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Abstract

In this article we prove a theorem on the size of the image of sections of a convex func-
tion under its normal mapping when the sections satisfy a geometric property. We apply
this result to get new geometric characterizations for Monge—Ampére doubling measures.
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1. Introduction and main result

Given a convex function : R" — R, the normal mapping af is the set-valued
functionVe: R" — P(R") defined by

Vo(xo) = {p €R": ¢(x) > p(x0) + p - (x —x0), Vx € R"},
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and forxg € R", p € Vop(xp) andr > 0, a section ob at heightr is the convex set
Sp(x0. po1) =[x €R": ¢(x) < p(x0) + p - (x — x0) +1}.

The class of set& C R" such thatVg(E) = |, Ve(x) is Lebesgue mea-
surable is a-algebra containing the Borel setsigf and we shall denote such
o-algebra byA. The Monge—-Ampére measure associated witls defined for
E e Aby

W(E) =|Vo(E)|.

Throughout this paper the sectiofg(x, p,¢) will be assumed to be bounded
sets. For a bounded convex seand a positive., the notation.S stands for the
A-dilation of S with respect to its center of mass, that is

AS:{x*+A(x—x*): x ES}

wherex* is the center of mass f. We shall study Monge—-Ampere measures
that satisfy some doubling condition. We say thatatisfieg DC) if it is doubling
with respect to the center of mass on the sections tfat is, there exist constants
C > 0 and O< & < 1 such that for all section$, (x, p, t), we have

n(Se(x, p, 1)) < Cu(aSy(x, p,1)).

On the other hand, we say thatsatisfies(DP) if it is doubling with respect to
the parameter on the sectionsggfthat is, there exists a constaint> 0 such that
for all sectionsS, (x, p, t) we have

/’L(Sgﬂ(xv pvt)) g C//’L(S(p(xv p,t/2))

The study of the properties of Monge—Ampére doubling measures and of the
sections associated to convex functions has proved to be useful in the treatment of
solutions of the Monge—Ampére equation, its elliptic and parabolic linearizations
and its related real analysis, as can be seen in the fundamental papers of Caffarelli
[2,3], Caffarelli and Gutiérrez [4,5] and Huang [8]. Also, some of the properties
of the sections allow one to work in a more abstract setting by defining a quasi-
metricd onR" such tha{R”, d, 1) becomes a space of homogeneous type. Then
the real analysis associatedt@nd the sections follows: covering lemmata, types
of the Hardy—Littlewood maximal function, Calderén—Zygmund decomposition,
BMO, singular integrals, etc. For this framework, we refer to the paper of Aimar
etal. [1].

Many geometric conditions for the sectiofig(x, p,t) have been defined in
order to explore the behavior of the Monge—Ampere measure. We first list three
of them:

() the sections satisfy thehrinking property if there exist G&< r, A < 1 such
that for allx € R", p € Vo(x) andz > 0, it holds that

Sp(x, p,Tt) CASy(x, p,1);
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(i) the sections satisfy thengulfingproperty if there exists & > 1 such that if
y € Sy(x, p,t), then

S(ﬂ(xv pv t) C S(p(y, 479”
forallg e Vo(y);

(i) the sections satisfy thengulfing property if there exists &* > 1 such that
if yeSe(x,p, 1), then

S(p(yv q’ t) C S(p(-xa pae*t)
forallg € Vo(y).

In [7], Gutiérrez and Huang studied these properties of the sections of a convex
function ¢ when its associated Monge—Ampeére measure verifies (DC). Among
other results, they proved

Theorem 1 (Gutiérrez and Huang).he Monge—Ampeére measure associateg to
satisfiegDC) if and only if the sections af satisfy the shrinking property.

Note that this theorem provides a purely geometric characterization of Monge—
Ampére(DC) doubling measures. They also establish

Theorem 2 (Gutiérrez and HuangX.he shrinking property implies the engulfing
property of the sections.

We shall see that the converse to Theorem 2 also holds true. This will be a
consequence of our main result, Theorem 3. In order to state it, let us fix some
more notation.

We say thatx € R" belongs to the ellipsoidz(y, p) of centery and radii
p=(p1,...,pn) if

n

Z (xi —Zyi)2 -1

i—1 P

Fort > 0 we write

t_<t t>
o \p1 )

From now on, we shall omit the subscriptin the notation of the sections ¢f
We will prove

Theorem 3. If the sections ap satisfy the engulfing property with constanthen
there exist constantsand C depending only o and the dimension such that, if
a sectionS(xo, p, t) with center of mass; and an ellipsoidE (x§, p) verify

anE(-xE)ka p)CS(-x()v pvt)CE(-xE)k5 ,0) (ll)
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whereq,, is a dimensional constant, then we have
t t
cE(p, ;) C Vo(S(xo, p,1)) C CE(p, ;>. (1.2)

Remarks. As we shall see, every constant 1/4 works in (1.2). Hypothesis
(1.1) in Theorem 3 is always available by means of John’s lemma; see Section 3
for its statement.

