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Abstract

Let ϕ : R → [0, ∞) be an integrable function such thatϕχ(−∞,0) = 0 andϕ is decreasing in
(0, ∞). Let τh f (x) = f (x − h), with h ∈ R \ {0} and fR(x) = (1/R) f (x/R), with R > 0. In
this paper we study the pair of weights(u, v) such that the operatorsMτhϕ f (x) = supR>0 | f |∗
[τhϕ]R(x) are of restricted weak type(p, p) with respect to(u, v), 1 � p < ∞. As particular
cases, these operators include some maximal operators related to Cesàro convergence. We also
characterize those functionsϕ for which Mτhϕ is of (restricted) weak type(p, p) with respect
to the Lebesgue measure. Unlike the case of the Cesàro maximal operators, it follows from
the characterization that the interval of thosep such thatMτhϕ is of weak type(p, p) can be
left-closed,[p0, ∞], or left-open,(p0, ∞], without having restricted weak type(p0, p0).

1. Introduction
Let ϕ be a non-negative integrable function on the real line and let us denote byϕR(x) =
(1/R)ϕ(x/R), R > 0. It is well known that for all f ∈ L p(R), 1 � p < ∞, the convolutions
f ∗ ϕR converge inL p(R) to (

∫
ϕ) f asR goes to zero. The study of the almost everywhere (a.e.)

convergence off ∗ϕR is harder and we need to add certain assumptions onϕ. For instance, ifϕ has
support in[0, ∞) and it is decreasing in(0, ∞) then f ∗ ϕR converges to(

∫
ϕ) f a.e. asR → 0+,

f ∈ L p(R), 1 � p < ∞. This result follows from the fact that the maximal operator

Mϕ f (x) = sup
R>0

| f | ∗ ϕR

is of weak type(p, p), 1 � p < ∞.
Let us consider now the maximal operator associated with the translationτhϕ(x) = ϕ(x − h),

that is,
Mτhϕ f (x) = sup

R>0
| f | ∗ [τhϕ]R(x), h ∈ R\{0}.

We note the following facts.
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(a) The support of τhϕ is not necessarily contained in [0, ∞); if it is, then τhϕ is not necessarily
bounded for a decreasing function in (0, ∞).

(b) Examples of such operators are

M−
α f (x) = sup

R>0

1

R

∫ x−R

x−2R
| f (y)|

(
x − R − y

R

)α

dy, −1 < α < 0,

and

M̃+
α f (x) = sup

R>0

1

R

∫ x+R

x
| f (y)|

(
x + R − y

R

)α

dy, −1 < α < 0.

These operators coincide with Mτhϕ with h = 1 and h = −1 respectively where ϕ(t) =
tαχ(0,1](t). These operators are related to the Cesàro convergence of singular integrals and
Cesàro continuity [1,5]. It is known that they are of restricted weak type (1/(1+α), 1/(1+α)),
of strong type (p, p) for p > 1/(1 + α) and they are not of weak type (1/(1 + α), 1/(1 + α));
see, for instance, [5].

(c) Weighted weak type inequalities for M−
α and M̃+

α have been studied in [3, 8].

It follows from (a) that one cannot apply the classical theory to study the boundedness of Mτhϕ nor,
consequently, the a.e. convergence of f ∗ [τhϕ]R (however, the convolutions f ∗ [τhϕ]R converge
in L p(R), 1 � p < ∞, since τhϕ is integrable). On the other hand, (b) and (c) lead to us to study
the following questions.

(1) Is the behaviour of the maximal operator Mτhϕ with respect to the Lebesgue measure analogous
to that of M−

α and M̃+
α ? More precisely, is it always true that for all ϕ there exists p0 � 1 such

that Mτhϕ is of weak type (p, p) if and only if p > p0 and Mτhϕ is of restricted weak type
(p0, p0)?

(2) Weighted weak type inequalities for Mτhϕ in L p-spaces.

(3) Restricted weak type inequalities for Mτhϕ in weighted L p-spaces.

As for the first question, we shall see in this paper that the behaviour of Mτhϕ is not always
analogous to that of M−

α and M̃+
α . We shall demonstrate with examples of ϕ that the following

situations are possible for p0 � 1:

(i) Mτhϕ is of weak type (p, p) if and only if p > p0 and Mτhϕ is not of restricted weak type
(p0, p0);

(ii) Mτhϕ is of weak type (p, p) if and only if p > p0 and Mτhϕ is of restricted weak type (p, p),
and this is the case if and only if p � p0 (the case of M−

α and M̃+
α );

(iii) Mτhϕ is of weak type (p, p) if and only if p � p0, and Mτhϕ is not of restricted weak type
(p, p) if p < p0.

These examples will be given in Corollary 2.13, the proof of which uses answers to (2) and (3).
Since question (2) was studied in [2], we shall investigate only (3) in this paper. We present our

results in the next section. For the sake of completeness, we start with the results from [2].
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Throughout the paper, p′ stands for the conjugate exponent of p, 1 < p < ∞, and the letter C
means a positive constant that may change from one line to another. If E is a Lebesgue measurable
set then |E | stands for the Lebesgue measure of E . Given a positive measurable function u, the
maximal operator M−

u is defined by

M−
u f (x) = sup

a<x

∫ x
a | f |u∫ x

a u
.

We shall use that this operator is of weak type (1,1) with respect to the measure u(x)dx [13].

2. Statement of results

The problem of a characterization of two weighted weak type inequalities for Mτhϕ was solved in [2]
for functions ϕ belonging to a subset of

F+ =
{
ϕ : R → [0, ∞) : ϕχ(−∞,0) = 0, ϕ decreasing in (0, ∞), 0 <

∫
ϕ = A < ∞

}
.

The characterization depends on the behaviour of ϕ near zero and on the sign of h. In particular the
following theorem was proved [2, Theorems 1.6, 1.7 and 1.8].

THEOREM 2.1 Let 1 < p < ∞, h ∈ R\{0}, 0 < γ � |h|, δ ∈ (0, 1) and ϕ ∈ E+
γ,δ = {ϕ ∈

F+ : ϕ(γ ) > 0 and tδϕ(t) is increasing in (0, γ ]}. Let u and v be positive measurable functions
(weights).

