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Weighted inequalities for a maximal function
in the real line

A. L. Bernardis∗ F. J. Mart́ın-Reyes†

Abstract

We consider the maximal operator defined in the real line by
Mαf(x) = supR>0

1
(2R)1+α

∫
R<|x−y|<2R |f(y)|(|x− y| −R)α dy, −1 <

α ≤ 0, which is related to the Cesàro convergence of the singular in-
tegrals. We characterize the weights w for which Mα is of weak type,
strong type and restricted weak type (p, p) with respect to the measure
w(x) dx.

1 Introduction

In this paper we are interested in the study of the boundedness in weighted
Lp-spaces of the maximal operator Mα acting on measurable functions on R
and defined by

Mαf(x) = sup
R>0

1

(2R)1+α

∫

R<|x−y|<2R

|f(y)|(|x− y| −R)α dy, −1 < α ≤ 0.

This operator is interesting by itself and it is useful in the study of the
Cesàro-α convergence of singular integrals associated to Calderón-Zygmund
kernels (see [1]). Furthermore, Mα is, up to constants, a particular case
of the maximal function of positive convolution operators associated with
approximations of the identity given by

Mϕf(x) = sup
R>0

1

R

∫

R
ϕ

(
x− y

R

)
f(y) dy.

The operator Mϕ was studied in [4] providing access to the study of the
Cesàro continuity of order less than one.

∗Supported by CONICET, Prog. CAI+D - UNL and PICT 98 (Código: 03-04186)
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On one hand, it follows from [4, Theorem 1] that if α > −1 then Mα

is of restricted weak type ( 1
1+α

, 1
1+α

) and, consequently, it is of strong type

(p, p) for p > 1
1+α

. On the other hand, it was proved in [1] that if w is in

the Muckenhoupt Ap(1+α) class and p > 1
1+α

then Mα is of strong type (p, p)
with respect to w(x)dx, while if w ∈ A1 then Mα is of restricted weak type
( 1

1+α
, 1

1+α
) with respect to w(x)dx. The aim of this paper is to characterize

the weighted inequalities of restricted weak type, weak type and strong type
for Mα. Our results refer only to the case of equal weights.

The study of the boundedness of Mα in weighted Lp-spaces has two main
difficulties. The first one is the kernel (|x − y| − R)α. The second one is to
find a noncentered maximal operator pointwise equivalent to Mα as in the
case of the Hardy-Littlewood maximal operator, i.e., as in the case α = 0.

The paper is organized as follows: we introduce in §2 a noncentered ver-
sion of Mα and we prove that it is pointwise equivalent to Mα; Sections 3
and 4 are devoted to characterize the weighted weak and strong type (p, p)
inequalities, while the restricted weak type inequalities with weights are stud-
ied in §5. The main results in the paper are in Theorems 3.1 and 4.3, where
we prove the equivalence for p > 1 of the weighted weak type (p, p) inequality,
the weighted strong type (p, p) inequality for Mα and the fact that w satisfies
the following condition: there exists C > 0 such that for any interval I

(∫

I

w(s) ds

)1/p (∫

I

w1−p′(s)|s− x|αp′ ds

)1/p′

≤ C|I|1+α,

where x is the center of I, |I| is the length of I and 1/p + 1/p′ = 1. In the
final section we observe some relations between the good weights for Mα and
the Muckenhoupt Ap-weights.

Throughout the paper, we shall use the following notations: If x and
R are real numbers with R > 0, the interval (x − R, x + R) is denoted by
I(x,R). If I = I(x,R) and λ is a positive number then λI = I(x, λR)
while ∂I is the border of I, i.e., the set {x − R, x + R}. If s, t ∈ R and
A ⊂ R, d(s, t) and d(s, A) are the euclidean distances from s to t and to A,
respectively. By |A| and w(A) we denote the measure of A and the integral∫

A
w(s) ds, respectively. If 1 < p < ∞ then p′ denotes its conjugate exponent.

Finally, the letter C means a positive constant nonnecesarily the same at each
occurrence.
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2 The noncentered maximal function

Observe first that with the notations introduced in §1 we have that

Mαf(x) = sup
R>0

1

|I(x,R)|1+α

∫

2I(x,R)\I(x,R)

|f(s)|d(s, I(x,R))α ds.

