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TWO WEIGHTED INEQUALITIES FOR CONVOLUTION
MAXIMAL OPERATORS

A. L. Bernardis∗ and F. J. Mart́ın-Reyes†

Abstract
Let ϕ : R → [0,∞) an integrable function such that ϕχ(−∞,0) = 0

and ϕ is decreasing in (0,∞). Let τhf(x) = f(x − h), with

h ∈ R \ {0} and fR(x) = 1
R

f( x
R

), with R > 0. In this paper

we characterize the pair of weights (u, v) such that the opera-
tors Mτhϕf(x) = supR>0 |f | ∗ [τhϕ]R(x) are of weak type (p, p)
with respect to (u, v), 1 < p < ∞.

1. Introduction

Let us consider the dilates ϕR(x) = 1
Rϕ( xR ), R > 0, of a nonnegative

integrable function ϕ defined on the real line. It is well known that the
study of the a.e. convergence of the convolutions f ∗ ϕR as R → 0 is
related to the behavior of the maximal operator

Mϕf(x) = sup
R>0

|f | ∗ ϕR(x).

If ϕ belongs to the set F of the even functions ϕ : R → [0,∞), decreasing
in [0,∞) with 0 <

∫
R
ϕ = A < ∞, then a classical result establishes that

Mϕ satisfies the weighted weak type inequality∫
{Mϕf>λ}

u ≤ C

λp

∫
R

|f |pv,(1.1)
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1 ≤ p < ∞, if and only if (u, v) belongs to the Ap class of Muckenhoupt,
i.e., if there exists C > 0 such that for all a < b(∫ b

a

u

)1/p(∫ b

a

v1−p′
)1/p′

≤ C (b−a), if 1 < p < ∞,
1
p

+
1
p′

= 1,

and
Mu ≤ C v a.e., if p = 1,

where Mf(x) = suph>0
1
2h

∫ x+h
x−h |f(t)| dt is the (two -sided) Hardy-Little-

wood maximal function. The above result is a consequence of the char-
acterization for M [5] and the following pointwise inequalities:

2�ϕ(�)Mf(x) ≤ Mϕf(x) ≤ AMf(x),(1.2)

where � is a positive real number such that ϕ(�) > 0 (the existence of
� is guaranteed since we are assuming that ϕ �≡ 0), together with the
characterization of the weighted weak type inequalities for M (see [5]
and [7]). The right inequality in (1.2) is a classical result (see [7]), the
left one is an easy consequence of the inequalities

1
R

∫
R

|f(y)|ϕ
(
x− y

R

)
dy ≥ 1

R

∫ x+
R

x−
R
. . . dy

≥ 2�ϕ(�)

[
1

2�R

∫ x+
R

x−
R
|f(y)| dy

]
.

Sharper estimates can be obtained if the function ϕ is a member of
the following set of functions: F+ = {ϕ : R → [0,∞) : ϕχ(−∞,0) = 0, ϕ
decreasing in (0,∞) with 0 <

∫
R
ϕ = A < ∞} or F− = {ϕ : ϕ(−x) ∈

F+}. In fact, for almost all x ∈ R we have that, if ϕ ∈ F+ and � > 0 is
such that ϕ(�) > 0, then

�ϕ(�)M−f(x) ≤ Mϕf(x) ≤ AM−f(x),(1.3)

and if ϕ ∈ F− and � > 0 is such that ϕ(−�) > 0, then

�ϕ(−�)M+f(x) ≤ Mϕf(x) ≤ AM+f(x),(1.4)

where

M−f(x) = sup
h>0

1
h

∫ x

x−h
|f(t)| dt and M+f(x) = sup

h>0

1
h

∫ x+h

x

|f(t)| dt

are the one-sided Hardy-Littlewood maximal functions. The right in-
equalities were proved by M. Lorente [2], the left ones can be obtained
as in (1.2). By (1.3) and the characterization of the weighted weak
type inequalities for M− (see [6] and [3]) we get that, if ϕ ∈ F+ and



Weighted Inequalities for Maximal Operators 121

1 ≤ p < ∞, then (1.1) holds if and only if (u, v) belongs to the Sawyer’s
class A−

p , i.e., if there exists C > 0 such that for all a < b < c(∫ c

b

u

)1/p
(∫ b

a

v1−p′
)1/p′

≤ C (c− a), if 1 < p < ∞

and
M+u ≤ C v a.e., if p = 1.

An analogous result holds with ϕ ∈ F− and (u, v) ∈ A+
p which is the

same as A−
p but reversing the orientation of the real line.

In this paper we are interested in the behavior of the convolution
maximal operator associated to a translation of a function ϕ ∈ F (F+

or F−), i.e., if τhϕ(x) = ϕ(x − h) we wish to characterize (1.1) for the
maximal operator

Mτhϕf(x) = sup
R>0

|f | ∗ [τhϕ]R(x).

Clearly it is enough to work with functions ϕ ∈ F+ since the results for
ϕ ∈ F− are obtained similarly and the results for ϕ ∈ F follow from the
corresponding ones for F+ and F−. Examples of these operators are

M−
α f(x) = sup

R>0

1
R

∫ x−R

x−2R

|f(y)|
(
x−R− y

R

)α
dy, − 1 < α < 0

and

M̃+
α f(x) = sup

R>0

1
R

∫ x+R

x

|f(y)|
(
x+R− y

R

)α
dy, − 1 < α < 0.

