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ABSTRACT. We study boundedness and convergence onLp(Rn, dµ) of the projection operators
Pj given by MRA structures with non-necessarily compactly supported scaling function. As a

consequence, we prove that ifw is a locally integrable function such thatw
− 1
p−1 (x)(1+|x|)−N is

integrable for some N > 0, then the Muckenhoupt Ap condition is necessary and sufficient for the
associated wavelet system to be an unconditional basis for the weighted space Lp(Rn,w(x) dx),
1 < p < ∞.

1. Introduction

Our main purpose in this article is to solve the following problem which we shall
call (P1): search for necessary and sufficient conditions on the Borel measure µ of R

n for
which there is mean and almost everywhere convergence of multiresolution approximations
of Lp(dµ) functions, when the scaling function is continuous and absolutely bounded by
an L1 radial decreasing function. We also aim, as a byproduct of the results for (P1), to
study (P2): search for necessary and sufficient conditions on the Borel measure µ for the
associated wavelet systems to be unconditional bases for the space Lp(dµ).

Let us briefly mention some previous articles related to the subject. K.S. Kazarian [10]
considers the problem (P2) in the Haar context for the interval. In two consecutive volumes
of Studia Mathematica both in 1994, independently, the issue is considered by P.G. Lemariè-
Rieusset [12] and by J. García-Cuerva and K.S. Kazarian [5]. Both problems (P1) and (P2)
are considered in [12] for the compactly supported Daubechies MRA. Problem (P2) is
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considered in [5], where sufficient conditions on the measure, in terms of the Muckenhoupt
classes, are given for the case of splines. Necessary conditions are obtained by García-
Cuerva and Kazarian in [6] for the spline wavelet system. For the special case of the Haar
system, problem (P2) is also considered in [6] where, modulo the analogy with the Haar
system in the segment [0, 1] given in [10], necessary and sufficient conditions, wider than
dyadic Ap, on the weight are obtained.

In this article, we accomplish and completely solve the following aspect of (P1): we
find necessary and sufficient conditions on the measureµof R

n for which the multiresolution
approximations ofLp(dµ) functions are uniformly bounded (see Theorems 2 and 3). These
results generalize those in [12] both, because we obtain the results for more general MRA
and for dimension bigger than one. Nevertheless our proofs are different from those given
in [12]. Our approach relies on a weak positivity property of the kernels of the projection
operators (see Theorem 1).

Regarding problem (P2), our results are contained in Theorem 4. Let us point out that
we can not solve it completely, and as far as we know, the problem remains open in its full
generality. Let us emphasize that two compactly supported cases of (P2) are considered in
the literature: the Haar wavelet in [6] and the Daubechies wavelet in [12]. Both of them
give necessary and sufficient conditions on the weight function, but the surprising situation
is that while in [12] those conditions are given by Muckenhoupt Ap classes, in [6] the class
of weights strictly contains dyadic Muckenhoupt classes. At this point we have to say that,
as it was pointed out by our referee in a previous version of this article, we are unable to
prove, without some extra condition on the weight, the implication (D1) ⇒ (D3) in [12]
which givesAp as necessary condition for the fact that the Daubechies wavelet system is an
unconditional basis for Lp(dµ). Actually for the Daubechies case our result is contained in
Corollary 2 and we are only able to show that Ap is necessary under the extra assumption

of the local integrability of w− 1
p−1 .

The MRA covered by our approach through the weakly positive kernels do not include
the Haar case. However we can prove similar results changing theAp classes by the dyadic

Ap classes Adyp (see Theorems 5 and 6).
The article is organized as follows: In Section 2 we state the results. Section 3 is

devoted to prove the basic theorem: Theorem 1. In Section 4 we give the proofs of the
results related to problems (P1) and (P2) when the scaling function is continuous. Finally,
in Section 5 we give the proofs of the results for the Haar case.

