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ABSTRACT
In this paper we establish a Liouville theorem inH′

μ for a wider class
of operators in (0,∞)n that generalizes the n-dimensional Bessel
operator. We will present two different proofs, based in two repre-
sentation theorems for certain distributions ‘supported in zero’.
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1. Introduction

Liouville type theorems have been studied in many works under different contexts. In ana-
lytic theory, Liouville theorems stated that a bounded entire function reduces to a constant.
A first version of Liouville theorem in distributional theory is due to L. Schwartz [1], and
assert that any bounded harmonic function in Rn is a constant.

Currently, this result has been generalized in many directions. A well known general-
ization states that:

Let L = ∑
|α|≤m aαDα be a linear differential operator with constant coefficients such

that
∑

|α|≤m aα(2π iξ)α �= 0 for all ξ ∈ Rn − {0}. If a tempered distribution u, solves
Lu=0, then u is a polynomial function. In particular, if u is bounded then it reduces
to a constant.

In this work, we established a Liouville type theorem for a large class of operators in
(0,∞)n, that are lineal combinations of operators

Sk = Sk1μ1 ◦ . . . ◦ Sknμn , (1.1)

where k is a multi-index, k = (k1, . . . , kn), μi ∈ R, μi ≥ −1/2 and

Sμi = ∂2

∂x2i
− 4μi − 1

4x2i
. (1.2)
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The operators given by linear combination of (1.1) contain as a particular case the
n-dimensional operator defined in [2] and given by:

Sμ = �−
n∑

i=1

4μ2
i − 1
4x2i

, (1.3)

where μ = (μ1, . . . ,μn) and Sμ is a n-dimensional version of the well know Bessel
operator

Sα = d2

dx2
− 4α2 − 1

4x2
. (1.4)

This operators were introduced in relation to the Hankel transform given by

hαf (y) =
∫ ∞

0
f (x)

√
xyJα(xy) dx (1.5)

with α ≥ −1/2, for 1-dimensional case and the n-dimensional case

(hμφ)(y) =
∫
(0,∞)n

φ(x1, . . . , xn)
n∏

i=1
{√xiyiJμi(xiyi)} dx1 . . . dxn (1.6)

withμ = (μ1, . . . ,μn),μi ≥ −1/2, i = 1, . . . , n. And Jν represents the Bessel functions of
the first kind and order ν.

Bessel operators (1.3) and (1.4) and Hankel Transforms (1.5) and (1.6) were studied on
Zemanian spacesHμ andH′

μ in [2–4].
The spaceHμ is a space of functions φ ∈ C∞((0,∞)n) such that for allm ∈ N0, k ∈ N

n
0

verifies

γ
μ

m,k(φ) = sup
x∈(0,∞)n

|(1 + ‖x‖2)mTk{x−μ−1/2φ(x)}| < ∞, (1.7)

where−μ− 1/2 = (−μ1 − 1/2, . . . ,−μn − 1/2) and the operators Tk are given by Tk =
Tkn
n ◦ Tkn−1

n−1 ◦ . . . ◦ Tk1
1 , where Ti = x−1

i (∂/∂xi). ThusHμ is Frèchet space. The dual space
ofHμ is denoted byH′

μ.
In [2] the authors proved that Sμi are continuous fromHμ into itself for all i = 1, . . . , n

and self-adjoint lineal mappings. This fact also implies that the operator Sk = Sknμn . . . S
k1
μ1 is

continuous fromHμ into itself. Then, since they are self-adjoints the generalized operators
can be extended toH′

μ by

(Sμi f ,φ) = (f , Sμiφ) and (Skf ,φ) = (f , Skφ), f ∈ H′
μ φ ∈ Hμ. (1.8)

The generalized Hankel transformation hμf of f ∈ H′
μ is defined by

(hμf ,φ) = (f , hμφ), f ∈ H′
μ, φ ∈ Hμ

for μ ∈ [−1/2,∞)n. Then hμ is an automorphism ontoHμ andH′
μ and hμ = (hμ)−1.

TheHankel transform and Bessel operator are related by hμ(Sμ) = −‖y2‖hμ inHμ and
H′

μ.
Now we shall describe the main result of this work.
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Theorem 1.1: Let P[x] be a polynomial in n-variables such that
∑

|α|≤N aαxα �= 0 for
all x ∈ Rn − {0} and all its coefficients have the same sign. Let L be the operator L =∑

|α|≤N(−1)|α|aαSα . If f ∈ H′
μ and

Lf = 0, (1.9)

then there exists a polynomial in n-variables Q such that f (x) = xμ+1/2Q[x21, . . . , x
2
n].

Corollary 1.2: If f is a classical solution of (1.9) of slow growth then there exists a polynomial
in n-variables Q such that f (x) = xμ+1/2Q[x21, . . . , x

2
n]. In particular if f is bounded then f is

a constant.

Remark 1.1: The casesμ = (μ1, . . . ,μn) = (1/2, . . . , 1/2) or (−1/2, . . . ,−1/2) produce
in (1.3) the Laplacian operator in (0,∞)n.

This paper is organized as follows. In Section 2, we present some notational conventions
that will allow us to simplify the presentation of our results. In Section 3 we propose a char-
acterization of a certain family of functions on themultiplier spaceO of the n-dimensional
space Hμ that extends the result proved by Zemanian in [4]. In Sections 4 and 5 we give
two different proofs of Theorem 1.1.

