\psi(x)| < \infty$.

Since $\operatorname{supp}((1-\psi)\phi) \subset \{x \in (0,\infty)^n : ||x|| \ge \eta^*\}$, then for the hypothesis

$$((1 - \psi)T, \phi) = (T, (1 - \psi)\phi) = 0 \quad \forall \phi \in \mathcal{H}_{\mu}.$$

From the above it follows that $T = \psi T$, then

$$|(T,\phi)| = |(\psi T,\phi)| = |(T,\psi\phi)| \le C\rho_N^{\mu}(\psi\phi)$$

$$= C \sum_{\substack{m \le N \\ |\psi| \le N}} \sup_{x \in (0,\infty)^n} |(1+||x||^2)^m x^{-\mu-1/2} S^k(\psi\phi)(x)|. \tag{4.1}$$

Since supp $\psi \subset \{x \in (0, \infty)^n : ||x|| \le \eta\}$, then

$$\sup_{x \in (0,\infty)^{n}} |(1 + \|x\|^{2})^{m} x^{-\mu - 1/2} S^{k}(\psi \phi)(x)
\leq \sup_{\|x\| < \eta^{*}} |(1 + \|x\|^{2})^{m} x^{-\mu - 1/2} S^{k} \phi(x)|
+ \sup_{\eta^{*} \leq \|x\| < \eta} |(1 + \|x\|^{2})^{m} x^{-\mu - 1/2} S^{k}(\psi \phi)(x)|.$$
(4.2)

If we consider $||x|| < \eta^*$, then

$$\sup_{\|x\| \le \eta^*} |(1 + \|x\|^2)^m x^{-\mu - 1/2} S^k \phi(x)| \le 2^{|m|} \varepsilon. \tag{4.3}$$

Now we consider $\eta^* \le ||x|| < \eta$. Applying (A.3) and (2.1) we obtain that

$$x^{-\mu-1/2}S^{k}(\psi\phi)(x) = \sum_{l=0}^{k} b_{l,k}x^{2l}T^{k+l}\{x^{-\mu-1/2}(\psi\phi)(x)\}$$

$$= \sum_{l=0}^{k} b_{l,k}x^{2l}\sum_{r=0}^{k+l} {k+l \choose r}T^{k+l-r}\psi(x)T^{r}\{x^{-\mu-1/2}\phi(x)\}. \tag{4.4}$$

Since $\psi \in C^{\infty}((0,\infty)^n)$, there exist positive constants such that

$$|T^{k+l-r}\psi(x)| \le M_{k,l,r},\tag{4.5}$$

in $\eta^* \leq ||x|| < \eta$. Accordingly to (4.4) and (4.5) we now have that

$$|(1 + \|x\|^{2})^{m} x^{-\mu - 1/2} S^{k}(\psi \phi)(x)|$$

$$\leq (1 + \|x\|^{2})^{m} \sum_{l=0}^{k} \sum_{r=0}^{k+l} |b_{l,k}| {k+l \choose r} M_{k,l,r} |x^{2l} T^{r} \{x^{-\mu - 1/2} \phi(x)\}|$$

$$= \sum_{l=0}^{k} \sum_{r=0}^{k+l} M_{k,l,r}^{*} (1 + \|x\|^{2})^{m} x^{2l} |T^{r} \{x^{-\mu - 1/2} \phi(x)\}|$$

$$\leq \sum_{l=0}^{k} \sum_{r=0}^{k+l} M_{k,l,r}^{*} (1 + \|x\|^{2})^{m+l} |T^{r} \{x^{-\mu - 1/2} \phi(x)\}|$$

$$\leq \sum_{l=0}^{k} \sum_{r=0}^{k+l} B_{k,l,r} \sup_{x \in (0,\infty)^{n}} |(1 + \|x\|^{2})^{m+l} x^{-\mu - 1/2} S^{r} \phi(x)|. \tag{4.6}$$

Since $|r| \le |2k| \le 2N = N_0$ then

$$|(1+||x||^2)^{m+l}x^{-\mu-1/2}S^r\phi(x)| \le 2^{|m+l|}|x^{-\mu-1/2}S^r\phi(x)| \le 2^{|m+l|}\varepsilon. \tag{4.7}$$

