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from Pacific to Atlantic populations. The Bayesian Skyline 
analysis revealed an older coalescence in the Pacific clade 
(30,000–300,000  ybp) as compared to that in the Atlan-
tic clade (4,000–40,000  ybp). This work reports evidence 
of Pacific–Atlantic geographic isolation with asymmetric 
migration, which is probably related to changes in sea level 
and temperature due to the extended glaciation periods that 
occurred in the region throughout the Pleistocene.

Introduction

Glacial cycles, especially those of the Pleistocene 
(1,800,000–11,500  ybp), have affected and shaped the 
genetic structure of both terrestrial and marine species 
(Avise 2000; Muellner et  al. 2005; Ruzzante et  al. 2006; 
Túnez et al. 2010; Fernández Iriarte et al. 2011; Sérsic et al. 
2011; Fraser et  al. 2012). The climate changes associated 
with the glaciations led not only to a reduction in global 
and sea temperature, including changes at sea level dur-
ing the full glacial episodes, but also to changes in ocean 
current patterns and to the displacement or eradication of 
coastal habitats (e.g., Rabassa et al. 2005, 2011; Grant and 
Bowen 2006). In this context, the biogeographic contraction 
expansion model (CE) (Provan and Bennett 2008) describes 
the species geographic responses to past climate changes 
induced by the glacial–interglacial cycles. Under the basic 
CE model, most of the marine littoral species inhabit-
ing the cold-template waters of the southern hemisphere 
would have survived in northern refuges and re-colonized 
higher latitudes after the Last Glacial Maximum (LGM, 
18,000–23,000  ybp) (Hewitt 2004). The CE model pre-
dicts that the recently colonized sites would present lower 
genetic diversity than source populations and maintain other 
genetic imprints of population expansion, such as a star-like 
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haplotype network, negative Tajima’s D and Fu Fs indices, 
lower R2 index and an unimodal mismatch distribution, 
among others (e.g., Hewitt 2000, 2001, 2004; Hewitt and 
Ibrahim 2001; Emerson and Hewitt 2005). In the marine 
environment, coastal species reveal different responses to 
past climate change than offshore species. While coastal-
benthic species provide strong evidence of recent (i.e., 
LGM) climate changes (e.g., Wares and Cunningham 2001; 
Marko et al. 2010; González-Wevar et al., 2013), offshore-
pelagic species show patterns of genetic differentiation and 
divergence consistent with long-term regional persistence 
(Janko et  al. 2007; Fernández Iriarte et  al. 2011). These 
contrasting biogeographic histories could reflect fundamen-
tal differences in the way in which glaciations impacted on 
coastal and offshore scenarios (e.g., Wares and Cunningham 
2001; Janko et al. 2007; Marko et al. 2010). Aside from the 
historical climate changes, other factors may promote dif-
ferent levels of phylogeographic structure and differentia-
tion in marine species. Indeed, the interconnection among 
populations could be influenced by the ontogeny of marine 
organisms (e.g., Palumbi 2003; Riginos et al. 2011; Fraser 
et  al. 2012). For instance, species with planktonic phase 
could increase their dispersion ability and connectivity, dis-
playing, in some cases, a weaker population structure than 
that of species with direct development (e.g., Palumbi 1994; 
Thorrold et al. 2002; Kinlan and Gaines 2003; Wares 2002; 
Marko et al. 2010).

The austral edge of South America underwent strong 
climatic fluctuations during the Pleistocene glaciations 
(Rabassa et  al. 2011). Thus, the biogeographic regions 
of Peru, Central Chile and Magellan in the Pacific Ocean 
(Fig. 1) are defined by contrasting the geologic and climate 
history (Harrison 2004) that could be reflected in the phy-
logeographic structure of littoral species. In this sense, the 
barnacle Notochthamalus scabrosus (Zakas et al. 2009), the 
alga Macrocystis pyrifera (Macaya and Zuccarello 2010) 
and the sleeper limpet Crepipatella dilatata (Brante et  al. 
2012) displayed a break at 30°S between the Central and 
Peruvian regions, while the kelp Durvillaea antarctica 
presented a phylogeographic break between the Central 
and Magellan regions at 44°S (Fraser et  al. 2009, 2010). 
In contrast, the barnacle Jehlius cirratus (Zakas et  al. 
2009), the gastropods Concholepas concholepas (Cárde-
nas et al. 2009) and the fish Eleginops maclovinus (Cebal-
los et  al. 2012) did not show genetic structure linked to 
biogeographic coastal regions of southern South America. 
A recent comparison of the limpet Nacella magellanica 
with the Pacific and Atlantic Patagonia (Magellan region) 
indicates that this species did not suffer a phylogeographic 
break (probably due to the long duration of its larval phase). 
In spite of that, N. magellanica is in postglacial expansion 
on the Atlantic and Pacific shores (de Aranzamendi et  al. 
2011; González-Wevar et al. 2012).

