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TWO WEIGHTED INEQUALITIES FOR CONVOLUTION
MAXIMAL OPERATORS

A. L. BERNARDIS* AND F. J. MARTIN-REYEsST

Abstract

Let ¢: R — [0, 00) an integrable function such that ¢x(_,0) =0
and ¢ is decreasing in (0,00). Let 7, f(z) = f(z — h), with
h € R\ {0} and fr(z) = %f(%), with R > 0. In this paper
we characterize the pair of weights (u,v) such that the opera-

tors Mz, o f(x) = supgr~q |f| * [Th@lr(x) are of weak type (p,p)
with respect to (u,v), 1 < p < co.

1. Introduction

Let us consider the dilates pr(z) = £¢(%), R > 0, of a nonnegative
integrable function ¢ defined on the real line. It is well known that the
study of the a.e. convergence of the convolutions f * pgr as R — 0 is

related to the behavior of the maximal operator
M f(x) = sup [f] * pr().
R>0
If ¢ belongs to the set F of the even functions ¢: R — [0, 00), decreasing

in [0, 00) with 0 < [, ¢ = A < 0o, then a classical result establishes that
M, satisfies the weighted weak type inequality

C
1.1 / u < —/ flPv,
(1.1) ar oy S X0 R| |
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1 < p < o0, if and only if (u,v) belongs to the A, class of Muckenhoupt,
i.e., if there exists C' > 0 such that for all a < b

b 1/p b 1/pl 1 1
(/ u) (/ vl_”/) <C(b—a), if 1<p<oo, —+-=1,
a a p p

and
Mu<Cv ae., if p=1,

where M f(x) = sup,~q 55 fﬁ_h (t)| dt is the (two -sided) Hardy-Little-
wood maximal function. The above result is a consequence of the char-
acterization for M [5] and the following pointwise inequalities:

(1.2) 2p(OM f(x) < My f(x) < AM f(z),

where /£ is a positive real number such that ¢(¢) > 0 (the existence of
¢ is guaranteed since we are assuming that ¢ # 0), together with the
characterization of the weighted weak type inequalities for M (see [5]
and [7]). The right inequality in (1.2) is a classical result (see [7]), the
left one is an easy consequence of the inequalities

o (e et [

1 z+4R
i | I dy] |

Sharper estimates can be obtained if the function ¢ is a member of
the following set of functions: F* = {¢: R — [0,00) : oX(—00,0) = 0, ¢
decreasing in (0,00) with 0 < [ = A < oo} or F~ = {¢ : p(—x) €
FT1}. In fact, for almost all x € R we have that, if ¢ € FT and £ > 0 is
such that p(¢) > 0, then

> 20p(¢)

(1.3) Lo()M™ f(x) < M, f(x) < AM™ f(x),
and if ¢ € F~ and £ > 0 is such that ¢(—¢) > 0, then
(1.4) lo(—O)M ™ f(x) < My f(x) < AM™ f(x),
where
B B 1 x N 1 z+h
M p@) sy [ U@l and M p@) =swr [ If@)ar

are the one-sided Hardy-Littlewood maximal functions. The right in-
equalities were proved by M. Lorente [2], the left ones can be obtained
as in (1.2). By (1.3) and the characterization of the weighted weak
type inequalities for M~ (see [6] and [3]) we get that, if o € FT and
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1 < p < oo, then (1.1) holds if and only if (u,v) belongs to the Sawyer’s

class Ay, i.e., if there exists C' > 0 such that for all a <b < ¢

c 1/p b , 1/p’
(/ u) </ vl_p> <C(c—a), if 1<p<o
b a

Mtu<Cuv ae., if p=1.

An analogous result holds with ¢ € F~ and (u,v) € A} which is the
same as A, but reversing the orientation of the real line.

