A new proof of the characterization of the weighted Hardy inequality

A.L. Bernardis, F.J. Martín-Reyes, and P. Ortega Salvador

Abstract

Maz'ja and Sinnamon proved a characterization of the boundedness of the Hardy operator from $L^{p}(v)$ into $L^{q}(w)$ in the case $0<q<p$, $1<p<\infty$. We present here a new simple proof of the sufficiency part of that result.

Maz'ja [2] and Sinnamon [3] characterized the weights such that

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left(\int_{0}^{x} f\right)^{q} w(x) d x\right)^{1 / q} \leq C\left(\int_{0}^{\infty} f^{p}(x) v(x) d x\right)^{1 / p} \tag{1}
\end{equation*}
$$

for all measurable $f \geq 0$ with a constant independent of f, where $0<q<p$ and $1<p<\infty$. The characterization reduces to the condition that the function

$$
\Psi(x)=\left(\int_{x}^{\infty} w\right)^{1 / p}\left(\int_{0}^{x} v^{1-p^{\prime}}\right)^{1 / p^{\prime}}
$$

belong to $L^{r}(w)$, where $1 / r=1 / q-1 / p$. The proof of the necessity in $[\mathbf{2}]$ is not direct. However a direct and easy proof can be found in [4]. The proof of the sufficiency in [2] uses the Hölder inequality for three exponents and the characterization of Hardy's inequality for the case $p=q$. The proof of the sufficiency in [4] is simpler but uses the Hardy's inequality in the case $p=q$.

The aim of this paper is to present a new proof of the implication $\Psi \in L^{r}(w) \Rightarrow$ (1) that we believe is simple, elementary and standard because it is more similar to the proofs of the characterization in the easy case $p \leq q$ and it does not use the characterization in the case $p=q$. The key point is to show that $\Psi \in L^{r}(w)$ implies that the function

$$
\Phi(x)=\sup _{0<a<x} \Psi(a)=\sup _{0<a<x}\left(\int_{a}^{\infty} w\right)^{1 / p}\left(\int_{0}^{a} v^{1-p^{\prime}}\right)^{1 / p^{\prime}}
$$

belongs also to $L^{r}(w)$. Once we have this fact, (1) follows by partitioning $(0, \infty)$ as it is usual and by using the Hölder inequality in a natural way. In this way we obtain a new characterization of (1), namely $\Phi \in L^{r}(w)$. We also think that the

[^0]ideas in the proof could be of some help to overcome some difficulties appearing in the study of the Hardy's inequalities with $q<p$. In fact, the ideas of this paper are used in $[\mathbf{1}]$ to study the generalized Hardy-Steklov operator in weighted spaces.

Next we establish the theorem (due to Maz'ja and Sinnamon) and we give a complete simple proof of the theorem. We remark that the proof of the necessity, $(a) \Rightarrow(b)$, is taken from [4] while the proofs of $(b) \Rightarrow(c) \Rightarrow(a)$ are our genuine contribution. We include the proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ to present a complete proof of the theorem.

Theorem 1. Let w and v be nonnegative measurable functions. Let q, p, p^{\prime} and r be such that $0<q<p<\infty, 1<p<\infty, p+p^{\prime}=p p^{\prime}, 1 / r=1 / q-1 / p$. The following statements are equivalent:
(a) There exists a positive constant C such that

$$
\left(\int_{0}^{\infty}\left(\int_{0}^{x} f\right)^{q} w(x) d x\right)^{1 / q} \leq C\left(\int_{0}^{\infty} f^{p}(x) v(x) d x\right)^{1 / p}
$$

for all measurable $f \geq 0$.
(b) The function

$$
\Psi(x)=\left(\int_{x}^{\infty} w\right)^{1 / p}\left(\int_{0}^{x} v^{1-p^{\prime}}\right)^{1 / p^{\prime}}
$$

belongs to $L^{r}(w)$.
(c) The function

$$
\Phi(x)=\sup _{0<a<x}\left(\int_{a}^{\infty} w\right)^{1 / p}\left(\int_{0}^{a} v^{1-p^{\prime}}\right)^{1 / p^{\prime}}
$$

belongs to $L^{r}(w)$.
Proof. (b) \Rightarrow (c). We may assume that w and $v^{1-p^{\prime}}$ are integrable functions (the general case follows by approximating these weights by integrable functions). Observe that if

$$
\Phi_{1}(x)=\sup _{0<a<x}\left(\int_{a}^{x} w\right)^{1 / p}\left(\int_{0}^{a} v^{1-p^{\prime}}\right)^{1 / p^{\prime}}
$$