Notice also that M0f ≤ Mαf (since α ≤ 0) and that M0f is pointwise
equivalent to the Hardy-Littlewood maximal function

Mf(x) = sup
R>0

1

|I(x,R)|
∫

I(x,R)

|f(s)| ds.

We define the noncentered maximal operator Nα associated with Mα as

Nαf(x) = sup
I:x∈ 1

2
I

1

|I|1+α

∫

2I\I
|f(s)|d(s, I)α ds,

where the supremum is taken over all the bounded intervals such that x ∈ 1
2
I.

The next proposition shows that Mα and Nα are pointwise equivalent.

(2.1) Proposition: Let −1 < α ≤ 0. There exists a constant C depending
only on α such that Mαf ≤ Nαf ≤ CMαf, for all measurable function f .

Proof: The first inequality is obvious. Let I = I(z, R) be an interval such
that x ∈ 1

2
I. Without loss of generality we may assume that x ∈ (z − R

2
, z].

Then
∫

2I\I
|f(s)|d(s, I)αds =

∫ z−R

z−2R

|f(s)|(z −R− s)αds

+

∫ z+2R

z+R

|f(s)|(s− z −R)αds = I + II.

On one hand, if L = x− z + R we have R/2 < L ≤ R and x− 2L ≥ z − 2R.
Thus

I ≤
∫ x−2L

z−2R

|f(s)|(z −R− s)αds +

∫ x−L

x−2L

|f(s)|(x− L− s)α ds

≤ (R/2)α

∫ x+L+R

x−L−R

|f(s)|ds +

∫

2I(x,L)\I(x,L)

|f(s)|d(s, I(x, L))αds.

On the other hand, if T = z+R−x then R ≤ T < 3/2R and x+2T ≥ z+2R.
Therefore

II ≤
∫ x+2T

x+T

|f(s)|(s− x− T )αds ≤
∫

2I(x,T )\I(x,T )

|f(s)|d(s, I(x, T ))αds.
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Putting together the inequalities we get

1

|I|1+α

∫

2I\I
|f(s)|d(s, I)αds ≤ C

1

|I|
∫

I(x,L+R)

|f(s)|ds

+
1

|I|1+α

∫

2I(x,L)\I(x,L)

|f(s)|d(s, I(x, L))αds

+
1

|I|1+α

∫

2I(x,T )\I(x,T )

|f(s)|d(s, I(x, T ))αds.

Since the lengths of the intervals I, I(x, L+R), I(x, L) and I(x, T ) are essen-
tially the same, the right hand-side is dominated by C[Mf(x) + Mαf(x)] ≤
CMαf(x) and we are done. ¤

3 Weighted weak type inequalities

The first main result of the paper characterizes the weighted weak type
inequalities for the maximal operator Mα by means of a Muckenhoupt type
condition.

(3.1) Theorem: Let w be a nonnegative measurable function on R and let
−1 < α ≤ 0. If 1 < p < ∞ then the following are equivalent:

(i) Mα is of weak type (p, p) with respect to w(x) dx, i.e., there exists C such
that w({Mαf > λ}) ≤ Cλ−p

∫ |f |pw, for all λ > 0 and all f ∈ Lp(w).

(ii) w satisfies Ap,α, i.e., there exists C such that for any interval I

(∫
1
2
I

w

)1/p (∫

2I\I
w1−p′(s)d(s, I)αp′ds

)1/p′

≤ C|I|1+α .

(3.2) Remark: Observe that for α < 0 the weighted weak type (p, p) in-
equality is not possible for 1 < p ≤ 1

1+α
unless w = 0 a.e., since if 1 < p ≤ 1

1+α

then (ii) does not hold. As a consequence, we have that the weighted weak
type (1, 1) inequality for Mα with α < 0 never holds. In other words, the weak
type (1, 1) inequality makes sense only for α = 0. In this case (M0 is point-
wise equivalent to the Hardy-Littlewood maximal operator) the weighted
weak type inequalities are characterized by the well known Muckenhoupt
Ap-conditions. This is the reason why we do not include the case p = 1 in
the statement of the theorem.

Proof of Theorem 3.1: By 2.1, statement (i) is equivalent to the weighted
weak type (p, p) inequality for Nα. Then (ii) follows from (i) by standard
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arguments, i.e., roughly speaking, applying (i) (with Nα) to the functions
w1−p′(s)d(s, I)α(p′−1)χ2I\I(s). In order to prove (ii) ⇒ (i) we need to know
that w is a doubling weight, i.e., w(2I) ≤ Cw(I) for all interval I.