In this paper we are interested in the behavior of the convolution
maximal operator associated to a translation of a function ¢ € F (FT
or F7), ie., if mhp(z) = ¢(x — h) we wish to characterize (1.1) for the
maximal operator

and

Mz, o f (x) = sup | f| * [The]r(2).
R>0

Clearly it is enough to work with functions ¢ € F¥ since the results for
@ € F~ are obtained similarly and the results for ¢ € F follow from the
corresponding ones for 71 and F~. Examples of these operators are

—R—y
M, f(x) =su / ( ) dy, —1<a<0
fla) =0 7 R Y

and

r+R—y

. x+R
W) = [l (S

= ) dy, —1<a<0.
R>0

These operators were studied in [1] and [4] and are equal to M, , where
©(t) = t*X(0,1)(t) with h = 1 and h = —1 respectively.

Observe that in the above examples ¢(0+) = lim;_,g+ ¢(t) = +o00. If
@ € FT and p(0+) < +00, the weighted weak type inequalities (1.1) are
equivalent to conditions A, A;)L or A, as it is shown in the following
theorem which we shall prove in Section 2.

Theorem 1.5. Let 1 <p < oo, ¢ € F and ¢(0+) < +oco. Then
(i) If h >0, (1.1) holds for My, , if and only if (u,v) € A, .
(ii) If h < 0 and supp(y) C (0, |h|], (1.1) holds for M, , if and only if
(u,v) € Af.
(iii) If h < 0 and supp(yp) N (|h],00) # 0, (1.1) holds for M., if and
only if (u,v) € Ap.
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When ¢(04) = 400, the situation is different. For example, the

weighted weak type inequalities (1.1) for M, (M,) are equivalent to
conditions which are strictly contained in A" (A}). Therefore, there

are weights in A (Af) which are not good weights for M, (M,).

We shall dedicate Sections 3 and 4 to characterize the good weights for
M, , assuming only some restriction on the decreasingness of . More
precisely we shall work in the rest of the paper with functions ¢ € Ej/: 50
with v >0, 0 € (0,1) and

5;6 ={p e F':p(y)>0and t°p(t) is increasing in (0,7]}.

Observe that ¢ € 5;’:5 implies that tp(t) is increasing in (0,7v]. Also
notice that the functions op(t) = t*x(g,1)(t), corresponding to the oper-
ators M, and Ma, belongs to Eff_a. Other examples belonging to 5;“’5
for some « and some ¢ are the following: p(t) = t* (log %) X(0,1](t) with
—1<a<0and @(t) = (1+1og 1)x(0,1)(t) + t7X(1,00)(t), With 8 < —1.

We shall prove the following characterizations of the weighted weak
type (p,p) inequalities, 1 < p < oo, for M, ,, under the assumption ¢ €
5;"5. Notice that we always may assume that 0 <y < |h|.

Theorem 1.6. Let 1 < p < 00, h > 0,0 < v < h, 6 € (0,1) and
(NS ‘Sj,a' The following statements are equivalent.
(i) (1.1) holds for M., .

(i) (u,v) € A, ., i.e., there exists C > 0 such that

c 1/p b _ g _
( / u) < / o1 () (b_yﬁ dy> _ma
b a c—a Y

foralla <b<c.

Theorem 1.7. Let 1 < p < 00, h < 0,0 <~ < |h], § € (0,1), ¢ €
5,?5 and assume that supp(p) C (0,|h|]. The following statements are
equivalent.

(i) (1.1) holds for M.

(ii) (u,v) € A}, i.e., there exists C > 0 such that

b \ VP, e ) fe—y 1/p c—a
(oo (2 ) e
a b c—a Y

foralla <b<c.
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Theorem 1.8. Let 1 <p <oo, h<0,0<~v<]hl, de(0,1), 4,065;"5
and assume that supp(¢) N (|h|,00) # 0. The following statements are
equivalent.

(i) (1.1) holds for M-,

(i) (u,v) € Af . N Ap.