These operators were studied in [1] and [4] and are equal to Mτhϕ where
ϕ(t) = tαχ(0,1](t) with h = 1 and h = −1 respectively.

Observe that in the above examples ϕ(0+) = limt→0+ ϕ(t) = +∞. If
ϕ ∈ F+ and ϕ(0+) < +∞, the weighted weak type inequalities (1.1) are
equivalent to conditions A−

p , A+
p or Ap as it is shown in the following

theorem which we shall prove in Section 2.

Theorem 1.5. Let 1 ≤ p < ∞, ϕ ∈ F+ and ϕ(0+) < +∞. Then

(i) If h > 0, (1.1) holds for Mτhϕ if and only if (u, v) ∈ A−
p .

(ii) If h < 0 and supp(ϕ) ⊂ (0, |h|], (1.1) holds for Mτhϕ if and only if
(u, v) ∈ A+

p .
(iii) If h < 0 and supp(ϕ) ∩ (|h|,∞) �= ∅, (1.1) holds for Mτhϕ if and

only if (u, v) ∈ Ap.
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When ϕ(0+) = +∞, the situation is different. For example, the
weighted weak type inequalities (1.1) for Mα (M̃α) are equivalent to
conditions which are strictly contained in A−

p (A+
p ). Therefore, there

are weights in A−
p (A+

p ) which are not good weights for Mα (M̃α).
We shall dedicate Sections 3 and 4 to characterize the good weights for

Mτhϕ assuming only some restriction on the decreasingness of ϕ. More
precisely we shall work in the rest of the paper with functions ϕ ∈ E+

γ,δ,
with γ > 0, δ ∈ (0, 1) and

E+
γ,δ = {ϕ ∈ F+ : ϕ(γ) > 0 and tδϕ(t) is increasing in (0, γ]}.

Observe that ϕ ∈ E+
γ,δ implies that tϕ(t) is increasing in (0, γ]. Also

notice that the functions ϕ(t) = tαχ(0,1](t), corresponding to the oper-
ators Mα and M̃α, belongs to E+

1,−α. Other examples belonging to E+
γ,δ

for some γ and some δ are the following: ϕ(t) = tα
(
log 1

t

)
χ(0,1](t) with

−1 < α ≤ 0 and ϕ(t) = (1 + log 1
t )χ(0,1](t) + tβχ(1,∞)(t), with β < −1.

We shall prove the following characterizations of the weighted weak
type (p, p) inequalities, 1 < p < ∞, for Mτhϕ, under the assumption ϕ ∈
E+
γ,δ. Notice that we always may assume that 0 < γ ≤ |h|.

Theorem 1.6. Let 1 < p < ∞, h > 0, 0 < γ ≤ h, δ ∈ (0, 1) and
ϕ ∈ E+

γ,δ. The following statements are equivalent.

(i) (1.1) holds for Mτhϕ.
(ii) (u, v) ∈ A−

p,ϕ,γ , i.e., there exists C > 0 such that

(∫ c

b

u

)1/p
(∫ b

a

v1−p′(y)ϕp
′
(
b− y

c− a
γ

)
dy

)1/p′

≤ C
c− a

γ
,

for all a < b < c.

Theorem 1.7. Let 1 < p < ∞, h < 0, 0 < γ ≤ |h|, δ ∈ (0, 1), ϕ ∈
E+
γ,δ and assume that supp(ϕ) ⊂ (0, |h|]. The following statements are

equivalent.

(i) (1.1) holds for Mτhϕ.
(ii) (u, v) ∈ Ã+

p,ϕ,γ , i.e., there exists C > 0 such that(∫ b

a

u

)1/p(∫ c

b

v1−p′(y)ϕp
′
(
c− y

c− a
γ

)
dy

)1/p′

≤ C
c− a

γ
,

for all a < b < c.
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Theorem 1.8. Let 1 < p < ∞, h < 0, 0 < γ ≤ |h|, δ ∈ (0, 1), ϕ ∈ E+
γ,δ

and assume that supp(ϕ) ∩ (|h|,∞) �= ∅. The following statements are
equivalent.

(i) (1.1) holds for Mτhϕ.
(ii) (u, v) ∈ Ã+

p,ϕ,γ ∩Ap.

Taking into account the results for Mα and M̃α we see that the class
of good weights for Mτhϕ will depend on the behavior of ϕ close to zero.
This is our starting point to analize the operator Mτhϕ. In fact, given
ϕ ∈ F+, h ∈ R, h �= 0 and γ > 0 small enough, let us say γ ≤ |h|, we
write

ϕ = ϕχ(0,γ] + ϕχ(γ,∞).

Then if we denote Mϕ,h,γ := Mτh(ϕχ(0,γ]) and Mϕ,h,∞ := Mτh(ϕχ(γ,∞))

we get the following pointwise inequalities:

max {Mϕ,h,γ ,Mϕ,h,∞} ≤ Mτhϕ ≤ Mϕ,h,γ +Mϕ,h,∞.(1.9)

Therefore, Mτhϕ satisfies (1.1) if and only if (1.1) holds for Mϕ,h,γ and
Mϕ,h,∞. The study of Mϕ,h,∞ is completely similar to the study of
Mτhϕ with ϕ(0+) < ∞. The difficult part is concentrated in the lo-
cal operator Mϕ,h,γ . The operators Mϕ,h,γ have the following explicit
expressions:

Mϕ,h,γf(x) = sup
R>0

1
R

∫ x−|h|R

x−(|h|+γ)R
|f(y)|ϕ

(
x− |h|R− y

R

)
dy if h > 0

and

Mϕ,h,γf(x) = sup
R>0

1
R

∫ x+|h|R

x+(|h|−γ)R
|f(y)|ϕ

(
x+ |h|R− y

R

)
dy if h < 0.

