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Abstract

In this article we prove a theorem on the size of the image of sections of a convex func-
tion under its normal mapping when the sections satisfy a geometric property. We apply
this result to get new geometric characterizations for Monge–Ampère doubling measures.
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1. Introduction and main result

Given a convex functionϕ :Rn → R, the normal mapping ofϕ is the set-valued
function∇ϕ :Rn → P(Rn) defined by

∇ϕ(x0)= {
p ∈ R

n: ϕ(x)� ϕ(x0)+ p · (x − x0), ∀x ∈ R
n
}
,
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and forx0 ∈ R
n, p ∈ ∇ϕ(x0) andt > 0, a section ofϕ at heightt is the convex set

Sϕ(x0,p, t) = {
x ∈ R

n: ϕ(x) < ϕ(x0)+ p · (x − x0)+ t
}
.

The class of setsE ⊂ R
n such that∇ϕ(E) = ⋃

x∈E ∇ϕ(x) is Lebesgue mea-
surable is aσ -algebra containing the Borel sets ofR

n and we shall denote such
σ -algebra byA. The Monge–Ampère measure associated withϕ is defined for
E ∈ A by

µ(E)= ∣∣∇ϕ(E)
∣∣.

Throughout this paper the sectionsSϕ(x,p, t) will be assumed to be bounded
sets. For a bounded convex setS and a positiveλ, the notationλS stands for the
λ-dilation ofS with respect to its center of mass, that is

λS = {
x∗ + λ(x − x∗): x ∈ S

}
wherex∗ is the center of mass ofS. We shall study Monge–Ampère measures
that satisfy some doubling condition. We say thatµ satisfies(DC) if it is doubling
with respect to the center of mass on the sections ofϕ; that is, there exist constants
C > 0 and 0< α < 1 such that for all sectionsSϕ(x,p, t), we have

µ
(
Sϕ(x,p, t)

)
� Cµ

(
αSϕ(x,p, t)

)
.

On the other hand, we say thatµ satisfies(DP) if it is doubling with respect to
the parameter on the sections ofϕ; that is, there exists a constantC′ > 0 such that
for all sectionsSϕ(x,p, t) we have

µ
(
Sϕ(x,p, t)

)
� C′µ

(
Sϕ(x,p, t/2)

)
.

The study of the properties of Monge–Ampère doubling measures and of the
sections associated to convex functions has proved to be useful in the treatment of
solutions of the Monge–Ampère equation, its elliptic and parabolic linearizations
and its related real analysis, as can be seen in the fundamental papers of Caffarelli
[2,3], Caffarelli and Gutiérrez [4,5] and Huang [8]. Also, some of the properties
of the sections allow one to work in a more abstract setting by defining a quasi-
metricd onR

n such that(Rn, d,µ) becomes a space of homogeneous type. Then
the real analysis associated toµ and the sections follows: covering lemmata, types
of the Hardy–Littlewood maximal function, Calderón–Zygmund decomposition,
BMO, singular integrals, etc. For this framework, we refer to the paper of Aimar
et al. [1].

Many geometric conditions for the sectionsSϕ(x,p, t) have been defined in
order to explore the behavior of the Monge–Ampère measure. We first list three
of them:

(i) the sections satisfy theshrinkingproperty if there exist 0< τ,λ < 1 such
that for allx ∈ R

n, p ∈ ∇ϕ(x) andt > 0, it holds that

Sϕ(x,p, τ t) ⊂ λSϕ(x,p, t);
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(ii) the sections satisfy theengulfingproperty if there exists aθ > 1 such that if
y ∈ Sϕ(x,p, t), then

Sϕ(x,p, t) ⊂ Sϕ(y, q, θt)

for all q ∈ ∇ϕ(y);
(iii) the sections satisfy theengulfing∗ property if there exists aθ∗ > 1 such that

if y ∈ Sϕ(x,p, t), then

Sϕ(y, q, t)⊂ Sϕ(x,p, θ
∗t)

for all q ∈ ∇ϕ(y).

In [7], Gutiérrez and Huang studied these properties of the sections of a convex
functionϕ when its associated Monge–Ampère measure verifies (DC). Among
other results, they proved

Theorem 1 (Gutiérrez and Huang).The Monge–Ampère measure associated toϕ

satisfies(DC) if and only if the sections ofϕ satisfy the shrinking property.