P,y

Taking into account the results for M, and Ma we see that the class
of good weights for M, , will depend on the behavior of ¢ close to zero.
This is our starting point to analize the operator M., .. In fact, given
p € Ft, h € R, h # 0 and v > 0 small enough, let us say v < |h|, we
write

P = EX(0.4] T PX(3,00)-
Then if we denote My py = My, (ox(.,,) a0d My poo = My,
we get the following pointwise inequalities:

(19) max {Mga,h,'yv Mga h oo} < M‘r; © < M Jhoy + M:,a,h,oo-

Therefore, M, , satisfies (1.1) if and only if (1.1) holds for M, 5, , and
Mg hoo- The study of My p o is completely similar to the study of
M, , with ¢(0+) < oo. The difficult part is concentrated in the lo-
cal operator M, . The operators M, , have the following explicit
expressions:

h (X (~,00))

a=|hlR x — |h|R —
My~ f(x) = sup R/ )|<p<—|]|% y) dy ifh>0
R0 Ih\+7)R
and
M0 () = sup e (ZHAEL) 0y ien <o
r>0 B Joi(nj—)r

We may observe that the operators M, ; ~ are of different geometric
nature depending on the sign of h. If h > 0, the integrals are taken over
intervals I C (—oo,z) and ¢ is evaluated in a point which depends on
the distance of y to the end point of I nearer to x, while if h < 0 the
integrals are computed over intervals I C (x,00) and ¢ is evaluated in
a point which depends on the distance of y to the end point of I farer
from z.

The paper is organized as follows: Section 2 and 3 are devoted to the
proof of Theorems 1.5 and 1.6 respectively, while we give the proofs of
Theorems 1.7 and 1.8 in Section 4.

Throughout the paper h, v and ¢ are real numbers, h # 0, v > 0 with
v < h|, 0 < <1 and the classes Sjﬁ are the ones defined above. The
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functions v and v will be weights, i.e., positive measurable functions.
Finally, p’ stands for the conjugate exponent of p, 1 < p < oo, and the
letter C' means a positive constant that may change from one line to
another.

2. Proof of Theorem 1.5

Let ¢ € FT and ¢(0+) < +o0. Without loss generality we can assume
that ¢(0) = ¢(0+4). The proof of Theorem 1.5 is based on the following
lemma.

Lemma 2.1. Let £ > 0 be such that p(f) > 0. There exist positive
constants C7 and Cy such that

(i) If h > 0,
Cro(ORM f(z) < My o f(2) < (w(O)h - h <P> M~ f(2).

(ii) If h < 0 and supp(p) C (0, |h]],
Cop(O)|R|IM T f(z) < Mo f(2) < 0(0)|R|M* f(2).
(iii) If h < 0, supp(e) N (|h],0) # O and £ > |h|,

2¢(¢) min{|h|, (+h}M f(x) < My, f(2) <2 <<p(0)|h| + /|: w) Mf(z).

Before proving the above lemma we define the following maximal op-
erators:

_ 1 z—T
Nof@=swr [ lfldy for 1
T>0 z—uT
and
1 x+T
+ _
N, f(z) = sup — lf(y)|dy for 0<n<l1.

7501 Jotnr

The above operators are pointwise equivalent to M~ and M ™ respec-
tively. In fact, we have the following proposition.

Proposition 2.2. There ezist positive constants Cy; and Cs such that
(i) 1M~ f(z) < N/;f(sc) < uM~ f(x) and
(i) CoM™ f(x) < N, f(x) < M f(a).
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Proof: The right inequalities in (i) and (ii) are obvious. In order to prove
the left inequality in (i), we may assume that M~ f(z) < oo. Let s be
such that 1/ < s < 1. Then, there exists T' > 0 such that

1 T

sM™ f(zx) < —
( ) ij z—upT

£ (y)l dy

1 z—T

— d
) il

1 x

T TWM@

<N @)+ M f (o).

Then, since s > 1/u we obtain (i) with C7 = pus — 1. The left inequality
in (ii) is proved similarly. In fact, assume that M f(z) < oo and let s
be such that 7 < s < 1. Then, there exists T" > 0 such that

1 x+T
Mt <5 [ il

x+nT
=—/ y)ldy

+T
Jr*/ dy
), Wl

<M f(@) + N J ().