We may observe that the operators Mϕ,h,γ are of different geometric
nature depending on the sign of h. If h > 0, the integrals are taken over
intervals I ⊂ (−∞, x) and ϕ is evaluated in a point which depends on
the distance of y to the end point of I nearer to x, while if h < 0 the
integrals are computed over intervals I ⊂ (x,∞) and ϕ is evaluated in
a point which depends on the distance of y to the end point of I farer
from x.

The paper is organized as follows: Section 2 and 3 are devoted to the
proof of Theorems 1.5 and 1.6 respectively, while we give the proofs of
Theorems 1.7 and 1.8 in Section 4.

Throughout the paper h, γ and δ are real numbers, h �= 0, γ > 0 with
γ ≤ |h|, 0 < δ < 1 and the classes E+

γ,δ are the ones defined above. The
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functions u and v will be weights, i.e., positive measurable functions.
Finally, p′ stands for the conjugate exponent of p, 1 < p < ∞, and the
letter C means a positive constant that may change from one line to
another.

2. Proof of Theorem 1.5

Let ϕ ∈ F+ and ϕ(0+) < +∞. Without loss generality we can assume
that ϕ(0) = ϕ(0+). The proof of Theorem 1.5 is based on the following
lemma.

Lemma 2.1. Let � > 0 be such that ϕ(�) > 0. There exist positive
constants C1 and C2 such that

(i) If h > 0,

C1ϕ(�)hM−f(x) ≤ Mτhϕf(x) ≤
(
ϕ(0)h+

∫ ∞

0

ϕ

)
M−f(x).

(ii) If h < 0 and supp(ϕ) ⊂ (0, |h|],

C2ϕ(�)|h|M+f(x) ≤ Mτhϕf(x) ≤ ϕ(0)|h|M+f(x).

(iii) If h < 0, supp(ϕ) ∩ (|h|,∞) �= ∅ and � > |h|,

2ϕ(�) min{|h|, �+h}Mf(x) ≤ Mτhϕf(x) ≤ 2

(
ϕ(0)|h| +

∫ ∞

|h|
ϕ

)
Mf(x).

Before proving the above lemma we define the following maximal op-
erators:

N−
µ f(x) = sup

T>0

1
T

∫ x−T

x−µT
|f(y)| dy for µ > 1

and

N+
η f(x) = sup

T>0

1
T

∫ x+T

x+ηT

|f(y)| dy for 0 < η < 1.

The above operators are pointwise equivalent to M− and M+ respec-
tively. In fact, we have the following proposition.

Proposition 2.2. There exist positive constants C1 and C2 such that

(i) C1M
−f(x) ≤ N−

µ f(x) ≤ µM−f(x) and
(ii) C2M

+f(x) ≤ N+
η f(x) ≤ M+f(x).
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Proof: The right inequalities in (i) and (ii) are obvious. In order to prove
the left inequality in (i), we may assume that M−f(x) < ∞. Let s be
such that 1/µ < s < 1. Then, there exists T > 0 such that

sM−f(x) ≤ 1
µT

∫ x

x−µT
|f(y)| dy

=
1
µT

∫ x−T

x−µT
|f(y)| dy

+
1
µT

∫ x

x−T
|f(y)| dy

≤ 1
µ
N−
µ f(x) +

1
µ
M−f(x).

Then, since s > 1/µ we obtain (i) with C1 = µs− 1. The left inequality
in (ii) is proved similarly. In fact, assume that M+f(x) < ∞ and let s
be such that η < s < 1. Then, there exists T > 0 such that

sM+f(x) ≤ 1
T

∫ x+T

x

|f(y)| dy

=
1
T

∫ x+ηT

x

|f(y)| dy

+
1
T

∫ x+T

x+ηT

|f(y)| dy

≤ ηM+f(x) +N+
η f(x).

Then, since η < s we obtain (ii) with C2 = s− η.

Proof of Lemma 2.1: (i) First, notice that τh(ϕ) is dominated by
ϕ(0)χ(0,h] + τh(ϕ) ∈ F+. Therefore, by (1.3) we get the right inequality
of (i). On the other hand, we fix µ = h+


h > 1 and since ϕ is decreasing
we have that

1
R

∫
R

|f(y)|ϕ
(
x− y − hR

R

)
dy ≥ 1

R

∫ x−hR

x−(
+h)R

. . . dy

≥ hϕ(�)

[
1
hR

∫ x−hR

x−µhR
|f(y)| dy

]
.
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Taking supremum over R > 0 we have that Mτhϕf(x) ≥ hϕ(�)N−
µ f(x)

and using Proposition 2.2(i) we obtain statement (i).