(3.3) Lemma: If 1 < p < ∞, −1 < α ≤ 0 and w satisfies Ap,α then w is a
doubling weight.

We postpone the proof of Lemma 3.3 and continue with the proof of the
theorem. Assume that (ii) holds. Let x ∈ R and let I be any interval with
center x. By the Hölder inequality and the Ap,α condition we obtain

∫

2I\I
|f(s)|d(s, I)αds ≤

(∫

2I\I
|f |pw

)1/p (∫

2I\I
w1−p′(s)d(s, I)αp′ds

)1/p′

≤ C

(∫

2I\I
|f |pw

)1/p
(∫

1
2
I

w

)−1/p

|I|1+α.

Since w is a doubling weight (Lemma 3.3), we get

1

|I|1+α

∫

2I\I
|f(s)|d(s, I)αds ≤ C

(∫
2I
|f |pw∫
2I

w

)1/p

.

Therefore
Mαf(x) ≤ C [Mw(|f |p)]1/p (x),

where Mwg(x) = supR>0

[
1

w(I(x,R))

∫
I(x,R)

|g|w
]
. Now (i) follows from the

above inequality and the well known fact that Mw is of weak type (1, 1)
with respect to w(x)dx. ¤
Proof of Lemma 3.3: If I = I(x,R) we obtain, by Ap,α and the Hölder
inequality, that

(∫
1
2
I

w

)1/p (∫

2I\I
w1−p′(s)d(s, I)αp′ds

)1/p′

≤ C

∫ x+2R

x+R

d(s, I)αds

≤ C

(∫ x+2R

x+R

w

)1/p (∫ x+2R

x+R

w1−p′(s)d(s, I)αp′ds

)1/p′

.

Since (x + R, x + 2R) is contained in 2I \ I we have

w((x−R/2, x + R/2)) ≤ Cw((x + R, x + 2R)),

for every x ∈ R and all positive R. Applying this property to the intervals
(x−2R, x−R) and (x−R, x−R/2) instead of (x−R/2, x+R/2) we obtain
that

w((x− 2R, x−R/2)) ≤ C[w(
1

2
I) + w(

1

4
I)] ≤ Cw(

1

2
I).
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Analogously, we have

w((x + R/2, x + 2R)) ≤ Cw(
1

2
I).

Summing the inequalities we get that w(2I \ 1
2
I) ≤ Cw(1

2
I). Thus w(2I) ≤

Cw(1
2
I) ≤ Cw(I). ¤

4 Weighted strong type inequalities

We start establishing different characterizations of the Ap,α condition
which are a key step for the study of the strong type inequalities. In or-
der to state the result we recall that if µ is a Borel measure then it is said
that a nonnegative measurable function w satisfies Ap(µ), 1 < p < ∞, if
there exists a positive constant C such that

(∫

I

w dµ

)1/p (∫

I

w1−p′dµ

)1/p′

≤ Cµ(I),

for all bounded intervals I. See for instance [5]. (If µ is the Lebesgue measure
then Ap(µ) is the Muckenhoupt Ap condition).

(4.1) Proposition: Let −1 < α ≤ 0 and p > 1. Let w be a nonnegative
measurable function. The following statements are equivalent:

(a) w satisfies Ap,α.

(b) There exists C such that for any interval I

(∫

I

w

)1/p (∫

I

w1−p′(s)d(s, x)αp′ds

)1/p′

≤ C|I|1+α,

where x is the center of I.

(c) The functions s → w(s)d(s, z)−α satisfy Ap(µz) with a constant indepen-
dent of z ∈ R, where dµz = d(s, z)αds, i.e., there exists C such that for any
interval I and all z ∈ R

(∫

I

w

)1/p (∫

I

w1−p′(s)d(s, z)αp′ds

)1/p′

≤ C

∫

I

d(s, z)αds.