2. Preliminaries and notations

In this section we summarize without proof the relevant material on Hankel transforms
and the Zemanian spaces studied in [2,3,5].

We now present some notational conventions that will allow us to simplify the pre-
sentation of our results. We denote by x = (x1, . . . , xn) and y = (y1, . . . , yn) elements of
(0,∞)n or Rn. Let N be the set {1, 2, 3, . . .} and N0 = N ∪ {0}, ‖x‖ = (x21 + · · · + x2n)1/2.
The notations x< y and x ≤ y mean, respectively, xi < yi and xi ≤ yi for i = 1, . . . , n.
Moreover, x=a for x ∈ Rn, a ∈ R means x1 = x2 = . . . = xn = a, xm = xm1

1 . . . xmn
n and

ej for j = 1, . . . , n, denotes the members of the canonical basis of Rn. An element k =
(k1, . . . , kn) ∈ N

n
0 = N0 × N0 × · · · × N0 is called multi-index. For k,m multi-index we

set |k| = k1 + · · · + kn the length of the multi-index.
Also we will note

k! = k1! . . . kn!,
(
k
m

)
=
(
k1
m1

)
. . .

(
kn
mn

)
for k,m ∈ N

n
0.

Remark 2.1: Let k be a multi-index and θ ,ϕ diferenciable functions up to order |k|, the
following equality is valid

Tk{θ .ϕ} =
k∑

j=0

(
k
j

)
Tk−jθ .Tjϕ, (2.1)

where ‘·’ denote the usual product of functions, (kj) and∑k
j=0 must be interpreted as in the

previous section for j = 0 = (0, . . . , 0).
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Remark 2.2: If ei is an element of the canonical base of Rn, since Sei = S0μn . . . ◦
S1μi . . . S

0
μ1

= Sμi , then
∑n

i=1 S
ei = ∑n

i=1 Sμi = Sμ.

In [6] was defined the generalized function δα , as

(δα ,φ) = Cα lim
x→0+

x−α−1/2φ(x), (2.2)

where Cα = 2α
(α + 1). The distribution given by (2.2) can be extended in the same way
to the n-dimensional case. Moreover we can consider the following distribution

(Tkδμ,φ) = Cμ lim
x→0
xi>0

Tk{x−μ−1/2φ(x)}, (2.3)

where k is a multi-index, μ ∈ Rn and Cμ is a constant depending on μ given by Cμ =∏n
i=1 2

μi
(μi + 1). The generalized function (2.3) is well defined as it can be seen in the
proof of Lemma 3.1. Let φ ∈ Hμ, since

|(Tkδμ,φ)|=
∣∣∣∣∣∣Cμ lim

x→0
xi>0

Tk{x−μ−1/2φ(x)}
∣∣∣∣∣∣ ≤ Cμ sup

x∈(0,∞)n
|Tk{x−μ−1/2φ(x)}|=Cμγ

μ

0,k(φ),

then Tkδμ lies inH′
μ. Moreover,

hμTkδμ = Cμk tμ+2k+1/2 inH′
μ, (2.4)

where Cμk = (−1)|k|(Cμ/Cμ+k). Indeed, since the well known formula (d/dz)(z−αJα) =
−z−αJα+1 is valid for α �= −1,−2, . . ., if we consider k = ej, then

(hμTjδμ,φ) = (Tjδμ, hμφ) = Cμ lim
x→0
xi>0

Tj{x−μ−1/2hμφ(x)}

= Cμ lim
x→0
xi>0

x−1
j ∂/∂xj

{∫
(0,∞)n

tμ+1/2φ(t1, . . . , tn)
n∏

i=1
{(xiti)−μi Jμi(xiti)} dt1 . . . dtn

}

= Cμ lim
x→0
xi>0

x−1
j

{∫
(0,∞)n

tμ+1/2φ(t1, . . . , tn) ∂/∂xj

{ n∏
i=1

{(xiti)−μi Jμi(xiti)}
}
dt1 . . . dtn

}

= −Cμ lim
x→0
xi>0

∫
(0,∞)n

tμ+2ej+1/2φ(t1, . . . , tn)[(xjtj)−(μj+1)Jμj+1(xjtj)]

×
n∏

i=1
i�=j

{(xiti)−μi Jμi(xiti)} dt1 . . . dtn

= −Cμ

⎧⎪⎪⎨
⎪⎪⎩Cμj+1

n∏
i=1
i�=j

Cμi

⎫⎪⎪⎬
⎪⎪⎭

−1 ∫
(0,∞)n

tμ+2ej+1/2φ(t1, . . . , tn) dt1 . . . dtn

=
(

− Cμj

Cμj+1
tμ+2ej+1/2,φ

)
.



INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 371

Therefore the assertion is true for k = ej. The general case follows in a similar way. Indeed,
let r ∈ N0 and let us observe that

Tr
j

{
tμ+1/2

n∏
i=1

{(xiti)−μi Jμi(xiti)}
}

= (x−1
j ∂/∂xj)r

{
tμ+1/2

n∏
i=1

{(xiti)−μi Jμi(xiti)}
}

= (−1)rtμ+2r ej+1/2(xjtj)−(μj+r)Jμj+r(xjtj)
n∏
i=1
i�=j

{(xiti)−μi Jμi(xiti)}, (2.5)

then (2.5) yields

(hμTr
j δμ,φ) = (Tr

j δμ, hμφ) = Cμ lim
x→0
xi>0

Tr
j {x−μ−1/2hμφ(x)}

= Cμ lim
x→0
xi>0

(x−1
j ∂/∂xj)r

{
x−μ−1/2

∫
(0,∞)n

φ(t1, . . . , tn)
n∏

i=1
{√xitiJμi(xiti)} dt1 . . . dtn

}

= Cμ lim
x→0
xi>0

(x−1
j ∂/∂xj)r

{∫
(0,∞)n

tμ+1/2φ(t1, . . . , tn)
n∏

i=1
{(xiti)−μi Jμi(xiti)} dt1 . . . dtn

}

= (−1)rCμ lim
x→0
xi>0

∫
(0,∞)n

tμ+2r ej+1/2φ(t1, . . . , tn)(xjtj)−(μj+r)Jμj+r(xjtj)

×
n∏

i=1
i�=j

{(xiti)−μi Jμi(xiti)} dt1 . . . dtn

= (−1)rCμ

⎧⎪⎪⎨
⎪⎪⎩Cμj+r

n∏
i=1
i�=j

Cμi

⎫⎪⎪⎬
⎪⎪⎭

−1 ∫
(0,∞)n

tμ+2rej+1/2φ(t1, . . . , tn) dt1 . . . dtn

=
(
(−1)r

Cμj

Cμj+r
tμ+2rej+1/2,φ

)
.

For the general case, if we compute for j �= k ∈ {1, . . . , n} and r,m ∈ N0 then we obtain
that

(hμTr
j T

m
k δμ,φ) = (Tr

j T
m
k δμ, hμφ) =

(
(−1)r+m CμjCμk

Cμj+rCμk+m
tμ+2rej+2mek+1/2,φ

)
,

and the result follows.
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3. Some results about Taylor’s expansions and a special family of multipliers
inHμ

In this section we extend the characterization obtained by Zemanian in [4] related to Tay-
lor’s expansions of functions inHμ. Moreover we give a result which improve Lemma 3.2
in [5].

Lemma 3.1: Let μ ∈ Rn. Then φ is a member ofHμ if and only if it satisfies the following
three conditions:

(i) φ(x) is a smooth complex valued function on (0,∞)n.
(ii) For each r ∈ N0

x−μ−1/2φ(x) = a0 +
∑

|k1|=1

a2k1x
2k1 +

∑
|k2|=2

a2k2x
2k2 + · · ·

+
∑

|kr|=r

a2krx
2kr + R2r(x), (3.1)

where

a2kr = 1
2rkr!

lim
x→0
xi>0

Tkr{x−μ−1/2φ(x)}, (3.2)

and the remainder term R2r(x) satisfies

TkR2r(x) = o(1) x → 0
xi>0

(3.3)

for k multi-index such that |k| = r.
(iii) For each multi-index kr, Dkrφ(x) is of rapid descent as |x| → ∞.

Proof: Since φ(x) ∈ Hμ condition (i) is satisfied by definition. For a multi-index k let us
consider the smooth function in (0,∞)n given by

ψ(x) = ψ(x1, . . . , xn) = Tk{x−μ−1/2φ(x)}. (3.4)

Let us see that the coefficients given by (3.2) are well defined, that is,

lim
(x1,...,xn)→(0,...,0)

xi>0

ψ(x1, . . . , xn) < ∞. (3.5)

Since ∣∣∣∣ ∂n

∂xn . . . ∂x1
ψ(x)

∣∣∣∣ ≤ M|x1x2 . . . xn|, (3.6)

if (a1, . . . , an) in [0,∞)n such that there exist 1 ≤ j ≤ n and aj = 0 then

lim
(x1,...,xn)→(a1,...,an)

xi>0

∂n

∂xn . . . ∂x1
ψ(x) = 0,

then (∂n/(∂xn . . . ∂x1))ψ(x) is C∞ in (0,∞)n, continuous in [0,∞)n and consequently
integrable in [0, 1]n.
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Moreover,∫ x1

1
. . .

∫ xn

1

∂n

∂yn . . . ∂y1
ψ(y1, . . . , yn) dyn . . . dy1 = ψ(x1, . . . , xn)+

∑
λ

aλψ(bλ)

(3.7)
with aλ = 1 or −1 and bλ = (bλ1 , . . . , bλn) with bλi = xi or bλi = 1.

Let us see now lim
(x1,...,xn)→(0,...,0)

xi>0

ψ(bλ) < ∞. First, let us consider bλ such that bλj = 1 if

j �= i and bλi = xi. Since |(∂/∂yi)ψ(y1, . . . , yn)| ≤ M|yi|,

lim
xi→0

∫ xi

1

∂

∂yi
ψ(1, . . . , yi, . . . , 1) dyi < ∞.

So, limx→0 ψ(1, . . . , xi, . . . , 1) < ∞.
Now let us see that limx→0 ψ(1, . . . , xi, 1, . . . , 1, xj . . . , 1) < ∞. In fact |(∂/∂xi∂xj)ψ

(1, . . . , 1, xi, 1, . . . , 1, xj, . . . , 1)| ≤ M|xixj|.
Then (∂/∂xi∂xj)ψ(1, . . . , 1, xi, 1, . . . , 1, xj, . . . , 1) is integrable in [0, 1]2 and∫ xj

1

∫ xi

1

∂

∂yi∂yj
ψ(1, . . . , 1, yi, 1, . . . , 1, yj, . . . , 1) dyi dyj

= ψ(1, . . . , xi, . . . , xj, . . . , 1)− ψ(1, . . . , xi, . . . , 1, . . . , 1)

− ψ(1, . . . , 1, . . . , xj, . . . , 1)+ ψ(1, . . . , 1).