Siphonaria lessoni (Blainville 1824) is a pulmonate 
limpet (Pulmonata, Siphonariidae) that inhabits inter-
tidal crevices and tide pools on rocky shores (Penchasza-
deh 2004). Many of the ecological and life history traits 
of this species turn it into an interesting study system to 
address questions of historical events driving the current 
geographic distribution of species living in the littoral of 
South America. To begin with, S. lessoni features a wide 
distribution range from the Peruvian coast (Alamo and Val-
divieso 1997) to Cabo de Hornos (Dell 1971) in the Pacific 
Ocean and from Islas Malvinas (Falkland Islands) and the 
Patagonian coast (Castellanos et  al. 1993) to Santa Cata-
rina, Brazil (Penchaszadeh et  al. 2007), which allows to 
analyze demographic and population responses to climate 
changes in an extended geographic range. Secondly, plank-
tonic larval duration of S. lessoni is about 7 days (Olivier 
and Penchaszadeh 1968), which affords the opportunity 
to explore whether persistence of larvae in the water col-
umn influences the historic connectivity and gene flow 
among populations. Thirdly, despite fossil records indicat-
ing that S. lessoni is present in the southwestern Atlantic 
from the Holocene (5,000–8,000  ybp), records from the 
Pleistocene (125,000 ybp) account for their presence in the 
coast of Golfo Nuevo, Argentina (42–44°S, Fig. 1) (Agu-
irre et al. 2008, 2009). This finding suggests that the Golfo 
Nuevo could have functioned as a refuge to littoral spe-
cies during the Pleistocene glaciations, a hypothesis that 
can be tested for S. lessoni by conducting phylogeographic 
analyses. Fourthly, palaeoenvironmental and geographic 
evidence suggests that part of the molluscan fauna of the 
Argentinean Patagonia radiated from the southeastern 
Pacific (see Aguirre et al. 2008). Therefore, S. lessoni could 
be used to determine whether Chilean populations are, in 
fact, the “ancestral populations” that originated the Atlantic 
populations.

This study aimed to analyze the genetic structure and 
demographic history of S. lessoni in the southwestern 
Atlantic and southeastern Pacific, using the mitochondrial 
marker cytochrome oxidase I (COI). The major hypotheses 
formulated were: (1) glacial expansion isolated, at some 
point during the Pleistocene, the Pacific and Atlantic popu-
lations. On the basis of this hypothesis, a strong phylogeo-
graphic structure should be found between the Pacific and 
Atlantic populations with a divergence time between these 
two populations in the Pleistocene, (2) Pacific populations 
have acted as a colonization source for Atlantic populations 
on at least one occasion, if this hypothesis held true, Pacific 
populations would be expected to reveal more genetic 
diversity than Atlantic populations do; also, we would be 
expected similar diversity between Pacific and ancestral 
populations. Finally, we would be expected that migration 
of Pacific individuals into to Atlantic would be greater than 
the opposite.
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Materials and methods

Sample collection

Individuals from S. lessoni were collected from rocky areas 
of the middle intertidal zone in Mar del Plata (MDP; 38°S 
57°W), San Antonio Oeste (SAO; 40°S 64° W), Puerto 
Madryn (MAD; 42°S, 65°W) and Ushuaia (USH; 54°S, 
68°W) on the Argentinean coast, and from Valdivia (VLD; 
39°S, 73°W) and Valparaíso (VLP; 30°S, 71°W) on the 
Chilean coast. These sites comprise the following biogeo-
graphic provinces: Argentinean province (MDP  +  SAO), 
Magellan province (MAD + USH) and Central Chile prov-
ince (VLD  + VLP) (Fig.  1). At each site, 20 individuals 

were removed from the upper intertidal and stored in 70 % 
ethanol until further processing.

