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1. Introduction

Liouville type theorems have been studied in many works under different contexts. In ana-
lytic theory, Liouville theorems stated that a bounded entire function reduces to a constant.
A first version of Liouville theorem in distributional theory is due to L. Schwartz [1], and
assert that any bounded harmonic function in R” is a constant.

Currently, this result has been generalized in many directions. A well known general-
ization states that:

LetL =}, <,, 4« D” be alinear differential operator with constant coefficients such
that Z|a\ <m e 2miE)* # 0forall § € R" — {0}. If a tempered distribution u, solves
Lu=0, then u is a polynomial function. In particular, if u is bounded then it reduces
to a constant.

In this work, we established a Liouville type theorem for a large class of operators in
(0, 00)", that are lineal combinations of operators

k _ ok ki
§=S§}o...08", (1.1)
where k is a multi-index, k = (ky,...,ky), i € R, u; > —1/2 and

92 4 —1
Sp = s — (1.2)
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The operators given by linear combination of (1.1) contain as a particular case the
n-dimensional operator defined in [2] and given by:

n 2
4pus —1
Su=n-Y HiZ (13)
5 4x;
i=1 1
where = (1,...,n) and S, is a n-dimensional version of the well know Bessel
operator
& 4’ -1
ML T T (4
This operators were introduced in relation to the Hankel transform given by
o
haf ) = [ FO0\a(a) (15
0

with o > —1/2, for 1-dimensional case and the n-dimensional case

(hu$) () = /

(0,00)"

GGty xn) [ [Iv/EDiT Ceiyi)} doy - d, (1.6)
i=1

with = ((1,..., n), i = —1/2,i=1,...,n. And ], represents the Bessel functions of
the first kind and order v.

Bessel operators (1.3) and (1.4) and Hankel Transforms (1.5) and (1.6) were studied on
Zemanian spaces H,, and H’,, in [2-4].

The space H, is a space of functions ¢ € C>°((0,00)") such that forall m € Ny, k € Njj
verifies

yE@) = sup (14 2" THE T 2p ()] < oo, (1.7)
x€(0,00)"
where —p4 — 1/2 = (—p1 — 1/2, ..., —pn — 1/2) and the operators T* are given by " =
Th o Tﬁ"_‘f 0...0 T]fl, where T; = x; 1 (3/dx;). Thus H,, is Fréchet space. The dual space
of H,, is denoted by H’,,.

In [2] the authors proved that S;,; are continuous from H, into itself foralli = 1,...,n

and self-adjoint lineal mappings. This fact also implies that the operator $* = S,k}n e S,k}l is
continuous from H , into itself. Then, since they are self-adjoints the generalized operators
can be extended to H’, by

Sufo®) = (F-Sud) and (S*f.0) = (,.5*¢), feH, ¢eMu  (18)
The generalized Hankel transformation h,f of f € H’',, is defined by
(huf ) = (fLhug), feHu ¢ eHy

for u € [—1/2,00)". Then h,, is an automorphism onto H,, and H',, and h,, = (hu)’l.
The Hankel transform and Bessel operator are related by h,,(S,,) = —|| Vel winH, and
H .

Now we shall describe the main result of this work.
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Theorem 1.1: Let P[x] be a polynomial in n-variables such that ), -y aaXx* # 0 for
all x € R" — {0} and all its coefficients have the same sign. Let L be the operator L =

Y e (—D"™ag S Iff € W'\, and
Lf =0, (1.9)

then there exists a polynomial in n-variables Q such that f (x) = x“H/zQ[x%, .. ,xﬁ].
Corollary 1.2: Iffis a classical solution of (1.9) of slow growth then there exists a polynomial
in n-variables Q such that f (x) = x’”l/zQ[x%, . ,xﬁ]. In particular if f is bounded then f is
a constant.

Remark 1.1: Thecasesu = (u1,...,un) = (1/2,...,1/2)or (—1/2,...,—1/2) produce
in (1.3) the Laplacian operator in (0, 00)".