Then, taking limit when x → 0 to both sides of the previous formula we obtain that
limx→0 ψ(1, . . . , xi, . . . , xj, . . . , 1) < ∞.

If we continuous this process recursively, in the (n − 1) step then we obtain that
limx→0 ψ(b) is finite if b = (1, x2, . . . xn), or (x1, 1, . . . , xn), etc. Finally from (3.7) we
deduce (3.5).

Now let us make the following observation. If r, p ∈ N0

Tr
i x

2p
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2rr! if r = p,

2r
p!

(p − r − 1)!
x2(p−r)
i if r < p,

0 if r > p.

(3.8)

Letm and k be multi-index such as |m| = |k| = r, then

Tm{x2k} =
{
2rk! if m = k,
0 if m �= k.

(3.9)

Upon choosing a2kr according to (3.2) and observing that

lim
x→0
xi>0

TkrR2r(x) = lim
x→0
xi>0

Tkr

⎧⎨
⎩x−μ−1/2φ(x)−

r∑
j=0

∑
|kj|=j

akjx
2kj

⎫⎬
⎭

= lim
x→0
xi>0

Tkr{x−μ−1/2φ(x)} − akr2
rkr! = 0,
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we obtain (3.3). Condition (iii) was already proved in [5, Lemma 2.1]. Conversely, if
conditions (i) and (ii) hold, then supx∈(0,1]n |(1 + ‖x‖2)Tk{x−μ−1/2φ(x)}| < ∞.

From (2.1) it can be deduce the formula

Tk{x−μ−1/2φ(x)} = x−μ−1/2

⎧⎨
⎩

k∑
j=0

bk,j
Djφ

x2k−j

⎫⎬
⎭ ,

which implies supx∈(1,∞)n |(1 + ‖x‖2)Tk{x−μ−1/2φ(x)}| < ∞ since the conditions (i) and
(iii) hold. Therefore γ μm,k(φ) are finite for all m ∈ N0 and k ∈ N

n
0 which completes the

theorem. �

Let O be the space of functions θ ∈ C∞((0,∞)n) with the property that for every k ∈
N
n
0 there exists nk ∈ Z and C>0 such that, |(1 + ‖x‖2)nkTkθ | < C, for all x ∈ (0,∞)n.
For the next Lemma, we will consider polynomials of n-variables, P[x] = P[x1, . . . , xn]

= ∑
|α|≤N aαxα , with aα ∈ R.

Lemma 3.2: Let P[x] and Q[x] be polynomials of n-variables such that Q[x] =∑
|α|≤N bαxα �= 0 for all x ∈ [0,∞)n and all its coefficients have the same sign then

P[x21, . . . , x
2
n]/Q[x21, . . . , x

2
n] ∈ O.

Proof: Let us show that P[x21, . . . , x
2
n] ∈ O. We want to see that for all k ∈ N

n
0 there exists

nk ∈ Z such that

|(1 + ‖x‖2)nkTkP[x21, . . . , x
2
n]| < ∞. (3.10)

If k = ei,

TeiP[x21, . . . , x
2
n] = x−1

i

∑
|ζ |≤N′

2ζi aζ x
2ζ1
1 . . . x2ζi−1

i . . . x2ζnn = P̃[x21, . . . , x
2
n].

Any polynomial of the form
∑

|β|≤N
cβ x

2β1
1 . . . x2βnn can be bounded in the following way

∣∣∣∣∣∣
∑

|β|≤N

cβ x
2β1
1 . . . x2βnn

∣∣∣∣∣∣ ≤
∑

|β|≤N

|cβ ||x2β11 | . . . |x2βnn | < C(1 + ‖x‖2)|γ |,

for suitables C>0 and a multi-index γ . So |(1 + ‖x‖2)−|γ ′|P̃[x21, . . . , x2n]| < C, for some
multi-index γ ′.

Now let us see that 1/Q[x21, . . . , x
2
n] is also in O. Let Q[x] = ∑

|α|≤N bαxα11 . . . xαnn and
without loss of generality we assume that bα ≥ 0, for all α : |α| ≤ N, then

Tei(Q[x21, . . . , x
2
n])

−1 = (Q[x21, . . . , x
2
n])

−2Q̃[x21, . . . , x
2
n], (3.11)

since Q[x] does not have any zeros in [0,∞)n then b0 �= 0, so

Q[x21, . . . , x
2
n] = b0 +

∑
0<|α|≤N

bαx2α11 . . . x2αnn ≥ b0,
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therefore

(Q[x21, . . . , x
2
n])

−2 ≤ 1
b20
< ∞. (3.12)

From (3.11) and (3.12), it follows (3.10) for k = ei. The general case follows in a similar
way. �

4. Proofs of Liouville type theorem inH′
μ

The following is a representation theorem for distributions ‘supported in zero’ inH′
μ.

Theorem 4.1: Let T ∈ H′
μ satisfying (T,φ) = 0 for all φ ∈ Hμ with supp(φ) ⊂ {x ∈

(0,∞)n : ‖x‖ ≥ a} for some a ∈ R, a>0. Then there exist N ∈ N0 and scalars ck, |k| ≤ N
such that

T =
∑

|k|≤N

ckSkδμ,

where δμ is given by (2.3) for k=0.