Then, since 1 < s we obtain (ii) with Cy = s — 7. d
Proof of Lemma 2.1: (i) First, notice that 7,(p) is dominated by
©(0)x(0,n) + (@) € FT. Therefore, by (1.3) we get the right inequality

of (i). On the other hand, we fix u = % > 1 and since ¢ is decreasing
we have that

hR 1 I—hR
7 [l () avz g [
e—(E+h)R

r—hR
>he0) |5 [ 1) dy] .
T—p
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Taking supremum over R > 0 we have that M., f(z) > hp(()N,; f(z)
and using Proposition 2.2(i) we obtain statement (i).

(ii) By the hypothesis on h and on the support of ¢ we can easily see
that 7,(p) is dominated by ¢(0)x(s,0 € F~ and by (1.4) we get that
M;, ,f(z) < @(0)|h|MT f(x). Let us fix n = ‘h‘lh‘e Then (ii) follows by
the inequalities

/lf < —y— hR) _/r+|hR
R TR +(|h|—0)R
2 |hle(£)

If(y)dyl ,

|hIR Jotninir
taking supremum over R > 0 and applying Proposition 2.2(ii).

(iii) The function 74 (i) is dominated by a sum of two functions: ¢, =
©(0)x[n,0) € F~ and ¢2 = 71,(¢)X(0,00) € F . Therefore, using (1.3) and

(1.4) we get that My, f(x) < @(OIRIM*f(@) + ([ ¢) M~ f(z) <

2 (cp(O)|h| + flf:\j gp) M f(z). On the other hand, if v = min{|h|,¢ + h},
then

—y—hR 1 z+|h|R
R/|f < > B /(Z-i-h)R.
1 r+VR
wil If(y)ldy].

Therefore, taking supremum over R > 0 we complete the proof of the
lemma. O

> 2vp(0)

Now, Theorem 1.5 follows from Lemma 2.1 together with the char-
acterizations of the weighted weak type (p,p) inequalities for M ~, M™
and M.

3. Proof of Theorem 1.6

We shall start studying the local part M, 5, . More precisely, we shall
prove the following theorem.
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Theorem 3.1. Let 1 < p < o0, h > 0,0 < v < h, d € (0,1) and
p € SIJ. The following statements are equivalent.

(1) (1.1) holds for My p, ~.
(i) (u,v) € Ay

PPy

First, we notice that if ¢, h and v are as in Theorem 3.1 and 8 =
h% > 1 then we have

1 [*hE xr—hR—y
My~ f(z) = sup 7 If(y)le <R ) dy.
R>0 z—pBhR

In order to prove Theorem 3.1, we define the following noncentered ver-

sion of this operator
Nephyflz)= sup 5 / ()l (—7) dy,
(a,b)eA, O —Q

where A, = {(a,b) : b <z and b—a > ¥(x —b)}. The operators M, p, -
and N, 5.~ are pointwise equivalent for ¢ € Sj 5

Proposition 3.2. If h > 0, 0 < v < h, § = h%, 0 € (0,1) and
QDEE 50 then

My f(2) < Nopn f(z) < (va) / <y>dy+2) My pr f(2).

Proof: The first inequality is obvious. To prove the second one let us
consider = € R and (a,b) € A;. Let R be the positive number such that
a = x — fhR. Observe that x — b < hR. Let m be the nonnegative

integer number such that x — SR <b<z-— ﬁmﬂ Then

/|f o (1225 y(Z/_ o +/b><dy>

=+ 1II+1II,
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where [ is understod to be zero if m = 0. For fixed k, 0 < k <m — 1,
let T = RB~*. Since ¢ is decreasing we have

—BhT
b—(z -8 \ R
< L)O(P)/)QO ( b—a vy @ Mtp,h,’vf(x)
ﬁ T GR+T _
< 7—90(7) [/9625 ¥ <m7> dt] M«p,h,’yf( )

I= Wﬂ(v) Vab@ (:::ﬂ) dt] Mo f(2)

