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a b s t r a c t

The identifying code problem is a newly emerging search problem, challenging both from a
theoretical and a computational point of view, even for special graphs like bipartite graphs.
Hence, a typical line of attack for this problem is to determine minimum identifying codes
of special graphs or to provide bounds for their size.

In this work we study the associated polyhedra and present some general results
on their combinatorial structure. We demonstrate how the polyhedral approach can be
applied to find minimum identifying codes for special graphs, and discuss further lines
of research in order to obtain strong lower bounds stemming from linear relaxations of
the identifying code polyhedron, enhanced by suitable cutting planes to be used in a B&C
framework.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Many search problems as, e.g., fault detection in networks, fire detection in buildings, or performing group tests, can be
modeled by so-called identifying codes in graphs [18].

Consider a graph G = (V , E) with a set of nodes V = {1, . . . , |V |} and a set of edges E. Given a node i ∈ V let denote by
N[i] = {i} ∪ N(i) the closed neighborhood of i, i.e., the node i together with all its neighbors. A subset C ⊆ V is dominating
(resp. separating) if N[i] ∩ C are non-empty (resp. distinct) sets for all i ∈ V . An identifying code of G is a node subset which
is dominating and separating, see Fig. 1 for illustration.

Not every graph G admits an identifying code or is identifiable: this holds if and only if there are no true twins in G,
i.e., there is no pair of distinct nodes i, j ∈ V with N[i] = N[j] [18]. On the other hand, for every identifiable graph, its whole
node set trivially forms an identifying code.

The identifying code number γ ID(G) of a graph G is the minimum cardinality of any identifying code of G. Determining
γ ID(G) is in general NP-hard [11]. From a combinatorial point of view, the problem has been actively studied during the last
decade. Typical lines of attack are to determine minimum identifying codes of special graphs or to provide bounds for their
size. Closed formulas for the exact value of γ ID(G) have been found so far only for restricted graph families (e.g. for paths and
cycles by [10] and for stars by [17]). A linear time algorithm to determine γ ID(G) ifG is a treewas provided by [7], but formany
other graph classes where several other in general hard problems are easy to solve, it turned out that the identifying code
problem remains hard. This includes bipartite graphs [11] and two classes of chordal graphs, namely split graphs and interval
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Fig. 1. A graph, where the subset of black nodes forms (a) a dominating (but not separating) set, (b) a separating (but not dominating) set, and (c), (d)
minimum identifying codes.

graphs [13]. This motivates the study of bounds for γ ID(G). For instance, a canonical lower bound is ⌈log(n + 1)⌉ ≤ γ ID(G)
for general graphs G of order n by [18]. The trivial upper bound γ ID(G) ≤ n has been improved for connected graphs G to
γ ID(G) ≤ n − 1 by [17] (with stars being examples where this bound is tight) and for line graphs to γ ID(L(G)) ≤ 2|V (G)| − 5
by [14].

As polyhedral methods have been already proved to be successful for several NP-hard combinatorial optimization
problems, our aim is to apply such techniques to the identifying code problem. For that, a reformulation as set covering
problem is in order. For a 0/1-matrix M with n columns, the set covering polyhedron is Q ∗(M) = conv

{
x ∈ Zn

+
: Mx ≥ 1

}
and Q (M) =

{
x ∈ Rn

+
: Mx ≥ 1

}
is its linear relaxation. A cover of M is a 0/1-vector x such that Mx ≥ 1, and the covering

number τ (M) equals min 1T x, x ∈ Q ∗(M) (see Section 2 for more details).
We obtain such a constraint system Mx ≥ 1 for the identifying code problem as follows. Domination clearly requires

that any identifying code C intersects the closed neighborhood N[i] of each node i ∈ V . Separation means that no two
intersections C ∩ N[i] and C ∩ N[j] are equal or, equivalently, that C intersects each symmetric difference N[i] △ N[j] for
distinct nodes i, j ∈ V .

From now on given S ⊆ {1, . . . , n} by x(S) we mean
∑

i∈Sxi. Hence, the following constraints encode the domination and
separation requirements:

min 1T x
x(N[j]) ≥ 1 ∀j ∈ V (domination)

x(N[j] △ N[k]) ≥ 1 ∀j, k ∈ V , j ̸= k (separation)
x ∈ {0, 1}|V |.

Let MID(G) be the resulting identifying code matrix of G, i.e., the matrix having as rows the incidence vectors of the closed
neighborhoods of the nodes of G and their pairwise symmetric differences. Accordingly, we define the identifying code
polyhedron of G as

PID(G) = Q ∗(MID(G)) = conv
{
x ∈ Z|V |

+ : MID(G) x ≥ 1
}

.

It is clear from the definition that a graph is identifiable if and only if none of the symmetric differences results in a
zero-row ofMID(G), and that γ ID(G) equals the covering number τ (MID(G)) = min 1T x, x ∈ PID(G).

Our aim is to apply the polyhedral approach to find minimum identifying codes.
We first provide some definitions and results related to covering polyhedra (Section 2), then we focus on general

properties of the identifying code polyhedron PID(G) and introduce the canonical linear relaxation (Section 3). Afterwards,
we discuss several lines to apply polyhedral techniques. In Section 4, we present cases where MID(G) falls into a class of
matrices for which the set covering polyhedron is known and we, thus, immediately can obtain a complete description of
PID(G) and the exact value of γ ID(G).

Furthermore, we present cases where a complete description of PID(G) involves many and complicated facets, but where
we can identify facet-defining substructures (related to minors of MID(G)) that allow us to derive the full rank inequality
x(V ) ≥ τ (MID(G)) = γ ID(G) and, thus, the exact value of γ ID(G) (Section 5).

This demonstrates how polyhedral techniques can be applied in this context. We close with a discussion on future lines
of research, including how the here obtained results can be extended to other classes of graphs.

Some of the results in this contribution appeared without proofs in [2–4,6].