Note that this theorem provides a purely geometric characterization of Monge–
Ampère(DC) doubling measures. They also establish

Theorem 2 (Gutiérrez and Huang).The shrinking property implies the engulfing
property of the sections.

We shall see that the converse to Theorem 2 also holds true. This will be a
consequence of our main result, Theorem 3. In order to state it, let us fix some
more notation.

We say thatx ∈ R
n belongs to the ellipsoidE(y,ρ) of centery and radii

ρ = (ρ1, . . . , ρn) if
n∑

i=1

(xi − yi)
2

ρ2
i

< 1.

For t > 0 we write

t

ρ
=
(

t

ρ1
, . . . ,

t

ρn

)
.

From now on, we shall omit the subscriptϕ in the notation of the sections ofϕ.
We will prove

Theorem 3. If the sections ofϕ satisfy the engulfing property with constantθ , then
there exist constantsc andC depending only onθ and the dimension such that, if
a sectionS(x0,p, t) with center of massx∗

0 and an ellipsoidE(x∗
0, ρ) verify

αnE(x∗
0, ρ)⊂ S(x0,p, t) ⊂E(x∗

0, ρ) (1.1)
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whereαn is a dimensional constant, then we have

cE

(
p,

t

ρ

)
⊂ ∇ϕ

(
S(x0,p, t)

)⊂ CE

(
p,

t

ρ

)
. (1.2)

Remarks. As we shall see, every constantc � 1/4 works in (1.2). Hypothesis
(1.1) in Theorem 3 is always available by means of John’s lemma; see Section 3
for its statement.

The paper is organized as follows: Section 2 is devoted to the proof of
Theorem 3. In Section 3 we prove that the engulfing property implies the
shrinking property and finally, in Section 4, we discuss other conditions on the
sections and summarize some related consequences of Theorem 3.

2. Proof of Theorem 3

Once we are given an ellipsoidE(x∗
0, ρ) such that (1.1) holds, we first assume

thatϕ(x0)= 0 andp = 0, so we haveϕ non-negative inRn andx ∈ S(x0,0, t) if
and only ifϕ(x) < t . Let us begin with the inclusion

∇ϕ
(
S(x0,p, t)

)⊂ CE

(
p,

t

ρ

)
. (2.1)

If q ∈ ∇ϕ(S(x0,0, t)), q ∈ ∇ϕ(x) for somex ∈ S(x0,0, t) and by the engulfing
property,

S(x0,0, t)⊂ S(x, q, θt). (2.2)

We define a couple of auxiliary vectorsw andh by

w = 1

(
∑n

j=1q
2
j ρ

2
j )

1/2

(
q1ρ

2
1, . . . , qnρ

2
n

)
, (2.3)

h = β(x∗
0 − γnw)+ (1− β)x (2.4)

whereγn andβ ∈ (0,1) are constants to fix in a while. We claim that ifh ∈
S(x0,0, t) then (2.1) holds. Indeed, ifh ∈ S(x0,0, t), by (2.2) we haveh ∈
S(x, q, θt), that is

θt > ϕ(h)− ϕ(x)− q · (h− x)= ϕ(h)− ϕ(x)− q · (βx∗
0 − βγnw − βx

)
= ϕ(h)− ϕ(x)− βq · x∗

0 + βγnq ·w + βq · x
which yields

βγnq ·w < θt + ϕ(x)− ϕ(h)+ βq · x∗
0 − βq · x

� θt + ϕ(x)+ βq · (x∗
0 − x)� θt + ϕ(x)+ β

(
ϕ(x∗

0)− ϕ(x)
)

= θt + βϕ(x∗
0)+ (1− β)ϕ(x)� θt + βt + (1− β)t = (θ + 1)t
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where we have used thatϕ is non-negative and convex, and the fact thatx, x0 ∈
S(x0,0, t). We summarize these inequalities in the following:

βγnq ·w < (θ + 1)t. (2.5)

On the other hand, we have

βγnq ·w = βγn

∑n
j=1q

2
j ρ

2
j

(
∑n

j=1q
2
j ρ

2
j )