2. Statement of the Results

In order to state the results, let us recall that a weight w belongs to the class Ap with
1 < p < ∞ if there exists a constant C such that for all cube Q

(∫
Q

w

)1/p (∫
Q

w
− 1
p−1

)1/p′

≤ C|Q| ,

where |Q| is the Lebesgue measure of Q and p′ is the conjugate exponent of p. We say
that w ∈ A1 if there exists a constant C such that for all cube Q and almost every x ∈ Q

1

|Q|
∫
Q

w ≤ Cw(x) .
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Let us also recall that if the cubes Q in the definitions of Ap are dyadic cubes, the classes

of weights are the dyadic Ap classes and we shall denote them by Adyp .
In the search of necessary conditions, the next result will be the key argument. To

state it we introduce the concept of a family of weakly positive kernels. Let n be a positive
integer and let {�j : j ∈ Z} be a decreasing sequence of positive real numbers (�j+1 < �j )
with �j → 0 when j → ∞ and �j → ∞ when j → −∞. A family {Kj : j ∈ Z} of
measurable real valued kernels defined on R

2n = R
n × R

n is said to be “weakly positive”
if there exist a sequence {�j } as above and a positive constant C such that the set inclusion{

(x, y) ∈ R
2n : |x − y| < �j

}
⊂
{
(x, y) ∈ R

2n : Kj(x, y) > C(�j+1)
−n}

holds true for every j ∈ Z.

Theorem 1.
Let 1 ≤ p < ∞. Let L∞

c be the set of the bounded functions with compact support
and let µ be a positive Borel measure on R

n finite on compact sets. Assume that Tjf (x) =∫
Kj(x, y)f (y) dy, j ∈ Z and f ∈ L∞

c , where {Kj : j ∈ Z} is a family of weakly positive
kernels. If there exists C > 0 such that

µ({x : |Tjf (x)| > λ}) ≤ Cλ−p||f ||pLp(dµ) = Cλ−p||f ||pp,µ ,
for all λ > 0, all j ∈ Z and all f ∈ L∞

c , then µ is absolutely continuous with density
w ∈ Ap.

Remark 1. We would like to point out that the finiteness of µ on compact sets, under
the weak type assumption on Tj , is implied by the existence of a Borel set A with |A| > 0
and µ(A) < ∞.

The above theorem together with Lemma 2.8 in [11] allow us to get boundedness
and convergence results of multiresolution approximations. Following Meyer [13], by a
multiresolution analysis (MRA) on R

n (n ≥ 1) we mean an approximation of the space
L2(Rn) through an increasing sequence of closed subspaces Vj , i.e.,

· · ·V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · ,
with the following properties

(i) ∩j∈ZVj = {0} and ∪j∈ZVj = L2(Rn);

(ii) for every f ∈ L2(Rn) and every j ∈ Z, f (x) ∈ Vj if and only if f (2x) ∈ Vj+1;

(iii) for every f ∈ L2(Rn) and every k ∈ Z
n, f (x) ∈ V0 if and only if f (x − k) ∈ V0;

(iv) there exists a function φ ∈ L2(Rn) such that the family {φk(x) = φ(x − k), k ∈
Z
n} is an orthonormal basis for V0.

Such a function φ is called a scaling function. The family {φj,k(x) = 2nj/2φ(2j x−k), k ∈
Z
n} is an orthonormal basis for Vj . Then, associated with the increasing sequence of

subspaces {Vj }j∈Z we have the orthogonal projections of L2(Rn) onto Vj given by

Pjf =
∑
k∈Zn

< f, φj,k > φj,k , for f ∈ L2 (
R
n
)
.

From now on, we shall work with a scaling function φ in the class RB; that means
that φ is absolutely bounded by an L1 radial decreasing function η, i.e., |φ(x)| ≤ η(x)with
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η(0) < ∞, η(x1) = η(x2) whenever |x1| = |x2|, η(x1) ≤ η(x2) whenever |x1| ≥ |x2|
and η ∈ L1(Rn). Under the assumption φ ∈ RB we get that the kernel Pj (x, y) of Pj is
given by 2njP0(2j x, 2j y) with P0(x, y) = ∑

k∈Zn
φ(x− k)φ(y − k), in the sense that, for

f ∈ L2(Rn),

Pjf (x) =
∫

Rn

Pj (x, y)f (y) dy . (2.1)

In [11], Kelly, Kon and Raphael proved that if φ ∈ RB then the kernel P0(x, y)

satisfies

|P0(x, y)| ≤ H(|x − y|) (2.2)

whereH(|x|) is a bounded radial decreasingL1(Rn) function (see Lemma 2.8 in [11]). From
the estimate (2.2), in Theorem 2.6 [11], the operators Pjf (x) = ∫

Rn
Pj (x, y)f (y) dy are

well defined for f ∈ Lp(Rn), 1 ≤ p < ∞, and Pjf converge to f almost everywhere and
in the Lp norm, when j → ∞.