The paper is organized as follows: Section 2 is devoted to the proof of
Theorem 3. In Section 3 we prove that the engulfing property implies the
shrinking property and finally, in Section 4, we discuss other conditions on the
sections and summarize some related consequences of Theorem 3.

2. Proof of Theorem 3

Once we are given an ellipsoid(x;, o) such that (1.1) holds, we first assume
thate(xg) = 0 andp = 0, so we have non-negative irR"” andx € S(xo, 0, ¢) if
and only ifo(x) < z. Let us begin with the inclusion

Vo(S(xo, p, 1) C CE<p, %) (2.1)

If g € Vo(S(x0,0,1)), g € Vop(x) for somex € S(xg, 0,¢) and by the engulfing
property,

S(x0,0,1) C S(x, q,01). (2.2)
We define a couple of auxiliary vectonsandi by
1 2 2
w=———>5——(q107,---» qnp5), (2.3)
Oy LR al )
h=B(xg — yaw) + (1 - p)x (2.4)

wherey, and g € (0,1) are constants to fix in a while. We claim that/ife
S(xp, 0, ) then (2.1) holds. Indeed, it € S(xg,0,¢), by (2.2) we have: €
S(x,q,0t), thatis
0t >@h) —px)—q-(h—x)=p(h) —p(x) —q - (Bx§ — Byaw — Bx)
=@(h) —p(x) = Bq - x5+ Byaq -w+ Bq - x
which yields

Byng -w <6t +¢(x)— @)+ Bq-x5—Bq-x

<Ot +o(x) +Bq - (x§ — x) <Ot + ¢(x) + B(p(x3) — (x))
=0t + Bo(xd) + (L — Bo(x) <Ot + pt + (1 — Pt = (6 + Lt
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where we have used thatis non-negative and convex, and the fact thatg €
S(xp, 0, t). We summarize these inequalities in the following:

Byng - w < (6 + Dyt. (2.5)
On the other hand, we have
1/2
> 14207
.8)/115]'w:ﬂynﬁ_ﬂyn Zq]p] . (2.6)
j:

By linking (2.5) and (2.6), we finally obtain

Z‘hﬂj <94;1) t 2.7)

n

and this is the inclusion (2.1) witlC = (6 +1)/(By,). To prove thath €
S(xp, 0, 1), note that by (2.4) it is enough to show

— Ypw € S(x0, 0, 1),

sincex already belongs to the convex stv, 0, ¢). In fact, we shall see that it is
possible to choosg, such that

— YW € ay E(xg, p). (2.8)

We write

n

1 2 1 y2
Z[f(ﬁii — YaWw; — xa‘,i)} =5 "qu ot =2, (2.9
iZiLp Y i1420? Spf

so that we just have to take, < «, to get (2.8). This completes the proof of
inclusion (2.1), with any3 € (0, 1). Now, we face the inclusion

%E(p, %) C V(p(S(xo, 0, t)), (2.10)
always in the case(xg) = 0. Let us takegy € Vo(x) with x ¢ S(xp,0,7) and
considerk € 35 (xp, 0, ) such thatvg, x andx are aligned. Then we have

x —xo0=k(x — x0) (2.12)
for somek > 1. Sincey is convex, forg € Vo(x) andg € Vo(x) it holds that

0<(@—q) - x—3)=(q—q [(x—x0)+ (xo—¥)].
Replacing(x — xo) in this equation by its expression in (2.11) we get

q - (X —x0) =g - (X —x0).