1/2
= βγn

(
n∑

j=1

q2
j ρ

2
j

)1/2

. (2.6)

By linking (2.5) and (2.6), we finally obtain
n∑

j=1

q2
j ρ

2
j <

(
θ + 1

βγn

)2

t2 (2.7)

and this is the inclusion (2.1) withC = (θ + 1)/(βγn). To prove thath ∈
S(x0,0, t), note that by (2.4) it is enough to show

x∗
0 − γnw ∈ S(x0,0, t),

sincex already belongs to the convex setS(x0,0, t). In fact, we shall see that it is
possible to chooseγn such that

x∗
0 − γnw ∈ αnE(x∗

0, ρ). (2.8)

We write
n∑

i=1

[
1

ρi
(x∗

0,i − γnwi − x∗
0,i)

]2

= 1∑n
i=1 q

2
i ρ

2
i

n∑
i=1

γ 2
n

ρ2
i

q2
i ρ

4
i = γ 2

n , (2.9)

so that we just have to takeγn < αn to get (2.8). This completes the proof of
inclusion (2.1), with anyβ ∈ (0,1). Now, we face the inclusion

1

4
E

(
p,

t

ρ

)
⊂ ∇ϕ

(
S(x0,0, t)

)
, (2.10)

always in the caseϕ(x0) = 0. Let us takeq ∈ ∇ϕ(x) with x /∈ S(x0,0, t) and
considerx̄ ∈ ∂S(x0,0, t) such thatx0, x̄ andx are aligned. Then we have

x − x0 = k(x̄ − x0) (2.11)

for somek > 1. Sinceϕ is convex, forq ∈ ∇ϕ(x) andq̄ ∈ ∇ϕ(x̄) it holds that

0� (q − q̄) · (x − x̄)= (q − q̄) · [(x − x0)+ (x0 − x̄)
]
.

Replacing(x − x0) in this equation by its expression in (2.11) we get

q · (x̄ − x0)� q̄ · (x̄ − x0).

We also haveq ′ · (x ′ − x0)� ϕ(x ′) for all x ′ ∈ R
n andq ′ ∈ ∇ϕ(x ′). In particular,

applying this tox̄, we get that̄q · (x̄ − x0)� ϕ(x̄)= t . We combine all this in the
following inequalities
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(∑
i

q2
i

ρ2
i

t2

)1/2(∑
i

(x̄i − x0,i)
2

ρ2
i

)1/2

�
∑
i

qi
1

t
(x̄i − x0,i)

= 1

t
q · (x̄ − x0)� 1

t
q̄ · (x̄ − x0)� 1.

Now, if we found anε > 0 such that∑
i

(x̄i − x0,i)
2

ρ2
i

<
1

ε
(2.12)

we would have
∑

i q
2
i ρ

2
i /t

2 > ε, which impliesq /∈ εE(0, t/ρ). We will now find

and estimate the size of such anε. Sincex̄ ∈ ∂S(x0,0, t), we havex̄ ∈ E(x∗
0, ρ);

that is,

∑
i

(x̄i − x∗
0,i)

2

ρ2
i

� 1, (2.13)

and we write

∑
i

(x̄i − x0,i)
2

ρ2
i

=
∑
i

(x̄i − x∗
0,i + x∗

0,i − x0,i)
2

ρ2
i

=
∑
i

(x̄i − x∗
0,i)

2

ρ2
i

+ 2
∑
i

(x̄i − x∗
0,i)(x

∗
0,i − x0,i)

ρ2
i

+
∑
i

(x∗
0,i − x0,i)

2

ρ2
i

� 1+ 2

(∑
i

(x̄i − x∗
0,i)

2

ρ2
i

)1/2(∑
i

(x∗
0,i − x0,i)

2

ρ2
i

)1/2

+
∑
i

(x∗
0,i − x0,i)

2

ρ2
i

< 1+ 2+ 1 = 4,

where we have used thatx0 ∈ S(x0,0, t) ⊂ E(x∗
0, ρ) and (2.13). If we now take

ε = 1/4 inclusion (2.10) follows.
To complete the proof we need to deal with the general case onϕ(x0) and

p ∈ ∇ϕ(x0). Givenx0 ∈ R
n andp ∈ ∇ϕ(x0) we define the convex functionψ

with ψ(x0)= 0 by

ψ(x) = ϕ(x)− ϕ(x0)− p · (x − x0).