The following two theorems are related to problem (P1). Notice that in these state-
ments and in the further development, Pjf (x) is understood in the pointwise sense given
by (2.1).

Theorem 2 (p > 1).
Let {Vj }j∈Z be a MRA on R

n with a continuous scaling function φ ∈ RB. Let µ be a
positive Borel measure on R

n finite on compact sets and p ∈ (1,∞). Then, the following
statements are equivalent:

(A1) the operators Pj are continuous on Lp(dµ) and for all f ∈ Lp(dµ),
lim
j→∞ ||f − Pjf ||p,µ = 0 and lim

j→−∞ ||Pjf ||p,µ = 0 ;

(A2) the operators Pj are uniformly bounded on Lp(dµ);

(A3) the operators Pj are uniformly of weak type (p, p) with respect to µ;

(A4) the operator P ∗f = supj∈Z |Pjf | is of weak type (p, p) with respect to µ;

(A5) the operator P ∗f is of strong type (p, p) with respect to µ;

(A6) µ is absolutely continuous and dµ = w dx with w ∈ Ap.

Further, each one of the above statement implies

(A) for f ∈ Lp(dµ), Pjf → f and P−j f → 0 almost everywhere when j → ∞.

Theorem 3 (p = 1).
Let {Vj }j∈Z be a MRA on R

n with a continuous scaling function φ ∈ RB and let µ
be a positive Borel measure on R

n finite on compact sets. Then, the following statements
are equivalent:

(B1) the operators Pj are uniformly bounded on L1(dµ);

(B2) the operators Pj are uniformly of weak type (1, 1) with respect to µ;

(B3) the operator P ∗f is of weak type (1, 1) with respect to µ;

(B4) µ is absolutely continuous and dµ = w dx with w ∈ A1.

Further, each one of the above statement implies
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(B) for f ∈ L1(dµ), Pjf → f almost everywhere and in L1 norm, when j → ∞
and P−j f → 0 a.e. when j → ∞.

As an application of Theorem 2 we obtain results about the wavelet expansions. Now
we shall work with MRA with more regular scaling function.

We shall say that a MRA {Vj }j∈Z on R
n is r-regular (r ∈ N) if the scaling function

φ verifies that |∂αφ(x)| ≤ Cm(1 + |x|)−m for all α = (α1, . . . , αn) such that |α| ≤ r and
for all m ∈ N, where ∂α = (∂/∂x1)

α1 . . . (∂/∂xn)
αn and |α| = α1 + . . .+ αn.

Let {Vj }j∈Z be an r-regular MRA on R
n and letWj denote the orthogonal complement

of Vj in Vj+1. From the existence of φ it follows (see, e.g., [13]) that there exist 2n − 1
functionsψ1, . . . , ψ2n−1 such that {ψλj,k(x) = 2jn/2ψλ(2j x−k), j ∈ Z, k ∈ Z

n, 1 ≤ λ ≤
2n − 1} form an orthonormal basis for Wj for fixed j , and form an orthonormal basis for
L2(Rn) as j , k vary. Moreover, the functionsψλ also verify that |∂αψλ(x)| ≤ C�(1+|x|)−�
for all α ∈ N

n such that |α| ≤ r and for all � ∈ N.
In the following theorem we give our partial answer to problem (P2), where we also

prove a result concerning the characterization through wavelet coefficients of the spaces
Lp(dµ).

Theorem 4.
Let {Vj }j∈Z be an 1-regular MRA on R

n, let µ be a positive Borel measure on R
n

finite on compact sets and p ∈ (1,∞). Then, the following statements are equivalent:

(D1) the sequence {ψλj,k : j ∈ Z, k ∈ Z
n, 1 ≤ λ ≤ 2n − 1} forms an unconditional

basis forLp(dµ) and the functionals (ψλj,k)
∗(f ) =< f,ψλj,k > belong to the dual

space of Lp(dµ);

(D2) µ is absolutely continuous and dµ = w dx with w ∈ Ap;

(D3) ||ψλj,k||p,µ > 0 for all j ∈ Z, k ∈ Z
n and 1 ≤ λ ≤ 2n − 1 and there exist two

constant C1 and C2 such that for all f ∈ Lp(dµ),

C1||f ||p,µ ≤

∥∥∥∥∥∥∥

∑
j∈Z

∑
k∈Zn

2n−1∑
λ=1

∣∣∣< f,ψλj,k >

∣∣∣2 ∣∣∣ψλj,k∣∣∣2



1/2
∥∥∥∥∥∥∥
p,µ

≤ C2||f ||p,µ .