DNA extraction, PCR amplification and sequencing

DNA was extracted from small muscle pieces using the 
Chelex 100 (Biorad) method sensu Walsh et  al. (1991). 
A fragment of the mitochondrial gene COI was ampli-
fied using the universal primers LCO1490 and HCO2198 
(Folmer et  al. 1994). Reactions were performed in 30 μl 
final volume, containing 3 μl of 10× buffer, 2 μl MgCl2 
(25  mM), 2.5  μl DNTPs (2.5  mM), 3  μl of each primer 
(2 mM), 0.08 units/ml of Taq polymerase and 3 μl of DNA 
template. PCR cycling was performed starting with dena-
turation for 1 min at 96 °C, followed by 40 cycles of 30 s 
at 94 °C, 1 min at 50 °C and 1 min at 72 °C, with a final 
extension of 14  min at 72  °C. Successful PCR reactions 
were confirmed in a 2 % agarose gel and purified with kits. 
PCR products were sequenced in Macrogen Inc. (Korea). 
The sequences were aligned, corrected and edited with 
PROSEQ (Filatov 2002). Sequences were deposited in 
GenBank under the access numbers XXX to XXX.

Genetic diversity indexes and population genetic structure

For each sampled population, haplotype (h) and nucleo-
tide (π) diversities were estimated using DNAsp v5 (Lib-
rado and Rozas 2009). An analysis of molecular variance 
(AMOVA) was performed using Arlequin, with 10,000 
permutations to test significance (Excoffier et al. 2005). To 
infer the spatial genetic structure of S. lessoni, the pairwise 
values of PhiST were calculated. A nested AMOVA was also 
conducted by placing biogeographic samples (CHI, MAG 
and ARG) in different groups.

The genealogical relationships between sequences were 
inferred by the haplotype network obtained using “median-
joining” with Network 4.6 software (http://www.fluxus-
engineering.com). The substitution model of the COI frag-
ment was estimated with the jModelTest 0.1.1 software 
(Posada 2008).

An intraspecific phylogeny was constructed with S. lat-
eralis as the outgroup with the neighbor-joining tree using 
software MEGA 5 (Tamura et al. 2011). The evolutionary 
distance was calculated with the Maximum Composite 
Likelihood method, and node support was evaluated with 
1,000 bootstrap replicates (Felsenstein 1985).

Demographic analysis

The history of demographic changes was assessed by cal-
culating the Tajima’s D test (Tajima 1989) and Fu’s Fs 
test (Fu 1997), using DnaSP. Tajima’s and Fu’s neutral-
ity tests are currently used to verify whether a population 

Fig. 1   Map of sampling scheme for S. lessoni along almost all its 
distribution range. Dashed lines indicate the different biogeographic 
provinces: Argentina (MDP + SAO); Magellan (MAD + USH); Cen-
tral Chile (VLD  + VLP). MDP, Mar del Plata; SAO, San Antonio 
Oeste; MAD, Puerto Madryn; USH, Ushuaia; VLP, Valparaíso; VLD, 
Valdivia; GN, Golfo Nuevo; EM, Estrecho de Magallanes. The diffuse 
line over the Andes mountain range shows the Patagonian ice sheet in 
the Last Glacial Maximum (LGM) from McCulloch et al. (2000). The 
dotted line in the ocean shows the sea level at the LGM according to 
Rabassa et al. (2005)

http://www.fluxus-engineering.com
http://www.fluxus-engineering.com
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is in a neutral mutation/drift equilibrium (Ramos-Onsins 
and Rozas 2002). Negative and significant values of these 
parameters are indicative of population expansion and/
or negative selection. The demographic history of S. les-
soni was also studied with “mismatch” distributions (dif-
ferences in distributions between haplotype pairs) (Rogers 
and Harpending 1992). This method discriminates between 
stability and sudden population expansion. The observed 
mismatch distributions were compared to those expected at 
each site, using a model of sudden population expansion. 
Any deviation from the model was evaluated with the R2 
(Ramos-Onsins and Rozas 2002) calculated in DNAsp. 
After large expansion, populations should present unimodal 
mismatch distributions with low R2, while stable ones with 
high R2. The significance of each index (Fs, D and R2) was 
tested with 10,000 simulations based on the coalescent pro-
cess in DNAsp.