then

$$
\Phi(x) \leq \Psi(x)+\Phi_{1}(x) .
$$

Therefore, it will suffice to prove that $\Phi_{1} \in L^{r}(w)$. This fact follows from the inequality

$$
w\left(\left\{x: \Phi_{1}(x)>\lambda\right\}\right) \leq 2 w(\{x: \Psi(x)>\lambda\})
$$

which we are going to prove now. Since

$$
w\left(\left\{x: \Phi_{1}(x)>\lambda\right\}\right) \leq w(\{x: \Psi(x)>\lambda\})+w\left(\left\{x: \Psi(x) \leq \lambda<\Phi_{1}(x)\right\}\right)
$$

we only have to show that if $E=\left\{x: \Psi(x) \leq \lambda<\Phi_{1}(x)\right\}$ then

$$
w(E) \leq w(\{x: \Psi(x)>\lambda\})
$$

To prove this last inequality we only have to establish that

$$
\begin{equation*}
\int_{x}^{\infty} w \leq w(\{y: \Psi(y)>\lambda\}) \tag{2}
\end{equation*}
$$

for all $x \in E$. Let us fix a point $x \in E$. Then there exists $a, 0<a<x$, such that

$$
\left(\int_{x}^{\infty} w\right)^{1 / p}\left(\int_{0}^{x} v^{1-p^{\prime}}\right)^{1 / p^{\prime}} \leq \lambda<\left(\int_{a}^{x} w\right)^{1 / p}\left(\int_{0}^{a} v^{1-p^{\prime}}\right)^{1 / p^{\prime}}
$$

These inequalities imply that

$$
\int_{x}^{\infty} w<\int_{a}^{x} w
$$

If $(a, x) \subset\{y: \Psi(y)>\lambda\}$ then (2) follows immediately. Assume that the set $F=\{y \in(a, x): \Psi(y) \leq \lambda\}$ is non-empty and let $y \in F$. Then

$$
\left(\int_{y}^{\infty} w\right)^{1 / p}\left(\int_{0}^{y} v^{1-p^{\prime}}\right)^{1 / p^{\prime}} \leq \lambda<\left(\int_{a}^{x} w\right)^{1 / p}\left(\int_{0}^{a} v^{1-p^{\prime}}\right)^{1 / p^{\prime}} .
$$

Since $a<y$ it follows that

$$
\int_{y}^{\infty} w \leq \int_{a}^{x} w=\int_{a}^{y} w+\int_{y}^{x} w
$$

Thus

$$
\int_{x}^{\infty} w \leq \int_{a}^{y} w .
$$

for all $y \in F$. If β is the infimum of F the last inequality implies that

$$
\int_{x}^{\infty} w \leq \int_{a}^{\beta} w
$$

This inequality implies that (2) holds since $(a, \beta) \subset\{y: \Psi(y)>\lambda\}$.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. It will suffice to prove it for integrable functions f. Let us choose a decreasing sequence x_{k} such that $x_{0}=+\infty$ and $\int_{0}^{x_{k}} f=2^{-k} \int_{0}^{\infty} f$. By the Hölder inequality with exponents p and p^{\prime}, we obtain

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\int_{0}^{x} f\right)^{q} w(x) d x \leq \sum_{k} \int_{x_{k+1}}^{x_{k}} w(x) d x\left(\int_{0}^{x_{k}} f\right)^{q} \\
& \leq 4^{q} \sum_{k} \int_{x_{k+1}}^{x_{k}} w(x) d x\left(\int_{x_{k+2}}^{x_{k+1}} f\right)^{q} \\
& \leq 4^{q} \sum_{k}\left(\int_{x_{k+2}}^{x_{k+1}} f^{p} v\right)^{q / p} \int_{x_{k+1}}^{x_{k}} w(x) d x\left(\int_{x_{k+2}}^{x_{k+1}} v^{1-p^{\prime}}\right)^{q / p^{\prime}}
\end{aligned}
$$

Applying the Holder inequality with exponents p / q and r / q and the definition of Φ, we have that the last term is dominated by

$$
\begin{aligned}
& 4^{q}\left(\sum_{k} \int_{x_{k+2}}^{x_{k+1}} f^{p} v\right)^{q / p}\left(\sum_{k} \int_{x_{k+1}}^{x_{k}} w(x) d x\left(\int_{x_{k+1}}^{x_{k}} w\right)^{r / p}\left(\int_{x_{k+2}}^{x_{k+1}} v^{1-p^{\prime}}\right)^{r / p^{\prime}}\right)^{q / r} \\
& \leq 4^{q}\left(\int_{0}^{\infty} f^{p} v\right)^{q / p}\left(\sum_{k} \int_{x_{k+1}}^{x_{k}} \Phi^{r} w\right)^{q / r} \leq 4^{q}\left(\int_{0}^{\infty} f^{p} v\right)^{q / p}\left(\int_{0}^{\infty} \Phi^{r} w\right)^{q / r}
\end{aligned}
$$