(ii) By the hypothesis on h and on the support of ϕ we can easily see
that τh(ϕ) is dominated by ϕ(0)χ[h,0] ∈ F− and by (1.4) we get that
Mτhϕf(x) ≤ ϕ(0)|h|M+f(x). Let us fix η = |h|−


|h| . Then (ii) follows by
the inequalities

1
R

∫
R

|f(y)|ϕ
(
x− y − hR

R

)
dy ≥ 1

R

∫ x+|h|R

x+(|h|−
)R
. . . dy

≥ |h|ϕ(�)

[
1

|h|R

∫ x+|h|R

x+η|h|R
|f(y)| dy

]
,

taking supremum over R > 0 and applying Proposition 2.2(ii).

(iii) The function τh(ϕ) is dominated by a sum of two functions: φ1 =
ϕ(0)χ[h,0] ∈ F− and φ2 = τh(ϕ)χ(0,∞) ∈ F+. Therefore, using (1.3) and

(1.4) we get that Mτhϕf(x) ≤ ϕ(0)|h|M+f(x) +
(∫ ∞

|h| ϕ
)
M−f(x) ≤

2
(
ϕ(0)|h| +

∫ ∞
|h| ϕ

)
Mf(x). On the other hand, if ν = min{|h|, � + h},

then

1
R

∫
R

|f(y)|ϕ
(
x− y − hR

R

)
dy ≥ 1

R

∫ x+|h|R

x−(
+h)R

. . . dy

≥ 2νϕ(�)

[
1

2νR

∫ x+νR

x−νR
|f(y)| dy

]
.

Therefore, taking supremum over R > 0 we complete the proof of the
lemma.

Now, Theorem 1.5 follows from Lemma 2.1 together with the char-
acterizations of the weighted weak type (p, p) inequalities for M−, M+

and M .

3. Proof of Theorem 1.6

We shall start studying the local part Mϕ,h,γ . More precisely, we shall
prove the following theorem.
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Theorem 3.1. Let 1 < p < ∞, h > 0, 0 < γ ≤ h, δ ∈ (0, 1) and
ϕ ∈ E+

γ,δ. The following statements are equivalent.

(i) (1.1) holds for Mϕ,h,γ .
(ii) (u, v) ∈ A−

p,ϕ,γ .

First, we notice that if ϕ, h and γ are as in Theorem 3.1 and β =
h+γ
h > 1 then we have

Mϕ,h,γf(x) = sup
R>0

1
R

∫ x−hR

x−βhR
|f(y)|ϕ

(
x− hR− y

R

)
dy.

In order to prove Theorem 3.1, we define the following noncentered ver-
sion of this operator

Nϕ,h,γf(x) = sup
(a,b)∈Ax

γ

b− a

∫ b

a

|f(y)|ϕ
(
b− y

b− a
γ

)
dy,

where Ax = {(a, b) : b < x and b− a ≥ γ
h (x− b)}. The operators Mϕ,h,γ

and Nϕ,h,γ are pointwise equivalent for ϕ ∈ E+
γ,δ.

Proposition 3.2. If h > 0, 0 < γ ≤ h, β = h+γ
h , δ ∈ (0, 1) and

ϕ ∈ E+
γ,δ, then

Mϕ,h,γf(x) ≤ Nϕ,h,γf(x) ≤
(

β

γϕ(γ)

∫ γ

0

ϕ(y) dy + 2
)
Mϕ,h,γf(x).

Proof: The first inequality is obvious. To prove the second one let us
consider x ∈ R and (a, b) ∈ Ax. Let R be the positive number such that
a = x − βhR. Observe that x − b ≤ hR. Let m be the nonnegative
integer number such that x− hR

βm ≤ b < x− hR
βm+1 . Then

∫ b

a

|f(y)|ϕ
(
b− y

b− a
γ

)
dy =

(
m−1∑
k=0

∫ x−hR

βk

x− hR

βk−1

+
∫ x− hR

βm

x− hR

βm−1

+
∫ b

x− hR
βm

)
(. . . dy)

= I + II + III,
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where I is understod to be zero if m = 0. For fixed k, 0 ≤ k ≤ m − 1,
let T = Rβ−k. Since ϕ is decreasing we have

∫ x−hR

βk

x− hR

βk−1

|f(y)|ϕ
(
b− y

b− a
γ

)
dy

=
∫ x−hT

x−βhT
|f(y)|ϕ

(
x− hT − y

T

) ϕ
(
b−y
b−aγ

)
ϕ

(
x−hT−y

T

) dy

≤ 1
ϕ(γ)

ϕ

(
b− (x− hR

βk )

b− a
γ

)
R

βk
Mϕ,h,γf(x)

≤ β

γϕ(γ)

[∫ x− hR

βk+1

x−hR

βk

ϕ

(
b− t

b− a
γ

)
dt

]
Mϕ,h,γf(x).

Summing up in k, 0 ≤ k ≤ m− 1, we get that

I ≤ β

γϕ(γ)

[∫ b

a

ϕ

(
b− t

b− a
γ

)
dt

]
Mϕ,h,γf(x)

=
b− a

γ

[
β

γϕ(γ)

(∫ γ

0

ϕ

)
Mϕ,h,γf(x)

]
.

In order to estimate II, let T = R
βm . Using that a = x−βhR, b ≥ x− hR

βm

and the fact that βm+1 ≥ β we can easily prove that γ
b−a ≤ 1

T . Then,
since ϕ is decreasing and tϕ(t) is increasing in (0, γ] (which follows from
tδϕ(t) is increasing in (0, γ]) we get that

II ≤
∫ x−hT

x−βhT
|f(y)|ϕ

(
x− hT − y

b− a
γ

)
dy

≤ b− a

γ

[
1
T

∫ x−hT

x−βhT
|f(y)|ϕ

(
x− hT − y

T

)
dy

]
≤ b− a

γ
Mϕ,h,γf(x).