The isolation with the migration model implemented 
in the Bayesian-based IMa program (Hey and Nielsen 
2007) was used to assess gene flow between Atlantic 
(USH +  MAD +  SAO +  MDP) and Pacific populations 
(VLD + VLP). To fit the IM model to the data, a Bayes-
ian coalescent method that integrates all possible genealo-
gies with a Markov chain Monte Carlo approach was used. 
Three independent runs performed in “MCMC mode” 
with different random seed numbers were conducted with 
a burn-in period of 50,000 steps and running for 500,000 
steps. To ensure that there are no obvious trends, the run 
of the program should be long enough for chains to con-
verge and the effective sample size (ESS) value among the 
parameters should be greater than 50 (see Hey and Nielsen 
2007). So we ran the program multiple times (with a differ-
ent random number seed) and corroborated that the results 
were similar and with ESS greater than 50.

Runs were monitored by using estimates of the effec-
tive sample size based on the measured autocorrelation of 
parameter values over the course of the run.

Genealogies saved during the runs were analyzed in 
a “Load Trees mode” (L-mode) to determine whether the 
full model fit the data better than models that excluded the 
parameters. To convert scaled model parameter estimates 
into demographic parameters (including effective popula-
tion size Ne and divergence time T), we assumed a gen-
eration time of 1  year and specified a COI mutation rate 
of 1–10 % per million years (Myr) (see below). Values of 
demographic parameters reported are the means from three 
runs (±SD) and means of 95 % confidence limits.

Past changes in the effective population size (Ne) of S. 
lessoni were characterized by generating COI Bayesian 
skyline plots (BSPs) with BEAST v1.4.8 (Drummond et al. 
2005; Drummond and Rambaut 2007). These analyses 
were run under the HKY + I + G model selected by jMod-
elTest using the Akaike information criterion. The analysis 

was performed with three runs of 10,000,000 generations 
each, in which trees and parameters were sampled every 
1,000 generations.

To estimate population divergence times, the COI sub-
stitution rate of 1 % per million years was used, previously 
applied to S. concinna, S. nigerrima and S. capensis, which 
is a mean of divergence between gastropod species (Teske 
et al. 2011). This substitution rate was corrected based on 
theoretical studies that suggest that the substitution rate 
within lineages is 10 times higher than that between line-
ages (Ho et al. 2005, 2007, 2011) and recently used in lim-
pets (de Aranzamendi et  al. 2011; González-Wevar et  al. 
2011, 2012, 2013). In view of this, substitution rates of 1 
and 10 % were run for both lineages, and the mean coales-
cence times from three runs of BEAST were corrected and 
plotted.

Results

Genetic diversity indexes and population genetic analysis

Sixty-one substitutions (42 transitions and 6 transversions) 
and 47 polymorphic sites in 92 samples of 520  bp of S. 
lessoni COI sequences obtained from Argentina and Chile 
defined 43 mitochondrial haplotypes. The mean number of 
pairwise differences was 5.899 (±2.843). Overall nucleo-
tide diversity was 0.0107 (ranging from 0.0008 to 0.0074), 
and haplotype diversity was 0.801 (ranging from 0.419 
in MDP to 0.992 in VLP) (Table 1). S. lessoni haplotypes 
belonged to two lineages, one comprising the Central Chil-
ean province samples (LI) and the other including almost 
all the Magellan and Argentinean province samples (LII) 
with high bootstrap (Fig.  2). The Chilean and Magellan–
Argentinean bioregions did not share haplotypes, and only 
in MAD did they present two haplotypes closely related 
to LI and five haplotypes assigned to LII (Figs. 2, 3). The 
AMOVA tests revealed the existence of strong population 
genetic structure between biogeographic provinces. Thus, 
CHI versus MAG–ARG Argentinean province group-
ings explained most of the genetic variations (Table  2). 
The other geographic levels explained lesser variation and 
were not significant among groups (Table 2). Also, the τST 
between pair of sites indicated that the Central Chilean 
samples (VLD and VLP) were similar (yielded lower πST) 
and largely divergent from the Magellan (MAD and USH) 
and Argentinean (MDP and SAO) provinces. Likewise, 
within these regions, MDP was moderately divergent from 
SAO and MAD (Table 3).

