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Abstract: For most cancers, the treatment of choice is still chemotherapy despite its se-
vere adverse effects, systemic toxicity and limited efficacy due to the development of 
multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated 
with a decrease in drug concentration inside cancer cells, frequently due to the overex-
pression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug 
resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein 
(BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this 
review is to compile information about transcriptional and post-transcriptional regulation 
of ABC transporters and discuss their role in mediating MDR in cancer cells.  
This review also focuses on drug resistance by ABC efflux transporters in cancer cells, 
particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some 
aspects of the chemotherapy failure and future directions to overcome this problem are 
also discussed.  
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1. INTRODUCTION 

Multidrug resistance (MDR) is a phenotype that is 
associated with tumor cells gaining a cross-resistance 
to a large range of drugs with different cellular targets 
and structures and is characterized by diminished intra-
cellular drug accumulation leading to treatment failure 
[1, 2]. Either intrinsic or acquired resistance can pro-
duce chemotherapeutic failure and malignant tumor 
progression. Intrinsic resistance occurs when some in-
herent characteristic of the cancer cells, already present 
at diagnosis, prevents the drugs from working from the 
beginning of therapy. Acquired drug resistance can be 
developed during treatment of tumors that were  
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initially sensitive and can be caused by mutations aris-
ing during therapy, as well as through various other 
adaptive responses, such as increased expression of the 
therapeutic target and activation of alternative compen-
satory signaling pathways [3]. MDR arises via many 
unrelated mechanisms, such as increased drug efflux, 
decreased drug influx, intracellular drug sequestration, 
drug inactivation or lack of activation, specific drug 
metabolism or detoxification, alterations in drug target 
susceptibility, activation of survival responses, evasion 
of apoptosis, improved DNA repair, epigenetic changes 
and the influence of the local tumor microenvironment, 
tumor molecular and genetic heterogeneity, among 
others [3-5]. Among these, one of the most important 
and best characterized mechanisms of MDR is the 
overexpression of ATP binding cassette (ABC) efflux 
transporters in cancer cells, which pump out che-
motherapeutic drugs, decreasing their intracellular con-
centrations [6, 7] (Fig. 1). The involvement of ABC 
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Fig. (1). Comparison between a drug sensitive cell (A) and a multidrug resistant cell (B). Overexpression of ABC transporters 
increases drug efflux diminishing intracellular drug concentration. 
 
transporters including P-glycoprotein (P-gp/MDR1/ 
ABCB1), multidrug resistance-associated proteins 
(MRPs/ABCCs), and breast cancer resistance protein 
(BCRP/ABCG2) in cancer resistance is a very interest-
ing topic to study since overcoming their action could 
result in the restoration of chemosensitivity. 

The expression of ABC transporters is highly regu-
lated, particularly at the transcriptional level, suggest-
ing a potential target for modulation of the MDR phe-
notype. To broaden the understanding of the regulating 
mechanisms of ABC transporter expression, the op-
tions that are being developed nowadays to revert drug 
resistance will be detailed. 

2. REGULATION OF ABC TRANSPORTER EX-
PRESSION 

ABC transporter expression is regulated at different 
levels. In this section the transcriptional and post-
transcriptional mechanisms of regulation of P-gp, 
MRPs and BCRP are described in detail. All the infor-
mation is also synthetized in Table 1.  

2.1. Regulation of P-gp/MDR1/ABCB1 Expression 

Cloning of the promoter of human MDR1 gene en-
coding P-gp (GenBank Nr: M29423) was followed by 
the study of the regulation of the expression of this 
gene [8]. P-gp expression, as well as the expression of 
other transporter proteins, is dynamically regulated at 
the transcriptional level by nuclear receptors that act as 
xenosensors, among others. Particularly, the pregnane 
X receptor (PXR, NR1I2) and the constitutive andro-
stane receptor (CAR, NR1I3) [9, 10], which exhibit 
overlapping ligand specificity, constitute a network of 
regulatory effectors modulating drug metabolism and 
transport. Nuclear receptor activation has been charac-
terized both by reporter gene and ligand competition 
assays and is correlated with the induction of the me-
tabolism through cytochrome P450 [11, 12]. The anti-
biotic rifampicin, and other therapeutic agents, has 
been identified as a potent and specific agonist of hu-
man PXR [13-15]. PXR activation by rifampicin results 
in an increase of P-gp expression. Also, the antipara-
sitic benznidazole and the diuretic spironolactone are 
able to induce P-gp through the activation of PXR [16,  
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Table 1.  Mechanism of ABC transporter regulation. 

ABC Transporter Mechanism of Regulation References 

PXR, CAR [9-17] 

Epigenetic modification in MDR1 locus [18] 

p53, Ras, c-Raf, c-Raf kinase [19-25] 

NF-KB, AP-1 [26] 

Transcriptional 

miR-27a, miR-138 [34] 

mRNA stabilization [32, 33, 25] 

P-gp/MDR1/ABCB1 

Post-transcriptional 
miR-223, miR-145 [27, 29] 

AP-1, Sp1, HNF-1, HNF-3β, C/EBPα, C/EBPβ [36, 37] 

PXR, CAR, AhR, FXR, GR (MRP2) [38-41] 

Nrf2 (MRP1, MRP2, MRP3, MRP4) [42-45] 

PPAR-α (MRP1) [46] 

Transcriptional 

ER-α, PXR(MRP3) [50-52] 

mRNA stabilization [54,55 

miRNAs [56, 60] 

MRPs/ABCCs 

Post-transcriptional 

Alternative open reading frames (MRP2) [61] 

PRB, AhR, ER-α, HIF-1α [63-69] 

Nrf2, NF-KB [63] Transcriptional 

Methylation of promoter region [74, 75] 
BCRP/ABCG2 

Post-transcriptional miR-519c, miR-520h, miR-328, miR-181a, miR-487a [77-81] 

 
17]. In addition, chemotherapeutic drugs are capable of 
inducing specific epigenetic modifications in the 
MDR1 locus, concomitant with P-gp upregulation 
through transcriptional activation and also with partici-
pation of a potential post-transcriptional component. It 
has been established that the mechanisms are not mutu-
ally exclusive and are dependent on MDR1 promoter 
methylation state [18]. MDR1 promoter activity could 
also be modulated by the tumor suppressor protein p53 
[19-22]. While wild-type p53 represses MDR1 pro-
moter activity, mutant forms of p53 enhance its activity. 
The expression of MDR1 is also regulated by oncogenes 
such as Ras, c-Raf, and c-Raf kinase [23–25]. These pro-
teins are capable of activating the MDR1 promoter.  
Nuclear factor NF-κB subunit (NF-κB) and AP-1 tran-
scription factors directly bind to the promoter region of 
the MDR1 gene. The induction or repression produced 
by these transcription factors depends on the cell line 
and the presence of co-regulators [26]. P-gp expression 
can also be regulated at the post-transcriptional level. 
MicroRNAs (miRNAs) are a class of short, noncoding 
RNA molecules that can regulate gene expression. 
Through bioinformatics analysis, several miRNAs that 

can bind to the 3’UTR of MDR1 mRNA were found 
[27]. Besides, Bruhn et al. [28] recently demonstrated 
that shortening of the MDR1 3’-UTR causes loss of 
miRNA-dependent translational control leading to ele-
vated MDR1 protein levels. Some miRNA such as 
miR-223 and miR-145 negatively regulates the expres-
sion of P-gp by direct action on the 3’-UTR of MDR1 
mRNA [27, 29]. However, different miRNAs can regu-
late P-gp expression indirectly. For example, miR-27a 
and miR-138 modulate P-gp expression by inhibiting 
Frizzled 7/β-catenin pathway in HCC cells or NF-
κB/p65 in leukemia cells, respectively [30, 31]. In ad-
dition, several drugs regulate P-gp expression by stabi-
lizing MDR1 mRNA such as ivermectin in a murine 
hepatocyte cell line [32] or cytotoxic drugs like 
doxorubicin, cytarabine, colchicine, colcemid, or vin-
blastine, in leukemia cells, in which also a translational 
block was overcome such that the stabilized mRNA 
was translated and P-gp expressed [33]. It was also de-
scribed a transcriptional regulation of P-gp by miRNAs 
[34]. Both miR-27a and miR-138 can also regulate P-
gp expression transcriptionally [34]. It was proposed 
that MDR1 transcriptional regulation by miR-27a and 
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miR-138 may occur through two possible scenarios: (1) 
direct miRNA hybridization with an active promoter 
and (2) triplex structure formation (double-stranded 
DNA/RNA) stabilized by argonaute 2. Finally, P-gp 
mRNA endoribonuclease attack can be prevented by 
the binding of an oncoprotein expressed in cancerous 
liver cells called CRD-BP, also known as insulin 
growth factor 2 binding protein 1 (IGF2BP1), to MDR1 
mRNA [35]. 