To estimate III, let T = x−b
h . Enlarging the interval (x − hR

βm , b) and
using that b− a ≥ γ

h (x− b) and that the function tϕ(t) is increasing in
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(0, γ] we get

III =
∫ x+(b−x)

x− hR
βm

|f(y)|ϕ
(
b− y

b− a
γ

)
dy

≤
∫ x−hT

x−βhT
|f(y)|ϕ

(
x− hT − y

b− a
γ

)
dy ≤ b− a

γ
Mϕ,h,γf(x).

Putting together the estimates for I, II and III we are done.

Proof of Theorem 3.1: We observe first that, by Proposition 3.2, state-
ment (i) is equivalent to the same weighted weak type (p, p) inequality
for Nϕ,h,γ .

(i) ⇒ (ii). Let a < b < c. Assume that b − a ≥ γ
h (c − b). For every

natural number n, let us consider the function f(y) = v1−p′
n (y)ϕp

′−1
n(

b−y
c−aγ

)
χ(a,b)(y), where vn = v + 1/n and ϕn = min {ϕ, n}. Since tϕ(t)

is increasing and ϕ ≥ ϕn we have for all x ∈ (b, c),

Nϕ,h,γf(x) ≥ γ

b− a

∫ b

a

v1−p′
n (y)ϕp

′−1
n

(
b− y

c− a
γ

)
ϕ

(
b− y

b− a
γ

)
dy

≥ γ

c− a

∫ b

a

v1−p′
n (y)ϕp

′

n

(
b− y

c− a
γ

)
dy ≡ λ.

This means that (b, c) ⊂ {Nϕ,h,γf ≥ λ}. Then by (i) (with Nϕ,h,γ) we
get the inequality

(∫ c

b

u

)1/p
(∫ b

a

v1−p′
n (y)ϕp

′

n

(
b− y

c− a
γ

)
dy

)1/p′

≤ C
c− a

γ
.

Letting n tend to ∞, we obtain A−
p,ϕ,γ with b− a ≥ γ

h (c− b).
Assume now that b−a < γ

h (c−b). Let a < a such that b−a = γ
h (c−a).

If f(y) = v1−p′
n (y)ϕp

′−1
n

(
b−y
b−aγ

)
χ(a,b)(y) then for all x ∈ (b, c) we obtain

Nϕ,h,γf(x) ≥ γ

b− a

∫ b

a

v1−p′
n (y)ϕp

′

n

(
b− y

b− a
γ

)
dy

=
h

c− a

∫ b

a

v1−p′
n (y)ϕp

′

n

(
b− y

c− a
h

)
dy ≡ λ.
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Applying (i) with Nϕ,h,γ and letting n tend to ∞ we have(∫ c

b

u

)1/p
(∫ b

a

v1−p′(y)ϕp
′
(
b− y

c− a
h

)
dy

)1/p′

≤ C
c− a

h
.

Now, A−
p,ϕ,γ follows since γ ≤ h and tϕ(t) is increasing in (0, γ].

(ii) ⇒ (i). This implication follows from the following proposition and

the fact that the maximal operator M−
u g(x) = suph<x

∫ x

h
|g|u∫ x

h
u

is of weak

type (1, 1) with respect to the measure u(x) dx.

Proposition 3.3. Let 1 < p < ∞, h > 0, 0 < γ ≤ h, δ ∈ (0, 1) and
ϕ ∈ E+

γ,δ. Assume that (u, v) ∈ A−
p,ϕ,γ . Then, there exists C > 0 such

that for every measurable function f

Nϕ,h,γf(x) ≤ C
[
M−
u

(
|f |pvu−1

)
(x)

]1/p
.

Proof: Let x ∈ R and (a, b) ∈ Ax = {(a, b) : b < x and b−a ≥ γ
h (x−b)}.

First, let us assume that 4
∫ x
b
u >

∫ x
a
u. Since (u, v) ∈ A−

p,ϕ,γ , by Hölder
inequality, we have

∫ b

a

|f(y)|ϕ
(
b− y

b− a
γ

)
dy

≤
(∫ b

a

|f |pv
)1/p(∫ b

a

v1−p′(y)ϕp
′
(
b− y

b− a
γ

)
dy

)1/p′

≤ C

(∫ x

a

|f |pv
)1/p(∫ x

b

u

)−1/p
x− a

γ

≤ C
b− a

γ

(
γ + h

γ

[
M−
u

(
|f |pvu−1

)
(x)

]1/p)
.

Now, assume that 4
∫ x
b
u ≤

∫ x
a
u. Let {xi} be the increasing sequence in

[a, x] defined by x0 = a and∫ x

xi+1

u =
∫ xi+1

xi

u =
1
2

∫ x

xi

u.

Let N be such that xN ≤ b < xN+1 (observe that N ≥ 2). Then we
have∫ b

a

|f(y)|ϕ
(
b− y

b− a
γ

)
dy =

N−2∑
i=0

∫ xi+1

xi

. . . dy +
∫ b

xN−1

. . . dy = I + II.