2. Properties of set covering polyhedra

We introduce definitions and basic concepts related to set covering polyhedra and provide results which are crucial for
the proofs in the subsequent sections.

2.1. Preliminaries

Given two vectors x, y ∈ Rn, we say that x ≤ y if xi ≤ yi for all i ∈ {1, . . . , n}.
LetM ∈ {0, 1}n×m. If x and y are two rows ofM and x ≤ y, we say that y is redundant.
Remind that a cover of a matrix M is a vector x ∈ {0, 1}n such that Mx ≥ 1. A cover x of M is minimal if there is no other

cover y of M such that y ≤ x. The blocker of M , denoted by b(M), is the matrix whose rows are the minimal covers of M . It
is known that b(b(M)) = M and, thus, we can refer to Q ∗(M) and Q (b(M)) as a blocking pair of polyhedra. Moreover, a is an
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extreme point of Q (b(M)) if and only if aT x ≥ 1 is a facet defining inequality of Q ∗(M) (see [15]). In the sequel we will refer
to this property as blocking duality.

Given a matrix M and j ∈ {1, . . . , n}, we introduce two matrix operations: the contraction of j, denoted by M/j, means
that column j is removed from M as well as the resulting redundant rows and hence, corresponds to setting xj = 0 in the
constraints Mx ≥ 1. The deletion of j, denoted by M \ j means that column j is removed from M as well as all the rows with
a 1 in column j and this corresponds to setting xj = 1 in the constraintsMx ≥ 1.

The contraction of a set V1 of columns fromM is the matrixM/V1 obtained by contracting all the columns j ∈ V1 and the
deletion of a set V2 of columns fromM is the matrixM \ V2 obtained by deleting columns j ∈ V2.

Then, givenM and V1, V2 ⊆ {1, . . . , n} disjoint, wewill say thatM/V1 \V2 is aminor ofM and this minor does not depend
on the order of operations or elements in {1, . . . , n}. It is clear thatM is always a minor of itself and we will say that a minor
M/V1 \ V2 is proper if V1 ∪ V2 ̸= ∅. It is not hard to see that b(M/j) = b(M) \ j and b(M \ j) = b(M)/j for every j ∈ {1, . . . , n}.

Let U ⊆ {1, . . . , n} be a subset of columns of M and U = {1, . . . , n} − U its complement. A rank inequality associated
with a minorM ′

= M \ U is∑
i∈U

xi ≥ τ (M ′). (1)

Remark 1. In [1], it is shown the following. If (1) is a facet of Q ∗(M ′), then it is also a facet of Q ∗(M). In addition, if the rank
constraint associated with some minor induces a facet-defining inequality of Q ∗(M) then this inequality is also induced by
a minor obtained by deletion only.

2.2. Set covering polyhedra associated with q-roses

Let H = (V , E) be a hypergraph with E ⊆ 2V and let M(H) denote its incidence matrix, i.e., M(H) encodes row-wise the
incidence vectors of the hyperedges in E . Given n > q ≥ 2, let Rq

n = (V , E) be the hypergraph where V = {1, . . . , n} and E
contains all q-element subsets of V . Nobili and Sassano [19] called the incidence matrix of Rq

n the complete q-rose of order n
and we denote it byM(Rq

n). In [20] it is proved the following result.

Theorem 2 ([20]). For n > q ≥ 2, the inequality
n∑

i=1

xi ≥ τ (M(Rq
n)) = n − q + 1

is a facet defining inequality for Q ∗(M(Rq
n)).

For the sake of completeness, we here present the unpublished proofs of the results in [6] describing the set covering
polyhedron of q-roses of order n. We start with the study of minors of M(Rq

n). It can be easily observed that the following
holds.

Remark 3. For n > q ≥ 2 and i ∈ {1, . . . , n}

1. M(Rq
n) \ i = M(Rq

n−1).
2. M(Rq

n) /i = M(Rq−1
n−1).

In addition, the next result proves that the blocker of a complete q-rose is a complete n − q + 1-rose.

Lemma 4. Let n > q ≥ 2, then b(M(Rq
n)) = M(Rn−q+1

n ).

Proof. From Theorem 2, τ (M(Rq
n)) = n − q + 1. Let d be a 0/1-vector with n − q + 1 entries at value one. By definition

every row ofM(Rq
n) has n− q entries at value zero. It is easy to check thatM(Rq

n)d ≥ 1; i.e., d is a minimum cover ofM(Rq
n).

It follows that M(Rn−q+1
n ) is a row submatrix of b(M(Rq

n)). Let d′ be a 0/1-vector with more than n − q + 1 entries at value
one. It is clear that there is a row r inM(Rn−q+1

n ) such that r ≤ d′. Hence d′ is not a minimal cover ofM(Rq
n). Then, the rows

inM(Rn−q+1
n ) are the only minimal covers ofM(Rq

n), i.e., b(M(Rq
n)) = M(Rn−q+1

n ). □

Theorem 5. Let n > q ≥ 2. The point x̄ is a fractional extreme point of Q (M(Rq
n)) if and only if

x̄i =

⎧⎨⎩
1

q − s
if i ̸∈ Cs,

0 if i ∈ Cs,

(2)

where s ∈ {0, . . . , q − 2} and Cs ⊆ {1, . . . , n}, with |Cs| = s.
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Proof. Firstly consider x̄ =
1
q1, then s = 0 and Cs = ∅. It is immediate that M(Rq

n)x̄ = 1. In order to prove that x̄ is an
extreme point we need to find n linearly independent constraints of the systemM(Rq

n)x ≥ 1.
Then, for every i = 1, . . . , q + 1, we select a row fi such that its jth entry equals

(fi)j =

{
0 if j = q + 2, . . . , n or j = i
1 otherwise,

and, for every i = q + 2, . . . , n, we select a row fi ofM(Rq
n) such that its jth entry equals

(fi)j =

{
1 if j = i
0 for every j ≥ q + 2 but i ̸= j.