2.2. Regulation of MRPs/ABCCs Expression 

Regulation of MRPs expression takes place at dif-
ferent levels. The most common phenomenon is tran-
scriptional regulation and involves changes in the rate 
of mRNA synthesis. Detailed studies of transcription 
factor binding sites are only available for human MRP2 
promoter, although they do not cover the whole regula-
tory sequences [36, 37]. Nevertheless, the bioinfor-
matic analysis of promoters up to -2650 bp upstream of 
the transcription initiation site revealed binding sites 
for transcription factors such as AP-1, SP-1, HNF-1, 
HNF-3β, C/EBP-α and C/EBP-β. In addition, nuclear 
receptors are key regulators of MRP2 expression by 
endo- and xenobiotics. As described for P-gp regula-
tion, PXR has been shown to mediate MRP2 modula-
tion by several drugs and other xenobiotics [38, 39]. In 
addition, CAR, the aromatic hydrocarbon receptor 
(AhR) and the farnesoid X receptor (FXR, NR1H4) 
also mediate MRP2 transcriptional regulation, particu-
larly by drugs like phenobarbital, aromatic xenobiotics 
and bile salts, respectively [40, 41]. Moreover, the 
MRP2 promoter harbors glucocorticoid response ele-
ments (GRE) and antioxidant response elements (ARE) 
mediating the effect of glucocorticoids via the gluco-
corticoid receptor and pro-oxidant compounds via the 
nuclear factor erythroid 2-related factor 2 (Nrf2) on the 
transporter expression, respectively [37–42]. MRP1, 
MRP2 and MRP4 were shown to be positively regu-
lated by Nrf2 [43–45], whereas MRP1 is negatively 
regulated by the peroxisome proliferator-activated re-
ceptor α (PPARα, NR1C1) in the small intestine [46]. 
Rifampicin, a strong PXR agonist, failed to induced 
MRP1 [47, 48], suggesting a minor role of PXR in 
MRP1 regulation, in clear opposition to the situation 
described for P-gp and MRP2. 

The comparison of MRP2 and MRP3 promoter ac-
tivities using reporter systems showed that the activity 
of MRP3 promoter was only 4% of that of MRP2 pro-
moter [37], in accordance with the low basal MRP3 
expression in human liver [49]. PXR was described as 
a modulator of basal MRP3 expression [50]. Neverthe-

less, treatment with PXR agonists not always leads to a 
further induction [39]. Estrogen receptor α (ER-α, 
NR3A1) mediates the induction of hepatic MRP3 by 
ethynylestradiol both in rat [51] and human models 
[52], albeit the MRP3 promoter does not bear classical 
estrogen response elements. It was found that MRP3 
regulation takes place through a non-canonical way 
involving the transcription factor AP-1 [51, 52]. Dif-
ferent studies assessing the regulation of other MRPs 
by endo- and xenobiotics have been performed. Never-
theless, little information about the nuclear receptors 
and/or transcription factors mediating these processes 
is available. 

Post-transcriptional regulation of MRPs is a less 
frequent mechanism. In this regard, mRNA stabiliza-
tion leads to augmented mRNA levels without an in-
crease in the transcription rate. This phenomenon was 
already described for P-gp [32, 33, 53]. However, it is 
still unknown whether it also contributes to MRPs 
regulation. Additionally, MRPs can undergo transla-
tional regulation in which a change in the protein ex-
pression takes place without a concomitant change in 
the mRNA synthesis rate, as described in ethynylestra-
diol- and pregnancy-associated cholestasis [54, 55]. 
Moreover, miRNAs have also been shown to modulate 
MRP1 [56], MRP2 [57], MRP3 [58], MRP4 [59] and 
MRP5 [60] translation. Thus, any chemical affecting 
the expression of regulatory miRNAs could modulate 
the expression of these transporters. For MRP2, it was 
also described as a translational regulation due to the 
use of alternative open reading frames [61].  

2.3. Regulation of BCRP/ABCG2 Expression 

The regulation of BCRP can occur at transcrip-
tional, post-transcriptional or post-translational level. 
An epigenetic regulation of this transporter was simi-
larly reported. BCRP human promoter was initially 
characterized in 2001 by Bailey-Dell et al. [62]. It 
bears several regulatory elements including the estro-
gen response element (ERE), the progesterone response 
element (PRE), the hypoxia response element (HRE), 
ARE, the aryl hydrocarbon response element (AhRE) 
and the active NF-kB response element [63]. Thus, 
ligands capable of activating nuclear receptors and 
transcription factors which interact with the above 
mentioned regulatory elements can modulate BCRP 
expression. In this regard, regulation of BCRP by pro-
gesterone via progesterone receptor B (PRB) [64] and 
by romidepsin through the AhR has been already de-
scribed [65]. BCRP is also regulated by hypoxic condi-
tions through the hypoxia-inducible factor 1α (HIF-1α) 
[66]. Several authors demonstrated that estradiol can 
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modulate BCRP expression via ER-α. In this regard, 
some studies showed upregulation of the BCRP gene 
and protein by estradiol [67–69], while other studies 
showed downregulation of BCRP by estradiol possibly 
through a post-transcriptional regulation [70–72]. Such 
controversial data could result from cell- or organ spe-
cific regulation or the experimental systems used in 
each case; also the interaction between hormones and 
other regulatory factors could be the reason of the con-
tradictory data [73]. 

In addition to transcriptional regulation, increased 
BCRP levels in drug resistant cell lines were reported 
to be associated with hypomethylation or unmethyla-
tion of a particular site in the promoter region [74, 75]. 
Also miRNAs can downregulate BCRP; they bind to 
the 3′ UTR of the BCRP mRNA and exert a negative 
modulation of transcript stability and protein transla-
tion [76]. There have been identified several miRNAs 
that modulate BCRP by interacting directly with BCRP 
3´UTR and determine the sensitivity of cancer cells to 
chemotherapeutic drugs, including miR-519c, 
miR520h, miR328 [77-79], miR-181a [80] and miR-
487a [81]. 

3. HEPATOCELLULAR CARCINOMA 

The primary liver cancer originates in the liver and 
its occurrence is increasing rapidly every year. World-
wide, liver cancer is the sixth most common cancer 
(782,000 new cases in 2012) and the second cause of 
cancer-related death (745,000 cases in 2012) [82]. 
Among genders, it is the fifth most common cancer in 
men (554,000 new cases; 521,000 deaths) and the ninth 
in women (228,000 new cases; 224,000 deaths). The 
ratio of mortality to incidence for liver cancer is 0.95, 
which means that this cancer has a very poor prognosis 
[82]. 

Among the various types of primary liver cancers 
like hepatocellular carcinoma (HCC), cholangiocarci-
noma, angiosarcoma, hepatoblastoma, fibrosarcoma, 
leiomyosarcoma and rhabdomyosarcoma, HCC is the 
most common form, being responsible for 80-90% of 
the primary malignant liver tumors in adults. HCC, also 
called malignant hepatoma, arises from the liver paren-
chymal cells (hepatocytes) [83]. 

HCC is one of the few cancers with well-defined 
major risk factors, which generally transform healthy 
liver to HCC liver through fibrosis and cirrhosis. Most 
common risk factors include chronic hepatitis B and C 
viral infection (HBV and HCV), alcoholic liver dis-
eases caused by excessive alcohol intake, type 2 diabe-
tes, obesity, metabolic disorders and non-alcoholic 

steatohepatitis (NASH) as part of non-alcoholic fatty 
liver diseases (NAFLD) and aflatoxin B1-contaminated 
food intake [84]. Metabolic and genetic diseases asso-
ciated with HCC include hemochromatosis, Wilson’s 
disease, α-1 antitrypsin disease, tyrosinemia, glycogen-
storage disease types I and II, and porphyrias. Other 
risk factors may include cigarette smoking and expo-
sure to oral contraceptives. HCC incidence varies ac-
cording to age, ethnicity, gender (HCC occurs more 
often in males, with a ratio of 2:1-4:1) and geographi-
cal distribution [84].  

There are about 30 publically available HCC cell 
lines that have played important roles in cancer studies 
for both dissecting molecular mechanisms and develop-
ing new drugs. These cell lines represent primary 
HCCs with high fidelity, thus laying the rationale for 
their testing as preclinical models. The most commonly 
HCC cell lines used include BEL-7402, C3A, Hep3B, 
HepG2, HUH7, JHH-1, PLC/PRF/5 (Alex), SNU-182, 
SNU-387, SNU-449, SNU-761 and SNU-878 [85, 86]. 