This paper is organized as follows. In Section 2, we present some notational conventions
that will allow us to simplify the presentation of our results. In Section 3 we propose a char-
acterization of a certain family of functions on the multiplier space O of the n-dimensional
space H,, that extends the result proved by Zemanian in [4]. In Sections 4 and 5 we give
two different proofs of Theorem 1.1.

2. Preliminaries and notations

In this section we summarize without proof the relevant material on Hankel transforms
and the Zemanian spaces studied in [2,3,5].

We now present some notational conventions that will allow us to simplify the pre-
sentation of our results. We denote by x = (x1,...,x,) and y = (y1,...,y,) elements of
(0,00)" or R”. Let N be the set {1,2,3,...} and Ng = N U {0}, ||x|| = (x% + -+ xi)l/z.
The notations x <y and x < y mean, respectively, x; < y; and x; < y; fori=1,...,n.

Moreover, x=aforx € R",a € Rmeansx; =x; = ... =x, = a,x" = x|"" ... x," and
ej for j=1,...,n, denotes the members of the canonical basis of R”. An element k =
(k1s. .. kn) € Nj = No x Ng x - -+ x Ny is called multi-index. For k,m multi-index we

set |k| = k; + - - - 4 k;, the length of the multi-index.
Also we will note

k k ky
K=kl ..k, ():( 1)( ) for k,m € NI
m m my,

Remark 2.1: Let k be a multi-index and 0, ¢ diferenciable functions up to order |k|, the
following equality is valid

k

™00} =) (i‘) T 9. g, (2.1)

j=0

where ‘-’ denote the usual product of functions, (f) and ZJ'-;O must be interpreted as in the
previous section for j = 0 = (0,...,0).
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Remark 2.2: If ¢; is an element of the canonical base of R”, since S% = Sgn ...0
Sy Sy = Supthen Y0 8% =371 S, =S,

In [6] was defined the generalized function &, as

(s ) = Gy lim 277126 (), (22)

where C, = 2“I" (o + 1). The distribution given by (2.2) can be extended in the same way
to the n-dimensional case. Moreover we can consider the following distribution

(T*8,,,¢) = C, lim THx""12¢ (x)}, (2.3)
xi>0

where k is a multi-index, © € R” and C,, is a constant depending on p given by C,, =
i1 2MT (i + 1). The generalized function (2.3) is well defined as it can be seen in the
proof of Lemma 3.1. Let ¢ € H,,, since

(T8, )| =|Cy lim THx "1 2p ()} < Gy sup [T 7129 ()| = Cugy(@),

% >0 x€(0,00)"

then T*s u lies in H',,. Moreover,

h TS, = Cf P22 in ), (2.4)
where ij = (—1)|k|(CM /C,i+k). Indeed, since the well known formula (d/dz)(z7%Jy) =
—2 %]y is valid for @ # —1,-2,.. ., if we consider k = ¢;, then
(1 Tidy ) = (Tidu, hug) = Cy lim Ty~ 2hyp ()}

x>0

n
=Cy, ill‘l‘b x]fla/axj {/ t“+1/2¢(t1, o) H{(x,-t,-)_“"]m(xiti)} de; ... dtn}
. (0,00)" i=1

x>0

=Cy lin}) x]_—l {/ t“+1/2¢(t1,. o> ty) 0/0x; {H{(xiti)_“"]m(xiti)}} d .. .dt,,}
Xi=0 0,00y i=1

= —C, lim 220 (11, ty) [(xjtj)_wﬁl)]ﬂﬁl ()]

x—0 (0,00)"
i

n
X n{(xiti)iﬂi]m(xiti)} dfy ... dtn
i=1
i#j

-1
n

= —Cu Gyt ]—[Cm / 2t 2 (1) dty L dey
i=1 (0,00)"

i#]

_(_ Cm tu+2ej+1/z,¢ '
CM;+1
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Therefore the assertion is true for k = e;. The general case follows in a similar way. Indeed,
let r € Ny and let us observe that

