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Boundedness of convolution operators
with smooth kernels on Orlicz spaces

by

Hugo Aimar, Eleonor Harboure, and Bibiana Iaffei (Santa Fe)

Abstract. We study boundedness in Orlicz norms of convolution operators with
integrable kernels satisfying a generalized Lipschitz condition with respect to normal quasi-
distances of Rn and continuity moduli given by growth functions.

1. Introduction. In 1967 E. Stein and A. Zygmund, when dealing with
the Lp boundedness of translation invariant operators [10], proved that any
convolution operator with integrable kernel k, satisfying a smoothness con-
dition of the type �

Rn
|k(x− y)− k(x)| dx ≤ A|y|δ(1.1)

with 0 < δ < 1, maps Lp into Lq where 1/q = 1/p−δ/n and 1 < p, q <∞. In
terms of Taibleson–Lipschitz spaces those conditions on k can be rephrased
by saying that k belongs to Λ(δ; 1,∞) [11]. Actually the main point in
the S-Z theorem is based on the harmonic extension characterization of
Λ(δ; 1,∞) also given in [11]: k ∈ Λ(δ; 1,∞) if and only if the harmonic
extension k(x, t) = (k ∗ Pt)(x) satisfies both

�

Rn
|k(x, t)| dx ≤ A,(i)

�

Rn

∣∣∣∣
∂

∂t
k(x, t)

∣∣∣∣dx ≤ A
tδ

t
.(ii)

Several extensions and generalizations of the result of Stein and Zygmund
are possible. First of all, the regularity condition (1.1) can be weakened to
include continuity moduli more general than powers [4]. Second, the geomet-
ric radial control given by the absolute value of y fails when dealing with
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non-isotropic fractional integral operators on Rn, but other distances can
play the role of the absolute value.

The aim of this note is to approach at once both generalizations by giving
an extension of the result of Stein and Zygmund to a more general setting.
In this way, in Section 4 we obtain properties of functions in new spaces
Λ%(η; 1,∞), in terms of their convolutions with general families of approx-
imate identities as considered in [12] and [1]. Although we do not obtain a
complete characterization as in the classical case (Theorem 4, p. 421, of [11])
our result, Theorem 4.1, will be enough to prove the extension of the S-Z
theorem to our general setting. This is done in Section 6.

2. Generalization of a theorem of F. Zó. In [12], F. Zó shows that
a non-negative integrable kernel l defined on Rn satisfying the inequality

|∇l(x)| ≤ C|x|−n−1

for some finite constant C and every x ∈ Rn − {0} defines by convolution
with lε(x) = (1/εn)l(x/ε) an approximate identity with associated maxi-
mal operator of weak type (1, 1), even when it is not necessarily pointwise
bounded by the Hardy–Littlewood maximal function. When dealing with a
generalization of Zó’s theorem to spaces of homogeneous type, in [1] it is
proved that all radial kernels l satisfying the above condition can be writ-
ten as

l(x) =
Φ(|x|n)
|x|n

with Φ : R+ → R+ ∪ {0} satisfying

Φ ∈ C1(R+) ∩ L∞(R+),(2.1)

|Φ′(s)| ≤ C/s,(2.2)
∞�

0

Φ(s)
s

ds <∞.(2.3)

Since l(x) depends only on %(x) = |x|n, the normalized quasi-distance in-
duced on Rn by the usual distance |x|, our kernel can be rewritten in the
form l(x) = Φ(%(x))/%(x) and we can take lt(x) = Φ(%(x)/t)/%(x). Parabolic
metrics [2] or Vitali families on Rn [8] induce natural normal quasi-distances
on Rn. First of all let us remark that the general normalization of spaces of
homogeneous type was obtained by Maćıas and Segovia [6], but we need a
more refined normality condition. On the other hand since we are concerned
with convolution operators our quasi-distances will be translation invariant.
A translation invariant quasi-distance on Rn is a function % : Rn → R+∪{0}
such that

(2.4) %(x) = 0 if and only if x = 0,
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(2.5) %(x) = %(−x) for every x ∈ Rn,
(2.6) there exists a constant C such that

%(x+ y) ≤ C(%(x) + %(y)) for all x and y in Rn.