Proof: The proof will follow directly from [7, Lemma 1.4.1] if we can show that there exists
N0 such that if φ ∈ Hμ satisfies (Skδμ,φ) = 0 for |k| ≤ N0, then (T,φ) = 0.

Consider the family of seminorms {λμm,k} defined by (A.1) which generate the same
topology inHμ as the family {γ μm,k} (see Appendix) and let

ρ
μ
R (φ) =

∑
m≤R
|k|≤R

λ
μ

m,k(φ).

This family of seminorms result to be an increasing and equivalent to {λμm,k}. So, given
T ∈ H′

μ, there exist c>0 and N ∈ N0 such that |(T,φ)| ≤ CρμN(φ), φ ∈ Hμ.
Now, let φ ∈ Hμ satisfying (Skδμ,φ) = 0, for all |k| ≤ N0, where N0 = 2N then:

lim
x→0
xi>0

x−μ−1/2Skφ(x) = 0.

Given ε > 0 there exists ηk > 0 such as |x−μ−1/2Skφ(x)| < ε, for all x ∈ (0,∞)n, ‖x‖ < ηk
for all k such that |k| < N0.

Set η = min|k|≤N0{ηk} and η < 1, then |x−μ−1/2Skφ(x)| < ε, for all x ∈ (0,∞)n, ‖x‖ <
η.

Fix η∗ satisfying 0 < η∗ < η < 1 and define a smooth functionψ on (0,∞)n byψ(x) =
1 for {x ∈ (0,∞)n : ‖x‖ < η∗} and ψ(x) = 0 for {x ∈ (0,∞)n : ‖x‖ ≥ η}.

We claim that ψ ∈ O. In fact, since ψ ∈ C∞((0,∞)n) there exist Mk > 0 such that
|Tkψ(x)| ≤ Mk then there exist nk ∈ N such that |(1 + ‖x‖2)−nkTkψ(x)| < ∞.
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Since supp((1 − ψ)φ) ⊂ {x ∈ (0,∞)n : ‖x‖ ≥ η∗}, then for the hypothesis

((1 − ψ)T,φ) = (T, (1 − ψ)φ) = 0 ∀φ ∈ Hμ.

From the above it follows that T = ψT, then

|(T,φ)| = |(ψT,φ)| = |(T,ψφ)| ≤ CρμN(ψφ)

= C
∑
m≤N
|k|≤N

sup
x∈(0,∞)n

|(1 + ‖x‖2)mx−μ−1/2Sk(ψφ)(x)|. (4.1)

Since suppψ ⊂ {x ∈ (0,∞)n : ‖x‖ ≤ η}, then

sup
x∈(0,∞)n

|(1 + ‖x‖2)mx−μ−1/2Sk(ψφ)(x)

≤ sup
‖x‖<η∗

|(1 + ‖x‖2)mx−μ−1/2Skφ(x)|

+ sup
η∗≤‖x‖<η

|(1 + ‖x‖2)mx−μ−1/2Sk(ψφ)(x)|. (4.2)

If we consider ‖x‖ < η∗, then

sup
‖x‖≤η∗

|(1 + ‖x‖2)mx−μ−1/2Skφ(x)| ≤ 2|m|ε. (4.3)

Now we consider η∗ ≤ ‖x‖ < η. Applying (A.3) and (2.1) we obtain that

x−μ−1/2Sk(ψφ)(x) =
k∑

l=0

bl,kx2lTk+l{x−μ−1/2(ψφ)(x)}

=
k∑

l=0

bl,kx2l
k+l∑
r=0

(
k + l
r

)
Tk+l−rψ(x)Tr{x−μ−1/2φ(x)}. (4.4)

Since ψ ∈ C∞((0,∞)n), there exist positive constants such that

|Tk+l−rψ(x)| ≤ Mk,l,r, (4.5)
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in η∗ ≤ ‖x‖ < η. Accordingly to (4.4) and (4.5) we now have that

|(1 + ‖x‖2)mx−μ−1/2Sk(ψφ)(x)|

≤ (1 + ‖x‖2)m
k∑

l=0

k+l∑
r=0

|bl,k|
(
k + l
r

)
Mk,l,r |x2lTr{x−μ−1/2φ(x)}|

=
k∑

l=0

k+l∑
r=0

M∗
k,l,r (1 + ‖x‖2)mx2l|Tr{x−μ−1/2φ(x)}|

≤
k∑

l=0

k+l∑
r=0

M∗
k,l,r (1 + ‖x‖2)m+l|Tr{x−μ−1/2φ(x)}|

≤
k∑

l=0

k+l∑
r=0

Bk,l,r sup
x∈(0,∞)n

|(1 + ‖x‖2)m+lx−μ−1/2Srφ(x)|. (4.6)

Since |r| ≤ |2k| ≤ 2N = N0 then

|(1 + ‖x‖2)m+lx−μ−1/2Srφ(x)| ≤ 2|m+l||x−μ−1/2Srφ(x)| ≤ 2|m+l|ε. (4.7)