The COI haplotype network for S. lessoni showed that 
the LI and LII lineages are connected by seven mutational 
steps (Fig. 3). LI, mostly samples from the Pacific Ocean, 
yielded a higher number of haplotypes, polymorphic sites, 



599Mar Biol (2015) 162:595–605	

1 3

and haplotype and nucleotide diversity than clade II did 
(most samples from the Atlantic Ocean) (see Table  1). S. 
lessoni from the Argentinean province showed the lowest 

haplotype and nucleotide diversity (Table 1), and the hap-
lotype network comprised one central and common hap-
lotype and few rare haplotypes that differed from the cen-
tral one by one to three different base pairs. The Magellan 
province displayed intermediate values of haplotype and 
nucleotide diversity (Table  1), and the haplotype network 
consisted in one central and common haplotype and few 
rare haplotypes that, in this particular case, differed from 

Table 1   Genetic diversity and demographic parameters for 552 bp of cytochrome oxidase I (COI) mtDNA of S. lessoni

N = sampled size; Nh = haplotype number; S = number of polymorphic sites; h = haplotype diversity; π = nucleotide diversity; Tajima’s D; 
Fu’s Fs; R2 and Tau (τ)

* p < 0.05; ** p < 0.01

Sample N Nh S h (SD) π (SD) D Fs R2 τ

MDP 17 4 3 0.419 (0.141) 0.0008 (0.0003) −1.377 −1.936* 0.114 0.456

SAO 16 4 4 0.442 (0.142) 0.0013 (0.0006) −1.312 −1.045 0.065** 0.166

MAD 14 7 19 0.813 (0.094) 0.0092 (0.0029) −0.626 0.557 0.119 0.104

USH 15 6 10 0.571 (0.149) 0.0024 (0.0012) −2.156** −1.944* 0.149 0.000

VDL 14 13 20 0.989 (0.031) 0.0080 (0.0010) −1.251 −8.510** 0.076** 4.407

VLP 16 15 22 0.992 (0.025) 0.0074 (0.0009) −1.542 −11.716** 0.065** 4.108

Argentinean province (MDP, SAO) 33 7 7 0.428 (0.107) 0.0011 (0.0004) −1.899** −4.652** 0.060* 0.231

Magellan province (MAD, USH) 29 12 27 0.700 (0.095) 0.0059 (0.0020) −1.885* −2.900 0.055** 0.000

Central Chile province (VLD, VLP) 30 26 29 0.989 (0.013) 0.0078 (0.0024) −1.562* −25.124** 0.064* 4.299

LI 33 28 33 0.989 (0.011) 0.0083 (0.0007) −1.623* −26.433** 0.061* 4.587

LII 59 15 18 0.517 (0.080) 0.0015 (0.0004) −2.412** −14.942** 0.065 1.549

ALL 92 43 47 0.801 (0.043) 0.0107 (0.0008) −1.202 −25.754** 0.059 1.668

Fig. 2   Median-joining haplotype network for cytochrome oxidase I 
(COI) mtDNA sequences of S. lessoni. The circles’ area is propor-
tional to the number of individuals in each haplotype found. Numbers 
between circles represent additional mutational steps

Fig. 3   Neighbor-joining tree from the haplotypes rooting the tree 
with a sequence of S. lateralis. The asterisk in the branch indicates 
the two haplotypes of MAD belonging to lineage I. Bootstrap values 
are shown in above nodes. LI: lineage I, LII: lineage II
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the central one by one to twelve different base pairs. The 
variability of this region was mainly ascribed to the high 
haplotype and nucleotide diversity values found in MAD 
site (Table  1). Finally, the Central Chilean province was 
characterized by high haplotype and nucleotide diversity, 
and the haplotype network revealed a high frequency of 
unique haplotypes (28 out of 33).

Demographic analysis

The Tajima’s D and Fu’s Fs values were negative and sig-
nificant in both lineages (Table 1). R2 did not yield a signif-
icant deviation from expectations under the spatial expan-
sion model. The Tau index for LI was three times higher 
than that for LII (4.59 and 1.55, respectively. See Table 1). 
All regions presented significant and negative Fu’s Fs 
except for the Magellan region (Table  1), and almost 
all indicated unimodal mismatch distributions (data not 
showed), thus suggesting population expansion in Argen-
tinean and Central Chile regions. Nevertheless, the Magel-
lan region exhibited a bi-modal curve in its mismatch dis-
tribution (data not showed) that is due to the two Pacific 
haplotypes, which are likely to be explained by the high h 
and π showed in MAD (Table 1).