The considered rows can be reordered in a matrixM in the following way

M =

(
J 0
A I

)
,

where J is the square matrix of order q + 1 with all its entries at value one except for its main diagonal that has all 0’s, I is
the identity matrix of order n − q − 1 and A is a (n − q − 1) × (q + 1) matrix with q − 1 ones per row.

Trivially J has rank q + 1. It follows that M has rank n and since x̄ satisfies the system Mx̄ = 1 it is an extreme point of
Q (M(Rq

n)).
It remains to prove that if s = 0 then x̄ =

1
q1 is the only fractional extreme point of Q (M(Rq

n)) with no zero entries.
Let ȳ be a fractional extreme point of Q (M(Rq

n)) with s = 0. Then the n linearly independent facet inducing inequalities
that ȳ satisfies at equality are associated with a square row submatrixM ′ ofM(Rq

n) with rank n. Observe that ifM ′x = 1 has
a unique solution then ȳ = x̄.

Now, consider s ∈ {1, . . . , q − 2} and an extreme point x̄ defined by (2). Observe that x̄ ∈ Q (M(Rq
n)) ∩

{
x : xi = 0 for all

i ∈ Cs
}
. From Remark 3.2 we have that M(Rq

n) /Cs = M(Rq−s
n−s), hence x̄ can be written as (z̄, 0) where z̄ =

1
q−s1 with

z̄ ∈ Q (M(Rq−s
n−s)). As a consequence of the case s = 0 already proved, z̄ is an extreme point of Q (M(Rq−s

n−s)) and then x̄ is an
extreme point of Q (M(Rq

n)).
Conversely, let x̄ be an extreme point of Q (M(Rq

n)) and suppose it has zero components. Let Cs = {i : x̄i = 0}. Then, the
point z̄ ∈ Rn−|Cs| such that z̄i = x̄i, i ∈ {1, . . . , n} − Cs is an extreme point of Q (M(Rq

n)/Cs). From Remark 3.2, if s = |Cs| we
have that z̄ is an extreme point of Q (M(Rq−s

n−s)) with no zero components. Hence, z̄ =
1

q−|Cs|
1. Then we have,

x̄i =

{ 1
q − s

if i ̸∈ Cs

0 if i ∈ Cs. □
(3)

As a consequence we have:

Theorem 6. Let n > q ≥ 2. An inequality
∑n

i=1aixi ≥ 1 with aj ̸∈ {0, 1} for some j ∈ {1, . . . , n} is a facet-defining inequality
for Q ∗(b(M(Rq

n))) = Q ∗(M(Rn−q+1
n )) if and only if

∑n
i=1aixi ≥ 1 can be written as x(As) ≥ q− s for some As ⊆ {1, . . . , n}where

s ∈ {0, . . . , q − 2} and |As| = n − s.

Proof. Consider a facet-defining inequality of Q ∗(M(Rn−q+1
n )) of the form

∑n
i=1aixi ≥ 1 with aj ̸∈ {0, 1} for some

j ∈ {1, . . . , n}. From Lemma 4, M(Rn−q+1
n ) = b(M(Rq

n)) and using blocking duality it holds that the vector a ∈ Rn is a
fractional extreme point of Q (M(Rq

n)). From Theorem 5 it follows that ai =
1

q−s if i ̸∈ Cs ⊆ {1, . . . , n} and ai = 0 otherwise.
Using the same results the converse is straightforward. □

3. General properties of identifying code polyhedra

In this section, we examine general properties of identifying code polyhedra concerning their dimension and studywhich
of the constraints defining the canonical linear relaxation define facets. From the set covering formulation, it is clear that the
inequalities

xi ≥ 0 for i ∈ V , (4)

x(N[i]) ≥ 1 for i ∈ V , (5)

x(N[i] △ N[j]) ≥ 1 for i, j ∈ V , j ̸= i (6)

are always valid for PID(G). The inequalities (4) are called trivial, we refer to the inequalities (5) as closed neighborhood
inequalities and to the inequalities (6) as symmetric difference inequalities.

Accordingly, the identifying code matrix is composed by

MID(G) =

(
N[G]

△[G]

)
,
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encoding row-wise the closed neighborhoods of the nodes of G (in N[G]) and their pairwise symmetric differences
(in △[G]).

A graph G is identifiable if and only if PID(G) is non-empty. As N[G] has no zero-row, G is identifiable if and only if △[G]

has no zero-row (i.e. if and only if G has no true twins [18]).
We first address the question when PID(G) is full-dimensional. It is known from Balas and Ng [8] that a polyhedron Q ∗(M)

is full-dimensional if and only if the matrixM has at least two ones per row.
For PID(G), this means that Gmust not have isolated nodes (to ensure |N[i]| ≥ 2 for all i ∈ V (G)) and that there are no two

adjacent nodes i and jwith N[i] = N[j] ∪ {k} for some node k (to ensure |N[i] △ N[j]| ≥ 2 for all distinct i, j ∈ V (G)).
Let V1(G) be the set of nodes k ∈ V (G) such that {k} = N[i] △N[j] for two different nodes i and j in V (G). We immediately

obtain:

Corollary 7. Let G be a graph without isolated nodes. Then, we have:

1. PID(G) is full-dimensional if and only if V1(G) = ∅.
2. The constraint xi ≥ 0 defines a facet of PID(G) if and only if i ̸∈ V1(G).

In addition, MID(G) may contain rows which are redundant. We, therefore, define the corresponding clutter matrix, the
identifying code clutter matrix CID(G) of a graph G, obtained by removing redundant rows from MID(G). We clearly have
PID(G) = conv{x ∈ Z|V |

+ : CID(G) x ≥ 1}. Moreover, in [8] it is proved that the only facet-defining inequalities of a set
covering polyhedron Q ∗(A) with integer coefficients and right hand side equal to 1 are those of the system Ax ≥ 1. Hence
we have:

Theorem 8. All constraints from CID(G) x ≥ 1 define facets of PID(G).