3.1. HCC Treatment 

Although most of the risk factors of HCC are 
known, the underlying mechanisms responsible for the 
conversion of healthy hepatic cells to neoplastic cells 
are still ambiguous. Hepatocarcinogenesis is a highly 
complex multistep process, and the molecular patho-
genesis of HCC involves different genetic and epige-
netic aberrations and alterations in multiple signaling 
pathways leading to heterogeneity not only between 
different HCCs but also within a single tumor nodule 
[87]. 

The therapy strategies are broadly divided into cura-
tive and palliative treatment. Whereas curative treat-
ments (such as surgery, liver resection and transplanta-
tion and locoregional therapies like radiofrequency ab-
lation) are applied to the HCC patients who are in early 
stages, palliative care is provided to the patients in in-
termediate (locoregional therapies like transarterial 
embolization) and advanced (systemic treatments such 
as radiation, chemotherapy and targeted therapy) stages 
of HCC [83]. Unfortunately, HCC is characterized as 
an asymptomatic disease in the initial stages, which 
most often leads to a late diagnosis. In the advanced 
stages, only systemic treatments can be used [88]. Nev-
ertheless, HCC is one of the most lethal types of tumor 
and it is notoriously difficult to treat due not only to the 
long latent period before detection that leads to aggra-
vated liver dysfunction and makes systemic drug deliv-
ery ineffective, but also to MDR and severe drug-
related adverse effects from therapy. The complexity 
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and heterogeneity of HCC tumors also contributes to 
the failure of therapy, since multiple signaling path-
ways are dysregulated preventing a single drug from 
being fully effective [89]. Regarding radiotherapy, the 
liver and its primary tumors are highly radioresistant, 
which leads to the ineffectiveness of this type of treat-
ment [88]. 

The complete failure of chemotherapy and radio-
therapy in previous years gradually shifted HCC treat-
ment to molecular targeted therapies, leading to the 
approval of sorafenib therapy (Nexavar, BAY 43-9006; 
Bayer HealthCare Pharmaceuticals - Onyx Pharmaceu-
ticals) for HCC by the European Medicine Agency 
(EMA) and the U.S. Food and Drug Administration 
(FDA) in 2007 [90–92]. Sorafenib inhibits cell surface 
tyrosine kinase receptors (e.g., VEGFR-1, VEGFR-2, 
VEGFR-3; PDGFR-β, c-KIT, FLT-3 and RET) as well 
as downstream intracellular serine/threonine kinases of 
the RAF/MEK/ERK pathway (e.g., Raf-1, wild-type B-
Raf and mutant B-Raf) leading to a dual mechanism of 
action by targeting tumor cell proliferation and tumor 
angiogenesis [91]. In addition, sorafenib is capable of 
inducing apoptosis in HCC and others tumor cell lines 
[91, 93]. Indeed, sorafenib is the only approved drug 
for advanced HCC and it is the standard systemic ther-
apy for this pathology, however, it only prolongs me-
dian survival and the time to progression by nearly 3 
months in patients with advanced HCC [94]. One of the 
main reasons underlying the impaired sensitivity to 
sorafenib is that a considerable number of HCCs are 
refractory to the drug due to intrinsic and acquired re-
sistance, and the majority of these HCC patients show 
disease progression even after an initial satisfactory 
response [95]. In addition, many patients require dose 
reduction to minimize adverse effects exerted by soraf-
enib (hand-foot skin reaction, rash/desquamation, 
weight loss, alopecia, diarrhea, nausea, abdominal pain, 
dyspepsia, fatigue, hypertension, thromboembolic and 
cardiac ischemic events) [94].  

Nowadays, no single agent or combination therapies 
have been shown to impact outcome after sorafenib 
failure and there is no available second-line treatment 
for patients with intolerance or failure to this drug [96, 
97]. 

3.2. MDR and ABC Transporters in HCC Chemo-
therapy 

Although chemotherapy has become one of the 
main treatments for cancers, HCC is a chemorefractory 
malignancy [98]. MDR limits the application of liver 
cancer chemotherapy, and it is also a major cause of 

liver cancer recurrence and metastasis [99-101]. Data 
show that the incidence rate of MDR in primary liver 
cancer is 84.6%-100%, thus solving MDR during che-
motherapy is of great significance to the treatment of 
this malignancy [99]. The ABC transporters of particu-
lar relevance to cancer chemotherapy in HCC are P-gp, 
MRP1, MRP2, MRP3 and BCRP [102-105]. In this 
regard, these ABC transporters are overexpressed in 
HCC, thus promoting intrinsic drug resistance. Expres-
sion of P-gp is increased in human HCC compared to 
normal liver tissue, cirrhotic liver and liver from indi-
viduals with chronic cholestasis [106-109]. Similarly, 
MRP1, -2, -3 expressions were significantly increased 
in human HCC samples when compared to normal liver 
tissue, cirrhotic liver and liver from individuals with 
chronic cholestasis [104, 107, 109-113]. Roelofsen et 
al. [114] found that MRP1 protein levels are highly 
increased in both HepG2 cells and immortalized hepa-
tocytes compare to normal hepatocytes. In another 
study, Nies et al. [105] described that MRP2 and MRP3 
mRNA expression in human HCC tissue was at least 
10-fold higher than MRP1 mRNA expression. On the 
other hand, BCRP expression was higher in human 
HCC tissue than both cirrhotic paired tissue and normal 
tissue [115–117]. Also, BCRP protein and mRNA ex-
pression was found to be highest in the most undiffer-
entiated HCC cell lines, and this was related to a higher 
functional activity of this ABC transporter [115]. Addi-
tionally, the expression of the aforementioned ABC 
transporters can be induced by chemotherapeutic drugs, 
thus resulting in acquired MDR. Several models of 
MDR in HCC cell lines were developed in vitro by ex-
posing HCC cell lines to progressively increasing con-
centrations of certain chemicals. These studies demon-
strated that cells resistant to conventional chemothera-
peutics drugs, overexpressed ABC transporters and 
exhibited decreased intracellular drug accumulation 
compared to parental cells. For example, HCC cells 
resistant to paclitaxel, epirubicin, and doxorubicin ex-
hibited higher expression of P-gp [103, 118–122] 
whereas HCC cells resistant to cisplatin presented 
higher expression of MRP2 and MRP3 [123] and HCC 
cells resistant to mitoxantrone and doxorubicin showed 
overexpression of BCRP [103, 119]. In these studies, it 
was demonstrated that these one drug-resistant cells 
also exhibit cross-resistance to other drugs which are 
also ABC transporter substrates [118–120, 122]. Sun et 
al. [102] showed that expression of P-gp and BCRP 
was amplified in subcutaneous tumors generated in 
nude mice with adriamycin-resistant HCC cells com-
pared to parental HCC cells. Also, P-gp and BCRP ex-
pression was augmented in HCC tissues from post-
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transarterial chemoembolization (TACE) patients con-
trarily to patients without TACE [102]. Hoffmann et al. 
[124] and Sukowati et al. [115] showed that exposure 
of parental HCC cells to gemcitabine and doxorubicin 
also resulted in upregulation of some ABC transporters. 

Taken together, intrinsic and acquired drug resis-
tance mediated by ABC transporters are mainly re-
sponsible for the failure of the systemic chemotherapy, 
which provides only marginal effect on survival in 
HCC patients [125]. Noteworthy, an increased expres-
sion and function of transmembrane drug efflux pumps 
in HCC is associated with poor clinical prognosis and 
biological aggressiveness. For instance, P-gp overex-
pression was associated with a shorter recurrence-free 
interval, increased disease progression and poor sur-
vival and thus might be a useful prognostic factor for 
HCC [126, 127]. In addition, it was reported a signifi-
cant association between P-gp overexpression, tumor 
aggressiveness and metastatic potential during tumor 
progression in experimental rat liver tumor [128]. In 
HCC, some single nucleotide polymorphisms (SNPs) 
in the MRP1 gene have been shown to affect the func-
tion of MRP1 and were associated with a higher risk of 
recurrence [129] and a poor survival [130]. In the same 
way, Wang et al. [111] found that the mean survival 
time of post-operative HCC patients with negative 
MRP1 expression was longer than that of patients with 
positive expression and that the positive rate of MRP1 
gene expression was increased as the degree of HCC 
differentiation decreased. Since MDR in HCC is re-
lated to MRP1 gene overexpression, the authors con-
cluded that poor differentiation, malignancy and worse 
prognosis are consistent with MDR in HCC and that 
MRP1 gene is expected to be an indicator of clinical 
prognosis [111]. In line, Vander Borght et al. [110] 
reported that MRP1 mRNA levels were significantly 
higher in HCCs with poor survival, i.e. in tumors clas-
sified as having the worst prognosis. Also, they found 
high MRP1 expression in poorly differentiated HCCs, 
large tumors and microvascular invasive tumors [110]. 
Regarding BCRP, it was reported that cells positive for 
this ABC member might play a central role in hepato-
carcinogenesis and in the maintenance of the cancer 
cell hierarchy of human HCC, with BCRP positive 
cells residing at the higher rank in that hierarchy [131]. 
Shi et al. [132] identified side population cells from 
HCC cell lines with stepwise metastatic potentials that 
showed high expression of BCRP and similar charac-
teristics of self-renewal, high clonogenicity and re-
markable chemoresistance. Also, BCRP was found to 
be overexpressed in patients with recurrent HCC and it 
was confirmed as a prognostic factor for predicting re-