(i) If h > 0, then Mτhϕ is of weak type (p, p) with respect to the pairs of weights (u, v), that is,
there exists C > 0 such that ∫

{Mτhϕ f >λ}
u � Cλ−p

∫
R

| f |pv (1)

for all λ > 0 and for all f ∈ L p(v) if and only if (u, v) ∈ A−
p,ϕ,γ , that is, there exists C > 0 such

that for all a < b < c(∫ c

b
u

)1/p (∫ b

a
v1−p′

(y)ϕ p′
(

b − y

c − a
γ

)
dy

)1/p′

� C
c − a

γ
,

1

p
+ 1

p′ = 1.

(ii) If h < 0 and supp(ϕ) ⊂ (0, |h|], then (1) holds if and only if (u, v) ∈ Ã+
p,ϕ,γ , that is, there exists

C > 0 such that for all a < b < c(∫ b

a
u

)1/p (∫ c

b
v1−p′

(y)ϕ p′
(

c − y

c − a
γ

)
dy

)1/p′

� C
c − a

γ
.

(iii) If h < 0 and supp(ϕ) ∩ (|h|, ∞) �= ∅, then (1) holds if and only if (u, v) ∈ Ã+
p,ϕ,γ ∩ Ap, where

Ap is the Muckenhoupt’s class of weights [9], that is, (u, v) ∈ Ap if there exists C such that for all
a < b (∫ b

a
u

)1/p (∫ b

a
v1−p′

)1/p′

� C (b − a).
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Notice that A−
p,ϕ,γ and Ã+

p,ϕ,γ are related to the Sawyer’s classes A−
p and A+

p [7, 12] which are
the classes of the good weights for the one-sided Hardy–Littlewood maximal operators

M− f (x) = sup
a<x

(x − a)−1
∫ x

a
| f |

and

M+ f (x) = sup
b>x

(b − x)−1
∫ b

x
| f |.

In fact, if 1 < p < ∞, ϕ = χ[0,1] and γ = 1 then A−
p = A−

p,ϕ,γ and A+
p = Ã+

p,ϕ,γ . For future use,

we recall that (u, v) ∈ A−
1 (A+

1 ) if and only if M+u � Cv (M−u � Cv) a.e. The Muckenhoupt A1
class [9] is defined in the same way with M+ replaced by the Hardy–Littlewood maximal operator

M f (x) = sup
a<x<b

(b − a)−1
∫ b

a
| f |.

When ϕ(0+) = limt→0+ ϕ(t) < +∞, the characterization given in Theorem 2.1 is simpler as
the following theorem shows; see, [2, Theorem 1.5].

THEOREM 2.2 Let 1 � p < ∞, ϕ ∈ F+ and ϕ(0+) < +∞.

(i) If h > 0, then (1) holds if and only if (u, v) belongs to A−
p .

(ii) If h < 0 and supp(ϕ) ⊂ (0, |h|], then (1) holds if and only if (u, v) belongs to A+
p .

(iii) If h < 0 and supp(ϕ) ∩ (|h|, ∞) �= ∅, then (1) holds if and only if (u, v) ∈ Ap.

Observe that if p0 is such that ϕ �∈ L p′
0(0, γ ), where 1/p0 + 1/p′

0 = 1, and

ess infx∈(a,b)v
1−p′

0(x) > 0 for some interval (a, b) then the conditions A−
p0,ϕ,γ and Ã+

p0,ϕ,γ do
not hold and therefore the two weighted weak type (p, p) inequalities for Mτhϕ are not true for
1 < p � p0. However it is still possible to have restricted weak type (p0, p0). This happens for M−

α

and M̃+
α with p0 = 1/(1 + α) (see [1, 3, 8]). This is our motivation for studying a characterization

of the restricted weak type inequalities in weighted L p-spaces for the general operator Mτhϕ . In
order to simplify the statements of the results we start with a definition.

DEFINITION 2.3 It is said that an operator T is of restricted weak type (p, p) with respect to the
pair of weights (u, v) if there exists C > 0 such that∫

{|T χE |>λ}
u � Cλ−p

∫
R

χEv (2)

for all λ > 0 and for all measurable sets E .

In the proofs of our results, we need the characterization of the weighted restricted weak type
inequalities for the one-sided Hardy–Littlewood maximal operators M+ and M−, and for the two-
sided Hardy–Littlewood maximal operator M (see [4, Theorem 3 and Lemma 2.8; 6, Proposition
1] for M and [10, 11] for the corresponding results for M+ and M− ). These characterizations are
collected in the next theorem.
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THEOREM 2.4 Let 1 � p < ∞.

(i) The one-sided Hardy–Littlewood maximal operator M− is of restricted weak type (p, p) with
respect to the pair of weights (u, v) if and only if (u, v) ∈ R A−

p , that is, there exists C > 0 such
that for all a < b < c and all measurable sets E,(∫ c

b
u

)
|E ∩ (a, b)|p � C (c − a)p

∫ b

a
χEv.

(ii) The one-sided Hardy–Littlewood maximal operator M− is of restricted weak type (p, p) with
respect to the pair of weights (u, v) if and only if (u, v) ∈ R A+

p , that is, there exists C > 0 such
that for all a < b < c and all measurable sets E,(∫ b

a
u

)
|E ∩ (b, c)|p � C (c − a)p

∫ c

b
χEv.

(iii) The Hardy–Littlewood maximal operator M is of restricted weak type (p, p) with respect to the
pair of weights (u, v) if and only if (u, v) ∈ R Ap, that is, if there exists C such that for all a < b
and all measurable sets E,(∫ b

a
u

)
|E ∩ (a, b)|p � C (b − a)p

∫ b

a
χEv.

Now we are ready to state our first result which characterizes the weighted restricted weak type
inequalities when ϕ(0+) < ∞.

THEOREM 2.5 Let 1 � p < ∞, ϕ ∈ F+ and ϕ(0+) < +∞.

(i) If h > 0, then Mτhϕ is of restricted weak type (p, p) with respect to the pairs of weights (u, v) if
and only if (u, v) ∈ R A−

p .

(ii) If h < 0 and supp(ϕ) ⊂ (0, |h|], then Mτhϕ is of restricted weak type (p, p) with respect to the
pairs of weights (u, v) if and only if (u, v) ∈ R A+

p .

(iii) If h < 0 and supp(ϕ) ∩ (|h|, ∞) �= ∅, then Mτhϕ is of restricted weak type (p, p) with respect
to the pairs of weights (u, v) if and only if (u, v) ∈ R Ap.