-5 [ (o) easter]
hR

In order to estimate I7, let T' = ﬁim' Using that a = x—hR, b > z— i

and the fact that ™% > 3 we can easily prove that 7L < % Then,

since p is decreasing and tp(t) is increasing in (0, ] (which follows from
t9(t) is increasing in (0,]) we get that

z—hT
x—hT —
]1>§L/q |f(W)le (“7;—7;—y7> dy

—BRT
1 [eht x—hT —y b—a
f/ Bthf(y)lw <#> dy] < TM@,h,'yf(z)-

b—a
<
0

To estimate I11, let T = £, Enlarging the interval (z — %,b) and

using that b —a > (2 — b) and that the function tp(t) is increasing in
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(0,7] we get

z+(b—x) h— y
= [0 1wl (5=2)
z— bR —a

B

x—hT
x—hT —vy b—a
< / fW)le (ﬁW) dy < TMw,h,vf(l")~

—BhT

Putting together the estimates for I, I1 and II1 we are done. O

Proof of Theorem 3.1: We observe first that, by Proposition 3.2, state-
ment (i) is equivalent to the same weighted weak type (p,p) inequality
for N%hﬁ.

(i) = (ii). Let a < b < c. Assume that b —a > J(c —b). For every
natural number n, let us consider the function f(y) = vl=? (y)p? !

(g:27> X(a,b)(y), where v, = v+ 1/n and @, = min {p,n}. Since ty(t)
is increasing and ¢ > ¢, we have for all = € (b, ¢),

b
o [ b— b—
Nonad@ 2 72 [ el (220) o (1220)

cC—a a

b
o ’ bfy
1 /vi”(y)wﬁ <v) dy = \.
c—aj, c—a

This means that (b,¢) C {Nyp~f > A}. Then by (i) (with N 4.) we
get the inequality

c 1/p b l/p/
/ 7 b* _
</ U> </ vy P (y)eh < yv) dy) <ctl
b a c—a Y

Letting n tend to oo, we obtain A_ ,  with b—a > F(c—b).
Assume now that b—a < (c—b). Let @ < a such that b—a = }(c—a).

If f(y) = vl =7 (y)eP —! (2:—%7) X(a,b) () then for all z € (b, c) we obtain

Y

b
S ’ b—
Nonat@) 2 20 [l (7=2n) o

—a

hoo[t )  (b—
= /vip(y)wa( yh) dy =\,

c—a cC—a
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Applying (i) with N, p 4 and letting n tend to co we have

c 1/13 b l/p'
’ 7 b* —_
</ u> </ VP (y) P < yh) dy) SC’C ¢
b o c—a h

Now, A, . follows since v < h and t¢(t) is increasing in (0, 7).

(ii) = (i). This implication follows from the following proposition and
f}mgiu is of weak
h

type (1,1) with respect to the measure u(z) dx. O

the fact that the maximal operator M, g(z) = sup; .,

Proposition 3.3. Let 1 <p < oo, h >0,0< v <h, e (0,1) and

p € 5{6. Assume that (u,v) € A, , . Then, there exists C' > 0 such

that for every measurable function f
_ _ 1
Noaorf (@) < C [ (IfPou™) (@)] 7.
Proof: Let x € R and (a,b) € A, = {(a,b) :b<wandb—a > }(x—b)}.

First, let us assume that 4 [," v > [ u. Since (u,v) € A, -, by Hélder
inequality, we have

/ablf(y)ltp (Z:‘Z”) dy
< (/ablf”v>l/p </abv1p'(y)<p”' (Z_—Zv) dy>
gc(/:flpu)l/p (/bmu>_l/pz7“

(R e ey @] ).