Weighted Inequalities for Maximal Operators 131

First we estimate II. By the condition A−
p,ϕ,γ , the monotonicities of ϕ

and tϕ(t) in (0, γ] and the inequality
∫ x
xN−1

u ≤ 4
∫ x
b
u, we get

II ≤
(∫ b

xN−1

|f |pv
)1/p(∫ b

xN−1

v1−p′(y)ϕp
′
(
b− y

x− a
γ

)
dy

)1/p′

≤
(∫ x

xN−1

|f |pv
)1/p(∫ b

xN−1

v1−p′(y)ϕp
′
(

b− y

x− xN−1
γ

)
dy

)1/p′

x− a

x− xN−1

≤C

(∫ x

xN−1

|f |pv
)1/p(∫ x

b

u

)−1/p
x− a

γ

≤C
b− a

γ

(
γ + h

γ

[
M−
u

(
|f |pvu−1

)
(x)

]1/p)
.

Now we shall estimate I. Notice that for each i, 0 ≤ i ≤ N − 2, there
exists qi = Uxi+1−b

U−1 where U = b−a
xi+1−xi

> 1 such that qi ∈ [xi, xi+1] and

b− y

b− a
≥ xi+1 − y

xi+1 − xi
if and only if y ≥ qi.

Then we can write∫ xi+1

xi

|f(y)|ϕ
(
b− y

b− a
γ

)
dy =

∫ qi

xi

. . . dy +
∫ xi+1

qi

. . . dy = III + IV.

Since ϕ is decreasing, the Hölder inequality, the hypothesis (u, v) ∈
A−
p,ϕ,γ and the definition of the sequence {xi} give

IV ≤
∫ xi+1

qi

|f(y)|ϕ
(
xi+1 − y

xi+1 − xi
γ

)
dy ≤

∫ xi+1

xi

. . . dy

≤
(∫ xi+1

xi

|f |pv
)1/p(∫ xi+1

xi

v1−p′(y)ϕp
′
(
xi+1 − y

xi+1 − xi
γ

)
dy

)1/p′

≤ C

(∫ x

xi

|f |pv
)1/p

(∫ xi+2

xi+1

u

)−1/p
xi+2 − xi

γ

≤ C
xi+2 − xi

γ

[
M−
u

(
|f |pvu−1

)
(x)

]1/p
.
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To estimate III we shall use that b−y
b−a < xi+1−y

xi+1−xi
if and only if y < qi

and the fact that tδϕ(t) is increasing in (0, γ]. Then,

III =
∫ qi

xi

|f(y)|ϕ
(
b− y

b− a
γ

)
dy ≤

∫ qi

xi

|f(y)|ϕ
(
xi+1 − y

xi+1 − xi
γ

)
g(y) dy,

where g(y) =
(
b−y
b−a

)−δ (
xi+1−y
xi+1−xi

)δ
. Since g is decreasing in (xi, qi), we

have

III ≤
(
b− xi
b− a

)−δ ∫ xi+1

xi

|f(y)|ϕ
(
xi+1 − y

xi+1 − xi
γ

)
dy.

Using the same argument as in the boundedness of IV and the increas-
ingness of (b− y)−δ we get that

III ≤ C

(
b− xi
b− a

)−δ
xi+2 − xi

γ

[
M−
u

(
|f |pvu−1

)
(x)

]1/p
≤ C

γ

(∫ xi+2

xi

(
b− y

b− a

)−δ
dy

)[
M−
u

(
|f |pvu−1

)
(x)

]1/p
.

Now, adding up in i, we get that

I ≤ C
b− a

γ

(
2 − δ

1 − δ

[
M−
u

(
|f |pvu−1

)
(x)

]1/p)
.

Finally, putting together the estimates of I and II, we are done.

As a consequence of Theorem 1.5 we get the following characterization
of the weak type inequalities for Mϕ,h,∞.

Theorem 3.4. Let ϕ ∈ F+, h > 0 and 0 < γ ≤ h. Then (1.1) holds
for Mϕ,h,∞ if and only if (u, v) ∈ A−

p .

Proof: Let ψ = τ−γ(ϕχ(γ,∞)). It is clear that ψ ∈ F+ and τh(ϕχ(γ,∞)) =
τh+γ(ψ). Then Mϕ,h,∞ is equal to the operator Mτh+γψ. Therefore, since
h + γ > 0 and ψ(0+) = ϕ(γ) < +∞, applying Theorem 1.5(i) we are
done.

Now, we can prove Theorem 1.6.

Proof of Theorem 1.6: (i) ⇒ (ii). This is an easy consequence of Theo-
rem 3.1 and the fact that (i) implies statement (i) in Theorem 3.1.

(ii) ⇒ (i). By (1.9) we only have to see that Mϕ,h,γ and Mϕ,h,∞
satisfy (1.1). On one hand, by Theorem 3.1, (u, v) ∈ A−

p,ϕ,γ implies that
Mϕ,h,γ verifies (1.1). On the other hand, since ϕ is decreasing it is easy
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to prove that A−
p,ϕ,γ ⊂ A−

p . Therefore, Theorem 3.4 gives that Mϕ,h,∞
is of weak type (p, p) with respect to the pair (u, v).

4. Proof of Theorems 1.7 and 1.8

As in the proof of Theorem 1.6, the hard work in the proof of Theo-
rems 1.7 and 1.8 is in the study of the local part Mϕ,h,γ . For h < 0 we
shall prove the following theorem.