lapse-free survival [133]. In another work, the expres-
sion of BCRP in HCC tissues and cell lines showed 
tendencies of association with unfavorable clinical and 
pathological factors, and had a close relationship with 
tumorigenicity, proliferation, drug resistance and me-
tastasis ability [134]. Related to this, the upregulation 
of BCRP in liver with HCC was greater in pathological 
poorly differentiated grade than in well-differentiated 
HCC [115, 116]. Overall survival in HCC patients with 
high expression of BCRP was reduced in elderly pa-
tients and thus this transporter may be a powerful pre-
dictor of prognostic value in these patients [116].  

Finally, sorafenib is a substrate of ABC proteins and 
an association between ABC proteins upregulation and 
sorafenib resistance was established in HCC cell lines. 
In this regard, Huang et al. [135] demonstrated that 
BCRP mediated the efflux of sorafenib whereas Co-
lombo et al. [136] showed that P-gp was found not 
only in the cell membrane but also on lysosomes and 
that sorafenib resistance was mediated by P-gp-
mediated lysosomal sequestration. In line, Rigalli et al. 
[137] showed that the phytoestrogen genistein in-
creased P-gp and MRP2 protein expression and activ-
ity, correlating well with an elevated sorafenib resis-
tance in HepG2 cells. In these studies, co-treatment 
with inhibitors for these ABC proteins reverted soraf-
enib resistance thus augmenting its cytotoxicity [135–
137]. Regarding sorafenib treatment effect on ABC 
transporters expression, Hoffmann et al. [138] and Ye 
et al. [121] showed that sorafenib reduced the expres-
sion of MDR1 and MRP2 mRNA in Huh7 cells and the 
levels of P-gp protein in doxorubicin-resistant HepG2 
cells, respectively. However, long-term exposure of 
HCC cells to sorafenib induced resistance to sorafenib 
due to sorafenib-resistant HCC cell lines exhibited in-
creased expression of P-gp, MRP1, -2 and -3 and 
BCRP [101, 139–141]. Sorafenib-resistant HCC cell 
lines also had a higher survival rate without apoptosis 
and enhanced migratory and invasive abilities, com-
pared to parental cells [101, 139]. Chow et al. [101] 
suggest that advanced HCC patients with acquired 
sorafenib resistance may have enhanced tumor growth 
or distant metastases, which raises the concern of long-
term sorafenib treatment in advanced HCC patients 
who have developed sorafenib resistance. Related to 
this, MRP3 protein was highly expressed in the HCC 
tissues from patients that never responded to sorafenib 
treatment but not in those who did [140]. In the study 
of Liang et al. [142] P-gp was significantly induced by 
hypoxia in the presence of sorafenib in HCC cells and 
HCC tissues from patients clinically resistant to soraf-
enib exhibit increased intratumor hypoxia compared 
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with HCC tissues from patients before treatment or 
sensitive to sorafenib. The authors concluded that the 
hypoxia caused by the antiangiogenic effects of sus-
tained sorafenib therapy induce sorafenib resistance. 

4. COLORECTAL CANCER  

Colorectal cancer (CRC) is one of the most frequent 
causes of cancer-related death in industrialized coun-
tries [143, 144], being the second most common cancer 
in men and the third most in women [145]. The propor-
tion of patients that achieve 5-year of survival after 
diagnosis is less than 15% [146]. Thus, premature de-
tection and treatment is an imperative issue to reduce 
the morbidity and the rate of mortality. 

As previously stated for HCC, CRC is a complex 
disease in which multiple signaling pathways are dys-
regulated. Mutations, diet and intestinal microbiota 
were suggested to be involved in CRC development. 
Around 15-20% of all CRC are due to inherited muta-
tions in one or more genes that generate the develop-
ment of adenomas or carcinoma [147, 148]. In this re-
gard, it was reported that the adenomatous polyposis 
coli (APC) tumor suppressor gene is frequently mu-
tated in CRC resulting in dysregulated Wnt signaling 
[149]. APC forms a protein complex that controls the 
stability and sub-cellular localization of CTNNB1 (β-
catenin), an integral part of the cell cytoskeleton as 
well as a significant transcriptional factor in Wnt sig-
naling, that regulates downstream inflammatory path-
ways, cell cycle and proliferation. In an experimental 
model, loss of APC blocks differentiation and leads to 
hyperproliferation and growth of stem cells in the small 
and large intestine resulting in the disruption of the 
normal crypt-villus axis [150, 151]. As a result, benign 
and dysplastic adenomas are expanded [152]. A recent 
experimental work demonstrates that APC restoration 
stimulates cellular differentiation and reinstates crypt 
homeostasis in CRC [153]. This mutation is present in 
familial adenomatous polyposis (FAP), an inherited 
disorder in which polyps are formed in the epithelium 
of the large intestine. These polyps are benign, but ma-
lignant transformation may occur. Although FAP is 
inherited, the vast preponderance of CRC is sporadic. 
For that reason, it is believed that the frequency of car-
cinogenesis is determined by the penetrance of the mu-
tation as well as the aggressiveness of environmental 
factors [154]. It is known that amines and nitrates can 
be transformed by colonic bacteria in potent pro-
carcinogens such as N-nitrosamines [155, 156]. Indeed, 
numerous food-derived carcinogens could contribute to 
CRC development. In vivo and in vitro investigations 
as well as epidemiological studies establish the contri-

bution of heterocyclic amines such as 2-amino-1-
methyl-6-phenylimidazol[4,5-b]pyridine (PhIP) in 
mutagenesis and subsequently carcinogenesis [157, 
158]. This compound is present in cooked meat or fish 
and is transported by ABC family members [159–161]. 

Nearly 70 human colorectal cancer cell lines were 
obtained from a range of sources and are widely used 
to explore tumor biology, experimental therapy and 
biomarkers. Among the most used cell lines Caco-2, 
LS180, LS174T; HCT116, HT29, LoVo, T84 can be 
mentioned [162, 163]. 

4.1. CRC Treatment 

Unfortunately, as occurs with HCC, generally CRC 
presents a late diagnosis. CRC management depends on 
the location and stage of the disease. Generally, resec-
tion of the bowel with the adjacent lymph nodes is the 
first choice of treatment. Then adjuvant chemotherapy, 
with or without radiation, could be applied. Sometimes, 
chemotherapy is used before surgery to reduce the tu-
mor size before resection (neoadjuvant chemotherapy) 
[164]. 

Drugs such as the antimetabolite 5-fluorouracil (5-
FU) and agents that potentiate its action (folinic acid; 
capecitabine, methotrexate, etc.), camptothecin deriva-
tives, oxaliplatin and cisplatin are used for systemic 
chemotherapy [165]. With the better understanding of 
CRC pathogenesis, the introduction of epidermal 
growth factor receptor (EGFR) targeted therapy, e.g. 
the anti-EGFR monoclonal antibodies cetuximab or 
panitumumab, was indicated. Given the better response 
rate and the progression-free survival in comparison 
with monotherapy [166], the most common regimens 
for CRC are FOLFOX (folinic acid, 5-fluoruracil and 
oxaliplatin) and FOLFIRI (folinic acid, 5-fluoruroacil 
and irinotecan) [66][166]. However, these therapies are 
accompanied by side effects such as nausea, vomiting, 
diarrhea, neutropenia, alopecia, peripheral neurotoxic-
ity, among others. 

4.2. MDR and ABC Transporters in CRC Chemo-
therapy 

As in many types of cancer, chemotherapy usually 
results toxic and/or unsuccessful. Cancer cells are pro-
vided with numerous mechanisms for survival: upregu-
lation of ABC transporters that limit drug uptake or 
enhance drug efflux, increased drug metabolism, drug 
compartmentalization, blocked apoptosis, altered cell 
cycle, etc. [167]. As was indicated before for HCC, 
intrinsic or acquired overexpression of ABC transport-
ers is one the major causes of MDR in CRC that leads 
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to chemotherapeutic failure. For example, high P-gp 
expression has been observed at the time of colon can-
cer diagnosis being associated with the intrinsic resis-
tance. This resistance was also observed in different 
colon cancer cell lines [168-170]. As stated previously, 
the major ABC proteins involved in cancer MDR are 
P-gp, MRPs and BCRP. In general, a strong negative 
correlation was found between ABC protein levels, 
response to chemotherapy and prognosis [171]. 