IMa runs reached good convergence and ESS values 
as suggested by Hey and Nielsen (2007). Likelihood IMa 
curves provided strong unimodal posterior distributions 

for all parameter estimates and bounds fell within the prior 
distribution for the COI data of S. lessoni. Population size, 
divergence time and migration rates showed distinct peaks 
between the Pacific and Atlantic populations (Fig.  4a–c). 
The estimated population size (N) using 10  % mutation 
rate (1 % mutation rate showed an N value with a greater 
order of magnitude) yielded a higher number of individu-
als in the Pacific group (N1 = 270 ± 0.33 millions, 95 % 
confidence limit 183–326 millions) than the Atlantic group 
(N2 = 71 ± 0.53 millions, 95 % confidence limit 37–121); 
also, the ancestral size (NA) was higher than N2 but simi-
lar to N1 (NA  =  319  ±  0.01 millions, 95  % confidence 
limit 296–328) (Fig.  4a). Between Atlantic and Pacific 
limpet population was a divergence time of 113,000 and 
1,130,000 ybp for 1 and a 10 % mutation rate, respectively 
(Fig.  4b). Migration rate was higher toward the Atlantic 
than toward the Pacific (Fig. 4c).

IMa runs indicated that, on the one hand, the model that 
excluded Atlantic gene flow was the nested model that fit 
data better (p = 0.999; Table 4). While, on the other hand, 
the other model that also fit data better (p = 0.802; Table 4) 
indicated that the population size was different between the 
Atlantic and Pacific ancestral population. The first model 
had the following parameters: θ1 (Pacific), θ2 (Atlantic), θA 
(Ancestral), mAP (migration to the Pacific) equal to zero 
and mPA (migration to the Atlantic). The second model 
accepted showed: θ1 = θA, θ2 and mAP, mPA (Table 4).

Table 2   Analysis of molecular variance (AMOVA) for COI from S. lessoni populations

+ = 0.06; * p < 0.05; ** p < 0.01

Percentage of variation (degree of freedom)

Source Among groups Among populations within groups Within populations

Central Chile province (VLD, VLP) versus Magellan province (MAD, 
USH)–Argentinean province (MDP, SAO)

72.61 (1)+ 1.22 (4)** 26.16 (86)**

Central Chile province (VLD, VLP) versus Magellan province (MAD, 
USH) versus Argentinean province (MDP, SAO)

63.40 (2) 1.85 (3)* 34.75 (86)**

Central Chile province (VLD, VLP)–Magellan province (MAD, USH) 
versus Argentinean province (MDP, SAO)

17.55 (1) 45.76 (4)** 36.68 (86)**

Magellan province (MAD, USH) versus Central Chile province (VLD, 
VLP)–Argentinean province (MDP, SAO)

0.00 (1) 66.15 (4)** 41.22 (86)**

All populations (MDP, SAO, MAD, USH, VLD, VLP) 60.19 (5)** 39.81 (86)**

Table 3   Population pairwise 
genetic differentiation (τST) 
between sampled populations of 
S. lessoni

* p < 0.05; ** p < 0.01

MDP SAO MAD USH VDL VLP

MDP 0.050* 0.118* −0.006 0.786** 0.785**

SAO 0.087 0.001 0.760** 0.762**

MAD 0.082 0.509** 0.523**

USH 0.739** 0.742**

VDL 0.023

VLP
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Both analyses of population divergence times using 
1 and 10 % of million years−1 (see “Materials and meth-
ods”) revealed an older coalescence time for the S. les-
soni in LI: 300,000 and 30,000 ybp, respectively, when a 
significant decline in population size occurred (Fig.  5). 

On the contrary, the haplotypes in LII coalesced nearly 
40,000 and 4,000 ybp, respectively (Fig. 5). Overall, BSP 
and mismatch results suggested that LII probably started 
to expand as the total ice melt after the LGM period 
(18,000–23,000 ybp).

Discussion

A high degree of population genetic structure was observed 
in S. lessoni along its distribution range. Two distinct mito-
chondrial lineages that were nearly reciprocally monophy-
letic between the Pacific and the Atlantic coasts could be 
identified in S. lessoni: LI included the populations from 
the Pacific (Central Chilean province: VLP and VLD) and 
some individuals from MAD; and LII, in turn, comprised 
the Atlantic population analyzed (Magellan and Argen-
tinean provinces, USH–MAD and SAO–MDP, respec-
tively). High levels of differentiation were revealed by high 
τST values between the Pacific and the Atlantic populations. 
Also, data indicated that the Pacific populations could be 
considered as an ancestral population due to the higher 
number of haplotypes, polymorphic sites, as well as hap-
lotype and nucleotide diversity as compared to the Atlantic 
populations. In this sense, the best model in IMa showed a 
similar θ value between the Pacific and ancestral samples, 
both different from the Atlantic limpet population. Thus, 
the second hypothesis predicting that the limpets from the 
Pacific (source population) would present more genetic 
diversity than those from the south Atlantic could not be 
rejected.