Now we state our main result, that is, without assuming that ϕ(0+) < ∞.

THEOREM 2.6 Let 1 � p < ∞, h ∈ R\{0}, 0 < γ � |h|, δ ∈ (0, 1) and ϕ ∈ E+
γ,δ .

(i) If h > 0, then Mτhϕ is of restricted weak type (p, p) with respect to the pairs of weights (u, v)

if and only if (u, v) ∈ R A−
p,ϕ,γ , that is, there exists C > 0 such that for all a < b < c and all

measurable sets E,(∫ c

b
u

) (∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
dy

)p

� C

(
c − a

γ

)p ∫ b

a
χEv.

(ii) If h < 0 and supp(ϕ) ⊂ (0, |h|], then Mτhϕ is of restricted weak type (p, p) with respect to the
pairs of weights (u, v) if and only if (u, v) ∈ R Ã+

p,ϕ,γ , that is, there exists C > 0 such that, for all
a < b < c and all measurable sets E,(∫ b

a
u

) (∫ c

b
χE (y)ϕ

(
c − y

c − a
γ

)
dy

)p

� C

(
c − a

γ

)p ∫ c

b
χEv.
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(iii) If h < 0 and supp(ϕ) ∩ (|h|, ∞) �= ∅, then Mτhϕ is of restricted weak type (p, p) with respect
to the pairs of weights (u, v) if and only if (u, v) ∈ R Ã+

p,ϕ,γ ∩ R Ap.

REMARK 2.7 We observe that R A−
p and R A+

p are equal to R A−
p,ϕ,γ and R Ã+

p,ϕ,γ with ϕ = χ[0,1]
and γ = 1, respectively.

The proof of Theorems 2.5 and 2.6 will be given in section 3. The last section is dedicated to
the proof of the relations between the classes of weights for Mτhϕ and those for M+ and M−. The
results read as follows (we distinguish the cases when p > 1 and p = 1).

PROPOSITION 2.8 Let γ > 0, δ ∈ (0, 1) and p(1 − δ) � 1. Assume that ϕ ∈ E+
γ,δ . Then

(i) R A−
p(1−δ) ⊂ R A−

p,ϕ,γ ⊂ R A−
p ,

(ii) R A+
p(1−δ) ⊂ R Ã+

p,ϕ,γ ⊂ R A+
p .

PROPOSITION 2.9 Let γ > 0 and ϕ ∈ F+. Then

(i) (u, v) ∈ R A−
1,ϕ,γ if and only if (u, v) ∈ A−

1 and ϕ(0+) < ∞.

(ii) (u, v) ∈ R Ã+
1,ϕ,γ if and only if (u, v) ∈ A+

1 and ϕ(0+) < ∞.

It is clear (see [14]) that, for the operator Mτhϕ , the weak type (1, 1) inequality is equivalent to
the restricted one. Therefore, Proposition 2.9 together with Theorem 2.6 characterize the weighted
weak type (1, 1) inequality. In particular, ϕ(0+) < ∞ is necessary.

It is worth noticing that it is possible to state and prove the corresponding theorems for the class
F− = {ϕ : ϕ(−x) ∈ F+}. Then the results for ϕ ∈ F = {ϕ(x) = ψ(x) + ψ(−x) : ψ ∈ F+} can
be obtained. It follows that if ϕ ∈ F and the support of ϕ is equal to R, then the class of weights
characterizing the (restricted) weak type (p, p) inequality is contained in (R Ap) Ap. Therefore, it
is interesting to characterize the weights w in the Muckenhoupt class (R Ap) Ap such that (w, w) is
a good pair for the (restricted) weak type (p, p) inequality for Mτhϕ .

PROPOSITION 2.10 Let γ > 0 and ϕ ∈ F+. Assume that w belongs to Ap, 1 < p < ∞, that is,
the pair (w, w) belong to Ap. The following statements are equivalent:

(i) w ∈ A−
p,ϕ,γ ;

(ii) w ∈ Ã+
p,ϕ,γ ;

(iii) there exists C > 0 such that∫ b

a
w1−p′

(y)ϕ p′
(

b − y

b − a
γ

)
dy � C

∫ b

a
w1−p′

(y) dy

for all a < b.

PROPOSITION 2.11 Let γ > 0 and ϕ ∈ F+. Assume that w belongs to R Ap, 1 < p < ∞. The
following statements are equivalent:

(i) w ∈ R A−
p,ϕ,γ ;

(ii) w ∈ R Ã+
p,ϕ,γ ;
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(iii) there exists C > 0 such that∫ b

a
χE (y)ϕ

(
b − y

b − a
γ

)
dy � C‖w−1χ(a,b)‖p′,∞;w

(∫ b

a
χEw

)1/p

for all a < b and any measurable subset E, where

‖ f ‖p′,∞;w = sup
t>0

t

(∫
{x :| f (x)|>t}

w

)1/p′

.

Propositions 2.10 and 2.11 together with Theorems 2.1 and 2.6 allow to describe the class of
functions ϕ for which Mτhϕ is of weak or restricted weak type (p, p) with respect to the Lebesgue
measure.

THEOREM 2.12 Let h ∈ R\{0}, 0 < γ � |h|, δ ∈ (0, 1) and ϕ ∈ E+
γ,δ .

(i) Mτhϕ is of weak type (p, p), 1 < p < ∞, with respect to the Lebesgue measure if and only if
ϕ p′

is integrable on (0, γ ) (or on any bounded interval (0, a)).

(ii) Mτhϕ is of restricted weak type (p, p), 1 � p < ∞, with respect to the Lebesgue measure if
and only if there exists C > 0 such that

∫ t
0 ϕ(s) ds � C t1/p for all t ∈ (0, γ ) (or for all t ∈ (0, a),

a < ∞).

We first note that the conditions on ϕ in Theorem 2.12 describe only the behaviour of ϕ near to
zero. Furthermore, this theorem answers question (1) from the introduction. The following corollary
provides examples of functions ϕ with a different behaviour near the left endpoint of the interval of
numbers p where Mτhϕ is of weak type (p, p).

COROLLARY 2.13 Let p � 1. Let −1 < α � 0 and β ∈ R with β � 0 if α = 0. Let η, γ and δ be
such that ϕ(t) = tα(log 1/t)βχ(0,η)(t) ∈ E+

γ,δ .