Efflux of endo- and xenobiotics, including antican-
cer agents, out of the cells trough ABC proteins could 
be significant for the early stages of CRC, as well as 
for the CRC treatment outcome. Changes in ABC 
transporter activity may have a critical role in the ef-
flux of numerous substrates involved in intestinal in-
flammation observed in different situations such as in-
flammatory bowel disease and CRC [172]. Environ-
mental agents, microbes and diet, among others factors, 
may raise the levels of molecules that are ABC trans-
porters substrates, thus affecting their transcriptional 
regulation. Indeed, low ABC transporter levels might 
promote CRC by increasing intracellular concentration 
of carcinogenic or inflammatory substrates. Disruption 
of the mdr1a gene results in colitis and later intestinal 
adenocarcinomas in mice [173] suggesting that the risk 
of inflammation-related CRC appears when P-gp pro-
tein activity is missing. Similarly, a significant tran-
scriptional downregulation of BCRP compared to nor-
mal tissue leads to higher concentrations of carcino-
gens such as PhIP in human colorectal adenomas as 
well as in APC deficient mice. On the other hand, 
MRP2 and MRP1 protein expressions did not change in 
adenomas when compared to healthy tissue [174]. An-
other study demonstrated that the mRNAs encoding for 
P-gp, MRP1 and MRP3 were greatly expressed in 
normal colorectal mucosa and that expression was di-
minished or unchanged in cancerous tissues in com-
parison with noncancerous specimens. Conversely, Hi-
noshita et al. [175] found that the protein and mRNA 
levels of MRP2 were very low in normal colorectal 
mucosa and were increased in cancer tissue being asso-
ciated with cisplatin but not 5-FU resistance. Nakamura 
et al. [176] found that Caco-2 cells express lower 
MDR1 mRNA levels than human duodenal enterocytes, 
but similar to normal colorectal mucosa and colorectal 
adenocarcinoma; whereas Caco-2 MRP1 mRNA levels 
were lower than in human samples. In addition, MRP2 
mRNA was also lower in Caco-2 cells compared to 
human duodenal enterocytes although was hardly de-
tected in normal or cancerous colorectal samples. 
Based on these results it was suggested that deficien-
cies in ABC expression precedes cancer development 

as early events in the colorectal adenoma-carcinoma 
sequence. Accordingly, Micsik et al. [177] found that 
P-gp activity was decreased in primary colorectal can-
cer tissue compared to surrounding healthy mucosa, 
whereas MRP1 activity displayed no significant altera-
tion. Hlatava et al. [178] found downregulation of 
MDR1 and BCRP mRNAs and MRP2 upregulation in 
colorectal tumors collected before the first line of 5-FU 
treatment in comparison with control tissues. In agree-
ment, Andersen et al. [172] recently detected low 
MDR1 and BCRP and high MRP2 mRNA levels in 
morphologically normal tissues surrounding the tumor, 
in CRC tissue as well as in mild/moderate and severe 
dysplasia tissue, when compared to the expression in 
tissues from healthy individuals. Thus, some trans-
porter deficiencies could increase CRC susceptibility 
promoting the adenoma-carcinoma sequence by higher 
genotoxic effects. In CRC P-gp expression was corre-
lated with the pathological grading of tumors, having 
lower expression in poorly differentiated tumors and 
higher levels in well differentiated ones [179]. Al-
though a poor prognosis for neuroblastoma and acute 
myeloid leukemia was related to higher P-gp levels 
[180, 181], its prognostic value in CRC is uncertain. 
Weinstein et al., [182] correlated the presence of P-gp 
in colon adenocarcinoma with an increased incidence 
of tumor vessel invasion and lymph node metastases. 
In another work, an overexpression of P-gp has been 
associated with apoptosis inhibition and an increased 
risk of cancer development in a mouse model [183]. 
Others authors were unable to find a correlation be-
tween P-gp levels and survival [184]. The inconsis-
tency among the findings in different reports may come 
from the study design, the patient population, the stage 
of the tumor development, the time of sample collec-
tion (before or after chemotherapeutic), etc. 

ABC expression is generally upregulated by thera-
peutic agents in cancer cells. It was reported that P-gp 
and BCRP levels were significantly increased in Caco-
2 cells after chronic exposure to imatinib [185]. Several 
anticancer drugs (such as vincristine, tamoxifen, ifos-
famide, paclitaxel, etc.) were able to induce P-gp via 
PXR activation affecting the accumulation of known P-
gp substrates in LS180 cells [186]. The vitamin D3 me-
tabolite 1,25-dihydroxycholecalciferol increased P-gp 
expression and activity in LS174T cells and this effect 
was further amplified by the combination with keto-
conazole [187]. Auto-induction of colchicine efflux 
was reported as a consequence of induction of P-gp 
protein expression in LS180 cells [188]. BCRP is over-
expressed in many types of advanced cancer and con-
fers resistance to anticancer drugs [135, 189–191]. In-
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duction of BCRP was also detected after treatment with 
anticancer agents. Indeed, its cDNA was identified in 
human colon carcinoma cells S1-M1-80 after exposure 
to mitoxantrone [192] and an increase in BCRP mRNA 
was also observed in HT29 cells resistant to the same 
drug [193]. Irinotecan (or CPT-11) is a pro-drug, 
whose metabolite 7-ethyl-10-hydroxy- 
camptothecin (SN-38) is able to inhibit the nuclear en-
zyme topoisomerase I [194]. It is used as a first-line of 
therapy in combination with others antitumor drugs for 
metastatic CRC [195], however, irinotecan and topote-
can resistance is frequently observed. BCRP overex-
pression accompanied by expression of stem cell sur-
face markers have been involved in treatment failure, 
tumor recurrence and expansion in CRC [196, 197]. 
Candeil et al. [195] demonstrated that BCRP mRNA 
levels in hepatic metastases derived from CRC are in-
creased after irinotecan-based therapy. The basal ex-
pression of BCRP is Nrf2-dependent. Pharmacological 
activation of Nrf2 or genetic interventions have been 
reported to prevent oxidative stress-associated diseases 
and cancer [198, 199]. Alteration in Nrf2 pathway itself 
does not necessarily promote cancer initiation, but can 
lead to increased proliferation [200]. In colon carci-
noma HT29 cells only BCRP was found to be down-
regulated by Nrf2 knockdown among the studied ABC 
transporters [201]. The estrogenic compounds ethyn-
ylestradiol and genistein, were able to upregulate the 
mRNA and protein levels as well as the activities of P-
gp and MRP2 in Caco-2 cells without affecting BCRP. 
Cytotoxicity assays proved a good correlation of MRP2 
and P-gp upregulation with increased resistance to cell 
death induced by 1-chloro-2,4-dinitrobenzene (an 
MRP2 substrate precursor) and by paraquat (a P-gp 
substrate) [202]. Although the cytotoxicity was evalu-
ated with noxious substances it can be speculated that 
the same effects may occur with chemotherapeutic 
agents. In this regard, it was reported that MRP2 is an 
important factor in drug resistance in colon cancer pa-
tients receiving cisplatin treatment [175]. MRP2 levels 
were also increased in SW620 and LoVo cells exposed 
to oxaliplatin generating cross-resistance to 5-FU, 
etoposide, cisplatin, vincristine and epirubicin [203]. 

5. OVERCOMING MDR IN HCC AND CRC  

Efflux of drugs by ABC transporters decreases in-
tracellular drug concentration causing failure of chemo-
therapy. Therefore, the inhibition of ABC transporter 
activity either by co-administrating inhibitors or by 
suppressing its protein expression has been suggested 
as effective approaches to sensitize drug-resistant can-
cer cells to anticancer drugs. In this section several 

methods designed to reverse the resistance mediated by 
ABC transporters are detailed. These strategies include 
the use of synthetic inhibitors, natural products, bio-
logical agents (siRNA and miRNA), inhibitors of ABC 
transporter regulating pathways, monoclonal antibod-
ies, ultrasound waves and new drug delivery system 
(nanoparticles) (Table 2). All the strategies described 
below are shown schematically in Fig. (2).  