From (4.1), (4.2), (4.3), (4.6) and (4.7) then:

|(T,φ)| ≤ C
∑
m≤N
|k|≤N

sup
x∈(0,∞)n

|(1 + ‖x‖2)mx−μ−1/2Sk(ψφ)(x)|

≤ C
∑
m≤N
|k|≤N

(
2|m|ε +

k∑
l=0

k+l∑
r=0

Bk,l,r2|m+l|ε

)
= C′ε

with C′ = C
∑

m≤N
|k|≤N

(2|m| +∑k
l=0
∑k+l

r=0 Bk,l,r2
|m+l|). Hence (T,φ) = 0 since ε > 0 was

arbitrarily chosen. �

Lemma 4.2: Let ψ ∈ C∞((0,∞)n) such that ψ(x) = 1 if x1 + · · · + xn ≥ a2, ψ(x) = 0
if x1 + · · · + xn ≤ b2 with 0 < b2 ≤ a2 and 0 ≤ ψ ≤ 1. And let P[x] = ∑

|α|≤N aαxα �= 0
for all x ∈ Rn − {0} and all its coefficients have the same sign, therefore P[x21, . . . , x

2
n]−1ψ

(x21, . . . , x
2
n) ∈ O.

Proof: Let P[x1, . . . , xn] = ∑
|α|≤N aαxα11 . . . xαnn .

The aim of this proof is to verify that for all k ∈ N
n
0 there exists nk ∈ Z such that

|(1 + ‖x‖2)nkTk{P[x21, . . . , x2n]−1ψ(x21, . . . , x
2
n)}| ≤ C ∀x ∈ (0,∞)n.
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For b ≤ ‖x‖ ≤ a it turns out that

Tei{P[x21, . . . , x2n]−1ψ(x21, . . . , x
2
n)} = x−1

i
∂

∂xi
{P[x21, . . . , x2n]−1ψ(x21, . . . , x

2
n)}

= P[x21, . . . , x
2
n]

−2P̃[x21, . . . , x
2
n]ψ(x

2
1, . . . , x

2
n)

+ 2P[x21, . . . , x
2
n]

−1 ∂ψ

∂xi
(x21, . . . , x

2
n). (4.8)

Since all the functions involved,ψ and its derivatives are all continuous in b ≤ ‖x‖ ≤ a, it
is clear that (4.8) is bounded. On the other hand, if ‖x‖ ≥ a, since ψ(x) = 1 then

Tei{P[x21, . . . , x2n]−1} = x−1
i

∂

∂xi
{P[x21, . . . , x2n]−1} = P[x21, . . . , x

2
n]

−2P̃[x21, . . . , x
2
n].

We already shown that P̃ is in O, so, there exist r ∈ Z such that |P̃[x21, . . . , x2n]| ≤ C(1 +
‖x‖2)r. Without loss of generality suppose that all aα are positives and let us first consider
a0 �= 0, then P[x21, . . . , x

2
n]−2 is bounded as in (3.11).

If now we consider a0 = 0, since P[x21, . . . , x
2
n] > 0 for (x1, . . . , xn) �= (0, . . . , 0) then P

must attain a minimum in Sn−1. Let δ be such that

δ < P
[

x21
‖x‖2 , . . . ,

x2n
‖x‖2

]
=

∑
1≤|α|≤N

aα
x2α11 . . . x2αnn

‖x‖2|α| . (4.9)

Since ‖x‖ ≥ a and |α| ≥ 1 then

‖x‖2|α| > a2|α| (4.10)

From (4.9) and (4.10) we obtain that

δ < C
∑

1≤|α|≤N

aαx2α11 . . . x2αnn (4.11)

with C = max1≤|α|≤N a−2|α|, then P[x21, . . . , x
2
n]−2 ≤ C2δ−2.

Then,

sup
‖x‖≥a

|Tei{P[x21, . . . , x2n]−1| ≤ C′(1 + ‖x‖2)r. (4.12)

From equations (4.8) and (4.12) the Lemma follows for k = ei. The general case follows in
a similar way. �

Now we are ready for the proof of Theorem 1.1.

Proof of Theorem 1.1.: If L(f ) = 0 this means that
∑

|α|≤N(−1)|α|aαSαf = 0.
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Since hμ(Sμi f ) = −y2i hμf (see [2]), applying Hankel transform to both sides, we have

hμ

⎛
⎝∑

|α|≤N

(−1)|α|aαSαf

⎞
⎠ =

∑
|α|≤N

(−1)|α|aα(−1)|α|y2α11 . . . y2αnn hμf

= P[y21, . . . , y
2
n]hμf = 0. (4.13)

Letψ being as in the previous Lemma. Then [P[y21, . . . , y
2
n]]−1ψ(y21, . . . , y

2
n) ∈ O. Then

multiplying in (4.13) we obtain that

ψ(y21, . . . , y
2
n).hμf = 0. (4.14)

Let φ ∈ Hμ with suppφ ⊂ {x ∈ (0,∞)n : ‖x‖ ≥ a} and let us see that (hμf ,φ) = 0.
Since ψ(x21, . . . , x

2
n).φ(x1, . . . , xn) = φ(x1, . . . , xn) in (0,∞)n, then

(hμf ,φ) = (hμf ,ψφ) = (ψhμf ,φ) = 0, (4.15)

where we have used (4.14). Consequently hμf is zero for all φ such that suppφ ⊂ {x ∈
(0,∞)n : ‖x‖ ≥ a}. For Theorem 4.1 there exist N1 ∈ N0 and constants ck, |k| ≤ N1 such
that

hμf =
∑

|k|≤N1

ckSkδμ. (4.16)

Therefore, applying the Hankel transform hμ to both sides of (4.16) and since hμ =
(hμ)−1 we obtain that

f = hμ(hμf ) =
∑

|k|≤N1

ckhμ(Skδμ) =

=
∑

|k|≤N1

ck(−1)|k|y2k11 . . . y2kn1 hμδμ

=
∑

|k|≤N1

ck(−1)|k|y2k11 . . . y2kn1 yμ+1/2,

which completes the proof. �

5. Another proof of Theorem 1.1

We establish a different representation theorem from the one proved in the previous
section.