We denote by B%(x, r) the ball {y ∈ Rn : %(x − y) < r}; notice that
B%(x, r) = x+B%(0, r).

The quasi-distance % defines a structure of space of homogeneous type
on Rn with the usual Lebesgue measure when the doubling condition

|B%(0, 2r)| ≤ A|B%(0, r)|(2.7)

holds true for some constant A and every r > 0. This is the case for the
quasi-distances induced by non-isotropic dilations of Rn and, more generally,
for regular Vitali families of neighborhoods of 0 in the sense of Riviere [8].

Let us now prove an auxiliary result that will be useful in our subsequent
development.

Lemma 2.1. If δ is a translation invariant quasi-distance on Rn such
that δ defines a structure of space of homogeneous type and the function
µ(r) = |Bδ(0, r)| is continuous on R+ and strictly increasing , then

%(x) = inf{|Bδ(0, r)| : x ∈ B%(0, r)}

defines a translation invariant quasi-distance such that every %-ball is also
a δ-ball and |B%(x, r)| = r for all r and x.

Proof. First notice that since Rn =
⋃
r>0Bδ(0, r), µ(r) tends to infinity

as r tends to infinity. Moreover, since the underlying measure is the usual
Lebesgue measure, no atoms are allowed, hence µ(0+) = 0. Let us now
show that % is a quasi-distance on Rn. Of course %(0) = 0 since µ(0+) = 0;
conversely, if %(x) = 0 then x ∈ Bδ(0, r) for every r > 0 since µ(r) is assumed
to be strictly increasing, thus δ(x) < r for every r > 0, so that from (2.4) for
δ we have x = 0. Property (2.5) for % follows from the symmetry with respect
the origin of δ-balls. In order to check the triangle inequality, pick two points
x and y in Rn and a positive number ε. Then there exist r1, r2 > 0 such that
x ∈ Bδ(0, r1), y ∈ Bδ(0, r2), |Bδ(0, r1)| < %(x) + ε and |Bδ(0, r2)| < %(y) + ε.
Denote by Cδ the constant in (2.6) for δ. Then δ(x, y) ≤ Cδ(δ(x) + δ(y)) <
Cδ(r1 + r2). In other words x+ y ∈ Bδ(0, Cδ(r1 + r2)). Then

%(x+ y) ≤ |Bδ(0, Cδ(r1 + r2))| ≤ |Bδ(0, 2Cδ max{r1 + r2})|
≤ A1+log 2Cδ

δ |Bδ(0,max{r1 + r2})| ≤ A{%(x) + %(y)}+ Aε,

where Aδ is the constant in (2.7) for δ and A = A1+log 2Cδ
δ . Since ε is arbitrary
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we get (2.6) for % with C = A. Now, for δ > 0 we have

B%(0, s) = {x : %(x) < s}
=

⋃

|Bδ(0,r)|<s
Bδ(0, r) =

⋃

µ(r)<s

Bδ(0, r) = Bδ(0, µ−1(s)),

hence |B%(0, s)| = |Bδ(0, µ−1(s))| = s.

Given a function f defined on Rn, we say that f is %-radial if f(x) =
g(%(x)) for some function g defined on the non-negative real numbers. The
result of Lemma 2.1 allows us to compute integrals of radial functions on
Rn as one-dimensional integrals. In fact,

�

Rn
f(x) dx =

�

R+

g(t) dt,

provided that one of them exists.
Now applying the above mentioned results of [1] and [12] we have the

next theorem about generalized radial approximate convolution identities.

Theorem 2.2. Let % be a translation invariant quasi-distance on Rn
such that |B%(x, r)| = r for every x in Rn and every positive r. Let Φ be
a non-negative function defined on R+ satisfying (2.1)–(2.3) normalized to
have � ∞0 (Φ(t)/t) dt = 1. Then the family Φ(%(x)/t)/%(x) = lt(x), t > 0,
defines an approximate convolution identity in the following sense:

(i) The maximal operator Lf(x) = supt>0 |(lt ∗ f)(x)| satisfies a weak
type (1, 1) inequality , that is, there exists a constant C such that for every
λ > 0,

{x : Lf(x) > λ}| ≤ C

λ
‖f‖1.