We also have’ - (x' — xg) > ¢(x’) for all x’ € R” andq’ € Vo (x'). In particular,
applying this tax, we get thag; - (x — xo) > ¢(x) =¢. We combine all this in the
following inequalities
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2\ 1/2 - 2\ 1/2
o (x; — x0,1) 1.
<qu_2_zz> (Z %) > qi= (% — x0.)
;! i Pi ;!
1 _ 1 _
:;Q'(X_XO)> ;Q-(X—XO)>1.
Now, if we found ans > 0 such that

% — xn )2
Z(Xz X0,i) <} (2.12)

2

i Pi ¢

we would have)"; g2p?/t? > e, which impliesq ¢ £ E(0, t/p). We will now find
and estimate the size of such arSincex € 9S(xo, 0, ), we havex € E(xg, p);
that is,

(& — x5
Y ——<t (2.13)
i Pi
and we write

Z (xi — xO,i)Z . Z (xi — xé,i +xé,i - xo’i)z

2 2
i Pi i Pi
(% —x3 )2 (% — x3 (g — x0,0) (xg . — x0,)?
P I D D BEE e
2 2 2
i Pi i Pi i Pi
Fi —xg D2\ Y2 (- 05 — 2007\ M2
creg(LERE) (e
i Pi i Pi
(xéi—xo,i)z
)
i pi
<14+24+1=4,

where we have used thag € S(xo,0,t) C E(xg, p) and (2.13). If we now take
& =1/4 inclusion (2.10) follows.
To complete the proof we need to deal with the general case(os) and
p € Vo(xp). Givenxg € R” and p € Vo(xo) we define the convex functioir
with v (x0) = 0 by
Y (x) =¢(x) —@(xo) — p - (x —xo0).
Then

Slﬂ(-x()a 07 t) = S(ﬂ(XOa P, t)a

Vi (Sy (x0,0.1)) 4+ p = V(S, (xo0. p. 1)),

and we finish the proof of Theorem 3, by applying the known factg.to O
Now we just take Lebesgue measure in (1.1) and (1.2) to get the following
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Corallary 4. If the sections of satisfy the engulfing property, then there exist
positive constant€";, C2, depending only on the engulfing constant and the
dimension, such that for every secti®a= S(x, p, t) it holds that

Cat" <|S|u(S) < Cot", (2.14)

whereu is the Monge—Ampére measure associated &nd | - | is the Lebesgue
measure.

3. Equivalence between engulfing and shrinking properties

When the section§(x, p,t) and the measurg satisfy (2.14) with constants
independent of and p we will write

S| p(S) =~ 1.

Our next goal is to prove the following

Theorem 5. If the Monge—Ampére measure associated gatisfies
IS (S) =" (3.1)

for every sectionS = S(x, p,t), then the sections ap satisfy the shrinking
property.

Before proving Theorem 5, we need to introduce some concepts about
normalization. Given an affine transformatidn = Ax + b whereA is ann x n
invertible real matrix and € R*, we sety,(y) = (1/s)¢(T~1y), ¢ being a
convex function. FOrE € A, u(E) = |Vo(E)| and ii(E) = |V (E)| are the
Monge—Ampere measures associated smdy, respectively. We have

1

;(A*lf (Vo(E)) = VY, (TE)
and

l 71 -

s_nl detT ™~ |u(E) = @(TE).
The sections op andy, are related as follows:

1 71 t t

T(S(p(x, p,t)) =Sy, | Tx, ;(A ) p, 7)) 3.2

Now, let us mention a lemma due to Fritz John.

Lemma 6. Let S be a bounded convex setlR¥ with non-empty interior, and let
E be the ellipsoid of minimum volume containifigvhose center is the center of
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mass ofS. Then, there exists a constant depending only on the dimension such
that

o, ECSCE.

Since E is an ellipsoid, there is an affine transformatifnsuch thatT (E) =
B(0,1) and

B0, a,) CT(S) C B(O,1).

The setT (S) is called a normalization of and T is called an affine trans-
formation that normalizeS. We say that a convex sétis normalized when its
center of mass is 0 anBl(0, «,) C S C B(0, 1). Finally, one can also check that
if T normalizesS, (x, p,t) thenT (a S, (x, p, 1)) =aT (Sy(x, p,1)). Thisimplies
that if u verifies doubling conditionsDC) or (DP) on the sections op then iz
(as defined above) verifies the same conditions on the sectiahsasfd with the
same constants. We shall use the following estimate:

Theorem 7 (Aleksandrov)Let 2 C R” be an open bounded and convex set, and
u € C(£2), u convex ande|y; = 0. Then there exists a constant depending
only on dimension such that

|u()|" < e (diam(£2))" distCx, 02)1(82)

for all x € £2. Whereu is the Monge—Ampeére measure associated to

Proof of Theorem 5. Let us focus our attention in the case that the constants in
(2.14) depend only on andé. Following the lines of the proof of Theorem 2.1
in [7], we shall show that there exists a constart f(n, 0) < 1 depending only
onn andé (the engulfing constant) such th&t(xo, p, t¢) C AS, (x0, p, 1) holds
foreveryr andiwithO<t <land 1- B(n,0)(1— )" <A < 1.