(i) If −1 < α � 0 and β > 0, then Mτhϕ is of weak type (p, p) with respect to the Lebesgue
measure if and only if p > 1/(1 + α) and it is not of restricted weak type (p, p) for p � 1/(1 + α).

(ii) If −1 < α � 0 and β = 0, then Mτhϕ is of weak type (p, p) with respect to the Lebesgue
measure if and only if p > 1/(1+α); it is further of restricted weak type (1/(1+α), 1/(1+α))and
it is not of restricted weak type (p, p) for p < 1/(1 + α).

(iii) If −1 < α < 0 and β < α, then Mτhϕ is of weak type (p, p) with respect to the Lebesgue
measure if and only if p � 1/(1 + α) and it is not of restricted weak type (p, p) for p � 1/(1 + α).

(iv) If −1 < α < 0 and α � β < 0, then Mτhϕ is of weak type (p, p) with respect to the Lebesgue
measure if and only if p > 1/(1 + α); it is further of restricted weak type (1/(1 + α), 1/(1 + α))

and it is not of restricted weak type (p, p) for p < 1/(1 + α).

To prove this corollary, we just have to check when the conditions in Theorem 2.12 are satisfied.

3. Proof of Theorems 2.5 and 2.6

Proof of Theorem 2.5. The proof of Theorem 2.5 is an immediate consequence of [2, Lemma 2.1]
and Theorem 2.4 stated in section 2. We reproduce here [2, Lemma 2.1].
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LEMMA 3.1 Let ϕ ∈ F+ and ϕ(0+) < +∞. Let � > 0 be such that ϕ(�) > 0. There exist positive
constants C1 and C2 such that the following hold.

(i) If h > 0,

C1ϕ(�)hM− f (x) � Mτhϕ f (x) �
(

ϕ(0)h +
∫ ∞

0
ϕ

)
M− f (x).

(ii) If h < 0 and supp(ϕ) ⊂ (0, |h|],
C2ϕ(�)|h|M+ f (x) � Mτhϕ f (x) � ϕ(0)|h|M+ f (x).

(iii) If h < 0, supp(ϕ) ∩ (|h|, ∞) �= ∅ and � > |h|

2ϕ(�) min{|h|, � + h}M f (x) � Mτhϕ f (x) � 2

(
ϕ(0)|h| +

∫ ∞

|h|
ϕ

)
M f (x).

Proof of Theorem 2.6. The proof of Theorem 2.6 follows the lines of that of Theorem 2.1 (see [2,
proofs of Theorems 1.6, 1.7 and 1.8]). We shall give only the proof of (i) because the proofs of (ii)
and (iii) can be obtained in the same way (following [2, proofs of Theorems 1.6, 1.7 and 1.8]).

As in [2], we write ϕ = ϕχ(0,γ ]+ϕχ(γ,∞). Then if we define Mϕ,h,γ := Mτh(ϕχ(0,γ ]) and Mϕ,h,∞ :=
Mτh(ϕχ(γ,∞)) we get the following inequalities:

max
{

Mϕ,h,γ , Mϕ,h,∞
}

� Mτhϕ � Mϕ,h,γ + Mϕ,h,∞. (3)

Therefore, Mτhϕ satisfies (2) if and only if (2) holds for Mϕ,h,γ and Mϕ,h,∞. The study of Mϕ,h,∞
is completely analogous to that of Mτhϕ with ϕ(0+) < ∞. The difficult part is concentrated in the
local operator Mϕ,h,γ .

To prove (i) in Theorem 2.6, we start studying the local part Mϕ,h,γ . More precisely, we shall
prove the following theorem.

THEOREM 3.2 Let 1 � p < ∞, h > 0, 0 < γ � h, δ ∈ (0, 1) and ϕ ∈ E+
γ,δ . The following

statements are equivalent:

(a) Mϕ,h,γ is of restricted weak type (p, p) with respect to the pairs of weights (u, v);

(b) (u, v) ∈ R A−
p,ϕ,γ .

Proof. Notice that if β = (h + γ )/h > 1, then Mϕ,h,γ can be written as

Mϕ,h,γ f (x) = sup
R>0

1

R

∫ x−h R

x−βh R
| f (y)|ϕ

(
x − h R − y

R

)
dy.

As in [2], we define the following non-centred version of Mϕ,h,γ :

Nϕ,h,γ f (x) = sup
(a,b)∈Ax

γ

b − a

∫ b

a
| f (y)|ϕ

(
b − y

b − a
γ

)
dy,

where Ax = {(a, b) : b < x and b − a � γ (x − b)/h}. In [2, Proposition 3.2] it was proved that
for ϕ ∈ E+

γ,δ there exists C > 0 such that

Mϕ,h,γ f (x) � Nϕ,h,γ f (x) � C Mϕ,h,γ f (x). (4)
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Therefore, (a) is equivalent to the same inequality involving Nϕ,h,γ .
(a) ⇒ (b). Let a < b < c and f = χE∩(a,b). First, assume that b − a � γ (c − b)/h. Since tϕ(t)

is increasing, we have, for all x ∈ (b, c),

Nϕ,h,γ f (x) � γ

b − a

∫ b

a
χE (y)ϕ

(
b − y

b − a
γ

)
dy

� γ

c − a

∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
dy = λ.

Assume now that b − a < γ (c − b)/h and let a < a be such that b − a = γ (c − a)/h. For all
x ∈ (b, c), we obtain

Nϕ,h,γ f (x) � γ

b − a

∫ b

a
χE (y)ϕ

(
b − y

b − a
γ

)
dy = h

c − a

∫ b

a
χE (y)ϕ

(
b − y

c − a
h

)
dy

� γ

c − a

∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
= λ.

Applying (a) with Nϕ,h,γ we have, in both cases,(∫ c

b
u

) (∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
dy

)p

� C

(
c − a

γ

)p ∫ b

a
χEv.

(b) ⇒ (a). In order to prove this implication we need the following proposition.

PROPOSITION 3.3 Let 1 � p < ∞, h > 0, 0 < γ � h, δ ∈ (0, 1) and ϕ ∈ E+
γ,δ . Assume that

(u, v) ∈ R A−
p,ϕ,γ . Then, there exists C > 0 such that for every measurable set E

Nϕ,h,γ χE (x) � C
[

M−
u

(
χEvu−1

)
(x)

]1/p
.