T {t“+1/2 n{(xiti)_“i]ui(xifi)}}

i=1

= (x;'9/0x)" {t’””z ]_[{(xiti)‘”"fm(xiti)}}

i=1

n

= (=)' 2 ) "Lt [ Gt T T (at)), (2.5)
i=1
i#j

then (2.5) yields

(B Tj8009) = (T}8 1) = Cy lim T/ (x ™~ 2,()

x>0

n
=C, lin‘%)(x]fla/axj)r {x_ﬂ—l/Z / d(tr,. .., ty) H{«/x,-ti]m(x,-t,‘)} dt; ... dtn}
. (0,00)" i=1

x>0

=Cy limo(xj—la/axj)f { /( : (et 1/2¢>(t1,...,tn)]_[{(xit,-)‘“"]m(xiti)}dtl...dtn}
X—> 0,00 n i1

xi>0

= (=1)’Cy lim GG (11, ) () T (i)
(0,00)"

n
X n{(xiti)f’”]m(x,-ti)} dt; ...dt,
i=1
i
-1

n
= (=1'Cu{ Cyir [ [ Cus / et 20 (1, ) dty L dey

o 000"
i#j
= (=1 CMJ' tu+2rej+1/2’¢ )
C/Lj-‘rr

For the general case, if we compute for j # k € {1,...,n} and r,m € Ny then we obtain
that

c,C
(hﬂ“]TT,Z”%,d)) = (I}TTITSM’hM(b) _ (_1)r+m&tu+2mj+2mek+l/2,¢ ,
CrijtrCrugtm

and the result follows.
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3. Some results about Taylor's expansions and a special family of multipliers
inH,

In this section we extend the characterization obtained by Zemanian in [4] related to Tay-
lor’s expansions of functions in H,,. Moreover we give a result which improve Lemma 3.2
in [5].

Lemma 3.1: Let u € R". Then ¢ is a member of H,, if and only if it satisfies the following
three conditions:

(i) @ (x) is a smooth complex valued function on (0, 00)".
(i) Foreachr € Ny

x M2 (x) = ag + Z a2k1x2k1 + Z a2k2x2k2 +oe

[k1]=1 [ka|=2
+ ) g + Ryr(x), (3.1)
[kr|=r
where
1 k
_ : rfy——1/2
Dk = ] il_ffé T {x ¢ ()}, (32)
Xi>

and the remainder term Ry, (x) satisfies

T* Ry (x) = 0(1)  x— 0 (3.3)

x>0
for k multi-index such that |k| = r.

(iii) For each multi-index k,, D*r ¢ (x) is of rapid descent as |x| — oo.

Proof: Since ¢ (x) € H,, condition (i) is satisfied by definition. For a multi-index k let us
consider the smooth function in (0, 00)" given by

Y(x) = Y1, .o x0) = T2 (). (3.4)

Let us see that the coeflicients given by (3.2) are well defined, that is,

lim Y(X1, ... Xy) < OO. (3.5)
(x15+-%2) = (0,...,0)
x;>0
Since
n
——— Y (X)| < Mlx1x2 ... x4l, (3.6)
0xy, ... 0x]

if (a1, ..., ay) in [0,00)" such that there exist 1 < j < nand a; = 0 then

n
lim —Y(x) =0,
(X15ee0sXp)—> (A15..501) an . 8x1 W( )
xi>0
then (3" /(8xy, ... 9x1))¥ (x) is C* in (0, 00)", continuous in [0,00)" and consequently
integrable in [0, 1]".
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Moreover,

X1 Xn an
[ b o i = k) + Y )
1 1 A

Y ...00n
(3.7)
witha), = 1or —1and by = (by,,...,by,) with by, = x;0or by, = 1.
Let us see now lim ¥ (b;) < oo. First, let us consider b;, such that by, = 1 if
(Xbm’x’;?:o)(o ..... 0) ]

j # iand by, = x;. Since [(3/9y) Y (y1, . . . yn)| < Mlyil,
. Y9
xlgqo 1 a—yillf(l,...,y,,...,l)dyl < 00.
So, limy, o ¥ (1,...,xi...,1) < 00.
Now let us see that limy—o ¥ (1,...,x;,1,...,1,%...,1) < oo. In fact [(3/9x;0x) Y
(1, ey l,x,‘, 1, ey 1,Xj,. e l)l =< M|Xix]‘|.
Then (9/3x;9x) ¥ (1,...,1,x,1,...,1,%j,...,1) is integrable in [0, 1]? and