$(\mathrm{a}) \Rightarrow(\mathrm{b})$. Let w_{0} and v_{0} be nonnegative integrable functions such that $w_{0} \leq w$ and $v_{0} \leq v^{1-p^{\prime}}$. Let

$$
f(t)=\left(\int_{t}^{\infty} w_{0}\right)^{\frac{r}{p q}}\left(\int_{0}^{t} v_{0}\right)^{\frac{r}{p^{\prime} q}-1} v_{0}(t)
$$

Then

$$
\begin{aligned}
\int_{0}^{x} f(t) d t & \geq\left(\int_{x}^{\infty} w_{0}\right)^{\frac{r}{p q}} \int_{0}^{x}\left(\int_{0}^{t} v_{0}\right)^{\frac{r}{p^{\prime} q}-1} v_{0}(t) d t \\
& =\frac{p^{\prime} q}{r}\left(\int_{x}^{\infty} w_{0}\right)^{\frac{r}{p q}}\left(\int_{0}^{x} v_{0}\right)^{\frac{r}{p^{\prime} q}} .
\end{aligned}
$$

Then by (a)

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\frac{p^{\prime} q}{r}\right)^{q}\left(\int_{x}^{\infty} w_{0}\right)^{r / p}\left(\int_{0}^{x} v_{0}\right)^{r / p^{\prime}} w_{0}(x) d x \leq \int_{0}^{\infty}\left(\int_{0}^{x} f\right)^{q} w(x) d x \\
& \leq C^{q}\left(\int_{0}^{\infty} f^{p} v\right)^{\frac{q}{p}}=C^{q}\left(\int_{0}^{\infty}\left(\int_{t}^{\infty} w_{0}\right)^{r / q}\left(\int_{0}^{t} v_{0}\right)^{r / q^{\prime}} v_{0}^{p}(t) v(t) d t\right)^{\frac{q}{p}} \\
& \leq C^{q}\left(\int_{0}^{\infty}\left(\int_{t}^{\infty} w_{0}\right)^{r / q}\left(\int_{0}^{t} v_{0}\right)^{r / q^{\prime}} v_{0}(t) d t\right)^{\frac{q}{p}} \\
& =C^{q}\left(\frac{p^{\prime}}{q}\right)^{q / p}\left(\int_{0}^{\infty}\left(\int_{x}^{\infty} w_{0}\right)^{r / p}\left(\int_{0}^{x} v_{0}\right)^{r / p^{\prime}} w_{0}(x) d x\right)^{\frac{q}{p}}
\end{aligned}
$$

where the last equality is integration by parts. Since w_{0} and v_{0} are integrable functions, we get that

$$
\int_{0}^{\infty}\left(\int_{x}^{\infty} w_{0}\right)^{r / p}\left(\int_{0}^{x} v_{0}\right)^{r / p^{\prime}} w_{0}(x) d x \leq C^{r}\left(r / p^{\prime} q\right)^{r}\left(p^{\prime} / q\right)^{r / p}
$$

Approximating w and $v^{1-p^{\prime}}$ by increasing sequences of integrable functions we obtain (b).

References

[1] A.L. Bernardis, F.J. Martín-Reyes and P. Ortega Salvador, Weighted inequalities for HardySteklov operators, to appear in Can. J. Math.
[2] W.G. Maz'ya, Sobolev spaces., Springer-Verlag. xix, 486 p.,1985.
[3] G.J. Sinnamon, Weighted Hardy and Opial-type inequalities, J. Math. Anal. Appl. 160, No.2, 1991, 434-445.
[4] G.J. Sinnamon and W.D. Stepanov, The weighted Hardy inequality: New proofs and the case $p=1$, J. Lond. Math. Soc., 54, No.1, 1996, 89-101.

IMAL-CONICET, Güemes 3450, (3000) Santa Fe, Argentina
E-mail address: bernard@ceride.gov.ar
Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

E-mail address: martin_reyes@uma.es
Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

E-mail address: ortega@anamat.cie.uma.es

[^0]: 2000 Mathematics Subject Classification. Primary 47A15; Secondary 46A32, 47D20.
 Key words and phrases. Hardy inequality, weights.
 The first author was supported by CONICET and CAI+D-UNL.
 The second and the third authors were supported by MCYT Grant BFM2001-1638 and Junta de Andalucía.