(D4) µ(Qj,k) > 0 for all j ∈ Z, k ∈ Z
n, where Qj,k = {x ∈ R

n : 2j x − k ∈ [0, 1)n},
and there exist two constant C1 and C2 such that for all f ∈ Lp(dµ),

C1||f ||p,µ ≤

∥∥∥∥∥∥∥

∑
j∈Z

∑
k∈Zn

2n−1∑
λ=1

∣∣∣< f,ψλj,k >

∣∣∣2 χj,k



1/2
∥∥∥∥∥∥∥
p,µ

≤ C2||f ||p,µ ,

where χj,k(x) = 2nj/2χ(2j x − k) and χ is the characteristic function χ[0,1)n .

If we start with a weighted measure, dµ(x) = w(x) dx, the continuity of the func-

tionals in (D1) is guaranteed a priori as soon as some integrability condition on w− 1
p−1 is

assumed. This is stated in the following corollary.

Corollary 1.
Let {Vj }j∈Z be an 1-regular MRA on R

n, let w ≥ 0 be a locally integrable function

such that
∫
w

− 1
p−1 (x)(1 + |x|)−N dx < ∞, for some N > 0 and let p ∈ (1,∞). Then,



502 H.A. Aimar, A.L. Bernardis, and F.J. Martín-Reyes

the sequence {ψλj,k : j ∈ Z, k ∈ Z
n, 1 ≤ λ ≤ 2n − 1} forms an unconditional basis for

Lp(w dx) if and only if w ∈ Ap.

The proof of the corollary is reduced to check that ψλj,k ∈ Lp′
(w

− 1
p−1 ). This follows

from the regularity of the MRA. We notice that in the case of the Daubechies’ wavelets, the

assumption on w− 1
p−1 can be weakened.

Corollary 2.

Let {Vj }j∈Z be a MRA of I. Daubechies on R
n, let w ≥ 0 such that w and w− 1

p−1

are locally integrable functions and let p ∈ (1,∞). Then, the sequence {ψλj,k : j ∈ Z, k ∈
Z
n, 1 ≤ λ ≤ 2n − 1} forms an unconditional basis for Lp(w dx) if and only if w ∈ Ap.

The Haar MRA is generated by the scaling function χ = χ[0,1)n . In this case the
projection operators Pj are

Pjf (x) =
∑
k∈Zn

< f, χj,k > χj,k(x) =
∫

Rn

Pj (x, y)f (y) dy , (2.3)

where Pj (x, y) = 2nj
∑
k∈Zn

χQj,k (x)χQj,k (y), withQj,k the dyadic cube defined in (D4)
of Theorem 4.

Theorem 5.
Let {Vj }j∈Z be the Haar MRA on R

n and µ a positive Borel measure on R
n finite on

compact sets. Then, the conclusions of Theorems 2 and 3 hold for the operators Pj defined

in (2.3), changing the classes Ap to Adyp .

Now, we establish the result for the Haar wavelets. The n-dimensional Haar system
is generated by dilation and translation of 2n − 1 wavelet basics. In fact, let	 be the set of
2n−1 elements λ = (λ1, . . . , λn)where λi = 0 or λi = 1 except (0, . . . , 0). The functions

hλj,k(x1 . . . xn) = 2nj/2hλ1
(

2j x1 − k1

)
· · ·hλn

(
2j xn − kn

)
,

where h0 = χ[0,1) and h1 = χ[0,1/2) − χ[1/2,1), form an orthonormal basis of L2(Rn). For
this type of wavelet we can prove the following result.