Xj X 9
V(... LysL...,1,y..., 1) dy;dy;

=1//(1,...,xi,...,xj,...,1)—w(l,...,xi,...,l,...,l)
—W(l,...,l,...,xj,...,l)—l—lﬁ(l,...,l).

Then, taking limit when x — 0 to both sides of the previous formula we obtain that
limy o ¥ (1., %55 .05, .., 1) < 00.

If we continuous this process recursively, in the (n — 1) step then we obtain that
limy_o ¥ (b) is finite if b = (1,x2,...%x,), or (x1,1,...,xy,), etc. Finally from (3.7) we
deduce (3.5).

Now let us make the following observation. If r, p € Ny

2"r! ifr=p,
2p p! 20-1) .
Tix; = zrm ; ifr<p, (3.8)
0 if r > p.
Let m and k be multi-index such as |m| = |k| = r, then
2"k ifm =k,
T (3% = e (3.9)
0 if m # k.

Upon choosing ayy, according to (3.2) and observing that

.
. ky o ke ) —u—1/2 _ 2k;
lim TRy (x) = lim T 35712000 = 3 ) | ap™
xi>0 xi>0 J=0 |kj|=j
= lim T {(x *12¢(x)} — at, 2"k,! = 0,

x—0
xi>0
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we obtain (3.3). Condition (iii) was already proved in [5, Lemma 2.1]. Conversely, if
conditions (i) and (ii) hold, then Supye(oqyr (1 + 1) TR{x—*=12¢ (x)}] < 0.
From (2.1) it can be deduce the formula
k Dig
kg —p—1/2 =12 _
THx " 12¢(x)) = x X;bkd_xzk—j ,
J:

which implies SUP. e (1,00 1(1 + 212 TF{x=*=1/2¢ (x)}| < oo since the conditions (i) and
(iii) hold. Therefore yn’j (@) are finite for all m € Ny and k € Nj which completes the
theorem. u

Let O be the space of functions 6 € C*°((0,00)") with the property that for every k €
N{ there exists ny € Z and C > 0 such that, [(1 + x| Tk9| < C, for all x € (0, 00)".

For the next Lemma, we will consider polynomials of n-variables, P[x] = P[xy, ..., X,]
= Zla\sN agx®, with a, € R.

Lemma 3.2: Let P[x] and Q[x] be polynomials of n-variables such that Q[x] =
Z\a|<Nb x*#0 for all x € [0,00)" and all its coefficients have the same sign then

P[xl,...,x ]/Q[ ...,xﬁ] e 0.

Proof: Let us show that P[x%, . ,xfl] € O. We want to see that for all k € Nj there exists
ny € 7 such that

|(1+ [|x|2)"*T*P[2, . .., x2]| < oo. (3.10)
Ifk =e;,
Te’P[xl, X 71 Z 2¢ia; xfh .. .xizg"_1 .. .x%" = ﬁ[x?,. .. ,xf,].
[C1<N’
Any polynomial of the form )" cg xfﬂ '...x2P" can be bounded in the following way
[BI<N
2 2Bn 2 2 n
Yop” Gl < Y Hepl™ L < e B,
|BI=N IBI=N
for suitables C > 0 and a multi-index y. So [(1 + ||x||2)’|7’/‘13[x%,. .. ,xf,]| < C, for some
multi-index y’.
Now let us see that I/Q[x%, ..,x3]isalso in O. Let Q[x] = Zla\sN bexy' ... xy" and

without loss of generality we assume that by > 0, for all @ : |a| < N, then
T(Qlxt, ..., x2D 7t = (Qlxf, ..., 2D 2Qlx, . . ., %3], (3.11)

since Q[x] does not have any zeros in [0, 00)" then by # 0, so

Qlxt,...x2l=bo+ Y bex{™ ... > by,

O<|a|<N
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therefore

Qlx3, ..., X2 < % < o0. (3.12)
0

From (3.11) and (3.12), it follows (3.10) for k = e;. The general case follows in a similar
way. |

4. Proofs of Liouville type theorem in 7',

The following is a representation theorem for distributions ‘supported in zero’ in H’,,.