From (4.1), (4.2), (4.3), (4.6) and (4.7) then:

$$\begin{aligned} |(T,\phi)| &\leq C \sum_{\substack{m \leq N \\ |k| \leq N}} \sup_{x \in (0,\infty)^n} |(1+\|x\|^2)^m x^{-\mu-1/2} S^k(\psi\phi)(x)| \\ &\leq C \sum_{\substack{m \leq N \\ |k| \leq N}} \left(2^{|m|} \varepsilon + \sum_{l=0}^k \sum_{r=0}^{k+l} B_{k,l,r} 2^{|m+l|} \varepsilon \right) = C' \varepsilon \end{aligned}$$

with $C' = C \sum_{\substack{m \le N \\ |l| l \ge N}} (2^{|m|} + \sum_{l=0}^k \sum_{r=0}^{k+l} B_{k,l,r} 2^{|m+l|})$. Hence $(T, \phi) = 0$ since $\varepsilon > 0$ was arbitrarily chosen.

Lemma 4.2: Let $\psi \in C^{\infty}((0,\infty)^n)$ such that $\psi(x) = 1$ if $x_1 + \cdots + x_n \ge a^2$, $\psi(x) = 0$ if $x_1 + \cdots + x_n \le b^2$ with $0 < b^2 \le a^2$ and $0 \le \psi \le 1$. And let $P[x] = \sum_{|\alpha| \le N} a_{\alpha} x^{\alpha} \ne 0$ for all $x \in \mathbb{R}^n - \{0\}$ and all its coefficients have the same sign, therefore $P[x_1^2, \dots, x_n^2]^{-1}\psi$ $(x_1^2,\ldots,x_n^2)\in\mathcal{O}.$

Proof: Let $P[x_1, \ldots, x_n] = \sum_{|\alpha| \leq N} a_{\alpha} x_1^{\alpha_1} \ldots x_n^{\alpha_n}$. The aim of this proof is to verify that for all $k \in \mathbb{N}_0^n$ there exists $n_k \in \mathbb{Z}$ such that

$$|(1+\|x\|^2)^{n_k}T^k\{P[x_1^2,\ldots,x_n^2]^{-1}\psi(x_1^2,\ldots,x_n^2)\}| \leq C \quad \forall x \in (0,\infty)^n.$$

For $b \le ||x|| \le a$ it turns out that

$$T^{e_i}\{P[x_1^2, \dots, x_n^2]^{-1}\psi(x_1^2, \dots, x_n^2)\} = x_i^{-1}\frac{\partial}{\partial x_i}\{P[x_1^2, \dots, x_n^2]^{-1}\psi(x_1^2, \dots, x_n^2)\}$$

$$= P[x_1^2, \dots, x_n^2]^{-2}\tilde{P}[x_1^2, \dots, x_n^2]\psi(x_1^2, \dots, x_n^2)$$

$$+ 2P[x_1^2, \dots, x_n^2]^{-1}\frac{\partial\psi}{\partial x_i}(x_1^2, \dots, x_n^2). \tag{4.8}$$

Since all the functions involved, ψ and its derivatives are all continuous in $b \le ||x|| \le a$, it is clear that (4.8) is bounded. On the other hand, if $||x|| \ge a$, since $\psi(x) = 1$ then

$$T^{e_i}\{P[x_1^2,\ldots,x_n^2]^{-1}\} = x_i^{-1}\frac{\partial}{\partial x_i}\{P[x_1^2,\ldots,x_n^2]^{-1}\} = P[x_1^2,\ldots,x_n^2]^{-2}\tilde{P}[x_1^2,\ldots,x_n^2].$$

We already shown that \tilde{P} is in \mathcal{O} , so, there exist $r \in \mathbb{Z}$ such that $|\tilde{P}[x_1^2, \dots, x_n^2]| \leq C(1 + \|x\|^2)^r$. Without loss of generality suppose that all a_α are positives and let us first consider $a_0 \neq 0$, then $P[x_1^2, \dots, x_n^2]^{-2}$ is bounded as in (3.11).