Proof: It is clear that (c) ⇒ (b). Therefore we only have to prove (a) ⇒ (b)
⇒ (c) and (b) ⇒ (a).
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(a) ⇒ (b). Let I = (a, b), I− = (a, x) and I+ = (x, b), where x is the
center of I. It suffices to establish that

(∫

I

w

)1/p (∫

I∗
w1−p′(s)d(s, x)αp′ds

)1/p′

≤ C|I|1+α

for I∗ = I− and I∗ = I+. We shall only prove the inequality for I− since the
another one is proved in a similar way. Let J be the interval with left end
point equals x and the same length as I. It is clear that I− ⊂ 2J \ J and
d(s, x) = d(s, J) for all s ∈ I−. These properties together with the fact that
w satisfies Ap,α (and, therefore is a doubling weight) give

(∫

I

w

)1/p (∫

I−
w1−p′(s)d(s, x)αp′ds

)1/p′

≤ C

(∫
1
2
J

w

)1/p (∫

2J\J
w1−p′(s)d(s, J)αp′ds

)1/p′

≤ C|I|1+α.

(b) ⇒ (c). Let I = (a, b). We shall consider the following two cases: (1)
z ∈ [a, b] and (2) z /∈ [a, b].

Case (1): Let J ⊃ I an interval centered at z such that |I| ≤ |J | ≤ 2|I|.
Enlarging the interval I to J and applying (b) we obtain

(∫

I

w

)1/p (∫

I

w1−p′(s)d(s, z)αp′ds

)1/p′

≤ C|J |1+α = C|I|1+α.

If z = a or z = b we are done. If z ∈ (a, b) we have

|I|1+α ≤ C
[
(b− z)1+α + (z − a)1+α

]
= C

[
(b− z)α

∫ b

z

ds + (z − a)α

∫ z

a

ds

]

≤ C

[∫ b

z

(s− z)αds +

∫ z

a

(z − s)αds

]
= C

∫ b

a

d(s, z)α ds.

Putting together the last inequalities we obtain (c) for z ∈ (a, b).

Case (2): We shall prove it only for z > b. First observe that the function

g(s) =
(

d(s,z)
d(s,b)

)αp′

is decreasing in the interval (a, b). Therefore,

(∫

I

w1−p′(s)d(s, z)αp′ds

)1/p′

≤
(

z − a

b− a

)α (∫

I

w1−p′(s)d(s, b)αp′ds

)1/p′

.
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Using Case (1) (z = b) and the fact that α ≤ 0 we obtain

(∫

I

w

)1/p (∫

I

w1−p′(s)d(s, z)αp′ds

)1/p′

≤ C(z − a)α|I| ≤ C

∫

I

d(z, s)αds.

(b) ⇒ (a). First we observe that (b) implies that w is doubling. Now, let
I = I(x,R) any interval. Applying (b) we have

(∫ x

x−2R

w

)1/p (∫ x

x−2R

w1−p′(s)d(s, x−R)αp′ds

)1/p′

≤ CR1+α.

Restricting the interval (x− 2R, x) in the second integral and applying that
w is doubling we obtain

(∫ x+R/2

x−R/2

w

)1/p (∫ x−R

x−2R

w1−p′(s)d(s, I)αp′ds

)1/p′

≤ CR1+α.

Analogously we get the same inequality changing the interval (x−2R, x−R)
by (x + R, x + 2R). Finally, (a) follows adding both inequalities. ¤

As a consequence of the characterizations obtained in 4.1 we have the
following proposition.

(4.2) Proposition: Let −1 < α ≤ 0, 1 < p < ∞ and let w be a nonnegative
measurable function on the real line. If w satisfies Ap,α then there exists ε > 0,
0 < ε < p− 1, such that w satisfies Ap−ε,α.

Proof: We know by Proposition 4.1 that w(s)d(s, z)−α satisfies Ap(µz) with
an Ap(µz)-constant independent of z. Then (see [5] p.5) there exists ε >
0 depending only on the Ap(µz)-constant such that w(s)d(s, z)−α satisfies
Ap−ε(µz) where the Ap−ε(µz)-constant depends only on the Ap(µz)-constant
and ε. Applying again Proposition 4.1 we obtain that w satisfies Ap−ε,α. ¤.

It is clear that Marcinkiewicz’s Interpolation Theorem, 3.1, 4.1 and 4.2
give immediately the characterization of the weighted strong type inequality.

(4.3) Theorem: Let −1 < α ≤ 0 and p > 1. Let w be a nonnegative
measurable function on R. The following statements are equivalent:

(a) Mα is of strong type (p, p) with respect to w(x) dx, i.e., there exists C
such that

∫ |Mαf |pw ≤ C
∫ |f |pw, for all f ∈ Lp(w).