Then

Sψ(x0,0, t)= Sϕ(x0,p, t),

∇ψ
(
Sψ(x0,0, t)

)+ p = ∇ϕ
(
Sϕ(x0,p, t)

)
,

and we finish the proof of Theorem 3, by applying the known facts toψ . ✷
Now we just take Lebesgue measure in (1.1) and (1.2) to get the following
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Corollary 4. If the sections ofϕ satisfy the engulfing property, then there exist
positive constantsC1,C2, depending only on the engulfing constant and the
dimension, such that for every sectionS = S(x,p, t) it holds that

C1t
n � |S|µ(S)� C2t

n, (2.14)

whereµ is the Monge–Ampère measure associated toϕ and | · | is the Lebesgue
measure.

3. Equivalence between engulfing and shrinking properties

When the sectionsS(x,p, t) and the measureµ satisfy (2.14) with constants
independent ofx andp we will write

|S|µ(S)� tn.

Our next goal is to prove the following

Theorem 5. If the Monge–Ampère measure associated toϕ satisfies

|S|µ(S)� tn (3.1)

for every sectionS = S(x,p, t), then the sections ofϕ satisfy the shrinking
property.

Before proving Theorem 5, we need to introduce some concepts about
normalization. Given an affine transformationT x =Ax + b whereA is ann× n

invertible real matrix andb ∈ R
n, we setψs(y) = (1/s)ϕ(T −1y), ϕ being a

convex function. ForE ∈ A, µ(E) = |∇ϕ(E)| and µ̄(E) = |∇ψs(E)| are the
Monge–Ampère measures associated toϕ andψs respectively. We have

1

s
(A−1)t

(∇ϕ(E)
)= ∇ψs(T E)

and

1

sn
|detT −1|µ(E)= µ̄(T E).

The sections ofϕ andψs are related as follows:

T
(
Sϕ(x,p, t)

)= Sψs

(
T x,

1

s
(A−1)tp,

t

s

)
. (3.2)

Now, let us mention a lemma due to Fritz John.

Lemma 6. Let S be a bounded convex set inR
n with non-empty interior, and let

E be the ellipsoid of minimum volume containingS whose center is the center of
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mass ofS. Then, there exists a constantαn depending only on the dimension such
that

αnE ⊂ S ⊂E.

SinceE is an ellipsoid, there is an affine transformationT such thatT (E) =
B(0,1) and

B(0, αn) ⊂ T (S) ⊂ B(0,1).

The setT (S) is called a normalization ofS and T is called an affine trans-
formation that normalizesS. We say that a convex setS is normalized when its
center of mass is 0 andB(0, αn) ⊂ S ⊂ B(0,1). Finally, one can also check that
if T normalizesSϕ(x,p, t) thenT (αSϕ(x,p, t)) = αT (Sϕ(x,p, t)). This implies
that if µ verifies doubling conditions(DC) or (DP) on the sections ofϕ thenµ̄
(as defined above) verifies the same conditions on the sections ofψs and with the
same constants. We shall use the following estimate:

Theorem 7 (Aleksandrov).LetΩ ⊂ R
n be an open bounded and convex set, and

u ∈ C(Ω̄), u convex andu|∂Ω = 0. Then there exists a constantcn depending
only on dimensionn such that∣∣u(x)∣∣n � cn

(
diam(Ω)

)n−1 dist(x, ∂Ω)µ(Ω)

for all x ∈ Ω . Whereµ is the Monge–Ampère measure associated tou.

Proof of Theorem 5. Let us focus our attention in the case that the constants in
(2.14) depend only onn andθ . Following the lines of the proof of Theorem 2.1
in [7], we shall show that there exists a constant 0< β(n, θ) � 1 depending only
onn andθ (the engulfing constant) such thatSϕ(x0,p, τ t) ⊂ λSϕ(x0,p, t) holds
for everyτ andλ with 0< τ < 1 and 1− β(n, θ)(1− τ )n � λ < 1.

Given a sectionSϕ(x0,p, t), let T be an affine transformation which normal-
izes it, that is,

B(0, αn) ⊂ T
(
Sϕ(x0,p, t)

)⊂ B(0,1).