If now we consider $a_0 = 0$, since $P[x_1^2, \dots, x_n^2] > 0$ for $(x_1, \dots, x_n) \neq (0, \dots, 0)$ then P must attain a minimum in S^{n-1} . Let δ be such that

$$\delta < P\left[\frac{x_1^2}{\|x\|^2}, \dots, \frac{x_n^2}{\|x\|^2}\right] = \sum_{1 < |\alpha| < N} a_\alpha \frac{x_1^{2\alpha_1} \dots x_n^{2\alpha_n}}{\|x\|^{2|\alpha|}}.$$
 (4.9)

Since $||x|| \ge a$ and $|\alpha| \ge 1$ then

$$||x||^{2|\alpha|} > a^{2|\alpha|} \tag{4.10}$$

From (4.9) and (4.10) we obtain that

$$\delta < C \sum_{1 \le |\alpha| \le N} a_{\alpha} x_1^{2\alpha_1} \dots x_n^{2\alpha_n} \tag{4.11}$$

with $C = \max_{1 \le |\alpha| \le N} a^{-2|\alpha|}$, then $P[x_1^2, \dots, x_n^2]^{-2} \le C^2 \delta^{-2}$. Then,

$$\sup_{\|x\| \ge a} |T^{e_i} \{ P[x_1^2, \dots, x_n^2]^{-1} | \le C' (1 + \|x\|^2)^r.$$
 (4.12)

From equations (4.8) and (4.12) the Lemma follows for $k = e_i$. The general case follows in a similar way.

Now we are ready for the proof of Theorem 1.1.

Proof of Theorem 1.1.: If L(f) = 0 this means that $\sum_{|\alpha| \le N} (-1)^{|\alpha|} a_{\alpha} S^{\alpha} f = 0$.

Since $h_{\mu}(S_{\mu i}f) = -y_i^2 h_{\mu}f$ (see [2]), applying Hankel transform to both sides, we have

$$h_{\mu} \left(\sum_{|\alpha| \le N} (-1)^{|\alpha|} a_{\alpha} S^{\alpha} f \right) = \sum_{|\alpha| \le N} (-1)^{|\alpha|} a_{\alpha} (-1)^{|\alpha|} y_1^{2\alpha_1} \dots y_n^{2\alpha_n} h_{\mu} f$$

$$= P[y_1^2, \dots, y_n^2] h_{\mu} f = 0. \tag{4.13}$$

Let ψ being as in the previous Lemma. Then $[P[y_1^2, \dots, y_n^2]]^{-1} \psi(y_1^2, \dots, y_n^2) \in \mathcal{O}$. Then multiplying in (4.13) we obtain that

$$\psi(y_1^2, \dots, y_n^2).h_{tt}f = 0. \tag{4.14}$$

Let $\phi \in \mathcal{H}_{\mu}$ with $\operatorname{supp} \phi \subset \{x \in (0, \infty)^n : ||x|| \ge a\}$ and let us see that $(h_{\mu}f, \phi) = 0$. Since $\psi(x_1^2, ..., x_n^2) \cdot \phi(x_1, ..., x_n) = \phi(x_1, ..., x_n)$ in $(0, \infty)^n$, then

$$(h_{\mu}f,\phi) = (h_{\mu}f,\psi\phi) = (\psi h_{\mu}f,\phi) = 0,$$
 (4.15)

where we have used (4.14). Consequently $h_{\mu}f$ is zero for all ϕ such that $\operatorname{supp} \phi \subset \{x \in A\}$ $(0,\infty)^n: ||x|| \ge a$. For Theorem 4.1 there exist $N_1 \in \mathbb{N}_0$ and constants $c_k, |k| \le N_1$ such that

$$h_{\mu}f = \sum_{|k| \le N_1} c_k S^k \delta_{\mu}. \tag{4.16}$$

Therefore, applying the Hankel transform h_{μ} to both sides of (4.16) and since h_{μ} = $(h_{\mu})^{-1}$ we obtain that

$$f = h_{\mu}(h_{\mu}f) = \sum_{|k| \le N_1} c_k h_{\mu}(S^k \delta_{\mu}) =$$

$$= \sum_{|k| \le N_1} c_k (-1)^{|k|} y_1^{2k_1} \dots y_1^{2k_n} h_{\mu} \delta_{\mu}$$

$$= \sum_{|k| \le N_1} c_k (-1)^{|k|} y_1^{2k_1} \dots y_1^{2k_n} y^{\mu+1/2},$$

which completes the proof.

5. Another proof of Theorem 1.1

We establish a different representation theorem from the one proved in the previous section.

Theorem 5.1: Let $f \in \mathcal{H}'_{\mu}$ satisfying $(f, \phi) = 0$ for all $\phi \in \mathcal{H}_{\mu}$ with $supp(\phi) \subset \{x \in \mathcal{H}_{\mu}\}$ $(0,\infty)^n: ||x|| \ge a$ for some $a \in \mathbb{R}$, a > 0. Then there exist $N \in \mathbb{N}_0$ and scalars $c_k, |k| \le N$ such that

$$f = \sum_{|k| \le N} c_k T^k \delta_{\mu},$$

where $T^k \delta_{\mu}$ given by (2.3).