Before proving the proposition, we give the proof of (b) ⇒ (a). By inequality (4) and the
proposition we have∫

{Mϕ,h,γ χE >λ}
u �

∫
{Nϕ,h,γ χE >λ}

u �
∫

{M−
u (χE vu−1)>

(
λ
C

)p}
u.

Now (a) follows from these inequalities and the fact that M−
u is of weak type (1,1) with respect to

the measure u(x)dx .

Proof of Proposition 3.3. Let x ∈ R and (a, b) ∈ Ax . First, let us assume that 4
∫ x

b u >
∫ x

a u. Since
(u, v) ∈ R A−

p,ϕ,γ , we have

∫ b

a
χE (y)ϕ

(
b − y

b − a
γ

)
dy � C

x − a

γ

(∫ b

a
χEv

)1/p (∫ x

b
u

)−1/p

� C
x − a

γ

(∫ x

a
χEv

)1/p (∫ x

a
u

)−1/p

.
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Now, (a, b) ∈ Ax implies that x − a = x − b + b − a � h
γ
(b − a) + (b − a) = h+γ

γ
(b − a).

Therefore

∫ b

a
χE (y)ϕ

(
b − y

b − a
γ

)
dy � C

b − a

γ

(
γ + h

γ

[
M−

u

(
χEvu−1

)
(x)

]1/p
)

.

Now, assume that 4
∫ x

b u �
∫ x

a u. Let {xi } be the increasing sequence in [a, x] defined by x0 = a
and ∫ x

xi+1

u =
∫ xi+1

xi

u = 1

2

∫ x

xi

u.

Let N be such that xN � b < xN+1 (observe that N � 2). Then we have

∫ b

a
χE (y)ϕ

(
b − y

b − a
γ

)
dy =

N−2∑
i=0

∫ xi+1

xi

· · · dy +
∫ b

xN−1

· · · dy = I + I I.

We first estimate I I . By R A−
p,ϕ,γ , the monotonicity of ϕ and tϕ(t) on (0, γ ], and the inequality∫ x

xN−1
u � 4

∫ x
b u, we get

I I �
∫ b

xN−1

χE (y)ϕ

(
b − y

x − a
γ

)
dy

� x − a

x − xN−1

∫ b

xN−1

χE (y)ϕ

(
b − y

x − xN−1
γ

)
dy

� C
x − a

γ

(∫ b

xN−1

χEv

)1/p (∫ x

b
u

)−1/p

� C
x − a

γ

(∫ x

xN−1

χEv

)1/p (∫ x

xN−1

u

)−1/p

� C

(
b − a

γ

) (
γ + h

γ

) [
M−

u

(
χEvu−1

)
(x)

]1/p
.

Now we shall estimate I . Notice that for each i , 0 � i � N − 2, there exists qi =
(U xi+1 − b)/(U − 1) where U = (b − a)/(xi+1 − xi ) > 1 such that qi ∈ [xi , xi+1] and
(b − y)/(b − a) � (xi+1 − y)/(xi+1 − xi ) if and only if y � qi . We can thus write

∫ xi+1

xi

χE (y)ϕ

(
b − y

b − a
γ

)
dy =

∫ qi

xi

· · · dy +
∫ xi+1

qi

· · · dy = I I I + I V .
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Since ϕ is decreasing, the hypothesis (u, v) ∈ R A−
p,ϕ,γ and the definition of the sequence {xi } give

I V �
∫ xi+1

qi

χE (y)ϕ

(
xi+1 − y

xi+1 − xi
γ

)
dy �

∫ xi+1

xi

· · · dy

� C
xi+2 − xi

γ

(∫ xi+1

xi

χEv

)1/p (∫ xi+2

xi+1

u

)−1/p

� C
xi+2 − xi

γ

(∫ x

xi

χEv

)1/p (∫ x

xi

u

)−1/p

� C
xi+2 − xi

γ

[
M−

u

(
χEvu−1

)
(x)

]1/p
.

To estimate I I I , we shall use that (b − y)/(b − a) < (xi+1 − y)/(xi+1 − xi ) if and only if y < qi

and the fact that tδϕ(t) is increasing in (0, γ ]. Then

I I I =
∫ qi

xi

χE (y)ϕ

(
b − y

b − a
γ

)
dy �

∫ qi

xi

χE (y)ϕ

(
xi+1 − y

xi+1 − xi
γ

)
g(y) dy,

where g(y) =
(

b − y

b − a

)−δ (
xi+1 − y

xi+1 − xi

)δ

. Since g is decreasing in (xi , qi ), we have

I I I �
(

b − xi

b − a

)−δ ∫ xi+1

xi

χE (y)ϕ

(
xi+1 − y

xi+1 − xi
γ

)
dy.

Using the same argument as in the boundedness of I V and the increasingness of (b − y)−δ we get Is this referring
to an integral?

that

I I I � C

(
b − xi

b − a

)−δ xi+2 − xi

γ

[
M−

u

(
χEvu−1

)
(x)

]1/p

� C

γ

(∫ xi+2

xi

(
b − y

b − a

)−δ

dy

) [
M−

u

(
χEvu−1

)
(x)

]1/p
.

Now, summing over i , we get

I � 2C
b − a

γ

2 − δ

1 − δ

[
M−

u

(
χEvu−1

)
(x)

]1/p
.

Finally, putting together the estimates of I and I I , we are done.

As a consequence of Theorem 2.5 we get the following characterization of the restricted weak
type inequalities for Mϕ,h,∞.

THEOREM 3.4 Let ϕ ∈ F+, h > 0 and 0 < γ � h. Then Mϕ,h,∞ is of restricted weak type (p, p)

with respect to the pairs of weights (u, v) if and only if (u, v) ∈ R A−
p .

Proof. Let ψ = τ−γ (ϕχ(γ,∞)). It is clear that ψ ∈ F+ and τh(ϕχ(γ,∞)) = τh+γ (ψ). Then Mϕ,h,∞
is equal to the operator Mτh+γ ψ . Therefore, since h + γ > 0 and ψ(0+) = ϕ(γ ) < +∞, applying
Theorem 2.5 (i) we are done.
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Proof of Theorem 2.6(i). If (2) holds, then the same estimate is true for Mϕ,h,γ and, by Theorem
3.2, (u, v) ∈ R A−

p,ϕ,γ .
Conversely, by (3), we only have to show that Mϕ,h,γ and Mϕ,h,∞ satisfy (2). First, by Theorem

3.2, (u, v) ∈ R A−
p,ϕ,γ implies that Mϕ,h,γ satisfies (2). On the other hand, since ϕ is decreasing, we

have (
ϕ(γ )

∫ b

a
χE

)p

�
(∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
dy

)p

,

whence R A−
p,ϕ,γ ⊂ R A−

p . Now, Theorem 3.4 gives that Mϕ,h,∞ is of restricted weak type (p, p)

with respect to the pair (u, v).