Within the Pacific population, the absence of a bio-
geographic structure (τST not different from 0) could be 
attributed to a recent population expansion rather than to 

Fig. 4   Likelihood plots from IMa analyses based on data from the 
COI of S. lessoni. The marginal posterior probability distributions 
for model parameters were scaled by the neutral mutation rate: a 
Effective population sizes of Atlantic and Pacific groups (N1 and N2, 
respectively) and population sizes of ancestral populations (NA); b 
divergence time, black circle is 10 % of mutation rate and gray circle 
is 1 %. c Migration rates, mAP migration to the Pacific, mPA migration 
to the Atlantic

Table 4   Model selection in IMa based on COI sequence data of S. 
lessoni

The models with highest probability of explanation are in bold

2LLR =  log-likelihood ratio statistic, d.f. = degrees of freedom for 
each model. p values for 2LLR statistics were calculated using the 
x2 calculator available at http://www.stat.tamu.edu/~west/applets/
chisqdemo.html. θ1 (Pacific), θ2 (Atlantic), θA (Ancestral), m1 (migra-
tion to the Pacific) and m2 (migration to the Atlantic). Only the mod-
els with probabilities higher than 0.01 are shown

Model d.f. 2LLR p value

θ1, θ2, θA, m1 = m2 1 3.599 0.058

θ1, θ2, θA, m1 = 0, m2 1 −0.002 0.999

θ1, θ2, θA, m1, m2 = 0 1 5.062 0.024

θ1, θ2, θA, m1 = 0, m2 = 0 2 5.059 0.080

θ1 = θA, θ2, m1, m2 1 0.063 0.802

θ1 = θA, θ2, m1 = m2 2 3.598 0.165

θ1 = θA, θ2, m1 = 0, m2 = 0 3 5.059 0.167

http://www.stat.tamu.edu/~west/applets/chisqdemo.html
http://www.stat.tamu.edu/~west/applets/chisqdemo.html
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population stability in the long term. This is evident in the 
topology of the Pacific haplotype network for VLD and 
VLP samples (Fig. 2), where almost all sampled individuals 
presented unique haplotypes and greater value of θ and N 
(population size) for the Pacific population. Likewise, these 
Central Chilean populations provided negative values in 
neutrality tests, indicating an excess of low frequency poly-
morphisms that revealed a population bottleneck followed 
by rapid population growth and accumulation of mutations.

With respect to samples from the Atlantic coast (Magel-
lan and Argentinean provinces), they revealed low levels of 
pairwise differentiation but significant for the comparison 
between MDP and MAD–SAO. A weak population struc-
ture could be related to lesser population size and/or envi-
ronmental instability. This is in line with the topology of 
the haplotype network, which shows a central haplotype 
with high frequency and many peripheral mutational steps. 
Additionally, all these populations, except MAD, also 
displayed negative values in neutrality tests indicating an 
excess of low frequency polymorphisms and revealing a 
recent population expansion.

From IMa analysis, the divergence time between the 
Pacific and the Atlantic populations was in agreement with 
our first hypothesis: estimating 100,000–1,000,000 ybp of 
divergence during the Pleistocene era. Thus, both the Atlan-
tic and the Pacific populations showed evidence of popu-
lation expansion but differed in the expansion time, being 
longer for LI than for LII lineages (Fig. 5). Therefore, the 
overall result supports the fact that the Atlantic populations 
would have been more severely affected during LGM.

The climatic oscillations that occurred during the Pleis-
tocene in the austral edge of South America probably 
caused more conspicuous effects in the Atlantic coast than 

in the Pacific. This is because during the LGM, a continu-
ous ice layer of 2,500  km in length extended from 56°S 
to 36°S (McCulloch et  al. 2000) (Fig.  1). This ice layer 
covered almost entirely the Andean Patagonia and far to 
the east reaching the current marine platform in southern 
Argentina and to the west the edge of the continental plat-
form (Hulton et al. 2002). This caused the mass extinction 
of several species living on rocky shores. In the Atlantic 
Ocean, glaciations not only lowered sea temperature and 
level, but also changed currents and eradicated habitats 
(Rabassa et al. 2005, 2011; Fraser et al. 2012). On the con-
trary, there is evidence that the Pacific, more precisely the 
Central Chilean coasts (until 42°S), was not significantly 
affected by the Pleistocene glaciations (Harrison 2004). 
Thus, the genetic analysis data in this work mirror the geo-
logic history of southern South America and support the 
hypothesis raised, which predicts that if the glaciations iso-
lated the limpets from both oceans, there would be a strong 
phylogeographic structure.