5.1. Synthetic Inhibitors 

Considering P-gp, three generations of synthetic in-
hibitors were developed. First-generation inhibitors 
(such as verapamil, cyclosporine A, erythromycin, ta-
moxifen, etc.) have high toxicity and low efficacy at 
tolerable doses. Both verapamil and cyclosporine A 
have been assessed in clinical trials but high doses of 
these drugs were required in patients to reverse MDR 
and serious side effects were observed [204, 205]. Af-
terwards, second-generation of P-gp inhibitors were 
developed to improve efficacy and to reduce secondary 
effects. The analogue of cyclosporine A, PSC833 (val-
spodar) was 10- to 20-fold more potent than its precur-
sor in reversing MDR in cell lines [206, 207] and also 
effective in solid tumor MDR models in animals [208]. 
However, clinical trials demonstrated that PSC833 im-
paired drug metabolism and excretion of co-
administered drugs. Consequently, patients were ex-
posed to higher serum concentrations of chemothera-
peutic agents with risk of toxicity [209, 210]. Third-
generation of P-gp inhibitors, such as tariquidar 
(XR9576) at nanomolar concentration, were more spe-
cific and effective. This compound potentiates the anti-
tumor activity of doxorubicin without significant toxic-
ity in mice with resistant colon tumors [211] and do not 
seem to produce pharmacological interactions in phase 
I clinical trials [212, 213]. More promising results are 
nowadays expected from phase II and III clinical stud-
ies. 

Phenothiazines and structurally-related compounds 
are also P-gp inhibitors even more potent than verapa-
mil. They increase the cytotoxic effect produced by 
doxorubicin on both sensitive and resistant colon ade-
nocarcinoma cell lines [214]. Other P-gp inhibitors 
such as all-trans retinoic acid (ATRA) and its deriva-
tive 6-OH-11-O-hydroxyphenanthrene (IIF, pat. WIPO 
W000/117143) reduced P-gp synthesis in LoVo/MDR 
cells [215]. 

A lipophilic 7-modified camptothecin analogue 
(ST1481) was able to reverse BCRP-associated resis-
tance in a mitoxantrone-resistant HT29 colon carci-
noma cell line [216]. Despite a large number of reports  
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Table 2.  Strategies to overcome multidrug resistance targeting ABC transporters in HCC and CRC. 

  ABC Transporter References 

First generation inhibitors (verapamil, cyclosporine A, 
erythromycin, tamoxifen, etc). P-gp [204,205] 

Second generation inhibitors (valspodar) P-gp [206-210] 

Third-generation inhibitors (tariquidar) P-gp [211-215] 

ST1481 BCRP [216-218] 

Synthetic inhibitors 

Probenecid, MK571 MRP2 [219, 220] 

Steroidal saponin (from Trilluim tschonoskii) P-gp, MRPs (1, 2, 3, 5) [228] 

Crude extracts from Antrodia Camphorata and C-
phycocyanin extracted from Spirulina platensis P-gp [235, 236, 242] 

Shikonin (from Lithospermum erythrorhizon) P-gp (via SIRT1) [249,250] 

Isocorydine derivative 
(from Dicranostigma leptopodum) 

P-gp and BCRP (via 
IGF2BP3) [238] 

Epigallocatechin-3-gallate derivative Y6 (green tea) BCRP (via HIF-1α) [244] 

Compounds obtained from Salvia miltiorrhiza P-gp [252] 

Curcumin P-gp [253,254] 

Sipholenol A (a marine-derived triterpene) P-gp [255] 

Natural products 

Fumitremorgin C (a fungal toxin) BCRP [256] 

siRNA P-gp, MRPs, BCRP [99,140,257,258] 

Promoter-driven ABC transporter antisense constructs P-gp, MRP2 [259,260] 

shRNA P-gp [261] 

Overexpression of miR-223, miR-27a, miR-133a, miR-
326 P-gp [27,30,263] 

Overexpression of miR-122 and miR-503 P-gp, MRP1 [264,265] 

miR-519c BCRP [267] 

 
Biological Agents 

(siRNA and miRNA) 

miR-297 MRP2 [268] 

SIRT1 silencing P-gp [269,270] 

COX-2 and AP-1 inhibition, inactivation of ERK, JNK, 
p38 signal transduction pathways P-gp [270, 271] 

Transfection with TFPI-2 P-gp, MRP1 [272] 

HIF-1α degradation and NF-κB inactivation P-gp [142] 

AMPK/mTOR/HIF-1α pathway P-gp, MRP1 [273, 274] 

SLAMF3 MRP1 [275] 

inhibiton of PI3K/AKT/mTOR and RAS/ERK pathways P-gp [139] 

JNK1/c-jun signaling pathway BCRP [276] 

galectin-3 knockdown P-gp, MRP1, MRP2 [277] 

 
Inhibitors of ABC 

transporter regulating 
pathways 

NF-κB signaling inhibition P-gp [278-281] 

Monoclonal Antibodies MRK-16 P-gp [284,286] 

Ultrasound waves  P-gp, MRP1 [287-289] 

(Table 2) contd…. 
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  ABC Transporter References 

Lipid doxorubicin and curcumin NPs P-gp [293] 

Co-administration of recombinant mutant human TNF-α 
and a sublethal dose of chemicals (doxorubicin, mitomy-

cin and 5-FU) and hydroxyapatite NPs 
P-gp, BCRP [295] 

Polymeric NPs of low-density lipoprotein loaded with 
cholesterol-conjugated MDR1 siRNA and N-succinyl 

chitosan loaded with doxorubicin 
P-gp [297] 

Chitosan-graf t-D-α-tocopheryl polyethylene glycol 1000 
doxorubicin-loaded NPs P-gp [299] 

N-octyl-O-sulfate chitosan (NOSC), and its paclitaxel 
(PTX)-encapsulated micelles (PTX-M) P-gp [300] 

Low molecular weight heparin NPs modified by glycyr-
rhetinic acid and lactobionic acid and loaded with doxoru-

bicin 
P-gp [302] 

2-(9-anthracenylmethylene)-hydrazinecarbothioamide via 
conjugation with the cell-penetrating peptide TAT (trans-

activator of transcription) modified gold NPs 
P-gp [304] 

Synthesized folate (FA)-conjugated selenium NPs P-gp, MRP1, BCRP [298] 

Combination of FA, monoclonal P-gp antibodies and 
miR-122-loaded gold NPs P-gp [301] 

Lactobionic acid-conjugated D-α-tocopheryl polyethylene 
glycol 1000 succinate NPs P-gp [303] 

New drug delivey sys-
tem (nanoparticles) 

Mitoxantrone encapsulated in a dual functional galactosyl 
group (Gal-P123) modified liposome. BCRP [305] 

 
about the discovery of BCRP inhibitors, only few have 
examined their clinical efficacy in humans [217, 218]. 

Also, structurally different compounds (probenecid, 
MK571, etc.) were able to inhibit MRPs activities in rat 
intestine and colon carcinoma cell lines [219, 220]. It 
was recently reported that the aromaticity and lipophil-
icity affect inhibitory activities whereas anionic charge 
is not required for inhibitory capability [221]. 

Most of the results reported about synthetic inhibi-
tors of ABC transporters were obtained in in vitro sys-
tems. The clinical use of these experimental tools has 
been scarcely investigated in vivo or has resulted un-
successful until now. The reason is related to several 
problems such as toxicity or safety and poor knowledge 
of the pharmacokinetic properties of compounds with 
novel chemical structures [7, 222]. Indeed, many of 
them also inhibit cytochrome P450 and impair drug 
clearance, putting a risk of toxicity and adverse effects 
in normal cells [223]. 