1/p’

<C
v

Now, assume that 4sz u < f; u. Let {z;} be the increasing sequence in
[a, ] defined by g = a and

xr Ti41 1 x
u = U= — u.
/xi+1 /lz 2 /ﬂ%
Let N be such that 2 < b < zy41 (observe that N > 2). Then we
have

b b*y N-—-2 Tit1 b
/f(y)|<,0(b_a’y) dyzZ/ ...dy+/ ody=T+11I.
@ i=0 v Ti TN-1
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Prps?
and t(t) in (0,7] and the inequality fwwal u <4 [ u, we get

b 1/p b 1/p’
/ ’ b—y
I < (/ prv> (/ v P (y)g? (—v) dy)
TN_1 TN_1 r—a
T 1/p b b— 1/17/ r—a
(L ) (] (2o a) e
TN_1 TN_1 T —ITN-1 T —ITN-1
z 1/17 . 71/p .
e[ ) (o) =
ITN-—-1 b ’y

First we estimate /1. By the condition A the monotonicities of ¢

IA

b—a (v+h _ _ 1/
et (R oty (P @),
Y Y
Now we shall estimate I. Notice that for each i, 0 < i < N — 2, there
exists ¢; = % where U = ziﬁ > 1 such that ¢; € [x;,2;41] and

b— A
i > T 7Y it and only if y > g;.
b—a Tit+1 — T4

Then we can write

Tit1 b—vy i T
[l () a= [Ty [y =i

i i qi

Since ¢ is decreasing, the Holder inequality, the hypothesis (u,v) €

A, and the definition of the sequence {z;} give

Tit1 Tit1 — Y Tit1
we [Tl (;Q we [y
i Tit1 — Xy o

Tit1 1/p Tit1 T _ 1/p’
7 ’ i y
<([ ) ([T e e (2120 )
x; x; Tit+1 — Tg
x 1/p Tit2 —1/p e — e
<C ( / | f|pv> / " Tiva — Ti
Zi Ti4+1 Y

<c “% (Mg (1fPou) ()] 7.
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To estimate II1 we shall use that b:—Z < ZH17Y if and only if y < ¢;

b Tip1—T4

and the fact that t9p(t) is increasing in (0,~]. Then,
qi b— y qi z; —y
HI:/ |f(y)le <b—7> dy S/ |f(y)le (LO 9(y) dy,
T, —a x; xl“rl — T

-5 5
where g(y) = (2:—3) (;”rl—l:f) . Since g is decreasing in (z;,q;), we

b—x; =0 pwin Tit1 — Y
mr<{ fWle | ———7 ) dv.
—a T; Ti+1 — g

Using the same argument as in the boundedness of IV and the increas-
ingness of (b —y)~% we get that

have

)
1 <cC (bb— x) P g (1) ()]

—a

<< ( [ G dy> [ () @]

Now, adding up in ¢, we get that

b—a [(2—-0 _ pvu_l T 1/p
r< ot (AL g (rpea) @))).

Finally, putting together the estimates of I and I, we are done. O

As a consequence of Theorem 1.5 we get the following characterization
of the weak type inequalities for My p .

Theorem 3.4. Let ¢ € F*, h >0 and 0 < v < h. Then (1.1) holds
for My 1, oo if and only if (u,v) € A .

Proof: Let ¢ = 7_(¢X(,0)). Itis clear that 1) € FT and 7,(0X(1,00)) =
Thi~(¢¥). Then M, j o is equal to the operator M, , . Therefore, since
h+~ > 0 and ¥(04+) = ¢(y) < 400, applying Theorem 1.5(i) we are
done. O

Now, we can prove Theorem 1.6.

Proof of Theorem 1.6: (i) = (ii). This is an easy consequence of Theo-
rem 3.1 and the fact that (i) implies statement (i) in Theorem 3.1.

(ii) = (i). By (1.9) we only have to see that M, - and M, h o

satisfy (1.1). On one hand, by Theorem 3.1, (u,v) € A, , ., implies that

M, 1, ~ verifies (1.1). On the other hand, since ¢ is decreasing it is easy
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to prove that A;#W C A, . Therefore, Theorem 3.4 gives that My , oo

is of weak type (p,p) with respect to the pair (u,v). O

4. Proof of Theorems 1.7 and 1.8

As in the proof of Theorem 1.6, the hard work in the proof of Theo-
rems 1.7 and 1.8 is in the study of the local part M, j . For h < 0 we
shall prove the following theorem.