(ii) The maximal operator L is of strong type (p, p) for 1 < p ≤ ∞,
that is,

‖Lf‖p ≤ C‖f‖p
for some constant C and every measurable function f .

(iii) For f in L1
loc(Rn) and almost every x ∈ Rn we have the pointwise

convergence (lt ∗ f)(x) → f(x) as t → 0+. If f ∈ Lp, 1 < p < ∞, we also
have the Lp convergence.

In order to apply the above mentioned results of [1], we only need to
observe that

�

Rn
lt(x)dx =

�

Rn

Φ(%(x)/t)
%(x)

dx =
∞�

0

Φ(s/t)
s

ds

=
∞�

0

Φ(s)
s

ds = 1.
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Let us point out that if Ψ(s) is a standard basic shape for an approximate
identity: Ψ ∈ C1(R+), suppΨ ⊂ [0, 1], Ψ non-increasing, Ψ constant in a
neighborhood of 0 and � Ψ(s) ds = 1, then taking Φ(s) = sΨ(s) we get the
result on approximate identities as a particular instance of this theorem
of Zó.

Let us finally record a fact that will be used in Section 5. Given a function
Ψ as described above and lt(x) = (1/t)Ψ(%(x)/t), it is easy to show that

(lt ∗ lt)(x) ≤
3C2

p‖Ψ‖∞
t

χB%(0,2C%t).

Then the maximal operator supt>0 |(lt ∗ lt ∗ k)(x)| is pointwise bounded by
M%k(x), the Hardy–Littlewood maximal function with respect to the %-balls
in Rn. Since also � Rn(lt ∗ lt)(x) dx = 1, we see that (lt ∗ lt ∗ k)(x) is a good
pointwise and Lp approximation of k(x).

3. Growth functions as continuity moduli. For completeness, we
include in this section some usual notation and terminology (see [5]). We
shall say that a non-negative, non-decreasing function η defined on R+ is
a growth function if η(0+) = 0 and there exists a constant A such that
η(2t) ≤ Aη(t) (∆2-condition) for every t > 0. We say that η is of lower type
a ≥ 0 if

η(st) ≤ C1s
aη(t)

for some constant C1, every 0 < s ≤ 1 and every t > 0. Similarly η is of
upper type b <∞ if

η(st) ≤ C2s
bη(t)

for some constant C2, every s ≥ 1 and every t > 0. Notice that the ∆2-
condition is nothing but the condition of finite upper type. On the other
hand, if η is a growth function of positive lower type then η(s)/s is integrable
near zero, and moreover � t0(η(s)/s) ds ≤ Cη(t).

4. Generalized Taibleson’s Lipschitz spaces Λ%(η; 1,∞). Let % be a
translation invariant quasi-distance on Rn such that |B%(x, r)| = r, and let η
be a growth function. We shall say that a function k belongs to Λ%(η; 1,∞) if

k ∈ L1(Rn),(4.1)
�

Rn
|k(x− y)− k(x)| dx ≤ Cη(%(y)) for every y ∈ Rn.(4.2)

Given k ∈ Λ%(η; 1,∞) and taking lt(x) = Φ(%(x)/t)/%(x) as in Section 2, we
consider the extension of k to the upper half space Rn+1

+ given by

k(x, t) = (k ∗ lt)(x).
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The main result of this section is the following necessary condition for a
function to belong to Λ%(η; 1,∞) in terms of k(x, t).

Theorem 4.1. Let η be a growth function of positive lower type. Let Φ :
R+→R+\{0} with support in [0, 1] satisfy (2.1)–(2.3) with � ∞0 (Φ(s)/s) ds=1.
If k ∈ Λ%(η; 1,∞) then

�

Rn
|k(x, t)| dx ≤ A,(4.3)

�

Rn

∣∣∣∣
∂

∂t
k(x, t)

∣∣∣∣ dx ≤ C
η(t)
t
,(4.4)

for some positive constants A and C and every t > 0.