5.2. Natural Products 

Besides synthetic ABC inhibitors, there are several 
promising anti-MDR strategies evolving. Natural com-

pounds extracted from fruits, vegetables, mushrooms, 
oilseeds, herbs, bacteria and animals, as well as its de-
rivatives obtained by chemical modifications, are able 
to modulate ABC proteins and exhibit less cytotoxicity 
than the synthetic ABC inhibitors previously described 
[224]. In multidrug resistant HCC cell lines these com-
pounds suppressed the expression and/or activity of P-
gp, MRPs and/or BCRP and thus increased the sensi-
tivity and intracellular accumulation of sorafenib and 
other chemotherapy drugs [225–249]. Some of them 
also inhibited xenografts tumor formation in vivo in 
mice [228, 236]. Some works studied the mechanism of 
action of these natural compounds. For example, ex-
tracts from Antrodia camphorata and C-phycocyanin 
extracted from Spirulina platensis act by inhibiting the 
cyclooxygenase-2 (COX-2) pathway, which is involved 
in the development of the MDR phenotype and in the 
inhibition of apoptosis, via the downregulation of P-gp, 
p-AKT, NF-κB and AP-1 [235, 236, 242]. In addition, 
it was found that shikonin, from Lithospermum 
erythrorhizon, downregulates the expression of the 
class III histone deacetylase sirtuin 1 (SIRT1), which 
induces P-gp upregulation and associates with tumor 
progression and resistance to sorafenib and other drugs 
[249, 250]. An isocorydine derivative from Di 
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Fig. (2). Strategies to reverse MDR mediated by ABC transporters. Several mechanisms to overcome MDR are presented. 
Synthetic inhibitors that affect ABC transporters activity (1), natural products which could inhibit ABC transporters activity, 
expression or alter their regulating pathways (2), biological agents such as siRNA, shRNA or adenovirus affecting ABC trans-
porter expression (3), inhibitors of ABC transporter regulating pathways (4), monoclonal antibodies (mAbs) against ABC 
transporters (5), ultrasound waves that decrease ABC transporter levels (6) and ABC transporter substrate encapsulation by 
different nanoparticles (NPs) bypassing ABC action or inhibiting ABC transporter expression (7).  
 
cranostigma leptopodum attenuates cell growth and 
P-gp and BCRP expression by inhibiting IGF2BP3 
expression (like IGF2BP1, IGF2BP3 is an oncoprotein 
expressed in HCC cells) [238] whereas the epigallo-
catechin-3-gallate derivative Y6, extracted from the 
green tea, decreases the expression of HIF-1α [244] 

which in turn is a BCRP modulator. Therefore, these 
natural products show strong MDR reversal activity 
and could be used as adjunctive agents for hepatic can-
cer chemotherapy. Similarly, natural products were 
used to obtain the fourth generation of P-gp inhibitors 
that sensitize resistant colon cancer cells [251]. Com-
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pounds obtained from Salvia miltiorrhiza enhance 
doxorubicin and irinotecan cytotoxicity in a P-gp over-
expressing CRC cell line almost certainly by down-
regulating its mRNA and protein levels and inhibiting 
its ATPase activity [252]. Curcuminoids suppress P-gp 
expression and increase the anticancer activity of 5-FU 
in colon cancer cell lines [253]. Besides, in an in situ 
cancerous colon perfusion model in rat, it was demon-
strated that curcumin inhibits P-gp activity increasing 
irinotecan absortion [254]. Similarly sipholenol A, a 
marine-derived triterpene, efficiently inhibits P-gp in 
cancer cells representing a potential reversal agent for 
the treatment of multidrug resistance [255]. Fumi-
tremorgin C (FTC), a fungal toxin that strongly and 
specifically inhibits BCRP, overcomes resistance to 
mitoxantrone, doxorubicin and topotecan in vitro [256]. 

5.3. Biological Agents 

Another approach for drug resistance reversal is the 
use of biological agents such as small interfering RNAs 
siRNA and microRNAs (miRNAs) to downregulate the 
expression of ABC family members. The transient in-
hibition of MDR1 [257], MRPs [99, 140] and BCRP 
[258] genes by siRNA enhanced and selectively re-
stored the sensitivity of MDR-resistant HCC cells to 
anticancer drugs. In addition, animal experiments sug-
gested that silencing MRP genes with siRNA inhibited 
tumor growth in vivo [99]. Alternatively, adenoviral 
delivery of alpha fetoprotein promoter-driven anti-
MDR1 ribozymes constructed to allow specific gene 
transfer to HCC cells, completely restored the che-
mosensitivity to anticancer drugs [259]. In the same 
way, transfection of HCC cells with adenoviral vectors 
using cytomegalovirus promoter-driven MRP2 an-
tisense constructs demonstrated the specific reversal of 
MRP2-related drug resistance in these cells, even after 
the generation of HCC tumors in nude mice [260]. On 
the other hand, MDR can be reversed by short hairpin 
RNA (shRNA)-mediated MDR1 long-term suppression 
in MDR-resistant HCC cells [261]. In addition, the 
upregulation of ABC transporters in HCC is associated 
with miRNAs downregulation. Borel et al. [109] found 
in paired HCC patient samples the dysregulation of 90 
miRNAs in HCC compared with adjacent healthy liver, 
and an inverse relation between ABC and miRNA ex-
pression in individual patients. In addition, Zhuo et al. 
[262] reported differentially expressed miRNA profiles 
in five drug-resistant HCC sublines compared to the 
parental HCC cell line. In relation with this, in HCC 
lines the overexpression of miR-223, miR-27a, miR-
133a and miR-326 generated the downregulation of P-
gp [27, 30, 263], whereas the overexpression of miR-

122 and miR-503 generated the downregulation of P-
gp and MRP1 [264, 265], at both mRNA and protein 
levels, sensitizing these cells to anticancer drugs. Until 
now, no report exists about the reversal of P-gp medi-
ated MDR via miRNA modulation in CRC. It was re-
ported that downregulation of miR-145 in Caco-2 cells 
induced P-gp expression and activity but not MDR1 
mRNA level. In the same study, miR-145 negatively 
modulates P-gp expression and function through the 
repression of mRNA by direct interaction with its 
3´UTR [29]. Regarding BCRP, it was observed that its 
overexpression generates resistance to 5-FU and iri-
notecan substrates in vitro [266]. In tumors from pa-
tients with CRC sensitive to chemotherapy low levels 
of BCRP expression were found compared to surround-
ing normal colon tissues. Conversely, in patients not 
responding to 5-FU-based chemotherapy, the tumor 
was found to have higher BCRP levels than the adja-
cent colon tissues. The high expression of BCRP was 
associated with the simultaneous overexpression of the 
mRNA binding protein HUR and a low expression of 
miR-519c since this miRNA is a known regulator of 
both proteins [267]. The authors suggest that miR-519c 
could also be a feasible drug target to modulate BCRP 
expression to reverse MDR in CRC chemotherapy. 
Similarly, it was reported that miR-297 was downregu-
lated in human CRC and that MRP2, a predicted target 
of miR-297, progressively increased with the tumor 
stage [268]. The authors found a negative correlation 
between miR-297 and MRP2 mRNA levels in CRC. 
They also suggest that the findings may be useful to 
predict MDR in patients and to design personalized 
therapy for CRC patients. Thus, ABC transporter si-
lencing and miRNA-based gene therapies provide 
valuable approaches to make MDR human carcinoma 
cells sensitive to chemotherapy drugs. 

5.4. Inhibitors of ABC Transporter Regulating 
Pathways 

As mentioned before, ABC expression and activity 
are regulated by different intracellular signaling path-
ways that could enlarge the spectrum of pharmacologi-
cal targets for overcoming MDR in cancer. For exam-
ple, SIRT1-silencing by the use of SIRT1 SMART 
small interfering RNA duplex or shRNA targeting 
SIRT1 sensitized HCC cells to anticancer treatments 
[269, 270]. Celecoxib, a selective inhibitor of COX-2, 
enhanced the sensitivity of HCC cells to chemotherapy 
drugs in a process mediated by the downregulation of 
P-gp expression by COX-2 and AP-1 and also by the 
inactivation of ERK, JNK and p38 MAPK signal trans-
duction pathways [271]. Transfection of chemo-
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resistant HCC cells with tissue factor pathway inhibi-
tor-2 (TFPI-2), which plays an important role in inhib-
iting cell metastasis and tumor invasion, improved sen-
sitivity to drugs and the mechanism involves the p38-
mediated downregulation of MDR1 and MRP1 gene 
expression [272]. On the other hand, it is known that 
HCCs clinically resistant to sorafenib, exhibit increased 
intratumoral hypoxia compared to HCCs before treat-
ment or HCCs sensitive to sorafenib, and the resistance 
is mediated by HIF-1α and NF-κB activation. In addi-
tion, P-gp is significantly induced by hypoxia in the 
presence of sorafenib [142]. In this relation, EF24, a 
molecule having structural similarity to curcumin, 
overcomes sorafenib resistance through HIF-1α degra-
dation and NF-κB inactivation in HCC and the combi-
nation of EF24 and sorafenib showed synergic effects 
against metastasis both in vivo and in vitro. In this 
study, synergistic tumor growth inhibition effects were 
also observed in subcutaneous and orthotopic hepatic 
tumors in mice [142]. Metformin, a commonly used 
biguanide antidiabetic drug with anti-proliferative 
properties, downregulated the expression of P-gp and 
MRP1 and reversed MDR in human HCC cells [273, 
274]. Metformin targeted the AMP-activated protein 
kinase (AMPK)/mammalian target of rapamycin 
(mTOR) pathway and suppressed HIF-1α, a down-
stream protein of mTORC1, which in turn regulated the 
expression of P-gp and MRP1 [273]. Also, metformin 
downregulated P-gp through the inhibition of the NF-
κB signaling pathway [274]. In another work, an in-
verse correlation between signaling lymphocytic acti-
vation molecule family member 3 (SLAMF3) and 
MRP1 expression was found in HCC patient samples 
and HCC cell lines, and the overexpression of 
SLAMF3 in HCC cells induced specifically MRP1 
dysfunction and improved sensitivity to sorafenib 
[275]. Combining sorafenib with the specific inhibitors 
of PI3K/AKT/mTOR and RAS/ERK pathways MK-
22062HCL and PD0325901, respectively, synergisti-
cally inhibited cell growth and decreased MDR1 gene 
expression in sorafenib-resistant HCC cell lines [139]. 
Regarding CRC, JNK1/c-jun signaling pathway was 
involved in BCRP-mediated MDR in the human colon 
cancer cell line SW1116 resistant to hydroxycamp-
tothecin (HCPT). The inhibition of the JNK1/c-jun 
pathway reduce the expression level and transport 
function of BCRP and could be suitable for reversing 
BCRP-mediated drug resistance in HCPT-resistant co-
lon cancer cells [276]. A study from Lee et al. [277] 
demonstrated that galectin-3 knockdown increased the 
intracellular concentration of epirubicin in Caco-2 cells 
by suppressing the mRNA expression of galectin-3, β-