We obtain a linear relaxation, the fractional identifying code polyhedron QID(G) of G, by considering all vectors satisfying
the above inequalities:

QID(G) =

{
x ∈ R|V |

+ : CID(G) x ≥ 1
}

.

We, therefore, propose to firstly determine the identifying code clutter matrix CID(G) and then to study which further
constraints have to be added to QID(G) to obtain PID(G).

In order to discuss which rows fromMID(G) remain in CID(G) it is convenient to consider the hypergraph associated with
CID(G).

We define the identifying code hypergraph HID(G) to be the hypergraph whose incidence matrix M(HID(G)) equals CID(G).
Clearly, every hyperedge ofHID(G) corresponds to the closed neighborhood of a node in G or the symmetric difference of two
nodes in G. But, since CID(G) is a clutter matrix, there is no hyperedge in HID(G) that contains another hyperedge. Therefore
there is no hyperedge containing a node from V1(G). In addition, we observe that if i and j are neither adjacent nor have a
common neighbor, then N[i] and N[j] are disjoint, hence N[i] △ N[j] = N[i] ∪ N[j] follows and its characteristic vector is
redundant in MID(G). This implies a symmetric difference N[i] △ N[j] is a hyperedge of HID(G) only if i and j are adjacent or
have a common neighbor.

4. Identifying code polyhedra of complete p-partite graphs

In this section, we consider complete p-partite graphs and establish a connection to complete 2-roses of order n, R2
n,

already mentioned in Section 2.2.

4.1. Complete bipartite graphs

First we consider complete bipartite graphs Km,n with bipartition A = {1, . . . ,m} and B = {m+ 1, . . . ,m+ n}. We begin
with the case of stars K1,n, i.e., A = {1} and n ≥ 2. Note that K1,2 = P3 and it is easy to see that V1 = B is the uniqueminimum
identifying code.

Lemma 9. For a star K1,n with n ≥ 3, we have HID(K1,n) = K1+n and CID(K1,n) = M(R2
n+1).

Proof. For a star K1,n with n ≥ 3, we have that

• N[1] = {1} ∪ B,
• N[i] = {1, i} for all i ∈ B,
• N[1] △ N[i] = B − {i} for all i ∈ B,
• N[j] △ N[k] = {j, k} for distinct j, k ∈ B.

This shows thatV1(K1,n) = ∅. After removing those setswhose characteristic vectors are redundant, namelyN[1] = {1}∪B
and N[1] △ N[i] = B − {i} for all i ∈ B, we obtain that HID(K1,n) exactly contains all 2-element subsets of A ∪ B and, thus, it
induces a clique K1+n and CID(K1,n) = M(R2

n+1) follows. □
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Then we deduce from Theorem 6:

Corollary 10. PID(K1,n) with n ≥ 3 is described by the inequalities x(C) ≥ |C | − 1 for all nonempty subsets C ⊆ {1, . . . , n + 1}.

The above inequalities yield, for |C | = 1, the trivial inequalities xi ≥ 0 and, for |C | = 2, the closed neighborhood and
symmetric difference inequalities xi + xj ≥ 1 with i ̸= j describing QID(K1,n). On the other hand, C = V yields the full rank
facet which immediately implies γ ID(K1,n) = |V | − 1 (and provides an alternative proof for the result given in [17]).

Observe that for K2,2, it is easy to see that CID(K2,2) = M(R2
4). Therefore, Corollary 10 also applies to PID(K2,2). For general

complete bipartite graphs Km,n with m ≥ 2, n ≥ 3, we obtain:

Lemma 11. For a complete bipartite graph Km,n with m ≥ 2, n ≥ 3, we have HID(Km,n) = Km ∪ Kn and

CID(Km,n) =

(
M(R2

m) 0
0 M(R2

n)

)
.

Proof. Let k, l ∈ A. Clearly, N[k] △ N[l] = {k, l}. Hence the rows corresponding to the sets N[i] = {i} ∪ B, for i ∈ A, and
N[i]△N[j] = (A∪B)−{i, j} for i ∈ A and j ∈ B are redundant. Symmetric considerations show that only symmetric differences
N[i] △ N[j] remain where i, j come either both from A or both from B. Thus, HID(Km,n) exactly contains all 2-element subsets
of A and all 2-element subsets of B. □

Remark 12. It is known that the set of facet-defining inequalities of Q ∗(M) whenM is a block matrix of the form

M =

(
M1 0
0 M2

)
is the union of the sets of facet-defining inequalities for Q ∗(M1) and Q ∗(M2).

As a consequence of Theorem 6, Lemma 11 and the above remark we conclude the following:

Corollary 13. PID(Km,n) is given by the inequalities

1. x(C) ≥ |C | − 1 for all nonempty C ⊆ A,
2. x(C) ≥ |C | − 1 for all nonempty C ⊆ B.

Moreover, γ ID(Km,n) = |V | − 2.

4.2. Complete p-partite graphs

The results above can be further generalized for complete p-partite graphs. Consider Kn1,...,np = (U1, . . . ,Up, E) where each
Ui = {vi1, . . . , vini} induces a nonempty stable set and all edges between Ui and Uj , i ̸= j are present. We use |Ui| = ni for
i = 1, . . . , p, |V | = n and assume n1 ≤ n2 ≤ · · · ≤ np as well as p ≥ 3.

Firstly note that Kn1,...,np is not identifiable if n2 = 1 (because in this case, U1 = {v11} and U2 = {v21} holds and v11 and
v21 become true twins).

For illustration in Fig. 2, complete 3-partite and 4-partite graphs are depicted and the black dots in each of them
correspond to their minimum identifying codes.

Lemma 14. Let Kn1,n2,...,np be a complete p-partite graph with n1 = 1. Let r = |{i : ni = 2}| then

• if r = 0 we have:

CID(K1,n2,...,np ) =

⎛⎜⎝0 M(R2
n2 )

...
. . .

. . .
...

0 0 M(R2
np )

⎞⎟⎠
• if 1 ≤ r < p − 1 we have:

CID(K1,n2,...,np ) =

⎛⎜⎜⎜⎝
0 I2r 0 . . . 0
0 0 M(R2

nr+2
)

...
. . .