Theorem 4.1: Let T € H',, satisfying (T,¢) =0 for all ¢ € H,, with supp(¢) C {x €
(0,00)" : ||x|| = a} for some a € R, a> 0. Then there exist N € Ny and scalars ci, |k| < N
such that

T=Y" s,

|k|<N

where 8, is given by (2.3) for k=0.

Proof: The proof will follow directly from [7, Lemma 1.4.1] if we can show that there exists
No such that if ¢ € H, satisfies (Sk(S,l,(b) = 0 for |k| < Ny, then (T, ¢) = 0.

Consider the family of seminorms {)‘Z,k} defined by (A.1) which generate the same
topology in H, as the family {yr’n‘ «) (see Appendix) and let

PR@®) =D M (@)

m<R
|k|<R

This family of seminorms result to be an increasing and equivalent to {A" ,}. So, given

T € H',,, there exist ¢ > 0 and N € Ny such that (T, ¢)| < CoN(#), ¢ € H,,.
Now, let ¢ € H, satisfying (Skéﬂ,qb) =0, for all |k| < Ny, where Ny = 2N then:

lim x " 1/28kp (x) = 0.
x—0

xi>0

Givene > 0thereexists nr > Osuchas |x #1285 (x)| < ¢, forallx € (0,00)", ||x|| < nk
for all k such that |k| < Np.

Setn = minjy<n,{nk}and n < 1, then |x~*=1/28kp (x)| < &, forallx € (0,00)", ||x|| <
n.

Fix n* satisfying 0 < n* < n < 1and define a smooth function ¥ on (0, 00)" by ¥ (x) =

1 for {x € (0,00)" : ||x]| < n*}and ¥ (x) = 0 for {x € (0,00)" : ||x|| = n}.

We claim that ¢ € O. In fact, since ¥ € C°°((0,00)") there exist M > 0 such that
|T*y (x)| < My then there exist nx € N such that |(1 + [|x]|%) "™ Tky (x)| < oo.
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Since supp((1 — ¥)¢) C {x € (0,00)" : ||x|| > 1n*}, then for the hypothesis
((Q=y)T,¢) = (T, (1 —Y)p) =0 V¢ € Hy.

From the above it follows that T'= ¢ T, then

(T, )| = (W T, )| = (T, )| < Coli(rp)
=CY sup [+ x2S (Yg) ).

m<N X€ (0,00)"
Ki<N

Since supp ¥ C {x € (0,00)" : ||x|| < n}, then

sup  |(1+ [|lx|%)™x #7285 (yrg) (x)

x€(0,00)"
< sup (14 [lxH)™x 28k (x|
[lxll <n*
+ sup (14 %)™ HTV2Sk (g d) (v
n*<|lx[l<n

If we consider ||x|| < n*, then

sup [(1+ [lx)™x #1285 ¢ (x)] < 21™Mle.

lIxll<n*

Now we consider n* < |lx|| < n. Applying (A.3) and (2.1) we obtain that

k
xRS YY) = Y b TH T2 (g ) ()

=0
k+1

k
— Z b[)kXZZ Z <k + l) Tk—H_rlp(X)Tr{x_M_I/ZQS(X)}.
=0 r=0 r

Since ¥ € C*((0,00)"), there exist positive constants such that

Ty (0] < My

(4.1)

(4.2)

(4.3)

(44)