Proof. Of course (4.3) is nothing but a direct application of Young’s
inequality and the fact that � lt(x) dx = 1. In order to prove (4.4) let us
compute the derivative of lt(y) with respect to the parameter t for fixed y:

∂

∂t
lt(y) =

1
%(y)

∂

∂t
Φ

(
%(y)
t

)
= − 1

t2
Φ′
(
%(y)
t

)
.

On the other hand since � lt(y) dy = 1, we have � ∂
∂t lt(y) dy = 0, so that

applying (4.2) we obtain
�

Rn

∣∣∣∣
∂

∂t
k(x, t)

∣∣∣∣dx =
�

Rn

∣∣∣∣
�

Rn

∂

∂t
lt(y)k(x− y) dy

∣∣∣∣ dx

=
�

Rn

∣∣∣∣
�

Rn

∂

∂t
lt(y)(k(x− y)− k(x)) dy

∣∣∣∣dx

≤
�

Rn

�

Rn

∣∣∣∣
∂

∂t
lt(y)

∣∣∣∣|k(x− y)− k(x)| dy dx

≤
�

Rn

∣∣∣∣
∂

∂t
lt(y)

∣∣∣∣η(%(y)) dy.

Now, from (2.2) we have
�

Rn

∣∣∣∣
∂

∂t
k(x, t)

∣∣∣∣ dx ≤
�

B%(0,t)

1
t2
C

t

%(y)
η(%(y)) dy

≤ C

t

�

Rn
χ[0,t)(%(y))

η(%(y))
%(y)

dy =
C

t

t�

0

η(s)
s

ds,

which in turn is bounded by a constant times η(t)/t, since η is of positive
lower type.

Actually, when %(x) = |x|n is the normalization of the usual distance in
Rn, lt = Pt is the Poisson kernel and the function η is also of upper type
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less than one, then the harmonicity of k(x, t) allows one to show that for an
integrable function k, (4.4) is equivalent to k ∈ Λ%(η; 1,∞) (see [4]).

5. The L1 + L∞ decomposition of a function k ∈ Λ%(η; 1,∞). Let
k ∈ Λ%(η; 1,∞) with % and η as in Section 4 and η of upper type less than
one. Take now Ψ : R+ → R+∪{0} of class C1(R+), non-increasing, constant
in a neighborhood of the origin and with � ∞0 Ψ(s) ds = 1. From the remarks
at the end of Section 2, we see that if we set lt(x) = (1/t)Ψ(%(x)/t), then
both lt ∗k and lt ∗ lt ∗k are good approximate identities, both pointwise and
in Lp means for 1 < p <∞. Write

k(x, t) = (lt ∗ lt ∗ k)(x) = (lt ∗ k(·, t))(x).

Given a positive number α we are going to pick a t > 0 such that

k(x) = (k(x)− k(x, t)) + k(x, t) = k1(x) + k∞(x),

with |k∞(x)| = |k(x, t)| ≤ α, and then we will estimate the L1-norm of
k1(x). Since k(x, t) = (lt ∗ k(·, t))(x), we have

sup
x∈Rn

|k(x, t)| ≤ ( sup
y∈Rn

lt(y))
�

Rn
|k(y, t)| dy ≤ lt(0)‖k‖1 ≤

C

t
‖k‖1.

Then

k(x, t) = −
∞�

t

∂

∂s
k(x, s) ds = −

∞�

t

2
[
ls ∗

∂

∂s
k(·, s)

]
(x) ds,

from which we obtain

|k(x, t)| ≤ 2
∞�

t

sup
x∈Rn

∣∣∣∣
(
ls ∗

∂

∂s
k(·, s)

)
(x)
∣∣∣∣ ds ≤ 2

∞�

t

C

s

∥∥∥∥
∂

∂s
k(·, s)

∥∥∥∥
1
ds.

Applying (4.4) we deduce that

sup
x∈Rn

|k(x, t)| ≤ 2C
∞�

t

η(s)
s2 ds.