. . .
...

0 . . . 0 M(R2
np )

⎞⎟⎟⎟⎠
• if r = p − 1, CID(K1,n2,...,np ) = (0 I2r ).

Proof. Let G = Kn1,n2,...,np be a complete p-partite graph with n1 = 1. If r = |{i : ni = 2}| and 1 ≤ r < p − 1, we have the
following closed neighborhoods:
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Fig. 2. (a) A complete 3-partite graph with n1 = 2, n2 = 3 and n3 = 4, (b) A complete 4-partite graph with n1 = 1, n2 = n3 = 2 and n4 = 3.

• N[v11] = V ,
• N[vi1] = V − {vi2} and N[vi2] = V − {vi1} for i = 2, . . . , r + 1,
• N[vij] = (V − Ui) ∪ {vij} for i = r + 2, . . . , p

Hence,N[v11]△N[vi1] = {vi2} andN[v11]△N[vi2] = {vi1} for all i = 2, . . . , r +1 shows that U2 ∪· · ·∪Ur ⊆ V1(G). All closed
neighborhoods contain at least one node from V1(G) and, thus, all its characteristic vectors are redundant. Moreover, all the
characteristic vectors associated with the symmetric differences distinct from N[vij]△N[vik] = {vij, vik} for i = r + 2, . . . , p
are redundant:

• N[v11] △ N[vij] = Ui − {vij} for i = r + 2, . . . , p contains N[vij] △ N[vik] (by ni ≥ 3),
• N[vi1]△N[vi2] andN[vil]△N[vjk] for all i, j = 2, . . . , r+1, as well asN[vil]△N[vjk] for i = 2, . . . , r+1, j = r+2, . . . , p

intersect V1(G).

Thus, there is no hyperedge in HID(G) containing v11. The nodes from U2 ∪ · · · ∪ Ur form V1(G) (leading to an identity matrix
in CID(G)), and each Ui with i = r + 2, . . . , p induces a 2-rose of order ni in CID(G).

The proofs of the remaining cases are particular situations of the proof above (if r = 0, then the submatrix I2r disappears,
if r = p − 1, then all the submatricesM(R2

nr+i
) disappear) and the lemma follows. □

As a consequence of Theorem 6, Remark 12 and Lemma 14, we obtain:

Theorem 15. Let G = Kn1,n2,...,np be a complete p-partite graph with n1 = 1. Let r = |{i : ni = 2}| and consider the following
inequalities:

(1) x(v11) ≥ 0 and x(vij) ≥ 0 for all vij ∈ Ui, i = r + 2, . . . , p,
(2) x(vij) ≥ 1 for all vij ∈ Ui, i = 2, . . . , r + 1,
(3) x(V ′) ≥ |V ′

| − 1 for all nonempty subsets V ′
⊆ Ui for i = r + 2, . . . , p.

Then PID(G) is given by the inequalities

• (1) and (3) if r = 0,
• (1), (2) and (3) if 1 ≤ r < p − 1,
• (1) and (2) if r = p − 1.

Moreover γ ID(G) = n − p + r.

Using similar arguments as in the proof of Lemma 14, we obtain:

Lemma 16. For a complete p-partite graph Kn1,n2,...,np with ni = 2 for i = 1, . . . , r and ni ≥ 3 for i = r + 1, . . . , p, we have:

CID(Kn1,n2,...,np ) =

⎛⎜⎜⎜⎝
M(R2

2r ) 0 . . . 0
0 M(R2

nr+1
) 0

...
. . .

...

0 . . . 0 M(R2
np )

⎞⎟⎟⎟⎠ .

Theorem 6, Remark 12 and Lemma 16 imply:

Theorem 17. For a complete p-partite graph G = Kn1,n2,...,np with ni = 2 for all i = 1, . . . , r, and ni ≥ 3 for i = r + 1, . . . , p,
PID(G) is given by the inequalities

1. x(v) ≥ 0 for all v ∈ V ,
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Fig. 3. Three examples of suns (a) the 5-sunM5 , (b) the complete sun S5 and (c) its complement, the co-sun S5 .

2. x(V ′) ≥ |V ′
| − 1 for all nonempty subsets V ′

⊆ U1 ∪ · · · ∪ Ur ,
3. x(V ′) ≥ |V ′

| − 1 for all nonempty subsets V ′
⊆ Ui for i = r + 1, . . . , p.

Moreover γ ID(G) = n − p + r − 1.

Remark 18. Note that any 2-roseminor in CID(G) corresponds to a clique inHID(G). Lemma 9 shows that the identifying code
hypergraph of stars is a clique, and Corollary 10 implies that cliques form facet-defining substructures. In particular, every
set of pairwise false twins in a graph gives rise to a clique in HID(G) since for non-adjacent nodes i and j with N(i) = N(j),
we have N[i] △ N[j] = {i, j} (see complete multi-partite graphs for examples). Hence, each set V ′ of pairwise false twins in
a graph G leads to a facet x(V ′) ≥ |V ′

| − 1 of PID(G).

5. Identifying code polyhedra of suns

In this section, we discuss hypercycles as further relevant substructures in HID(G) that can lead to valid or facet-defining
inequalities of PID(G).

Let H = (V , E) be a hypergraph with E ⊆ 2V . A hypercycle C = (V ′, E ′) of length m is a hypergraph defined by an
alternating sequence i1E1i2 . . . imEmi1 ofm nodes andm hyperedges with {ij, ij+1} ∈ Ei, im+1 = i1. It is an induced hypergraph
ofH ifM(C) is a deletionminor ofM(H), i.e., if it is obtained by removing the columns outside V ′ and the rowswith a 1-entry
outside V ′. The result in Remark 1 can be restated as follows:

Lemma 19. Let H′
= (V ′, E ′) be an induced hypergraph of H = (V , E). The inequality x(V ′) ≥ τ (M(H′)) is valid for Q ∗(M(H)).