4. Proofs of Propositions 2.8, 2.9, 2.10 and 2.11, Theorem 2.12 and Corollary 2.13
Proof of Proposition 2.8(i). We only prove the first inclusion in (i) as the second was already
established in the proof of Theorem 2.6. Let a < b < c, let E be a measurable set and
E ′ = E ∩ (a, b). The integral∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
dy =

∫
E ′

ϕ

(
b − y

c − a
γ

)
dy

is not greater than the integral∫ b

b−|E ′|
ϕ

(
b − y

c − a
γ

)
dy = c − a

γ

∫ (|E ′|/(c−a))γ

0
ϕ(s) ds,

since the measure of E ′ is equal to the measure of the interval (b − |E ′|, b) and the function y →
ϕ

(
b − y

c − a
γ

)
is increasing in (a, b). This remark and the fact that ϕ ∈ E+

γ,δ gives

∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
dy �

∫ b

b−|E ′|
ϕ

(
b − y

c − a
γ

)
dy

= c − a

γ

∫ (|E ′|/(c−a))γ

0
ϕ(s) ds

� c − a

γ
ϕ(γ )γ δ

∫ (|E ′|/(c−a))γ

0
s−δ ds

= ϕ(γ )γ δ

1 − δ

(
c − a

γ

)δ

|E ′|1−δ.

Raising the last inequality to the pth power and multiplying by
∫ c

b u we get that(∫ c

b
u

) (∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
dy

)p

�
(∫ c

b
u

) (
ϕ(γ )γ δ

1 − δ

)p (
c − a

γ

)pδ

|E ′|p(1−δ).

If the pair (u, v) belong to R A−
p(1−δ) the last term is dominated by

C

(
ϕ(γ )γ δ

1 − δ

)p (
c − a

γ

)pδ (
c − a

γ

)p(1−δ) ∫ b

a
vχE ,

and consequently (u, v) ∈ R A−
p,ϕ,γ .
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Proof of Proposition 2.8(ii). We shall begin by proving the second inclusion. Assume that (u, v) ∈
R Ã+

p,ϕ,γ . Let a < b < c and let E be a measurable set. Since the function y → ϕ

(
c − y

c − a
γ

)
is increasing in [a, c) it follows that ϕ(γ ) � ϕ

(
c − y

c − a
γ

)
for all y ∈ (b, c). Using that (u, v) ∈

R Ã+
p,ϕ,γ we have(∫ b

a
u

) (∫ c

b
χE (y) dy

)p

(ϕ(γ ))p �
(∫ b

a
u

) (∫ c

b
χE (y)ϕ

(
c − y

c − a
γ

)
dy

)p

� C

(
c − a

γ

)p ∫ c

b
χEv.

Therefore (u, v) ∈ R A+
p .

We prove now the first inclusion in 2.8 (i i). Assume that (u, v) ∈ R A+
p(1−δ). Let a < b < c, let

E be a measurable set and E ′ = E ∩ (b, c). Since the function y → ϕ

(
c − y

c − a
γ

)
is increasing in

(b, c), the measure of E ′ is equal to the measure of the interval (c − |E ′|, c) and we obtain∫ c

b
χE (y)ϕ

(
c − y

c − a
γ

)
dy =

∫
E ′

ϕ

(
c − y

c − a
γ

)
dy

�
∫ c

c−|E ′|
ϕ

(
c − y

c − a
γ

)
dy = c − a

γ

∫ (|E ′|/(c−a))γ

0
ϕ(s) ds.

This inequality and the fact that ϕ ∈ E+
γ,δ gives∫ c

b
χE (y)ϕ

(
c − y

c − a
γ

)
dy � c − a

γ
ϕ(γ )γ δ

∫ (|E ′|/(c−a))γ

0
s−δ ds

= ϕ(γ )γ δ

1 − δ

(
c − a

γ

)δ

|E ′|1−δ.

Raising the last inequality to the pth power, multiplying by
∫ b

a u and using that (u, v) ∈ R A+
p(1−δ)

we get that(∫ b

a
u

) (∫ c

b
χE (y)ϕ

(
c − y

c − a
γ

)
dy

)p

�
(∫ b

a
u

) (
ϕ(γ )γ δ

1 − δ

)p (
c − a

γ

)pδ

|E ′|p(1−δ)

� C

(
ϕ(γ )γ δ

1 − δ

)p (
c − a

γ

)pδ (
c − a

γ

)p(1−δ) ∫ c

b
vχE = C

(
c − a

γ

)p ∫ c

b
vχE .

Therefore (u, v) ∈ R Ã+
p,ϕ,γ .

Proof of Proposition 2.9. We only prove (i). Let (u, v) ∈ R A−
1,ϕ,γ . Given n ∈ N, let En = {v � n}

and vn = vχEn . Let a < b < c, where b is a Lebesgue point of χEn and vn for all n ∈ N. Now,
applying the condition R A−

1,ϕ,γ with E = En we get(
1

c − a

∫ c

b
u

) (∫ b

a
χEn (y)ϕ

(
b − y

c − a
γ

)
dy

)
� C

∫ b

a
vn .
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Since ϕ is decreasing,(
1

c − a

∫ c

b
u

)
ϕ

(
b − a

c − a
γ

)
1

b − a

(∫ b

a
χEn

)
� C

1

b − a

∫ b

a
vn .

On letting a ↑ b, we have (
1

c − b

∫ c

b
u

)
ϕ(0+)χEn (b) � Cvn(b).

Finally, on letting n → ∞, we obtain(
1

c − b

∫ c

b
u

)
ϕ(0+) � Cv(b)

for almost every b ∈ R, and we are done.
Conversely, if (u, v) ∈ A−

1 and ϕ(0+) < ∞ then, by Theorem 2.2, Mτhϕ with h > 0 is of weak
type (1, 1) with respect to (u, v) and therefore is of restricted weak type (1, 1) with respect to (u, v),
or equivalently (u, v) ∈ R A−

1,ϕ,γ .