Proof: Let $f \in \mathcal{H}'_{\mu}$, such that f verifies the hypothesis of the theorem and c > 0, $N \in \mathbb{N}_0$ such that

$$|(f,\phi)| \le C \sum_{\substack{m \le N \\ |k| < N}} \gamma_{m,k}^{\mu}(\phi), \quad \phi \in \mathcal{H}_{\mu}.$$

$$(5.1)$$

By the Taylor formula and (2.3), if $\phi \in \mathcal{H}_{\mu}$

$$\phi(x) = \frac{x^{\mu+1/2}}{C_{\mu}} \left\{ (\delta_{\mu}, \phi) + \sum_{|k_{1}|=1} (T^{k_{1}} \delta_{\mu}, \phi) \frac{x^{2k_{1}}}{2k_{1}!} + \cdots + \sum_{|k_{N}|=N} (T^{k_{N}} \delta_{\mu}, \phi) \frac{x^{2k_{N}}}{2^{N} k_{N}!} + C_{\mu} R_{2N}(x) \right\},$$
(5.2)

where the remain term satisfies $\lim_{\substack{x\to 0\\x_i>0}} T^k R_{2N}(x) = 0$ for all k multi-index such that $|k| \le 1$

N. Then, given $\varepsilon > 0$ there exist $\eta_k > 0$ such that $|T^k R_{2N}(x)| < \varepsilon$ for $x \in (0, \infty)^n$ such that $||x|| < \eta_k$. Set $\eta = \min_{|k| \le N} {\{\eta_k\}}$ and $\eta < 1$, then $|T^k R_{2N}(x)| < \varepsilon$ for all $x \in (0, \infty)^n$ such that $||x|| < \eta$ and $|k| \le N$.

Let $a \in \mathbb{R}$ such that $0 < a < \eta$ and define ψ a smooth function on $(0, \infty)^n$ by $\psi(x) = 1$ for $\{x \in (0, \infty)^n : ||x|| < a/2\}$ and $\psi(x) = 0$ for $\{x \in (0, \infty)^n : ||x|| \ge a\}$ and therefore $(f, (1 - \psi(x))\phi(x)) = 0$ for any $\phi \in \mathcal{H}_u$. Hence

$$(f,\phi) = (f,\psi\phi). \tag{5.3}$$

Therefore

$$(f,\phi) = \sum_{|k| \le N} c_k(T^k \delta_\mu, \phi) + (f, x^{\mu+1/2} \psi(x) R_{2N}(x)), \tag{5.4}$$

where $c_k = (1/C_{\mu}2^{|k|}k!)(f, x^{\mu+1/2}x^{2k}\psi(x)).$

Applying the estimate (5.1) to $x^{\mu+1/2}\psi(x)R_{2N}(x)$, we get

$$|(f, x^{\mu+1/2}\psi(x)R_{2N}(x))| \le C \sum_{\substack{m \le N \\ |k| < N}} \gamma_{m,k}^{\mu}(x^{\mu+1/2}\psi(x)R_{2N}(x)).$$

Then

$$\begin{split} &|(1+\|x\|^{2})^{m}T^{k}\{x^{-\mu-1/2}x^{\mu+1/2}\psi(x)R_{2N}(x)\}|\\ &\leq \sup_{\|x\|$$

For $||x|| < \eta$ result that

$$|(f, x^{\mu+1/2}\psi(x)R_{2N}(x))| \le C \sum_{\substack{m \le N \\ |k| < N}} 2^m \left(1 + \sum_{j=0}^k M_{j,k}\right) \varepsilon = C'\varepsilon.$$

Thus $(f, x^{\mu+1/2}\psi(x)R_{2N}(x)) = 0$ since ε was arbitrarily chosen. Therefore

$$(f,\phi) = \sum_{|k| < N} c_k(T^k \delta_{\mu}, \phi).$$

Now we can sketch a different proof for Theorem 1.1.