Moreover if it is a facet of Q ∗(M(H′)) then it is also a facet of Q ∗(M(H)).

In the sequel, we consider three families of suns and study hypercycles in their identifying code hypergraphs in order to
determine minimum identifying codes.

It will turn out that the corresponding identifying code clutters are related to different circulant matrices. A circulant
matrix is a square matrix where each row vector is shifted one element to the right relative to the preceding row.We denote
by Ck

n the circulantmatrix in {0, 1}n×n having as first row the vector starting with k 1-entries and having 0-entries otherwise.
In contrary to the case of q-roses, the covering polyhedron of general circulant matrices has not yet been described, except
for some special cases (see [1] and [12] for further references).

A sun is a graph G = (C ∪ S, E) whose node set can be partitioned into S and C , where S = {s1, . . . , sn} is a stable set and
C = {c1, . . . , cn} is a (not necessarily chordless) cycle.

Here, we focus our consideration on three cases:

• n-sunsMn where C induces a hole and si is adjacent to exactly ci and ci+1 for all 1 ≤ i ≤ n,
• complete suns Sn where C induces a clique and si is adjacent to exactly ci and ci+1 for all 1 ≤ i ≤ n and
• co-suns Sn (the complements of complete suns Sn)

(indices are taken modulo n), see Fig. 3 for examples. By definition, we immediately see that all such suns with n ≥ 3 are
identifiable.

5.1. n-suns

We start our considerations with n-suns. Note that γID(M3) = 3 is easy to see.

Theorem 20. For an n-sun Mn = (C ∪ S, E) with n ≥ 4, we have

CID(Mn) =

(
I I
Cw I

)
where Cw is the circulant matrix whose first row is (0, 1, 0, . . . , 0). Moreover, HID(Mn) = C2n and CID(Mn) = C2

2n.
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Proof. The neighborhood matrix ofMn can be written as

N[Mn] =

(
C2
n I

C3
n C2

n

)
because we have that N[si] = {si, ci, ci+1} and N[ci] = {ci−1, ci, ci+1, si−1, si}. Clearly, N[ci] contains N[si] for all i ≤ n. To find
△[Mn], we consider the following cases:

• WehaveN[si]△N[ci]={si, ci, ci+1}△{ci−1, ci, ci+1, si−1, si}={ci−1, si−1} andN[si−1]△N[ci] = {ci+1, si}, which is clearly
contained in N[u] for every u ∈ Mn.

• Consider ci, cj ∈ C . If ci and cj are adjacent nodes, say, if j = i + 1 holds, then since n ≥ 4, N[ci] △ N[ci+1] =

{ci−1, ci, ci+1, si−1, si} △ {ci, ci+1, ci+2, si, si+1} = {ci−1, ci+2, si−1, si+1} follows. As N[si] △ N[ci] = {ci−1, si−1} ⊆

N[ci] △ N[ci+1] the characteristic vector of N[ci] △ N[ci+1] is redundant. If ci and cj are not adjacent nodes then
N[ci] △ N[cj] is redundant since it contains {si, ci} = N[si+1] △ N[ci+1].

• Let si, sj ∈ S. If si and sj have a common neighbor, say, ci+1 and j = i + 1 holds, then N[si] △ N[si+1] = {si, ci, ci+1} △

{si+1, ci+1, ci+2} = {si, si+1, ci, ci+2}. Due to N[si+1] △ N[ci+1] = {si, ci} ⊆ N[si] △ N[si+1], the characteristic vector of
N[si]△N[si+1] is redundant. If si and sj have no common neighbor then N[si]△N[sj] is redundant since N[si] and N[sj]
are disjoint sets.

Since all rows of CID(Mn) have exactly two 1-entries, it is clear that HID(Mn) is a graph. It is a cycle since N[si] △ N[ci] =

{ci−1, si−1} and N[si−2] △ N[ci−1] = {ci, si−1} share the node si−1, and N[si−2] △ N[ci−1] and N[si+1] △ N[ci+1] =

{si, ci} share node ci. Accordingly, its incidence matrix CID(Mn) can be re-arranged as C2
2n (by ordering the columns as

c1, s1, c2, s2, . . . , cn, sn and the rows as N[c2]△N[s2],N[c1]△N[sn],N[c3]△N[s3],N[c2]△N[s1], . . . ,N[c1]△N[s1],N[cn]△
N[sn−1]). □

Hence, HID(Mn) is an even (hyper)cycle and τ (Mn) = n clearly holds. In addition, C2
2n is one of the few circulant matrices

where Q ∗(C2
2n) is known [12], and we conclude:

Corollary 21. For Mn = (C ∪ S, E) with n ≥ 4, PID(Mn) coincides with its linear relaxation Q (CID(Mn)) and γID(Mn) = n.

5.2. Complete suns

Let us now consider a complete sun Sn = (C ∪ S, E) with n ≥ 4. In contrary to n-suns, the identifying code clutters
of complete suns have a much more complex structure [5], involving different combinations of circulant matrices, where
some submatrices occur for all n ≥ 4, others not (depending on the parity of n and the size of the graph). Accordingly,
the description of PID(Sn) requires many and complex facets. However, an analysis of CID(Sn) shows that S is an identifying
code and γ ID(Sn) ≤ |S| = n. In [5] we conjectured that this bound is tight. In order to prove the conjecture, we rely on the
following result:

Lemma22. Let Sn = (C∪S, E) be a complete sunwith n ≥ 4. The hyperedges N[si],N[si+1], and N[si]△N[si+1] form a hypercycle
in HID(Sn) that induces a rank facet x({ci, ci+1, ci+2, si, si+1}) ≥ 2 of PID(Sn).