Theorem 4.1. Let 1 < p < ∞, h < 0, 0 < γ ≤ |h|, δ ∈ (0, 1) and
ϕ ∈ E+

γ,δ. The following statements are equivalent.

(i) (1.1) holds for Mϕ,h,γ .
(ii) (u, v) ∈ Ã+

p,ϕ,γ .

Before proving the theorem we shall show that it suffices to prove it
for the case |h| = γ, i.e. h = −γ. First, if |h| > γ and

φ(x) = ϕχ(0,γ] + ϕ(γ)χ(γ,|h|],(4.2)

we have that φ ∈ E+
|h|,δ. Furthermore, the following lemma shows that

the operators Mϕ,h,γ and Mφ,h,|h| are pointwise equivalent.

Lemma 4.3. Let γ > 0, δ ∈ (0, 1) and ϕ ∈ E+
γ,δ. Assume h < 0 such

that |h| > γ and let φ be as in (4.2). Then there exists C > 0 such that

CMφ,h,|h|f(x) ≤ Mϕ,h,γf(x) ≤ Mφ,h,|h|f(x).

Proof: The second inequality is obvious since ϕ ≤ φ. To prove the first
one, we fix η = |h|−γ

|h| . Since ϕ is decreasing we have that

1
R

∫ x+|h|R

x+(|h|−γ)R
|f(y)|ϕ

(
x+ |h|R− y

R

)
dy

≥ ϕ(γ)|h|
[

1
|h|R

∫ x+|h|R

x+η|h|R
|f(y)| dy

]
.

Taking supremum overR > 0 we have thatMϕ,h,γf(x)≥ϕ(γ)|h|N+
η f(x),

where N+
η is the operator defined in Section 2. Then, by Proposi-

tion 2.2(ii) we get

Mϕ,h,γf(x) ≥ Cϕ(γ)|h|M+f(x).(4.4)
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Now, by the definition of φ we obtain

1
R

∫ x+|h|R

x

|f(y)|φ
(
x+ |h|R− y

R

)
dy =

ϕ(γ)
R

∫ x+(|h|−γ)R

x

|f(y)| dy

+
1
R

∫ x+|h|R

x+(|h|−γ)R
|f(y)|ϕ

(
x+ |h|R− y

R

)
dy.

Taking supremum over R > 0 and using (4.4) we have

Mφ,h,|h|f(x) ≤ ϕ(γ)(|h| − γ)M+f(x) +Mϕ,h,γf(x)

≤ ϕ(γ)|h|M+f(x) +Mϕ,h,γf(x)

≤ C Mϕ,h,γf(x),

as we wished to prove.

Once Lemma 4.3 has been proved we are able to show that Theo-
rem 4.1 for |h| > γ follows from Theorem 4.1 from h = −γ. In fact, let
us assume that Theorem 4.1 is proved for h = −γ. By Lemma 4.3, we
can easily see that (i) is equivalent to (u, v) ∈ Ã+

p,φ,|h|, i.e., there exists
C > 0 such that(∫ b

a

u

)1/p(∫ c

b

v1−p′(y)φp
′
(
c− y

c− a
|h|

)
dy

)1/p′

≤ C
c− a

|h| ,

for all a < b < c. It only remains to prove that Ã+
p,φ,|h| and Ã+

p,ϕ,γ

are equivalent. The implication (u, v) ∈ Ã+
p,φ,|h| ⇒ (u, v) ∈ Ã+

p,ϕ,γ is a
consequence of the increasingness of tφ(t) in (0, |h|] while the converse
follows from the fact that φ is decreasing.

Proof of Theorem 4.1 for h = −γ: Notice that in this case

Mϕ,h,γf(x) = sup
R>0

1
R

∫ x+|h|R

x

|f(y)|ϕ
(
x+ |h|R− y

R

)
dy

= sup
c>x

γ

c− x

∫ c

x

|f(y)|ϕ
(
c− y

c− x
γ

)
dy.

(i) ⇒ (ii). Let a < b < c. Let vn and ϕn be as in the proof of
Theorem 3.1 and let us consider f(y) = v1−p′

n (y)ϕp
′−1
n

(
c−y
c−aγ

)
χ(b,c)(y).
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Using that tϕ(t) is increasing in (0, γ] and ϕ ≥ ϕn, we have for all
x ∈ (a, b),

Mϕ,h,γf(x) ≥ γ

c− x

∫ c

b

v1−p′
n (y)ϕp

′−1
n

(
c− y

c− a
γ

)
ϕ

(
c− y

c− x
γ

)
dy

≥ γ

c− a

∫ c

b

v1−p′
n (y)ϕp

′

n

(
c− y

c− a
γ

)
dy ≡ λ.

Then (ii) follows applying (i) and letting n tend to ∞.

The implication (ii) ⇒ (i) follows, as in the proof of Theorem 3.1,
from the following proposition.

Proposition 4.5. Let 1 < p < ∞, γ > 0, δ ∈ (0, 1), ϕ ∈ E+
γ,δ, h =

−γ and (u, v) ∈ Ã+
p,ϕ,γ . Then, there exists C > 0 such that for every

measurable function f

Mϕ,h,γf(x) ≤ C
[
M+
u

(
|f |pvu−1

)
(x)

]1/p
.