Theorem 5.1: Let f ∈ H′
μ satisfying (f ,φ) = 0 for all φ ∈ Hμ with supp(φ) ⊂ {x ∈

(0,∞)n : ‖x‖ ≥ a} for some a ∈ R, a>0. Then there exist N ∈ N0 and scalars ck, |k| ≤ N
such that

f =
∑

|k|≤N

ckTkδμ,

where Tkδμ given by (2.3).
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Proof: Let f ∈ H′
μ, such that f verifies the hypothesis of the theorem and c>0, N ∈ N0

such that

|(f ,φ)| ≤ C
∑
m≤N
|k|≤N

γ
μ

m,k(φ), φ ∈ Hμ. (5.1)

By the Taylor formula and (2.3), if φ ∈ Hμ

φ(x) = xμ+1/2

Cμ

⎧⎨
⎩(δμ,φ)+

∑
|k1|=1

(Tk1δμ,φ)
x2k1

2k1!
+ · · ·

+
∑

|kN |=N

(TkN δμ,φ)
x2kN

2NkN !
+ CμR2N(x)

⎫⎬
⎭ , (5.2)

where the remain term satisfies limx→0
xi>0

TkR2N(x) = 0 for all kmulti-index such that |k| ≤
N. Then, given ε > 0 there exist ηk > 0 such that |TkR2N(x)| < ε for x ∈ (0,∞)n such
that ‖x‖ < ηk. Set η = min|k|≤N{ηk} and η < 1, then |TkR2N(x)| < ε for all x ∈ (0,∞)n

such that ‖x‖ < η and |k| ≤ N.
Let a ∈ R such that 0 < a < η and define ψ a smooth function on (0,∞)n by ψ(x) =

1 for {x ∈ (0,∞)n : ‖x‖ < a/2} and ψ(x) = 0 for {x ∈ (0,∞)n : ‖x‖ ≥ a} and therefore
(f , (1 − ψ(x))φ(x)) = 0 for any φ ∈ Hμ. Hence

(f ,φ) = (f ,ψφ). (5.3)

Therefore

(f ,φ) =
∑

|k|≤N

ck(Tkδμ,φ)+ (f , xμ+1/2ψ(x)R2N(x)), (5.4)

where ck = (1/Cμ2|k|k!)(f , xμ+1/2x2kψ(x)).
Applying the estimate (5.1) to xμ+1/2ψ(x)R2N(x), we get

|(f , xμ+1/2ψ(x)R2N(x))| ≤ C
∑
m≤N
|k|≤N

γ
μ

m,k(x
μ+1/2ψ(x)R2N(x)).

Then

|(1 + ‖x‖2)mTk{x−μ−1/2xμ+1/2ψ(x)R2N(x)}|
≤ sup

‖x‖<a/2
|(1 + ‖x‖2)mTk{R2N(x)}| + sup

a/2≤‖x‖<a
|(1 + ‖x‖2)mTk{ψ(x)R2N(x)}|

≤ sup
‖x‖<a/2

|(1 + ‖x‖2)mTk{R2N(x)}| + sup
a/2≤‖x‖<a

|(1 + ‖x‖2)m
k∑

j=0
Tk−jψ(x)TjR2N(x)|

≤ sup
‖x‖<a/2

|(1 + ‖x‖2)mTk{R2N(x)}| + sup
a/2≤‖x‖<a

k∑
j=0

Mj,k|(1 + ‖x‖2)mTjR2N(x)|.
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For ‖x‖ < η result that

|(f , xμ+1/2ψ(x)R2N(x))| ≤ C
∑
m≤N
|k|≤N

2m
⎛
⎝1 +

k∑
j=0

Mj,k

⎞
⎠ ε = C′ε.

Thus (f , xμ+1/2ψ(x)R2N(x)) = 0 since ε was arbitrarily chosen. Therefore

(f ,φ) =
∑

|k|≤N

ck(Tkδμ,φ).

�

Now we can sketch a different proof for Theorem 1.1.

Another proof of Theorem 1.1.: If L(f ) = 0, then we obtain as in (4.15) that hμf is zero
for all φ such that suppφ ⊂ {x ∈ (0,∞)n : ‖x‖ ≥ a} with a>0, a ∈ R. Then, since
Theorem 5.1 holds, there exist N2 ∈ N0 and constants ck, |k| ≤ N2 such that

hμf =
∑

|k|≤N2

ckTkδμ. (5.5)

Therefore, applying the Hankel transform hμ to both sides of (5.5) and since hμ = (hμ)−1

we obtain that

f = hμ(hμf ) =
∑

|k|≤N2

ckhμ(Tkδμ) =
∑

|k|≤N2

ckM
μ

k y
2k1
1 . . . y2knn yμ+1/2,

where we have used (2.4). The proof is this complete. �

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Schwartz AL. Théorie des distributions. Paris: Hermann; 1966.
[2] Molina S, Trione SE. n-Dimensional Hankel transform and complex powers of Bessel operator.