Another proof of Theorem 1.1.: If L(f) = 0, then we obtain as in (4.15) that $h_{\mu}f$ is zero for all ϕ such that $\operatorname{supp} \phi \subset \{x \in (0, \infty)^n : ||x|| \ge a\}$ with a > 0, $a \in \mathbb{R}$. Then, since Theorem 5.1 holds, there exist $N_2 \in \mathbb{N}_0$ and constants c_k , $|k| \leq N_2$ such that

$$h_{\mu}f = \sum_{|k| \le N_2} c_k T^k \delta_{\mu}. \tag{5.5}$$

Therefore, applying the Hankel transform h_{μ} to both sides of (5.5) and since $h_{\mu} = (h_{\mu})^{-1}$ we obtain that

$$f = h_{\mu}(h_{\mu}f) = \sum_{|k| \le N_2} c_k h_{\mu}(T^k \delta_{\mu}) = \sum_{|k| \le N_2} c_k M_k^{\mu} y_1^{2k_1} \dots y_n^{2k_n} y^{\mu + 1/2},$$

where we have used (2.4). The proof is this complete.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

- [1] Schwartz AL. Théorie des distributions. Paris: Hermann; 1966.
- [2] Molina S, Trione SE. *n*-Dimensional Hankel transform and complex powers of Bessel operator. Integral Transforms Spec Funct. 2007;18(12):897–911.
- [3] Molina S, Trione SE. On the *n*-dimensional Hankel transforms of arbitrary order. Integral Transforms Spec Funct. 2008;19(5):327–332.
- [4] Zemanian AH. Generalized integral transformations. New York (NY): Interscience Publisher; 1968.
- [5] Molina S. A generalization of the spaces \mathcal{H}_{μ} , \mathcal{H}'_{μ} and the space of multipliers. Actas del VII Congreso Dr. Antonio A. R. Monteiro; 2003. p. 49–56.
- [6] Marrero I, Betancor JJ. Hankel Convolution of generalized functions. Rend Mat Ser VII. 1995;15:351-380.
- [7] Kesavan S. Topics in functional analysis and applications. New York (NY): John Wiley & Sons;
- [8] Sánchez AM. La transformación integral generalizada de Hankel-Schwartz [dissertation]. San Cristóbal De La Laguna (ES): Universidad de La Laguna; 1987.
- [9] Koh EL, Zemanian AH. The complex Hankel and *I*-transformations of generalized functions. SIAM J Appl Math. 1968;16(5):945-957.

Appendix. Equivalence of the seminorms γ_{mk}^{μ} and λ_{mk}^{μ}

The main result of this paper needs of the existence of another family of seminorms, different from the family $\gamma_{m,k}^{\mu}$, which is defined as

$$\lambda_{m,k}^{\mu}(\phi) = \sup_{x \in (0,\infty)^n} |(1 + ||x||^2)^m x^{-\mu - 1/2} S^k \phi(x)|, \quad \phi \in \mathcal{H}_{\mu}.$$
(A1)

The construction of the family $\{\lambda_{m,k}^{\mu}\}_{m\in\mathbb{N}_0,k\in\mathbb{N}_0^n}$ was motivated by the works of Marrero and Betancor [6], Sánchez [8] and Koh and Zemanian [9]. This multinorm is important because generates on \mathcal{H}_{μ} the same topology as the family $\{\gamma_{m\,k}^{\mu}\}$.

Remark A.1: Let k be a multi-index, the following equality is valid

$$x^{-\mu-1/2}S^k\phi(x) = \sum_{l=0}^k b_{l,k}x^{2l}T^{k+l}\{x^{-\mu-1/2}\phi(x)\}.$$
 (A2)

This formula can be derived from the equation

$$x_i^{-\mu_i - 1/2} S_{\mu_i}^{k_i} \phi(x) = \sum_{l=0}^{k_i} b_{l,k_i} x_i^{2l} T_i^{k_i + l} \{ x_i^{-\mu_i - 1/2} \phi(x) \}, \tag{A3}$$

where the constants b_{j,k_i} , $j=0,\ldots,k_i$, are suitable real constants, only depending on μ_i . The formula (A.3) is due to Koh and Zemanian (see [9, p.948]) and is valid for every $k_i \in \mathbb{N}_0$. Indeed, if $k \in \mathbb{N}_0^n$, $k = (k_1, \dots, k_n)$ then,

$$(x_i^{-\mu_i-1/2}S_{\mu_i}^{k_i})(x_j^{-\mu_j-1/2}S_{\mu_j}^{k_j})\phi(x) = \sum_{l_i=0}^{k_i} \sum_{l_i=0}^{k_j} b_{l_i,k_i}b_{l_j,k_j}x_i^{2l_i}x_j^{2l_j}T_i^{k_i+l_i}T_j^{k_j+l_j}\{x_i^{-\mu_i-1/2}x_j^{-\mu_j-1/2}\phi(x)\}.$$