(4.5)
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inn* < ||x]| < n. Accordingly to (4.4) and (4.5) we now have that
(14 1)) x5k (g ) ()|

k  k+lI

<A+ P |b1k|( )Mk,z,r T2 ()
=0 r=0
k  k+1
=33 M, (U P T 2 )
=0 r=0
k  k+l1
<SS ME, A DT T g ()
=0 r=0
k  k+1
<Y Y By sup |4+ xS g (). (4.6)
=0 r=0 x€(0,00)"

Since |r| < |2k| < 2N = Ny then
(14 )" 25 )| < 2 28T g () < 2 e (47)
From (4.1), (4.2), (4.3), (4.6) and (4.7) then:

(T, )l <C Y sup [+ [lx])™x #7128 () ()]

m<N XE(O oco)"

KI<N
k  k+l
<Cc)’ (2""8 + Y0 B2t ) =Cle
m<N =0 r=0
kI<N
with C' = sz<N(2|m| + Zl 0 Zk+l B, 2™, Hence (T,¢) = 0 since & > 0 was
IKI<N
arbitrarily chosen. |

Lemma 4.2: Let ¢ € C*°((0,00)") such that Y(x) =1 ifx; + -+ +x, > a%, U (x) =0
ifx;+-+x, <b?with0 < b*> <a?and0 < < 1. And let P[x] = Z|a\§N“axa #0
for all x € R" — {0} and all its coefficients have the same sign, therefore P[x3,...,x2] "1y
(x3,....x%) €.

Proof: Let Plx1,...,%n] = 4 <n aax] X"
The aim of this proof is to verify that for all k € Njj there exists n; € Z such that

|1+ (x| TRP2, . 2] (2, .., x2)) < C Vx € (0,00)".
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For b < ||x|| < a it turns out that

. _ 1 0 _
Té{P[x,...,x2] IW(x%,...,xi)}zxi L Pl L2, xD))

0X;
= P[x%, .. ,xi]_zp[x%, ... ,xfl]t//(x%,. .. ,xi)
0
+2P[x%,...,xﬁ]_la—w(x%,. ..,xf,). (4.8)
Xi

Since all the functions involved, 1y and its derivatives are all continuous in b < ||x|| < a, it
is clear that (4.8) is bounded. On the other hand, if ||x|| > a, since ¥ (x) = 1 then

. _ . 0 _ Dy
T%{P[x},...,x2] 1}=x,-1£{P[x%,...,xﬁ] W=Plxd,..., 2] ?Plxd, ..., 42].
1

We already shown that DPisin O, so, there exist r € Z such that If’[x%,. .. ,xi]l <Ca+
1x]1?)". Without loss of generality suppose that all a, are positives and let us first consider
ap # 0, then P[x%, e ,xi]_2 is bounded as in (3.11).

If now we consider ay = 0, since P[x%, .. ,xﬁ] > 0 for (x1,...,x4) # (0,...,0) then P
must attain a minimum in $"!. Let § be such that
2 2 201 20ty
x x X7 hx
§ <P —1,..., = a L 4.9
[uxu2 ||x||2] 2 ]I (49)
1<|a|<N

Since ||x|| > a and |@| > 1 then

el ! > a2l (4.10)
From (4.9) and (4.10) we obtain that
8§ <C Z ao,xf‘)‘1 Cx2n (4.11)
I<la|<N

with C = maxj<jq|<n a—21*l then P[x%, ... ,xfl]_2 < (%572,
Then,

sup |TPlxi,...,x;]17 " < C'(A+ x| (4.12)

Ix|=a
From equations (4.8) and (4.12) the Lemma follows for k = e;. The general case follows in
a similar way. |

Now we are ready for the proof of Theorem 1.1.