Theorem 4.1. Let 1 < p < oo, h < 0,0 < v < |hl, d € (0,1) and
p e 5;*')5. The following statements are equivalent.
(i) (1.1) holds for My p ~.
(ii) (u,v) € At .
Before proving the theorem we shall show that it suffices to prove it
for the case |h| = 7, i.e. h = —~. First, if |h| > v and
(4.2) () = ©X(0,4] + L(V)X(y, 1]

we have that ¢ € SlJ,;‘ 5. Furthermore, the following lemma shows that
the operators My, and Mgy, |5 are pointwise equivalent.

Lemma 4.3. Let v > 0, 6 € (0,1) and ¢ € 5;5. Assume h < 0 such
that |h| > v and let ¢ be as in (4.2). Then there exists C > 0 such that

C Mg pn f() < Mppqf(x) < Mg pn f().

Proof: The second inequality is obvious since ¢ < ¢. To prove the first
one, we fix n = =2 s; is d i have that
, n = Tpr - Since ¢ is decreasing we have tha

1 [otlhiE z+|hR—y
L W)l (—) dy
R Jor(nl-vR R

1 z+|h|R

T If(y)ldy] :

>
> @(7)|h| AR Ly

Taking supremum over R > 0 we have that M, s - f(x) > @(7)|h|N,f f(z),
where N;‘ is the operator defined in Section 2. Then, by Proposi-
tion 2.2(ii) we get

(4.4) Mo f(2) = Coo(y)[R|MT f(z).
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Now, by the definition of ¢ we obtain

z+|h|R hlR — z+(lh[=7)R
af e (TEE ) 4 =2 | 7)) dy

/“‘lhR Wl <x+|hR—y) ay
TR +(Ih| v)R R

Taking supremum over R > 0 and using (4.4) we have
Mg it f (@) < (V) (1R = )M T f(2) + Mo py f(2)
< @AM T f(x) + My pq f(2)
<C Mw,hﬁf(x)a
as we wished to prove. O

Once Lemma 4.3 has been proved we are able to show that Theo-
rem 4.1 for |h| > v follows from Theorem 4.1 from h = —v. In fact, let
us assume that Theorem 4.1 is proved for h = —v. By Lemma 4.3, we
can easily see that (i) is equivalent to (u,v) € Ap g.|n| 1€, there exists

C' > 0 such that
1/p’
c—a
dy) <C—rr,
) |hl

(/u>/ ([ oo (=2

for all @ < b < ¢. It only remains to prove that At MPRTY and At

P,y

are equivalent. The implication (u,v) € At piilh] = (u,v) € Ap oy 1S A

consequence of the increasingness of ¢¢(t) in (0, |h|] while the converse
follows from the fact that ¢ is decreasing.

Proof of Theorem 4.1 for h = —v: Notice that in this case

1 z+|h|R LR —
Mo f(2) = sup = FW)le (*"y) dy

r>0 R R
C c_y
= sup / If(y)le (—w) dy.
c>x C— T Jy cC—x

(i) = (ii). Let @ < b < ¢. Let v, and ¢, be as in the proof of
Theorem 3.1 and let us consider f(y) = v} (y)g? ~! (%7) X(b,e)(Y)-
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Using that tp(t) is increasing in (0,7] and ¢ > ¢,, we have for all
x € (a,b),

y ‘o 1Y c—-y
M, > Pyl [ —2 d
e f () = C_x/b v P (y)en (c—ﬂ)‘p(c—gﬂ) y

~ ¢ rfc—y
/ oy P (y)eh, ( 7) dy =\
c—af, c—a

Then (ii) follows applying (i) and letting n tend to oco.

v

The implication (ii) = (i) follows, as in the proof of Theorem 3.1,
from the following proposition.