Now, since η is of upper type less than one the right hand side of the above
inequality defines a decreasing one-to-one function η̃(t) onto R+ (for details
see [4]). Hence by choosing t = η̃−1(α) we have

‖k∞(x)‖∞ ≤ α.
Let us now estimate ‖k1(x)‖1 for this particular choice of t. By the

remark at the end of Section 2 we have

k(x, t)− k(x) =
t�

0

∂

∂s
k(x, s) ds,
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and consequently

�

Rn
|k(x, t)− k(x)| dx ≤

t�

0

�

x∈Rn

∣∣∣∣
∂

∂s
k(x, s)

∣∣∣∣ dx ds =
t�

0

2
∥∥∥∥ls ∗

∂

∂s
k(·, s)

∥∥∥∥
1
ds

≤ 2
t�

0

‖ls‖1
∥∥∥∥
∂

∂s
k(·, s)

∥∥∥∥
1
ds.

Since � ls(x) dx = 1, from (4.5) we see, for t = η̃−1(α), that

�

Rn
|k1(x)| dx ≤ 2

η̃−1(α)�

0

η(s)
s

ds.

So that we have the following L1 + L∞ decomposition of k.

Lemma 5.1. Let % be a translation invariant quasi-distance on Rn with
|B%(0, r)| = r. Let η be a non-negative function of positive lower type and
upper type less than one. Let k ∈ Λ%(η; 1,∞) and α > 0. Then k can be
written as

k(x) = k1(x) + k∞(x)

with

‖k∞‖ ≤ α, ‖k1‖1 ≤ 2
η̃−1(α)�

0

η(s)
s

ds, η̃(t) = 2C
∞�

t

η(s)
s2 ds.

6. Generalized Stein–Zygmund theorem. In this section we sketch
the proof of the main result of this note concerning the boundedness in
Orlicz spaces of a convolution operator with kernel in Λ%(η; 1,∞).

In what follows, by a Young function Θ we shall mean a non-negative,
convex non-decreasing function defined on [0,∞] with Θ(0) = 0, Θ(∞) =∞
but neither identically zero nor identically infinity. We notice that Θ may
have a jump at some x1 > 0, but in this case limx→x−1 Θ(x) = ∞ and

Θ(x) =∞ for x ≥ x1. Under these assumptions the inverse function Θ−1 is
well defined and it is also increasing and continuous.

For a Young function Θ we define the Orlicz space LΘ = LΘ(X) as the
linear space of those measurable functions defined on the measure space
(X,µ) for which there is a finite number K > 0 such that

�

X

Θ(|f(x)|/K) dµ <∞.

The infimum of such constants K is a norm which will be denoted by ‖f‖Θ.

Theorem 6.1. Let % be a translation invariant quasi-distance in Rn
such that |B%(0, r)| = r. Let η be a growth function of positive lower type
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and upper type less than one. Let T be the convolution operator with kernel
k ∈ Λ%(η; 1,∞). Then, for every Young function Θ satisfying

rΘ(s) ≤ sΘ′(s)
for some r > 1 and every s > 0, and

1�

0

η(t−1)Θ−1(t)
t

dt <∞,

T is a bounded linear operator from LΘ in LΩ, where

Ω−1(s) =
s�

0

η(t−1)Θ−1(t)
t

dt.

Moreover , there exists a constant C independent of the L1 norm of k such
that , for every measurable function f ,

‖Tf‖Ω ≤ C‖f‖Θ.
The result of Section 5 provides us the basic tool for estimating the size

of the distribution function of the kernel k, leading us to show that k belongs
to an appropriate weak Orlicz space. This fact will finally allow us to apply
a result of O’Neil [7] completing the proof of Theorem 6.1.

We consider a weak version of Orlicz spaces, namely, for a Young function
Θ, a measurable function f is said to belong to the weak Orlicz class defined
by Θ if there exists a constant C such that

Θ(α)|{x : |f(x)| > α}| ≤ C for every positive α.(6.1)

Lemma 6.2. Let %, η and k be as in Theorem 6.1. Then k belongs to the
weak Orlicz space given by a Young function ζ̃ equivalent to

ζ(α) =
α

� η̃−1(α)
0

η(s)
s ds

.(6.2)

In other words
ζ̃(α)|{x : |k(x)| > α}| ≤ C(6.3)

for some constant C independent of the L1 norm of k and every positive α.