We denote byx∗
0 the center of mass ofSϕ(x0,p, t), and defineψ(y)= ϕ(T −1y).

Forλ ∈ (0,1), because of (3.2), we have that

T
(
Sϕ(x0,p,λt)

)= Sψ(T x0, q, λt),

whereq = (A−1)tp. Since the center of mass ofSψ(T x0, q, λt) is T x∗
0 = 0,

T
(
λSϕ(x0,p, t)

)= T
{
x∗

0 + λ(x − x∗
0): x ∈ Sϕ(x0,p, t)

}
= {

λT x: x ∈ Sϕ(x0,p, t)
}= λSψ(T x0, q, t).
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If we setψ∗(y)=ψ(y)−ψ(T x0)− q · (y −T x0)− t , then∇ψ∗ = ∇ψ − q (this
implies that the Monge–Ampère measures associated toψ∗ andψ are the same)
and

ψ∗|∂Sψ(T x0,q,t) = 0.

If y ∈ Sψ(T x0, q, t) − λSψ (T x0, q, t) we have dist(y, ∂Sψ(T x0, q, t)) � 1 − λ

and, by Theorem 7,∣∣ψ∗(y)
∣∣n � cn dist

(
y, ∂Sψ(T x0, q, t)

)(
diam

(
Sψ(T x0, q, t)

))n−1

×µψ

(
Sψ(T x0, q, t)

)
� cn(1− λ)

(
diam

(
Sψ(T x0, q, t)

))n−1
µψ

(
Sψ(T x0, q, t)

)
.

In order to estimateµψ(Sψ(T x0, q, t)), we use (2.14) forµψ to get

µ
(
Sψ(T x0, q, t)

)
� C(n, θ)tn,

whereC = C(n, θ), sinceSϕ(x0,p, t) is already normalized byT , that is,

B(0, αn)⊂ T
(
Sϕ(x0,p, t)

)= Sψ(T x0, q, t)⊂ B(0,1).

Then we have that∣∣ψ∗(y)
∣∣n � c(n, θ)(1− λ)tn

which yields

ψ∗(y)� −c(n, θ)−1/n(1− λ)1/nt,

and using the definition ofψ∗,

ψ(y)−ψ(T x0)− q · (y − T x0)�
(
1− c(n, θ)−1/n(1− λ)1/n

)
t � τ t,

for all τ � 1− c(n, θ)−1/n(1− λ)1/n; that is to say, 1− β(n, θ)(1− τ )n � λ < 1
for someβ(n, θ) ∈ (0,1]. Then,

Sψ(T x0, q, τ t)⊂ λSψ(T x0, q, t),

and applyingT −1 to both sides we finally obtain

Sϕ(x0,p, τ t) ⊂ λSϕ(x0,p, t),

the shrinking property. Therefore, the converse to Theorem 2 is established and
the engulfing and shrinking properties are equivalent.✷

4. A survey of results via Theorem 5 and comments

In this section we mention some results and link them by applying Theorem 5
in order to provide a unified view for the behavior of Monge–Ampère(DC) dou-
bling measures in terms of the properties of the sections. But before that, we add
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some more notation. By John’s lemma, there exist positive dimensional constants
C1,C2 such that for everyS(x,p, t) section ofϕ there exists an ellipsoidE(x∗, ρ)
verifyingC1E(x∗, ρ) ⊂ S(x,p, t) ⊂ C2E(x∗, ρ). We will denote this by writing
S(x,p, t) � E(x∗, ρ). Analogously, if there exist positive constantsc1, c2, inde-
pendent ofx,p, t and s such thatc1E(p, s) ⊂ ∇ϕ(S(x,p, t)) ⊂ c2E(p, s), for
every sectionS(x,p, t) ands > 0, then we will write∇ϕ(S(x,p, t)) �E(p, s).