Proof: Let x ∈ R. Let {xi} be the decreasing sequence in [x, c] defined
by x0 = c and ∫ xi+1

x

u =
∫ xi

xi+1

u =
1
2

∫ xi

x

u.

Then,

∫ c

x

|f(y)|ϕ
(
c− y

c− x
γ

)
dy =

∞∑
i=0

∫ xi

xi+1

|f(y)|ϕ
(
c− y

c− x
γ

)
dy.

The rest of the proof follows in a similar way as in the proof of Propo-
sition 3.3. In fact, by taking qi = Uxi−c

U−1 with U = c−x
xi−xi+1

> 1 we can
prove that c−yc−x ≥ xi−y

xi−xi+1
if and only if y ∈ [qi, xi]. Then

∫ xi

xi+1

|f(y)|ϕ
(
c− y

c− x
γ

)
dy =

∫ qi

xi+1

. . . dy +
∫ xi

qi

. . . dy = I + II.
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Since ϕ is decreasing, the Hölder inequality, the hypothesis (u, v) ∈
Ã+
p,ϕ,γ and the definition of the sequence {xi} give

II ≤
∫ xi

qi

|f(y)|ϕ
(

xi − y

xi − xi+2
γ

)
dy ≤

∫ xi

xi+1

. . . dy

≤
(∫ xi

xi+1

|f |pv
)1/p(∫ xi

xi+1

v1−p′(y)ϕp
′
(

xi − y

xi − xi+2
γ

)
dy

)1/p′

≤ C

(∫ xi

x

|f |pv
)1/p

(∫ xi+1

xi+2

u

)−1/p
xi − xi+2

γ

≤ C
xi − xi+2

γ

[
M+
u

(
|f |pvu−1

)
(x)

]1/p
.

To estimate I we shall use that c−yc−x <
xi−y
xi−xi+1

if and only if y < qi and
the fact that tδϕ(t) is increasing in (0, γ]. Then,

I =
∫ qi

xi+1

|f(y)|ϕ
(
c− y

c− x
γ

)
dy ≤

∫ qi

xi+1

|f(y)|ϕ
(

xi − y

xi − xi+2
γ

)
g(y) dy,

where g(y) =
(
c−y
c−x

)−δ (
xi−y
xi−xi+2

)δ
. Since g is decreasing in (xi+2, qi),

we have

I ≤
(
c− xi+2

c− x

)−δ ∫ xi

xi+1

|f(y)|ϕ
(

xi − y

xi − xi+2
γ

)
dy.

With the same argument as in the boundedness of IV in the proof of
Theorem 3.1, using that (c− y)−δ is increasing, we get that

I ≤ C

(
c− xi+2

c− x

)−δ
xi − xi+2

γ

[
M+
u

(
|f |pvu−1

)
(x)

]1/p
≤ C

γ

(∫ xi

xi+2

(
c− y

c− x

)−δ
dy

)[
M+
u

(
|f |pvu−1

)
(x)

]1/p
.

Now, adding up in i, we obtain

I + II ≤ C
c− x

γ

(
2 − δ

1 − δ

[
M+
u

(
|f |pvu−1

)
(x)

]1/p)
,

and we are done.
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As in the case h > 0, we obtain the characterizations for Mϕ,h,∞ from
Theorem 1.5.

Theorem 4.6. Let 1 ≤ p < ∞, ϕ ∈ F+, h < 0 and 0 < γ ≤ |h|. Then

(i) If supp(ϕ) ⊂ (0, |h|] and γ = |h|, then Mϕ,h,∞ ≡ 0.
(ii) If supp(ϕ) ∩ (|h|,∞) �= ∅ and γ = |h|, (1.1) holds for Mϕ,h,∞ if

and only if (u, v) ∈ A−
p .

(iii) If supp(ϕ) ⊂ (0, |h|] and γ < |h|, (1.1) holds for Mϕ,h,∞ if and
only if (u, v) ∈ A+

p .
(iv) If supp(ϕ) ∩ (|h|,∞) �= ∅ and γ < |h|, (1.1) holds for Mϕ,h,∞ if

and only if (u, v) ∈ Ap.

Proof: (i) is obvious. As in the proof of Theorem 3.4, taking ψ =
τ−γ(ϕχ(γ,∞)) ∈ F+ the operator Mϕ,h,∞ is equal to Mτh+γψ. In the
case (ii), Mτh+γψ = Mψ and therefore, (ii) follows from one of the re-
sults cited in the introduction. In the cases (iii) and (iv) we have that
h+ γ < 0 and applying Theorem 1.5(ii) and (iii) we are done.

Now we shall prove Theorems 1.7 and 1.8.

Proof of Theorem 1.7: The proof follows as the proof of Theorem 1.6
using Theorem 4.1, Theorem 4.6(i) and (iii), the inequalities (1.9) and
the fact that Ã+

p,ϕ,γ ⊂ A+
p which is a consequence of the decreasingness

of ϕ.

Proof of Theorem 1.8: It follows from Theorem 4.1, Theorem 4.6(ii) and
(iv) and inequalities (1.9).

Remark 4.7. We have not studied in this paper the case p = 1. The
study of the weighted weak type inequality (1, 1) for Mτhϕ will appear
in a forthcoming paper on weighted restricted weak type inequalities for
this operator and 1 ≤ p < ∞ (notice that the restricted weak type (1, 1)
inequality for Mτhϕ is equivalent to the weak type (1, 1) inequality [8]).
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