(b) w satisfies Ap,α or, equivalently, there exists C such that for any interval
I (∫

I

w

)1/p (∫

I

w1−p′(s)d(s, x)αp′ds

)1/p′

≤ C|I|1+α,

where x is the center of I.
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5 Restricted weak type inequalities

As we said above, the operator Mα is not of weak type ( 1
1+α

, 1
1+α

) with
respect to the Lebesgue measure if α < 0 but it is of restricted weak type
( 1

1+α
, 1

1+α
); in other words, Mα satisfies the weak type inequality for charac-

teristic functions or, equivalently, Mα applies the Lorentz space L 1
1+α

,1(dx)

into the Lorentz space L 1
1+α

,∞(dx). Therefore, it is interesting to study the

weights w such that w({x : MαχE(x) > λ}) ≤ Cλ−pw(E) for all λ > 0 and
all measurable sets E ⊂ R.

(5.1) Theorem: Let w be a nonnegative measurable function on R and let
−1 < α ≤ 0. If 1 ≤ p < ∞ then the following are equivalent:

(a) Mα is of restricted weak type (p, p) with respect to w(x) dx, i.e., there
exists C such that w({x : MαχE(x) > λ}) ≤ Cλ−pw(E) for all λ > 0 and
all measurable E ⊂ R.

(b) w satisfies RAp,α, i.e., there exists C such that for every interval I and
all measurable E ⊂ R

(∫
1
2
I

w

) (∫

E∩(2I\I)

d(s, I)αds

)p

≤ C|I|(1+α)p

∫

E∩(2I\I)

w.

Proof: By using 2.1 we see that (b) follows from (a) since NαχE∩(2I\I)(x) ≥
1

|I|1+α

∫
E∩(2I\I)

d(s, I)α ds, for all x ∈ 1
2
I. Assume now that (b) holds. We

shall need the following lemma.

(5.2) Lemma: If −1 < α ≤ 0 and w satisfies RAp,α then w is a doubling
weight.

We postpone the proof of the lemma and continue with the proof of the
theorem. By (b) and the fact that w is a doubling weight we have

∫
E∩(2I\I)

d(s, I)α ds

|I|1+α
≤ C

(
w(E ∩ (2I \ I))

w(2I)

)1/p

.

Therefore MαχE ≤ C (MwχE)1/p. As in the proof of 3.1 we obtain (a)
applying that Mw is of weak type (1,1) with respect to w(x)dx. ¤
Proof of Lemma 5.2: Let I = I(x,R) be any interval. Applying that w
satisfies RAp,α with E = (x + R, x + 2R) we obtain

(∫ x+R/2

x−R/2

w

)(∫ x+2R

x+R

d(s, I)α ds

)p

≤ C|I|(1+α)p

∫ x+2R

x+R

w,
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and therefore w((x−R/2, x+R/2)) ≤ Cw((x+R, x+2R)). Now, we continue
as in the proof of Lemma 3.3. ¤

We can give equivalent formulations of the RAp,α condition in the same
way as we did with the Ap,α condition in 4.1. We collect them in the next
proposition. We omit the proof since it is similar to the proof of 4.1.

(5.3) Proposition: Let −1 < α ≤ 0 and p ≥ 1. Let w be a nonnegative
measurable function. The following statements are equivalent:

(a) w satisfies RAp,α.

(b) There exists C such that for any interval I and all measurable E ⊂ I

(∫

I

w

)(∫

E

d(s, x)αds

)p

≤ C|I|(1+α)p

∫

E

w,

where x is the center of I.

(c) There exists C such that for any interval I, all measurable E ⊂ I and all
z ∈ R (∫

I

w

)(∫

E

d(s, z)αds

)p

≤ C

(∫

I

d(s, z)α

)p ∫

E

w.

6 Further results

This section is devoted to establish several relations among the classes of
weights considered in the previous sections. Some of them are proven easily;
for instance:
(a) If 1 < p < ∞ and α ≤ β then Ap,α ⊂ Ap,β.
(b) If 1 < p ≤ q < ∞ then Ap,α ⊂ Aq,α.

Others relations appear in the next proposition.