Species with presence of pelagic larvae commonly 
exhibit low levels of global population differentiation 
owing to high dispersal potential and apparent absence of 
physical barriers that limit gene flow (e.g., Hellberg et al. 
2002; Carr et  al. 2003; Palumbi 2003). Particularly, stud-
ies conducted on South American marine species support 
this hypothesis. For instance, Ocampo et  al. (2013) did 
not observe a population structure between the Pacific–
Atlantic populations in subtidal pea crab Calyptraeotheres 
garthi. For this species, the pelagic larval duration in the 
water column could be of about 1  month (Ocampo et  al. 
2011). Similar results were reported for the subtidal limpet 
Nacella magellanica from the Atlantic coast (de Aranza-
mendi et al. 2011). In this case, the pelagic larval duration 

Fig. 5   Bayesian skyline plot 
(BSP) based on COI sequences 
of S. lessoni showing changes 
in population size through time 
above each scale. The y-axis is 
the product of effective popula-
tion size (Ne) and generation 
length (t) on a logarithmic scale. 
The heavy solid line represents 
the median estimated under the 
assumption of a per site muta-
tion rate of a: 10 % and b: 1 % 
of million years−1. The shaded 
zone indicates 95 % higher 
density
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in the water column was also of about 1 month (de Aran-
zamendi et  al. 2011). However, many recent studies have 
pointed out that the larval dispersal potential of marine spe-
cies (pelagic larvae or direct development) from intertidal 
rocky sites is not the unique predictor of population con-
nectivity level (e.g., Marko et al. 2010), and many authors 
postulate that other factors, such as oceanographic condi-
tions (e.g., salinity or temperature), discontinuous distribu-
tion of suitable substrata and organism biology, could play 
a key role in migration regulation among populations (e.g., 
Riginos and Nachman 2001; Severance and Karl 2006; 
Becker et  al. 2007; Sherman et  al. 2008). Thus, while S. 
lessoni has a short planktonic larval phase, which probably 
contributed to the isolation, it is also worth noticing that the 
distribution of suitable substrata during the LGM, which 
was greater in the Pacific basin than in the Atlantic basin, 
probably contributed the most to establishing the phylogeo-
graphic pattern.

MAD (Puerto Madryn) in Golfo Nuevo in the Magel-
lan province exhibited a higher genetic diversity index than 
other sites did since it was the only site that showed LI and 
LII lineages in sympatry. Two explanations are possible: 
(1) individuals from LI haplotypes migrate from the Pacific 
to MAD by gene flow or (2) incomplete lineage sorting fol-
lowing colonization. IMa analysis supported the first expla-
nation by accepting a model of isolation that is in agree-
ment with some “recent” migration to the Atlantic rather 
than to the Pacific. Migration between the Pacific and the 
Atlantic is unidirectional only when Madryn is considered 
in the IMA analysis. When MAD is not contemplated, the 
accepted models (data not shown) do not clearly establish 
a migration pattern. Since USH did not show individual 
LI haplotypes, the migration between the Pacific and the 
Atlantic population could have been along the Estrecho 
de Magallanes (EM) in northern Tierra del Fuego (Fig. 1). 
This possibility should be further explored in future works.

Finally, the results should be taken with caution for hav-
ing been obtained with a single mitochondrial marker. In this 
sense, the inclusion of nuclear markers would contribute to 
a greater understanding of the complex demographic history 
of this beautiful species of rocky shores from South America.

Conclusions

This work reports unequivocal evidence of Pacific–Atlantic 
geographic isolation of a coastal species, which is probably 
related to the changes in the sea level and temperature after 
the glaciation periods that affected the region throughout 
the Pleistocene. The geographic range of S. lessoni was 
mostly affected by the LGM in the Magellan and Argen-
tinean biogeographic provinces whose coasts had probably 
less rocky sites for limpet settlement.
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