Given a sectiors, (xg, p, 1), let T be an affine transformation which normal-
izes it, that is,

B(0, ay) C T(Sy(x0, p, 1)) C B(O, 1).

We denote byt the center of mass d, (xo, p, ¢), and definay (y) = o(T1y).
Fora € (0, 1), because of (3.2), we have that

T(Sw(xo, D, At)) = Sy (Txo,q,At),
whereg = (A~1) p. Since the center of mass 8§ (T x0,q, At) is Txy =0,

T (ASy (x0, p. 1)) = T {x§ + A(x — x§): x € Sy(x0, p. 1)}
= {XTx: x € Sy(x0, p, t)} =ASy (Txo0,q,1).
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If we sety*(y) =y (y) — ¥ (Txo) —q - (y — Txo) — £, thenVy* = Vi — g (this
implies that the Monge—Ampére measures associatgd tandy, are the same)
and

V™ 1as, (Txo.q.) =0
If y e Sy(Txo0,q,t) — LSy (Txo,q,t) we have disty, 39Sy (Txo,q,1)) <1—2A
and, by Theorem 7,
v ()|" < eadist(y, Sy (Txo, g, 1)) (diam(Sy (Txo, ¢, 1)))"
X [y (Sw(Txo, q, t))
< en(L—2)(diam(Sy (Txo, ¢, 1)) 1y (Sy (Tx0, 4, 1)).
In order to estimatg., (Sy (Txo, ¢, 1)), we use (2.14) for, to get
1(Sy (Txo,q,1) < C(n,O)1",
whereC = C(n, 0), sinceS, (xg, p, t) is already normalized by, that is,
B(0, ay) C T(Sy(x0, p, 1)) = Sy(Tx0,q,1) C B(O,1).
Then we have that
W[ < e, o)A — 1"
which yields
V) = —cn, )L - MM,
and using the definition of*,
V() — ¥ (Tx0) —q - (v — Txo) = (L= c(n, )" Y"1 = W)Yt > =1,

forallt <1—c(n, 0) Y"1 -1V thatistosay, + B(n,0)(L—1)" <A <1
for someg(n, 0) € (0, 1]. Then,

Sy (Txo0,q,tt) CASy (Tx0,q,1),
and applyingl’' 1 to both sides we finally obtain
Sy (x0, p, Tt) C ASy(x0, p, 1),

the shrinking property. Therefore, the converse to Theorem 2 is established and
the engulfing and shrinking properties are equivalemt.

4. A survey of resultsvia Theorem 5 and comments
In this section we mention some results and link them by applying Theorem 5

in order to provide a unified view for the behavior of Monge—Amp&€) dou-
bling measures in terms of the properties of the sections. But before that, we add
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some more notation. By John's lemma, there exist positive dimensional constants
C1, Cz such that for everg (x, p, t) section ofp there exists an ellipsoifl (x*, p)
verifying C1E (x*, p) C S(x, p,t) C C2E(x*, p). We will denote this by writing
S(x, p,t) ~ E(x*, p). Analogously, if there exist positive constaats cz, inde-
pendent ofx, p,t ands such thatc1E(p,s) C Vo(S(x, p,t)) C c2E(p, s), for
every sectior§ (x, p,t) ands > 0, then we will writeVo(S(x, p,1)) >~ E(p, s).
Caffarelli in [2] (and later Gutiérrez and Huang in [7]) proved that if the
sections ofp are bounded and its associated Monge—Ampére measure satisfies
(DC) theng is strictly convex. On the other hand, in [3] Caffarelli proved that if
the Monge—Ampére measure associateg $atisfieg DC) with ¢ strictly convex,
theny is C1* on compact sets dk” with « depending on the local Lipschitz
constant forp. See also the recent book [6] for a comprehensive exposition of
these results. Of course, in the case that the convex fungtioas derivatives at
xo, if p € Vo(xo) thenp = Vo(xo), the gradient ofp at xp. In this section, we
shall assume to be regular which allows to omit the in the notation for the
sections. Because of the comments above and the properties that will be required
of the sections, we shall see that this assumption is not actually a restriction. Then,
the sections op may be denoted b¥(x, #) for x € R” andr > 0.
We list some more possible properties for the family of all sections:

(A) There exist constant&1, K2, K3 andey, €2 all positive, with the following
property: given two section$(xo, 7o), S(x, t) with < 7o such that

S(xo, 10) N S(x, 1) #9,

and givenT an affine transformation that normaliz&6xg, ro), there exists
z € B(0, K3) depending orf (xg, 7o) andS(x, ¢), such that

t €2 t €1
B Z,K2<%) CT(S(x,t))CB z,Kl(g)
T B 1K AN
X € Z, 5 2<£> .