Proof of Proposition 2.10. (i) ⇒ (iii). Let a < b and choose c such that b = 1
2 (a + c). As ϕ is

decreasing, w is in A−
p,ϕ,γ and by the Hölder inequality we have

(∫ c

b
w

)1/p (∫ b

a
w1−p′

(y)ϕ p′
(

b − y

b − a
γ

)
dy

)1/p′

�
(∫ c

b
w

)1/p (∫ b

a
w1−p′

(y)ϕ p′
(

b − y

c − a
γ

)
dy

)1/p′

� C
c − a

γ
= C

c − b

γ
� C

γ

(∫ c

b
w

)1/p (∫ c

b
w1−p′

)1/p′

.

Therefore ∫ b

a
w1−p′

(y)ϕ p′
(

b − y

b − a
γ

)
dy � C

γ

∫ c

b
w1−p′

.

As w is in Ap we have that w1−p′ ∈ Ap′ and then w1−p′
is a doubling weight. Consequently,∫ c

b
w1−p′ � C

∫ b

a
w1−p′

.

Putting together the last two inequalities we obtain (iii).

(iii) ⇒ (i). Let a < b < c. We have to show that

(∫ c

b
w

)1/p (∫ b

a
w1−p′

(y)ϕ p′
(

b − y

c − a
γ

)
dy

)1/p′

� C
c − a

γ
.
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Let us take ā � a and c̄ � c such that b = (ā + c̄)/2 and c̄ − ā � 2(c − a). Since ϕ is decreasing,
tδϕ(t) is increasing in (0, γ ], and the fact that (iii) holds together with w ∈ Ap gives

(∫ c

b
w

)1/p (∫ b

a
w1−p′

(y)ϕ p′
(

b − y

c − a
γ

)
dy

)1/p′

�
(∫ c̄

b
w

)1/p (∫ b

ā
w1−p′

(y)ϕ p′
(

b − y

c̄ − ā
γ

)
dy

)1/p′

� 2δ

(∫ c̄

b
w

)1/p (∫ b

ā
w1−p′

(y)ϕ p′
(

b − y

b − ā
γ

)
dy

)1/p′

� C

(∫ c̄

b
w

)1/p (∫ b

ā
w1−p′

(y)dy

)1/p′

� C(c̄ − ā) � C

γ
(c − a).

(ii) ⇒ (iii). Let a < b and let ā < a be such that a = 1
2 (ā + b). As ϕ is decreasing and w is in

Ã+
p,ϕ,γ ,

(∫ a

ā
w

)1/p (∫ b

a
w1−p′

(y)ϕ p′
(

b − y

b − a
γ

)
dy

)1/p′

�
(∫ a

ā
w

)1/p (∫ b

a
w1−p′

(y)ϕ p′
(

b − y

b − ā
γ

)
dy

)1/p′

� C
b − ā

γ
� C

γ
(ā − a)

� C

γ

(∫ a

ā
w

)1/p (∫ a

ā
w1−p′

(y) dy

)1/p′

Therefore ∫ b

a
w1−p′

(y)ϕ p′
(

b − y

b − a
γ

)
dy � C

∫ a

ā
w1−p′

(y) dy.

Now (iii) follows from the fact that w1−p′
is a doubling weight because w1−p′ ∈ Ap′ .

(iii) ⇒ (ii). Let a < b < c. We have to show that(∫ b

a
w

)1/p (∫ c

b
w1−p′

(y)ϕ p′
(

c − y

c − a
γ

)
dy

)1/p′

� C
c − a

γ
.

Let us take ā � a and b̄ � b such that b̄ = (ā + c)/2 and c − ā � 2(c − a). As w is a doubling
weight (because w ∈ Ap) we have that

∫ b

a
w � C

∫ b̄

ā
w.
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Therefore(∫ b

a
w

)1/p (∫ c

b
w1−p′

(y)ϕ p′
(

c − y

c − a
γ

)
dy

)1/p′

� C

(∫ b̄

ā
w

)1/p (∫ c

b̄
w1−p′

(y)ϕ p′
(

c − y

c − a
γ

)
dy

)1/p′

.

Since ϕ is decreasing, tδϕ(t) is increasing in (0, γ ), the fact that (iii) holds together with w ∈ Ap

gives that the last term is dominated by

C

(∫ b̄

ā
w

)1/p (∫ c

b̄
w1−p′

(y)ϕ p′
(

c − y

c − ā
γ

)
dy

)1/p′

� 2δC

(∫ b̄

ā
w

)1/p (∫ c

b̄
w1−p′

(y)ϕ p′
(

c − y

c − b̄
γ

)
dy

)1/p′

� C

(∫ b̄

ā
w

)1/p (∫ c

b̄
w1−p′

(y)dy

)1/p′

� C(c − ā) � C

γ
(c − a).

Putting together all the inequalities, we obtain (ii).

Proof of Proposition 2.11. (i) ⇒ (iii). Let a < b and choose c such that b = 1
2 (a + c). As ϕ is

decreasing, w is in R A−
p,ϕ,γ and by the Hölder inequality in L(p, q) spaces we have(∫ c

b
w

) (∫ b

a
χE (y)ϕ

(
b − y

b − a
γ

)
dy

)p

�
(∫ c

b
w

) (∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
dy

)p

� C

(
c − a

γ

)p ∫ b

a
χEw � C

(
b − a

γ

)p ∫ b

a
χEw

� C

(∫ b

a
ww−1

)p ∫ b

a
χEw � C

(∫ b

a
w

)
‖w−1χ(a,b)‖p

p′,∞;w
∫ b

a
χEw.

As w is in R Ap we have that w is a doubling weight. Therefore∫ b

a
w � C

∫ c

b
w.

Putting together the inequalities we obtain(∫ c

b
w

) (∫ b

a
χE (y)ϕ

(
b − y

b − a
γ

)
dy

)p

� C

(∫ c

b
w

)
‖w−1χ(a,b)‖p

p′,∞;w
∫ b

a
χEw.

Now it is clear that (iii) follows from the last inequality.