Proof of Theorem 1.1.: If L(f) = 0 this means that ZmlsN(—l)'“'a(xS"‘f =0.
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Since h, (S,.f) = —yizhﬂ J (see [2]), applying Hankel transform to both sides, we have

h| 22 <—1>'“'aa8"‘f) = 3 (D ag (=l 2, f

le|<N la| <N
= Pyi,...yilhuf = 0. (4.13)

Let 1 being as in the previous Lemma. Then [P[y%, ... ,yi]]_IW(y%, .. ,yﬁ) € O.Then
multiplying in (4.13) we obtain that

VoL -y huf = 0. (4.14)
Let ¢ € H,, withsupp¢ C {x € (0,00)" : ||lx|| > a} and let us see that (h,f,$) = 0.
Since ¥ (x3, ..., x2).¢(x1,. .., %3) = d(x1,...,%,) in (0,00)", then
(h,ufa (P) = (huf) Wﬁ) = (1/fhuf, ‘»b) =0, (415)

where we have used (4.14). Consequently h,f is zero for all ¢ such that supp¢ C {x €
(0,00)" : ||x|| = a}. For Theorem 4.1 there exist N; € Ny and constants ¢, |k| < Nj such
that

hf = > asks,. (4.16)
[k|<N;

Therefore, applying the Hankel transform h, to both sides of (4.16) and since h, =
(h M)’1 we obtain that

f=hf) =Y chu(s"s,) =

|k| <Ny
— Z ck(—l)lkly%kl ...y%k”huéu
[k|<Ni
k kn
= Z ck(—l)lkly% ! y% y“H/z,
[k|<N1
which completes the proof. |

5. Another proof of Theorem 1.1

We establish a different representation theorem from the one proved in the previous
section.

Theorem 5.1: Let f € H',, satisfying (f,¢) =0 for all ¢ € H,, with supp(¢) C {x €
(0,00)" : ||x|| = a} for some a € R, a> 0. Then there exist N € Ng and scalars cx, |k| < N

such that
f=>" ars,,
|k|I<N

where TkSIL given by (2.3).
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Proof: Let f € H',, such that f verifies the hypothesis of the theorem and ¢ > 0, N € Ny
such that

FOI<C Y vmi(@), ¢ €My (5.1)

m<N
[k|=N

By the Taylor formula and (2.3), if ¢ € H,

KHt1/2 2k
$(x) = Gus®) + ) (TH8 )+
Cu 2ki!
|k1|=1
. kaN
+ (T8, 8) 5570 + CuRan(@) 1 (5.2)

lkn|=N

where the remain term satisfies limy— o T*Ryn (x) = 0 for all k multi-index such that |k| <
xi>0

N. Then, given ¢ > 0 there exist i > 0 such that |TkR,N (x)| < € for x € (0,00)" such
that [|x|| < k. Set n = mink<n{nk} and n < 1, then |TkRyn (x)| < € for all x € (0, 00)"
such that ||x|| < nand |k| < N.

Let a € R such that 0 < a < n and define ¥ a smooth function on (0, 00)" by ¥ (x) =
1 for {x € (0,00)" : ||x|]| < a/2} and ¥ (x) = 0 for {x € (0,00)" : || x| > a} and therefore
(f, (1 — ¥ (x))¢p(x)) = 0 for any ¢ € H,. Hence

f,9) = (f, v o). (5.3)
Therefore

(,d) = D (T8, ¢) + (F, 5 T2Y () Ron (%)), (5.4)

|kI<N

where ¢ = (1/C, 2M k) (f, xH 122K (x)).
Applying the estimate (5.1) to 124 (x) Ron (), we get

(T2 (ORN ()| < C Yyl (T2 () Ron ().

KEN
Then
(L [1el®)™ T #1212 () Ry ()|
< sup |+ D" THRNGOY +  sup [+ %)) Ty () Ran ()}

lIxll<a/2 a/2<||lx||<a

k
< sup A+ [P THRNGY + sup (L4 x1D™ Y T Y (0 TR ()]

Ixll<a/2 a/2<||x||<a =0

k
< sup [+ [IxI)"T*Rn@) +  sup D> Mikl(1+ [1x13) " T Ron ().
|x||<a/2 a/2<|x||<a =0



INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS . 381

For || x|| < 5 result that

k
|(F 2P RN ) < C Y 2" [ 14+ ) Mg | e = Cle.
m<N j=0
|k|=N

Thus (f, 124 (x)Ryn (x)) = 0 since & was arbitrarily chosen. Therefore

f,d) = D al(Tr8,, ).

|k|<N

Now we can sketch a different proof for Theorem 1.1.