Caffarelli in [2] (and later Gutiérrez and Huang in [7]) proved that if the
sections ofϕ are bounded and its associated Monge–Ampère measure satisfies
(DC) thenϕ is strictly convex. On the other hand, in [3] Caffarelli proved that if
the Monge–Ampère measure associated toϕ satisfies(DC) with ϕ strictly convex,
thenϕ is C1,α on compact sets ofRn with α depending on the local Lipschitz
constant forϕ. See also the recent book [6] for a comprehensive exposition of
these results. Of course, in the case that the convex functionϕ has derivatives at
x0, if p ∈ ∇ϕ(x0) thenp = ∇ϕ(x0), the gradient ofϕ at x0. In this section, we
shall assumeϕ to be regular which allows to omit thep in the notation for the
sections. Because of the comments above and the properties that will be required
of the sections, we shall see that this assumption is not actually a restriction. Then,
the sections ofϕ may be denoted byS(x, t) for x ∈ R

n andt > 0.
We list some more possible properties for the family of all sections:

(A) There exist constantsK1,K2,K3 andε1, ε2 all positive, with the following
property: given two sectionsS(x0, t0), S(x, t) with t � t0 such that

S(x0, t0)∩ S(x, t) �= ∅,
and givenT an affine transformation that normalizesS(x0, t0), there exists
z ∈B(0,K3) depending onS(x0, t0) andS(x, t), such that

B

(
z,K2

(
t

t0

)ε2
)

⊂ T
(
S(x, t)

)⊂ B

(
z,K1

(
t

t0

)ε1
)

and

T x ∈ B

(
z,

1

2
K2

(
t

t0

)ε2
)
.

(B) There exists a constantδ > 0 such that given a sectionS(x, t) andy /∈ S(x, t),
if T is an affine transformation that normalizesS(x, t), then

B
(
T (y), εδ

)∩ T
(
S
(
x, (1− ε)t

))= ∅,
for any 0< ε < 1.

(C)
⋂

t>0S(x, t) = {x} and
⋃

t>0S(x, t)= R
n.

These geometric properties allowed Caffarelli and Gutiérrez to develop in [4] a
real analysis theory related to the Monge–Ampère equation by proving a Besicov-
itch type covering lemma for the sections ofϕ if its associated Monge–Ampère
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measure satisfies(DP) (see [8] for the parabolic case). We stress the importance
of these geometric conditions (A), (B) and (C), since they also characterize(DC),
as we shall prove in the next theorem. So, since(DC) implies(DP), we note that
the doubling conditions in Caffarelli–Gutiérrez theory can be taken for granted
once we assume the geometric properties above. We are now in position to prove
the following characterizations for(DC).

Theorem 8. LetS(x, t), x ∈ R
n, t > 0, be the sections of a strictly convex function

ϕ with ϕ ∈ C1(Rn). Then the following are equivalent:

(i) The Monge–Ampère measure associated toϕ satisfies(DC).
(ii) The sections satisfy properties(A) and(B).
(iii) The sections satisfy the engulfing property.
(iv) If S(x,p, t) �E(x∗, ρ) then

∇ϕ
(
S(x,p, t)

)�E

(
p,

t

ρ

)
.

(v) The Monge–Ampère measure satisfies

|S|µ(S)� tn,

for all sectionsS = S(x, t).
(vi) The sections satisfy the shrinking property.

Proof. We will follow the order(i) ⇒ (ii) ⇒ (iii ) ⇒ (iv) ⇒ (v) ⇒ (vi) ⇒ (i).
By Corollary 2.2 in [7] one knows that(DC) implies property (B), and in
the same paper Gutiérrez and Huang prove (Theorem 2.3) that this doubling
condition implies property (A). Moreover, in this property one can takez = T x

and ε2 = 1. On the other hand, in [1], Aimar et al. showed that, if the family
S(x, t), x ∈ R

n, t > 0, satisfies (A), (B) and (C), then it also satisfies both the
engulfing and the engulfing∗ properties with constantsθ andθ∗, respectively, that
depend only onδ,K1 andε1 (of course, property (C) is satisfied by the sections
of any strictly convex function). Now, by Theorem 3 we know that the engulfing
property implies that∇ϕ(S(x,p, t)) � E(p, t/ρ) if S(x,p, t) � E(x∗, ρ) and,
by Corollary 4, this last condition implies|S|µ(S) � tn for every sectionS =
S(x, t). The next step is to use Theorem 5 to get that|S|µ(S) � tn implies the
shrinking property of the sections and finally, by virtue of the equivalence between
shrinking property and (DC) (Theorem 1), we complete the proof.✷
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