catenin, MDR1, MRP1 and MRP2, and downregulating 
the expression of P-gp among other proteins. It is 
known that P-gp expression is regulated by NF-κB/p65 
and inhibition of NF-κB leads to downregulation of P-
gp expression [278-280]. Related to this, it was re-
ported that long-term treatment with TNF-α reduced 
NF-κB signaling resulting in the downregulation of P-
gp in the human HCT15 colorectal carcinoma cell line, 
favoring its chemosensitization [281]. Thus, targeting 
signaling pathways implicated in the regulation of 
ABC proteins may be a promising way to affect the 
ABC profile and overcome clinical MDR. 

5.5. Monoclonal Antibodies 

The monoclonal antibodies developed against P-gp, 
MRK-16 and MRK-17, have shown to reverse drug 
resistance mediated by P-gp both in vivo and in vitro. 
MRK-16 inhibited actinomycin D and vincristine ef-
flux, and MRK-17 affected the proliferation of MDR 
cells [282-286]. In an in vivo model of HCC, MRK-16 
was tested in mice bearing a tumor derived from Alex 
cells and from an Alex MDR clone. Immunotherapy 
with MRK-16 suppressed the in vivo growth of tumors 
derived from both cell lines [286]. Regarding CRC, 
MRK-16 monoclonal antibody was able to reverse vin-
cristine resistance in HT-29 mdr1 tumor-bearing mice 
increasing the median survival time [284].  

5.6. Ultrasound Waves 

Another less explored strategy in HCC is the use of 
ultrasound waves [287–289]. Ultrasound waves en-
hanced the cellular uptake and cytotoxicity of che-
motherapeutic agents in drug-resistant HCC cells 
[289], via decreasing P-gp and MRP1 protein and 
mRNA levels and increasing apoptosis through the 
raise of Bax protein expression [288]. Thus, ultrasound 
wave-mediated reversal of MDR may lead to the de-
velopment of a novel strategy of using a targeted, non-
invasive physical approach that would resensitize the 
MDR cancer cells to chemotherapy. 

5.7. New Drug Delivery System (Nanoparticles) 

Finally, the development of new drug delivery sys-
tems that can bypass the ABC family of transporters 
such as nanoparticles (NPs) are used extensively to de-
liver antitumor chemicals to specific target cells/tissues 
of patients. Highly efficient targeted delivery is crucial 
for successful anticancer chemotherapy. In this regard, 
NPs improve the drug therapeutic index and overcome 
dose-limiting side effects, lack of selectivity, tissue 
toxicity, limited drug access to tumor tissues, high drug 
doses, and emergence of multiple drug resistance with 
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conventional or combination chemotherapy. Examples 
of NPs include polymers, solid lipids, metals, quantum 
dots, dendrimers, liposomes, micelles, magnetic NPs, 
silica NPs and cell penetrating peptides (for a review of 
nanoparticles see [290-292]).  

Some of these NPs reversed MDR by decreasing the 
expression of P-gp, MRP1 and/or BCRP and sup-
pressed cell growth and induced apoptosis in MDR 
HCC cells [293-298]. For example, lipid doxorubicin 
and curcumin NPs reduced P-gp and Bcl-2 protein and 
mRNA levels [293, 294]. Also the co-administration of 
recombinant mutant human TNF-α and a sublethal dose 
of chemicals (adriamycin, mitomycin and 5-FU) and 
hydroxyapatite NPs inhibited MDR1 and BCRP gene 
expression [295]. Polymeric NPs of low-density lipo-
protein loaded with cholesterol-conjugated MDR1 
siRNA and N-succinyl chitosan loaded with doxorubi-
cin decreased MDR1 levels [297]. Other NPs reversed 
MDR by blocking or bypassing P-gp pump action 
[299-304] or by inhibiting BCRP-mediated drug efflux 
[305]. For example, chitosan-graf t-D-α-tocopheryl 
polyethylene glycol 1000 doxorubicin-loaded NPs 
greatly enhanced cell cytotoxicity and apoptosis of 
drug-resistant HCC cells as compared to adriamycin 
and this can be attributed to P-gp blocking by these 
NPs [299]. The efficacy of a synthesized amphiphilic 
graft copolymer, N-octyl-O-sulfate chitosan (NOSC), 
and its paclitaxel (PTX)-encapsulated micelles (PTX-
M) resulted from a combination of the inhibiting P-gp 
effect of NOSC and the bypassing P-gp action of the 
intact PTX-M [300]. Conversely, the low molecular 
weight heparin NPs modified by glycyrrhetinic acid 
and lactobionic acid and loaded with doxorubicin are 
internalized via energy-dependent endocytosis and thus 
can bypass P-gp pump [302]. In the same way, Wang et 
al. [304] developed a drug delivery system that loads 
the anticancer molecule 2-(9-anthracenylmethylene)-
hydrazinecarbothioamide via conjugation with the cell-
penetrating peptide TAT (trans-activator of transcrip-
tion) modified gold NPs, that effectively prevent drug 
efflux due to their size being much larger than that of 
P-gp channel. As stated before, this drug delivery sys-
tem has the advantage of targeting only HCC cells. For 
example, the synthesized folate (FA)-conjugated sele-
nium NPs increase the sensibility of HCC cells overex-
pressing the FA receptor, which transports the captured 
drugs into the cell by receptor-mediated endocytosis, 
and MDR HCC cells by inhibition of P-gp, MRP1 and 
BCRP proteins expression. These NPs could be used as 
a cancer-targeted carrier of the metal-based anticancer 
drug ruthenium polypyridyl [298]. Likewise, another 

option is the combination of FA, monoclonal P-gp an-
tibodies (for targeting MDR cancer cells) and miR-122 
(downregulated in high metastatic liver cancer cells)-
loaded gold NPs [301]. Another example are the lacto-
bionic acid-conjugated D-α-Tocopheryl polyethylene 
glycol 1000 succinate NPs that were developed as a 
potential asialoglycoprotein receptor (ASGPR)-
targeted nanocarrier that effectively inhibit P-gp for 
etoposide efflux specifically in HCC cells, since these 
cells overexpress this receptor in their membranes 
[303]. Similarly, the encapsulation of mitoxantrone in a 
dual functional galactosyl group (Gal-P123) modified 
liposome enhance its therapeutic efficacy against HCC 
cells by simultaneously targeting the Gal-P123 receptor 
overexpressed in these cells (ASGPR) and inhibiting 
BCRP-mediated antitumor drug efflux [305]. Some of 
these NPs also restored the chemotherapeutic sensitiv-
ity in mouse models and in clinical samples [293–296, 
299-303, 305]. Therefore, the development of targeted 
drug delivery systems offers the potential for high ac-
cumulation of chemotherapeutics within the cancer-
affected organ through means of active and passive 
targeting to overcome MDR, thereby reducing the un-
wanted exposure of cytotoxic agents to healthy tissue.  

CONCLUSION 

It is largely known that one of the major obstacles in 
the successful chemotherapy of cancer is the overex-
pression of ABC transporters such as P-gp, MRPs and 
BCRP, that leads to the MDR phenotype. One of the 
challenges to overcome MDR is to achieve higher drug 
concentrations inside the tumor cells and therefore a 
better therapeutic outcome. It is considerable interest-
ing to study the pathways involved in the regulation of 
ABC transporters in tumor cells, particularly those that 
are not involved in the regulation of ABC transporters 
in normal cells. Thus, new targets could be proposed 
preserving the normal functioning of non-tumor cells 
avoiding all the known adverse effects.  
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