Repeating this process we obtain that

$$x^{-\mu-1/2}S^{k}\phi(x) = (x_{1}^{-\mu_{1}-1/2}S_{\mu_{1}}^{k_{1}})\dots(x_{n}^{-\mu_{n}-1/2}S_{\mu_{n}}^{k_{n}})\phi(x) = \sum_{l=0}^{k}b_{l,k}x^{2l}T^{k+l}\{x^{-\mu-1/2}\phi(x)\},$$

where $l = (l_1, ..., l_n)$ and $k = (k_1, ..., k_n)$.

On the other hand, from [8, Propositions IV.2.2 and IV.2.4] we have that for all $k_i \in \mathbb{N}_0$, i =1,..., n result that $|T_i^{k_i}\{x_i^{-\mu_i-1/2}\phi(x)\}| \le C_i \sup_{x_i \in (0,\infty)} |x_i^{-\mu_i-1/2}S_{\mu_i}^{k_i}\phi(x)|$. So, we can generalize this inequality and obtain the following result

Remark A.2: Let *k* be a multi-index, the following inequality is valid

$$|T^{k}\{x^{-\mu-1/2}\phi(x)\}| \le C \sup_{x \in (0,\infty)^{n}} |x^{-\mu-1/2}S^{k}\phi(x)|.$$
(A4)

Set $i, j \in \{1, ..., n\}$, $i \neq j$ and computing

$$\begin{split} |T_i^{k_i}T_j^{k_j}\{x^{-\mu-1/2}\phi(x)\}| \\ &\leq C_i \sup_{x_i \in (0,\infty)} |x_i^{-\mu_i-1/2}S_{\mu_i}^{k_i}\{T_j^{k_j}\{x_j^{-\mu_j-1/2}x^{-\mu-1/2+(\mu_ie_i+1/2)+(\mu_je_j+1/2)}\phi(x)\}\}| \\ &= C_i \sup_{x_i \in (0,\infty)} |T_j^{k_j}\{x_j^{-\mu_j-1/2}(x^{-\mu-1/2+(\mu_je_j+1/2)}S_{\mu_i}^{k_i})\phi(x)\}| \end{split}$$

$$\leq C_i C_j \sup_{x_j, x_i \in (0, \infty)} |x_j^{-\mu_j - 1/2} S_{\mu_j}^{k_j} \{ x^{-\mu - 1/2 + (\mu_j e_j + 1/2)} S_{\mu_i}^{k_i} \phi(x) \}|$$

$$= C_i C_j \sup_{x_j, x_i \in (0, \infty)} |x^{-\mu - 1/2} S_{\mu_i}^{k_i} S_{\mu_j}^{k_j} \phi(x)|.$$

The general case follows from an inductive argument.

From (A2) and (A4) we obtain that the families of seminorms $\gamma_{m,k}^{\mu}$ and $\lambda_{m,k}^{\mu}$ are equivalents.

$$|(1+\|x\|^2)^m T^k \{x^{-\mu-1/2}\phi(x)\}| \le C \sup_{x \in (0,\infty)^n} |(1+\|x\|^2)^m x^{-\mu-1/2} S^k \phi(x)| = C \lambda_{m,k}^{\mu}(\phi),$$

therefore $\gamma_{m,k}^{\mu}(\phi) \leq C \lambda_{m,k}^{\mu}(\phi)$. On the other hand, (A.2) imply that

$$\begin{aligned} |(1+\|x\|^2)^m x^{-\mu-1/2} S^k \phi(x)| &\leq \sum_{l=0}^k |b_{l,k}| |(1+\|x\|^2)^{m+|l|} T^{k+l} \{x^{-\mu-1/2} \phi(x)\}| \\ &\leq \sum_{l=0}^k |b_{l,k}| \gamma_{m+|l|,k+l}^{\mu}(\phi), \end{aligned}$$

which leads to $\lambda_{m,k}^{\mu}(\phi) \leq \sum_{l=0}^{k} |b_{l,k}| \gamma_{m+|l|,k+l}^{\mu}(\phi)$.