(B) There exists a constafit- 0 such that given a sectidiix, t) andy ¢ S(x, 1),
if T is an affine transformation that normaliz&s, 1), then
B(T(),®)NT(S(x,(1—e))) =9,
forany O<e < 1.
(C) MNy2oSkx, 1) ={x}andlJ,.oS(x, 1) =R".

and

These geometric properties allowed Caffarelli and Gutiérrez to develop in [4] a
real analysis theory related to the Monge—Ampere equation by proving a Besicov-
itch type covering lemma for the sectionsfif its associated Monge—Ampére
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measure satisfig®P) (see [8] for the parabolic case). We stress the importance
of these geometric conditions (A), (B) and (C), since they also charact&2e

as we shall prove in the next theorem. So, si(i2€) implies (DP), we note that

the doubling conditions in Caffarelli-Gutiérrez theory can be taken for granted
once we assume the geometric properties above. We are now in position to prove
the following characterizations fgbC).

Theorem 8. LetS(x, 1), x € R, ¢t > 0, be the sections of a strictly convex function
¢ with ¢ € CL(R"). Then the following are equivalent

(i) The Monge—Ampére measure associateg satisfiegDC).
(i) The sections satisfy propertiéa) and (B).
(i) The sections satisfy the engulfing property.
(iv) If S(x, p,t) >~ E(x*, p) then

t
Vo(S(x, p.1)) ~ E(p, ;).
(v) The Monge—Ampére measure satisfies
S| (S) =~ 1",

for all sectionsS = S(x, 7).
(vi) The sections satisfy the shrinking property.

Proof. We will follow the order(i) = (ii) = (iii) = (iv) = (V) = (Vi) = (i).

By Corollary 2.2 in [7] one knows thatDC) implies property (B), and in

the same paper Gutiérrez and Huang prove (Theorem 2.3) that this doubling
condition implies property (A). Moreover, in this property one can takeT x
ande2 = 1. On the other hand, in [1], Aimar et al. showed that, if the family
S(x, 1), x e R", t > 0, satisfies (A), (B) and (C), then it also satisfies both the
engulfing and the engulfirigoroperties with constantsandé*, respectively, that
depend only o8, K1 ande; (of course, property (C) is satisfied by the sections
of any strictly convex function). Now, by Theorem 3 we know that the engulfing
property implies thaVo(S(x, p,t)) >~ E(p,t/p) if S(x, p,t) ~ E(x*, p) and,

by Corollary 4, this last condition impliesS|uw(S) >~ " for every sectionS =
S(x,t). The next step is to use Theorem 5 to get tt$ate(S) ~ " implies the
shrinking property of the sections and finally, by virtue of the equivalence between
shrinking property and (DC) (Theorem 1), we complete the proaf.

References

[1] H. Aimar, L. Forzani, R. Toledano, Balls and quasi-metrics: a space of homogeneous type
modeling the real analysis related to the Monge—Ampeére equation, J. Fourier Anal. Appl. 4 (1998)
377-381.



732 L. Forzani, D. Maldonado / J. Math. Anal. Appl. 275 (2002) 721-732

[2] L.A. Caffarelli, Boundary regularity of maps with convex potentials, Comm. Pure Appl. Math. 45
(1992) 1141-1151.

[3] L.A. Caffarelli, Some regularity properties of solutions of Monge—Ampére equation, Comm. Pure
Appl. Math. 44 (1991) 965-969.

[4] L.A. Caffarelli, C.E. Gutiérrez, Real analysis related to the Monge—Ampére equation, Trans. Amer.
Math. Soc. 348 (1996) 1075-1092.

[5] L.A. Caffarelli, C.E. Gutiérrez, Properties of the solutions of the linearized Monge—Ampére
equation, Amer. J. Math. 119 (1997) 423-465.

[6] C. Gutiérrez, The Monge—Ampere Equation, Birkhaduser, 2001.

[7] C. Gutiérrez, Q. Huang, Geometric properties of the sections of solutions to the Monge—Ampére
equation, Trans. Amer. Math. Soc. 352 (2000) 4381-4396.

[8] Q. Huang, Harnack inequality for the linearized parabolic Monge—Ampeére equation, Trans. Amer.
Math. Soc. 351 (1999) 2025-2054.