Proposition 4.5. Let 1 < p < o0, v > 0, 0 € (0,1), ¢ € &jé, h =

—v and (u,v) € Xrtwm/' Then, there exists C > 0 such that for every

measurable function f

M pr f(@) < C M (|fPou) ()]

Proof: Let © € R. Let {x;} be the decreasing sequence in [z, ] defined

by x¢g = ¢ and
Tit1 €Ty 1 23
u = U= - U.
/.’E /$i+1 2 /x

Then,

[ e (=) =3 [ sl (S2)

The rest of the proof follows in a similar way as in the proof of Propo-

sition 3.3. In fact, by taking ¢; = Ufi:lc with U = x:c:zil > 1 we can
prove that =% > =¥ if and only if y € [g;, z;]. Then

C—X — Tj—Tij41

Ti c—y qi z;
/ If(y)lso<mw> dy:/ ...dy+/ cody=1+11.
Tit1 Tit1 qi
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Since ¢ is decreasing, the Holder inequality, the hypothesis (u,v) €

Af ., and the definition of the sequence {z;} give

T4 -Ti _ y X,
US/ fW)le <77> dyS/ dy
qi Ti — Ti4-2 Tip1
1/p 1/p/
Ty T . , T —y
= (/ |f|pv> (/ v (y)" (77) dy>
Tit1 Tit1 XTq — $i+2
z; 1/p Tip1 -1/p .
([ i () e
T Tit2 vy

<C Li = it2 _fiﬁ [MJ (|f\pvu_1) (ac)} 1/p.

IA

To estimate I we shall use that <=2 < =¥ if and only if y < ¢; and

c—x Ti—Tip1

the fact that t%p(t) is increasing in (0,7]. Then,

qi c— qi T; —
1= [T sl (S0 ars [ e (525 st

-6 5
where g(y) = (E:g) (%) . Since g is decreasing in (2;12,q;),
we have

-5z
C— X4 ;i —Y
I< <+2> / [f ()l < . v) dy.
c—z s Ti — Tito

With the same argument as in the boundedness of IV in the proof of
Theorem 3.1, using that (¢ — y) ™9 is increasing, we get that

-5
C— Tit2 Ti = Tit2 1ot (| £ip,, —1 1/p
lgc( P ) M (o) (@)

= % </ <_y) dy) M (1 Pou) @]

Now, adding up in ¢, we obtain

P 1< 008 (325 e (o) @),

and we are done. O
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As in the case h > 0, we obtain the characterizations for M, j,  from
Theorem 1.5.

Theorem 4.6. Let 1 <p < oo, o€ FT, h <0 and 0 <~ <|h|. Then
(i) If supp(yp) C (0, |h]] and v = |h|, then My j o0 = 0.
(ii) If supp(p) N (|h],00) # 0 and v = |h|, (1.1) holds for My p.o if
and only if (u,v) € A .
(iii) If supp(p) C (0 ,|h|] and v < |h|, (1.1) holds for My o if and
only if (u,v) € A
(iv) If supp(¢p) fz (I

| ) 7é 0 and v < |h|, (1.1) holds for My p o if
and only if (u,v) €

Proof: (i) is obvious. As in the proof of Theorem 3.4, taking i =
T~ (PX(7,00)) € F* the operator M j o is equal to M., 4. In the
case (ii), My, 4 = My and therefore, (ii) follows from one of the re-
sults cited in the introduction. In the cases (iii) and (iv) we have that
h +~ < 0 and applying Theorem 1.5(ii) and (iii) we are done. O

Now we shall prove Theorems 1.7 and 1.8.

Proof of Theorem 1.7: The proof follows as the proof of Theorem 1.6
using Theorem 4.1, Theorem 4.6(i) and (iii), the inequalities (1.9) and
the fact that AT C A; which is a consequence of the decreasingness

Py
of . |

Proof of Theorem 1.8: Tt follows from Theorem 4.1, Theorem 4.6(ii) and
(iv) and inequalities (1.9). O

Remark 4.7. We have not studied in this paper the case p = 1. The
study of the weighted weak type inequality (1,1) for M., , will appear
in a forthcoming paper on weighted restricted weak type inequalities for
this operator and 1 < p < co (notice that the restricted weak type (1, 1)
inequality for M., is equivalent to the weak type (1,1) inequality [8]).
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