Integral Transforms Spec Funct. 2007;18(12):897–911.
[3] Molina S, Trione SE. On the n-dimensional Hankel transforms of arbitrary order. Integral

Transforms Spec Funct. 2008;19(5):327–332.
[4] Zemanian AH. Generalized integral transformations. New York (NY): Interscience Publisher;

1968.
[5] Molina S. A generalization of the spaces Hμ, H′

μ and the space of multipliers. Actas del VII
Congreso Dr. Antonio A. R. Monteiro; 2003. p. 49–56.

[6] Marrero I, Betancor JJ. Hankel Convolution of generalized functions. Rend Mat Ser VII.
1995;15:351–380.

[7] Kesavan S. Topics in functional analysis and applications. New York (NY): JohnWiley & Sons;
1989.

[8] Sánchez AM. La transformación integral generalizada de Hankel–Schwartz [dissertation]. San
Cristóbal De La Laguna (ES): Universidad de La Laguna; 1987.

[9] Koh EL, Zemanian AH. The complex Hankel and I-transformations of generalized functions.
SIAM J Appl Math. 1968;16(5):945–957.



382 V. GALLI ET AL.

Appendix. Equivalence of the seminorms γ
μ

m,k and λ
μ

m,k

The main result of this paper needs of the existence of another family of seminorms, different from
the family γ μm,k, which is defined as

λ
μ

m,k(φ) = sup
x∈(0,∞)n

|(1 + ‖x‖2)mx−μ−1/2Skφ(x)|, φ ∈ Hμ. (A1)

The construction of the family {λμm,k}m∈N0,k∈N
n
0
wasmotivated by theworks ofMarrero and Betancor

[6], Sánchez [8] and Koh and Zemanian [9]. This multinorm is important because generates onHμ

the same topology as the family {γ μm,k}.

Remark A.1: Let k be a multi-index, the following equality is valid

x−μ−1/2Skφ(x) =
k∑

l=0

bl,kx2lTk+l{x−μ−1/2φ(x)}. (A2)

This formula can be derived from the equation

x−μi−1/2
i Skiμiφ(x) =

ki∑
l=0

bl,kix
2l
i T

ki+l
i {x−μi−1/2

i φ(x)}, (A3)

where the constants bj,ki , j = 0, . . . , ki, are suitable real constants, only depending on μi. The for-
mula (A.3) is due to Koh and Zemanian (see [9, p.948]) and is valid for every ki ∈ N0. Indeed, if
k ∈ N

n
0 , k = (k1, . . . , kn) then,

(x−μi−1/2
i Skiμi)(x

−μj−1/2
j Skjμj)φ(x) =

ki∑
li=0

kj∑
lj=0

bli ,kiblj,kjx
2li
i x2ljj Tki+li

i Tkj+lj
j {x−μi−1/2

i x−μj−1/2
j φ(x)}.

Repeating this process we obtain that

x−μ−1/2Skφ(x) = (x−μ1−1/2
1 Sk1μ1) . . . (x

−μn−1/2
n Sknμn)φ(x) =

k∑
l=0

bl,kx2lTk+l{x−μ−1/2φ(x)},

where l = (l1, . . . , ln) and k = (k1, . . . , kn).
On the other hand, from [8, Propositions IV.2.2 and IV.2.4] we have that for all ki ∈ N0, i =

1, . . . , n result that |Tki
i {x−μi−1/2

i φ(x)}| ≤ Ci supxi∈(0,∞) |x−μi−1/2
i Skiμiφ(x)|.

So, we can generalize this inequality and obtain the following result

Remark A.2: Let k be a multi-index, the following inequality is valid

|Tk{x−μ−1/2φ(x)}| ≤ C sup
x∈(0,∞)n

|x−μ−1/2Skφ(x)|. (A4)

Set i, j ∈ {1, . . . , n}, i �= j and computing

|Tki
i T

kj
j {x−μ−1/2φ(x)}|

≤ Ci sup
xi∈(0,∞)

|x−μi−1/2
i Skiμi{T

kj
j {x−μj−1/2

j x−μ−1/2+(μiei+1/2)+(μjej+1/2)φ(x)}}|

= Ci sup
xi∈(0,∞)

|Tkj
j {x−μj−1/2

j (x−μ−1/2+(μjej+1/2)Skiμi)φ(x)}|
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≤ CiCj sup
xj ,xi∈(0,∞)

|x−μj−1/2
j Skjμj{x−μ−1/2+(μjej+1/2)Skiμiφ(x)}|

= CiCj sup
xj ,xi∈(0,∞)

|x−μ−1/2Skiμi S
kj
μjφ(x)|.

The general case follows from an inductive argument.
From (A2) and (A4) we obtain that the families of seminorms γ μm,k and λ

μ

m,k are equivalents.

|(1 + ‖x‖2)mTk{x−μ−1/2φ(x)}| ≤ C sup
x∈(0,∞)n

|(1 + ‖x‖2)mx−μ−1/2Skφ(x)| = Cλμm,k(φ),

therefore γ μm,k(φ) ≤ Cλμm,k(φ). On the other hand, (A.2) imply that

|(1 + ‖x‖2)mx−μ−1/2Skφ(x)| ≤
k∑

l=0

|bl,k| |(1 + ‖x‖2)m+|l|Tk+l{x−μ−1/2φ(x)}|

≤
k∑

l=0

|bl,k|γ μm+|l|,k+l(φ),

which leads to λμm,k(φ) ≤ ∑k
l=0 |bl,k|γ μm+|l|,k+l(φ).
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