Proof. Consider the following hyperedges from HID(Sn): the neighborhoods N[si] = {ci, ci+1, si}, N[si+1] = {ci+1, ci+2, si+1}

and their symmetric difference N[si] △ N[si+1] = {ci, ci+2, si, si+1}.
They form, for all n ≥ 4, a hypercycle of length 3 with support {ci, ci+1, ci+2, si, si+1}. It is clear that this hypercycle is

obtained by deletion of the columns in V − {ci, ci+1, ci+2, si, si+1} in CID(Sn). As x({ci, ci+1, ci+2, si, si+1}) ≥ 2 for n ≥ 4 is a
facet of this deletion minor, it is also a facet of PID(Sn) by Lemma 19. □

Theorem23. For a complete sun Sn = (C∪S, E)with n ≥ 4, the stable set S is aminimum identifying code and, thus, γ ID(Sn) = n.

Proof. Let us firstly observe that the stable set S is an identifying code in Sn: indeed, N[si]∩ S = {si} and N[ci]∩ S = {si−1, si}
holds for i = 1, . . . , n, thus each node is dominated and separated.

In order to show that S is a minimum identifying code in Sn, we consider an arbitrary identifying code I in Sn with I ̸= S
and show that |I| ≥ n.

Observe that I contains nodes from both C and S: we can neither have I ⊂ S (otherwise I does not dominate any node in
S − I) nor we can have I ⊆ C (otherwise I does not separate any two nodes in C).

In order to show |I| ≥ n, we provide arguments implying |I ∩ C | ≥ |S − I|. Note that S − I cannot contain 3 consecutive
nodes si−1, si, si+1 (otherwise I ∩ N[ci] = I ∩ C = I ∩ N[ci+1] holds). Hence, S − I can be partitioned into blocks containing
either a single node or two consecutive nodes from S, where no two blocks are consecutive. Suppose that S − I consists of p
blocks Aj of cardinality 1 and q blocks Bk with two consecutive nodes each and consequently p + 2q = |S − I|.

For each block Aj = {si}, it clearly follows |I ∩ {ci+1, ci}| ≥ 1 from the inequality x({si, ci+1, ci}) ≥ 1 associated to the
hyperedge N[si] in HID(Sn).
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For each block Bk = {si, si+1}, we have by Lemma 22 that N[si],N[si+1], and N[si] △ N[si+1] form a hypercycle with rank
facet x({ci, ci+1, ci+2, si, si+1}) ≥ 2, which clearly implies |I ∩ {ci, ci+1, ci+2}| ≥ 2.

In addition, if si and sj belong to different blocks of S − I , then the sets of their neighbors in C are disjoint. This finally
shows |I ∩ C | ≥ p + 2q and implies |I| ≥ n. □

5.3. Co-suns

Finally, let us consider co-suns Sn = (C ∪ S, E), where C is a clique and S is a stable set. Note that S3 = M3 and S4 = S4
holds. Also the identifying code clutters of co-suns have a complex structure [3], involving different combinations of circulant
matrices, where some submatrices occur for all n ≥ 4, others not (depending on the parity of n and the size of the graph).
Accordingly, the description of PID(Sn) requires many and complex facets, too. An analysis of CID(Sn) shows that S is an
identifying code and γ ID(Sn) ≤ |S| = n holds. However, this bound is tight only for n = 5, 6. Hence, in the sequel, we
will consider the cases when n ≥ 7.

Remark 24. From the definition of Sn, we obtain the following hyperedges of HID(Sn):

(1) N[si] = (C − {ci, ci−1}) ∪ {si},
(2) N[si] △ N[sj] = {ci−1, ci, cj−1, cj, si, sj}, in particular N[si] △ N[si+1] = {ci−1, ci+1, si, si+1},
(3) N[ci] △ N[cj] = {si, si+1, sj, sj+1}, in particular N[ci] △ N[ci+1] = {si, si+2}.

Theorem 25. The identifying code number of Sn with n ≥ 7 is n − 1.

Proof. Let us show that I∗ = {c1, c3, s2, s3} ∪
⋃n−1

i=5 si is an identifying code. Indeed, all nodes in C ∪ S are separated and
dominated since we have that:

N[ci] ∩ I∗ = I∗ − {si+1} with i = 1 or i = 4.
N[ci] ∩ I∗ = I∗ − {si} with i = 3 or i = n − 1.
N[ci] ∩ I∗ = I∗ − {si, si+1} with i = 2 or i ∈ {5, . . . , n − 2}.
N[cn] ∩ I∗ = I∗.
N[s1] ∩ I∗ = {c3}.
N[s2] ∩ I∗ = {s2, c3}.
N[s3] ∩ I∗ = {s3, c1}.
N[s4] ∩ I∗ = {c1}.
N[si] ∩ I∗ = {si, c1, c3} with i = 5, 6, . . . , n − 1.
N[sn] ∩ I∗ = {c1, c3}.
Also we can observe that |I∗| = n− 1, hence γ ID(Sn) ≤ n− 1 follows. Let I be an identifying code of Sn, we will show that

|I| ≥ n − 1.

Claim 1. There cannot be 3 consecutive nodes in S − I . Suppose that si ̸∈ I holds. Then we have by Remark 24(3) that
{si−2, si+2} ⊆ I and {si−1, si+1} ∩ I ̸= ∅. ⋄

Claim 2. There is at most one pair of consecutive nodes in S − I . Suppose that {si, si+1, sj, sj+1} ⊂ S − I with |j − i − 1| ≥ 2.
Then, according to Remark 24(3) I cannot be an identifying code. ⋄

As a consequence of Claims 1 and 2, the set S − I can be partitioned as S − I = B ∪ A1 ∪ · · · ∪ At with t < n where B
is a block of either none or 2 consecutive nodes of S and each Ai is a block having exactly one node of S. We next study the
possible gaps between two consecutive blocks Aj and Aj+1.