Another proof of Theorem 1.1.: If L(f) = 0, then we obtain as in (4.15) that h,f is zero
for all ¢ such that supp¢ C {x € (0,00)" : ||x|| > a} with a>0, a € R. Then, since
Theorem 5.1 holds, there exist N, € Ny and constants ¢, |k| < N> such that

hf = ) aT*s,. (5.5)

|k|<N>

Therefore, applying the Hankel transform h,, to both sides of (5.5) and since h,, = (h,,) !
we obtain that

f=hu(h,f) = Z cxhy (T58,,) = Z ckM;jyfkl 12,
Ik|<N |k|<N;

where we have used (2.4). The proof is this complete. |
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Appendix. Equivalence of the seminorms y/, and "

The main result of this paper needs of the existence of another family of seminorms, different from
the family y/,, which is defined as

M@= sup |1+ [x|H"™ TS ()], ¢ e Hy. (A1)

x€(0,00)"

The construction of the family {A"" i meNg keny was motivated by the works of Marrero and Betancor
[6], Sanchez [8] and Koh and Zemanian [9]. This multinorm is important because generates on H,,
the same topology as the family {y, e

Remark A.1: Let k be a multi-index, the following equality is valid

k
x—ﬂ—l/Zskd)(x) — Z bl)kaITkJrl{x_#_l/z(p('x)}. (AZ)
=0

This formula can be derived from the equation

e 1/28k B (x) = Zbz,k,-x,-ZZTfiH{xi_m_l/%(x)}’ (A3)
=0

where the constants bj,, j = 0,...,k;, are suitable real constants, only depending on j;. The for-
mula (A.3) is due to Koh and Zemanian (see [9, p.948]) and is valid for every k; € Ny. Indeed, if
k e Ni, k= (ki,...,k,) then,

i- ! i il o kit —pim1/2 —i—1/2
G M 6 ) )¢><)—2szka o el W P TN
;=0 ;=0
Repeating this process we obtain that

k
x B 1/28k¢(x) ( —H1— l/zskl) . x_ﬂn—l/zsk )¢(x) Zbl)kaITk+l{x7;L71/2¢(x)},
1=0
where | = (l,...,1,) and k = (ky,...,k,).
On the other hand, from [8, Propositions IV.2.2 and IV.2.4] we have that for all k; € Ny, i =
L...,nresult that | T} {x; 29 (0}] < Cisupy o0 16 2 S ().

So, we can generalize this inequality and obtain the following result
Remark A.2: Let k be a multi-index, the following inequality is valid

ITFx #1290} < C sup  [x #1128k (x)). (A4)

x€(0,00)"

Seti,j € {1,...,n},i # jand computing
TR T (12 ()]

ki
<C sup |xMT 1/2Sk {TJ{ RS 2+ (uieit 1/ D+ g H1/2) g ()11

x;€(0,00)

=C; sup |T {x T (x7“71/2+(“jej+1/2)3ﬁ,.)¢(x)}|

x;€(0,00)
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<GGC; sup |xj_ﬂj—1/2

xj,Xi€(0,00)

sfj'j{x‘“—l/ 2t/ gk b (x))|

- o ki
=CC  sup | MV S ().

xj,xi €(0,00)

The general case follows from an inductive argument.
From (A2) and (A4) we obtain that the families of seminorms )/r’:)k and )‘Z,k are equivalents.
(14 )" THx 20} < € sup (1 + IIxIP)"x 7285 g ()] = CAl, ((9),
x€(0,00)" ’
therefore y,, , (#) < Ch;, (¢). On the other hand, (A.2) imply that
k

[+ 16" 285 g o < D bkl 11+ (1)) ™I T #7120 (x)
=0

k
= Z |bl,k|V,Z+|l|)k+l(¢)>

=0

which leads to Afn,k(¢)) < ZLO |bl,k|3’n;:+\l|,k+l(¢)'
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