(6.1) Proposition: If −1 < α ≤ 0 and p(1 + α) > 1 then Ap(1+α) ⊂ Ap,α ⊂
Ap and Ap,α 6= Ar for all r > p(1 + α).

Proof: Taking β = 0 in (a) we obtain Ap,α ⊂ Ap and applying the Hölder
inequality we get that Ar ⊂ Ap,α for all r with 1 < r < p(1 + α). Keeping
in mind that w ∈ Ap(1+α) implies w ∈ Ar for some r < p(1 + α) (see [3]
or [5]) we have that Ap(1+α) ⊂ Ap,α. In order to see that Ap,α 6= Ar for all
r > p(1+α) we consider the functions w(x) = |x|γ. It is well known (see [3])
that w ∈ Ar if, and only if, −1 < γ < r − 1. On the other hand, if w ∈ Ap,α

then (Proposition 4.1 (b))
∫ a

−a

w1−p′(s)d(s, 0)αp′ ds =

∫ a

−a

|s|γ(1−p′)+αp′ ds < ∞.
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This implies that γ < p(1 + α) − 1. Therefore, if p(1 + α) − 1 < γ < r − 1
then w ∈ Ar and w /∈ Ap,α. ¤
(6.2) Remark: The same argument in the proof of the above proposition
shows that if p(1 + α) > 1 then w(x) = |x|γ ∈ Ap,α if, and only if, −1 < γ <
p(1 + α)− 1. However we do not know if Ap(1+α) is equal to Ap,α for α < 0.

Now we check the same kind of relations among the classes RAp,α. Clearly,
properties (a) and (b) also hold for the classes RAp,α. If we denote the classes
RAp,0 by RAp we can prove the following proposition.

(6.3) Proposition: If −1 < α ≤ 0 and p(1 + α) ≥ 1 then RAp(1+α) ⊂
RAp,α ⊂ RAp and RAp,α 6= RAr for all r > p(1 + α).

Proof: The relation RAp,α ⊂ RAp is obvious. Now, let w ∈ RAp(1+α). Then
(Proposition 5.3 (b) for α = 0)

(∫

I

w

)
|E|p(1+α) ≤ C|I|p(1+α)

∫

E

w

for all interval I and all measurable E ⊂ I = I(x,R). Since
∫

E
d(s, x)α ds ≤

|E|1+α we obtain that w ∈ RAp,α, by Proposition 5.3. In order to prove that
RAr 6= RAp,α for all r > p(1 + α), let us consider w(x) = |x|r−1. It was
noticed in [2] that w ∈ RAr. However w does not belong to RAp,α because
if w ∈ RAp,α then (Proposition 5.3 (b))

(∫ a

−a

w

)(∫ ε

0

d(s, 0)α ds

)p

≤ C(2a)p(1+α)

∫ ε

0

w,

for all a and ε with 0 < ε < a or, equivalently, (a/ε)r ≤ C (a/ε)p(1+α),
0 < ε < a, which is a contradiction since r > p(1 + α). ¤
(6.4) Remark: With the same arguments as above we can easily see that
w(x) = |x|γ ∈ RAp,α if and only if −1 < γ ≤ p(1 + α) − 1. On the other
hand, as in the case of the Ap,α classes, we do not know if RAp(1+α) is equal
to RAp,α when α < 0 but the equality holds when p is the endpoint, i.e., if
p = 1

1+α
.

(6.5) Proposition: RA 1
1+α

,α = RA1 = A1.

Proof: First, notice that by 6.3 (p = 1
1+α

), we have that RA1 ⊂ RA 1
1+α

,α.

Second, RA1 is clearly equivalent to A1 since the restricted weak type (1, 1)
is equivalent to the weak type (1, 1). It only remains to show that RA 1

1+α
,α ⊂

A1. Let w ∈ RA 1
1+α

,α and let I be any bounded interval. Applying Proposi-
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tion 5.3 (c) to E = (z − ε, z + ε) ⊂ I we get

w(I)

(∫ z+ε

z−ε

d(s, z)α ds

) 1
1+α

≤ C|I|
∫ z+ε

z−ε

w.

Thus 1
|I|

∫
I
w ≤ C 1

2ε

∫ z+ε

z−ε
w. If we let ε go to 0 we obtain 1

|I|
∫

I
w ≤ Cw(z) for

almost every z ∈ I, i.e., w is in the class A1 of Muckenhoupt. ¤.
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