Claim 3. Between Aj and Aj+1, there are at least two nodes from I ∩ S, for all 1 ≤ j < t. Suppose to the contrary that we
have Aj = {si}, si+1 ∈ I ∩ S and Aj+1 = {si+2} for some j with 1 ≤ j < t. By Remark 24(3), the symmetric difference
N[ci] △ N[ci+1] = {si, si+2} is a hyperedge of HID(Sn) and thus |{si, si+2} ∩ I| ≥ 1 must hold, a contradiction to the assumption
that Aj ∪ Aj+1 = {si, si+2} ⊆ S − I . ⋄

Thus, for the set SA = A1 ∪ · · · ∪ At we have that if Aj = {si} then Aj+1 = {sk} with |i − k| ≥ 3 for all 1 ≤ j < t (indices for
si are taken modulo n).

Claim 4. From |SA| = t we obtain |I ∩ C | ≥ t − 1. Let SA = {z1, z2, . . . , zt}. W.l.o.g. assume that z1 = s1 and zj = sm for some
m ≥ 4. According to Remark 24(2) there isw1 ∈ {c1, cm−1, cm, cn}∩ I that separates z1 from zj. If w1 ∈ {c1, cn} thenw1 separates
z1 from zi for all i ∈ {2, . . . , t} (an analogous conclusion follows if w1 ∈ {cm, cm−1}). Since w1 ∈ N[zi] for all i ∈ {2, . . . , t} then
there is another node in I that separates zi from zj for i, j ̸= 1. Let us call w2 ∈ (C − {w1}) ∩ I the node that separates z2 from zi
for all i ∈ {3, . . . , t}. Applying this reasoning it is clear that I has t − 1 different nodes in C that separate the nodes in SA. Hence
|I ∩ C | ≥ t − 1. ⋄
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If B = ∅ then |I ∩ S| = n − t . From Claim 4 it holds that |I ∩ C | ≥ t − 1 and then |I| ≥ n − 1.
It is left to treat the case if B ̸= ∅ and thus |S ∩ I| = n − t − 2 holds. W.l.o.g. assume that B = {s1, s2}. By

Remark 24(2), {c2, cn} ∩ I ̸= ∅. Let us assume that c2 ∈ I (the same argument can be applied to cn ∈ I). As c2 ∈ N[x]
for every x ∈ {s1} ∪ SA then I has other nodes in C that separate them. Using Claim 4 with S ′

A = {s1} ∪ SA we obtain that
|I| = |I ∩ S| + |I ∩ (C − {c2})| + 1 ≥ n − t − 2 + t + 1 = n − 1. □

6. Concluding remarks

The identifying code problem is hard in general and challenging both from a theoretical and a computational point of
view, even for special graphs like bipartite graphs [11] and split graphs [13]. Hence, a typical line of attack is to determine
minimum identifying codes of special graphs (as paths [9,16], stars [17] and cycles [9,16]), or to provide lower and upper
bounds [14,17,18].

In this paper, we demonstrated how polyhedral techniques can help to find identifying codes of minimum size. For that,
we rely on a reformulation of the identifying code problem in terms of a set covering problem in a suitable hypergraphHID(G)
and study the identifying code polyhedron PID(G) = Q ∗(CID(G)) as covering polyhedron associated with its incidence matrix
CID(G).

We provided some general properties of the identifying code polyhedron PID(G) and its canonical linear relaxation
(Section 3). Afterwards, we discussed several lines to apply polyhedral techniques to the identifying code problem. In any
case, the first step is to determine HID(G) and its incidence matrix CID(G).

If CID(G) falls into a class of matrices M for which the set covering polyhedron Q ∗(M) is already known, then we
immediately obtain a complete description of PID(G) and can deduce the exact value of γ ID(G). This turned out to be the
case for stars K1,n (where CID(K1,n) equals a 2-rose R2

n+1) and for general complete multipartite graphs G (where CID(G) is
composed by blocks of 2-roses). Moreover, the identifying code clutter of n-sunsMn turned out to equal the circulant matrix
C2
2n which implied PID(Mn) = QID(Mn). In all these cases, we obtained a complete description of PID(G) and a closed formula

for the exact value of γ ID(G).
A matrixM is ideal if Q ∗(M) = Q (M). Hence, we can conclude from our result on n-suns:

Corollary 26. The identifying code clutters of n-suns Mn are ideal for all n ≥ 3.

A way to evaluate how far a nonideal matrix is from being ideal consists in classifying the inequalities that have to be
added to Q (M) in order to obtain Q ∗(M). In [1], a matrixM is called rank-ideal if Q ∗(M) is described by rank constraints only.
Thus, the results in Section 4 imply:

Corollary 27. The identifying code clutters of complete multipartite graphs G are rank-ideal since rank constraints associated
with cliques in HID(G) suffice to describe PID(G).

In general, we cannot expect identifying code clutters to be (rank-)ideal. Complete suns Sn and their complements are
examples of graphs G where CID(G) is far from being rank-ideal. However, an analysis of CID(G) implies γ ID(Sn) ≤ n and
raised a conjecture in [5] that this bound is tight. Here, we were able to verify this conjecture by combining polyhedral and
combinatorial arguments. Finally, we provided a purely combinatorial proof for γ ID(Sn) ≤ n − 1 for all complements of
complete suns with n ≥ 7.

Note that the arguments and techniques applied to complete suns are rather general and have the potential to be applied
to all graphs G, even if their identifying code clutters are matrices with a complex structure and a complete description of
PID(G) involves many and complicated facets. In all such cases, an analysis of CID(G) can provide, on the one hand, upper
bounds for γ ID(G) and, on the other hand, minors of CID(G) (e.g. associated with cliques or odd hypercycles in HID(G)) whose
rank constraints strengthen the linear relaxation QID(G) and can be used to obtain lower bounds for γ ID(G).

Future lines of our research include to identify more facet-defining substructures in HID(G) (related to minors of CID(G))
that allow us to strengthen the linear relaxationQID(G). Thereby, our goal is to obtain either the identifying code ofminimum
size or strong lower bounds stemming from linear relaxations of the identifying code polyhedron, enhanced by suitable
cutting planes. Recall that facets associated with deletion minors of CID(G) remain facets in PID(G), so according facets
identified for special graphs are relevant for every graph having such subgraphs.
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