(iii) ⇒ (i). The proof is similar to that of (iii) ⇒ (i) in Proposition 2.10, but (see [6]) it uses the
equivalence of R Ap to the existence of a C such that(∫ c

b
w

)1/p

‖w−1χ(b,c)‖p′,∞;w � C(c − b)

for the whole interval (b, c).
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Let a < b < c. We have to show that(∫ c

b
w

) (∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
dy

)p

� C

(
c − a

γ

)p ∫ b

a
χEw.

Let us take ā � a and c̄ � c such that b = (ā + c̄)/2 and c̄ − ā � 2(c − a). Since ϕ is decreasing,
tδϕ(t) is increasing in (0, γ ), the fact that (iii) holds together with w ∈ R Ap gives(∫ c

b
w

) (∫ b

a
χE (y)ϕ

(
b − y

c − a
γ

)
dy

)p

�
(∫ c̄

b
w

) (∫ b

ā
χE (y)ϕ

(
b − y

c̄ − ā
γ

)
dy

)p

� 2δ

(∫ c̄

b
w

) (∫ b

ā
χE (y)ϕ

(
b − y

b − ā
γ

)
dy

)p

� C

(∫ c̄

b
w

)
‖w−1χ(ā,b)‖p

p′,∞;w
∫ b

ā
χEw

� C(c̄ − ā)p
∫ b

ā
χEw � C

(
c − a

γ

)p ∫ b

ā
χEw.

(ii) ⇒ (iii). Let a < b and let ā be such that a = 1
2 (ā + b). As ϕ is decreasing, w is in R Ã+

p,ϕ,γ and
by the Hölder inequality in L(p, q) spaces we have(∫ a

ā
w

) (∫ b

a
χE (y)ϕ

(
b − y

b − a
γ

)
dy

)p

�
(∫ a

ā
w

) (∫ b

a
χE (y)ϕ

(
b − y

b − ā
γ

)
dy

)p

� C

(
b − ā

γ

)p ∫ b

a
χEw � C

(
b − a

γ

)p ∫ b

a
χEw

� C

γ p

(∫ b

a
w

)
‖w−1χ(a,b)‖p

p′,∞;w
∫ b

a
χEw.

As w is in R Ap we have that w is a doubling weight. Therefore∫ b

a
w � C

∫ a

ā
w.

Putting together the last inequalities we obtain(∫ a

ā
w

) (∫ b

a
χE (y)ϕ

(
b − y

b − a
γ

)
dy

)p

� C

γ p

(∫ a

ā
w

)
‖w−1χ(a,b)‖p

p′,∞;w
∫ b

a
wχE .

Now (iii) follows from this inequality.

(iii) ⇒ (ii). Let a < b < c. We have to show that(∫ b

a
w

) (∫ c

b
χE (y)ϕ

(
c − y

c − a
γ

)
dy

)p

� C

(
c − a

γ

)p ∫ c

b
wχE

for any measurable set E . We may assume that E ⊂ (b, c).



18 A. L. BERNARDIS AND F. J. MARTÍN-REYES

Let us take ā � a and b̄ � b such that b̄ = (ā + c)/2 and c − ā � 2(c − a). As w is a doubling
weight (because w ∈ R Ap) we have that∫ b

a
w � C

∫ b̄

ā
w.

Therefore(∫ b

a
w

) (∫ c

b
χE (y)ϕ

(
c − y

c − a
γ

)
dy

)p

� C

(∫ b̄

ā
w

) (∫ c

b̄
χE (y)ϕ

(
c − y

c − a
γ

)
dy

)p

.

Since ϕ is decreasing, tδϕ(t) is increasing in (0, γ ), the fact that (iii) holds together with w ∈ R Ap

gives that the last term is dominated by

C

(∫ b̄

ā
w

) (∫ c

b̄
χE (y)ϕ

(
c − y

c − ā
γ

)
dy

)p

� 2δC

(∫ b̄

ā
w

) (∫ c

b̄
χE (y)ϕ

(
c − y

c − b̄
γ

)
dy

)p

� C

(∫ b̄

ā
w

)
‖w−1χ(b̄,c)‖p

p′,∞;w
(∫ c

b̄
χEw

)
� C(c − ā)p

(∫ c

b̄
χEw

)
� C

(
c − a

γ

)p ∫ c

b̄
χEw = C

(
c − a

γ

)p ∫ c

b
χEw,

where in the last inequality we have used that E ⊂ (b, c). Putting together all the inequalities, we
obtain (ii).

Proof of Theorem 2.12. By Theorem 2.1 and Proposition 2.10, Mτhϕ is of weak type (p, p) with
respect to the Lebesgue measure if and only if there exists C such that∫ b

a
ϕ p′

(
b − y

b − a
γ

)
dy � C(b − a)

for all a < b. By a change of variables, this is equivalent to the fact that ϕ p′
is integrable on (0, γ ).

In order to prove (ii), we use Proposition 2.11 and Theorem 2.6 to obtain that Mτhϕ is of restricted
weak type (p, p), with respect to the Lebesgue measure if and only if there exists C such that∫

E
ϕ

(
b − y

b − a
γ

)
dy � C(b − a)1/p′ |E |1/p

for all a < b and any subset E ⊂ (a, b). Since ϕ is decreasing, the above inequality holds for all E
if and only if it holds for any interval (b − s, b) ⊂ (a, b), that is, if and only if there exists C such
that

b − a

γ

∫ (s/(b−a))γ

0
ϕ =

∫ b

b−s
ϕ

(
b − y

b − a
γ

)
dy � C(b − a)1/p′

s1/p

for all s ∈ (0, b − a). Setting t = s

b − a
γ , we are done.
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Proof of Corollary 2.13. The existence of η, γ and δ is easily verified by differentiating ϕ.
We only prove (i). We observe that the limit

lim
t→0+

∫ t
0 ϕ

t1/p
= lim

t→0+ p
ϕ(t)

t (1/p)−1
= � ∈ [0, ∞]

is finite if and only if p > 1/(1 + α). It follows from Theorem 2.12 (ii) that Mτhϕ is of restricted
weak type (p, p) if and only if p > 1/(1 + α).

On the other hand, Mτhϕ is of weak type (p, p) if p > 1/(1 + α). In fact, if we choose ε > 0
such that α − εβ > −1/p′, then ϕ p′

is integrable on (0, γ ) since ϕ(s) � Csα−εβ for small s. By
Theorem 2.12 (i), Mτhϕ is of weak type (p, p).
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