Proof. The function ζ defined by (6.2) has all the properties of a Young
function except, perhaps, the convexity. Nevertheless

ζ̃(α) =
α�

0

ζ(s)
s

ds

is a Young function which is equivalent to ζ in the sense that ζ̃/ζ is bounded
above and below. For a proof of this fact we refer to [4]. Take α > 0 and
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apply Lemma 5.1 to obtain

|{x : |k(x)| > 2α}| ≤ |{x : |k1(x)| > α}|+ |{x : |k∞(x)| > α}|

≤ |{x : |k1(x)| > α}| ≤ C 1
α

η̃−1(α)�

0

η(s)
s

ds.

We next state a slight modification of a theorem of [7] on fractional inte-
gration for Orlicz spaces. Let us first recall the definition of the distribution
and rearrangements of functions. For a function f on Rn, the non-increasing
rearrangement of f , denoted by f ∗, is the generalized inverse of the distri-
bution of f , in other words

f∗(s) = inf{t : µf (t) ≤ s} where µf (t) = |{x : |f(x)| > t}|.
We denote by f∗∗(t) the average of f∗ over the interval [0, t], that is,

f∗∗(t) =

{
t−1 � t0 f∗(s) ds if t > 0,

f∗(0) if t = 0.

Following O’Neil [7], we say that for a given function ζ equivalent to a Young
function, the measurable function f defined on Rn belongs to Mζ if there
exists a constant C such that

f∗∗(t) ≤ Cζ−1(1/t) for every t > 0.

Let us remark that a “weak” inequality like

ζ(α)|{|k(x)| > α}| ≤ C
is generally not enough for k to belong to Mζ . But, as shown in [3], both
conditions are equivalent if and only if ζ is of lower type larger than one.

Theorem 6.3. Let ζ be an increasing function such that ζ−1(t)/t is
non-increasing. Let k be such that k∗∗(t) ≤ Cζ−1(1/t). Let Θ be a Young
function satisfying

rΘ(t) ≤ tΘ′(t)
for some r > 1 and every t > 0, and

1�

0

ζ−1(t−1)Θ−1(t)
t2

dt <∞.

Then the operator T (f) = k ∗ f is bounded from LΘ into LΩ, where

Ω−1(s) =
s�

0

ζ−1(t−1)Θ−1(t)
t2

dt.

Now we are in a position to complete the proof of the generalized Stein–
Zygmund theorem stated at the beginning of this section.
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Proof of Theorem 6.1. It is not hard to show that ζ−1(t) and tη(t−1) are
equivalent functions (for details see [4]). From Lemma 6.2 we know that

ζ(α)|{x : |k(x)| > α}| ≤ C.
By the above remark, this inequality implies k∗∗(t) ≤ Cζ−1(1/t) whenever
ζ is of lower type larger than one. But the latter is actually a consequence
of ζ−1(t) ∼ tη(1/t), and the fact that η is of positive lower type. To finish
the proof of the theorem, we notice that

s�

0

ζ−1(t−1)Θ−1(t)
t2

dt ∼
s�

0

η
(
t−1
)
Θ−1(t)
t

dt,

and the result follows by applying Theorem 6.3.

Typical classical examples of Stein–Zygmund operators are the fractional
integral operators of order α or Riesz potentials, of which the Newtonian
potentials are special cases:

Iαf(x) =
� |x− y|α
|x− y|n f(y) dy, 0 < α < n.

If we consider the standard normalization of Rn, %(x − y) = |x − y|n, the
operator takes the form

Iαf(x) =
� (%(x− y))α/n

%(x− y)
f(y) dy, 0 < α < n,

which makes sense for every quasi-distance of the type considered in this
paper. Moreover if the power function η(t) = tα/n is replaced by a function
η like those considered in Theorem 6.1, we arrive at the following general-
ization of the Riesz potentials:

I%ηf(x) =
�

Rn

η(%(x− y))
%(x− y)

f(y) dy.

As a straightforward application of our result we deduce that the truncations
of the above operator are bounded from LΘ into LΩ where Θ and Ω are as
in Theorem 6.1. Now, since the constant C in the norm inequality

‖Tf‖Ω ≤ C‖f‖Θ
is independent of the L1 norm of the kernel and the truncated kernels satisfy
the regularity property in (4.2) uniformly, the LΘ → LΩ boundedness of I%η
follows.
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