Theorem 6.
Let {Vj }j∈Z be the Haar MRA on R

n, µ a positive Borel measure on R
n finite on

compact sets and p ∈ (1,∞). Then, the following statements are equivalent:

(H1) the sequence {hλj,k : j ∈ Z, k ∈ Z
n, λ ∈ 	} forms an unconditional basis for

Lp(dµ) and the functionals (hλj,k)
∗(f ) =< f, hλj,k > belong to the dual space of

Lp(dµ);

(H2) µ is absolutely continuous and dµ = w dx with w ∈ Adyp ;

(H3) ||χj,k||p,µ > 0 for all j ∈ Z, k ∈ Z
n and there exist two constantsC1 andC2 such

that for all f ∈ Lp(dµ),

C1||f ||p,µ ≤

∥∥∥∥∥∥∥

∑
j∈Z

∑
k∈Zn

∑
λ∈	

∣∣∣< f, hλj,k >

∣∣∣2 χj,k



1/2
∥∥∥∥∥∥∥
p,µ

≤ C2||f ||p,µ .
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Finally, for weighted measures we have the following result which is similar to Corol-
lary 2.

Corollary 3.
Let {Vj }j∈Z be the Haar MRA on R

n, let w ≥ 0 such that w and w− 1
p−1 are locally

integrable functions and let p ∈ (1,∞). Then, the sequence {hλj,k : j ∈ Z, k ∈ Z
n, λ ∈ 	}

forms an unconditional basis for Lp(dµ) if and only if w ∈ Adyp .

3. Proof of Theorem 1

First, we prove that µ is absolutely continuous. Let E be a set such that |E| = 0.
Since, being finite on compact sets, µ is regular, then for each ε > 0 there exists an open set
G such that E ⊂ G and µ(G \E) < ε. The open setG can be written as a countable union
of disjoint and dyadic cubesQi . We denote with d(Q) the diameter of the cubeQ. Let {�j }
be the sequence associated to the family {Kj }. For fixed i, let j0 be the integer such that
�j0+1 ≤ d(Qi) < �j0 . If x, y ∈ Qi we get that |x− y| < �j0 andKj0(x, y) > C(�j0+1)

−n.
Therefore, for all x ∈ Qi

|Tj0(χQi\E)(x)| =
∣∣∣∣
∫
Qi\E

Kj0(x, y) dy

∣∣∣∣ ≥ C(�j0+1)
−n|Qi\E| .

Since |E| = 0 we get that |Tj0(χQi\E)(x)| ≥ cn, where cn is a constant depending only on
the constant C and on the dimension n. So that, from the weak type inequality we have

µ(Qi) ≤ µ({x : |Tj0(χQi\E)(x)| > cn}) ≤ Cc
−p
n µ(Qi\E) .

Summing in i we get

µ(G) =
∑
i

µ(Qi) ≤ Cc
−p
n

∑
i

µ(Qi\E) = Cc
−p
n µ(G\E) < Cc

−p
n ε .

for all ε > 0. Then, µ(E) = 0. Now, by the Radon–Nikodym Theorem, we get a locally
integrable function w such that dµ = w(x) dx. We shall prove that w ∈ Ap. Let us first
assume that 1 < p < ∞. LetQ be a cube on R

n and j0 ∈ Z such that �j0+1 ≤ d(Q) < �j0 .

With σε = (w + ε)
− 1
p−1 , ε > 0, the inequalities

|Tj0(σεχQ)(x)| =
∣∣∣∣
∫
Q

Kj0(x, y)σε(y) dy

∣∣∣∣ > C(�j0+1)
−n
∫
Q

σε ≥ cn|Q|−1
∫
Q

σε ≡ λ ,

hold for all x ∈ Q. From the uniformly weak type (p, p) of the operators Tj we get

w(Q) ≤ w({x : |Tj0(σεχQ)(x)| > λ}) ≤ Cc
−p
n |Q|p

(∫
Q

σε

)1−p
.

Multiplying by (
∫
Q
σε)

p−1 and letting ε go to zero we obtain that w belongs to Ap. Now,

we shall consider the case p = 1. Let x0 be a Lebesgue point of w. Take Q and Q̃ cubes
such that x0 ∈ Q̃ ⊂ Q. Pick j0 ∈ Z such that �j0+1 ≤ d(Q) < �j0 . Then, for all x ∈ Q∣∣∣Tj0

(
χ
Q̃

)
(x)

∣∣∣ > C(�j0+1)
−n
∣∣∣Q̃∣∣∣ ≥ cn|Q|−1

∣∣∣Q̃∣∣∣ .
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From the weak type (1, 1) inequality we obtain thatw(Q) ≤ w({|Tj0(χQ̃)(x)| > cn
|Q̃|
|Q| }) ≤

Cc−1
n

|Q|
|Q̃|
∫
Q̃
w. Therefore,

1

|Q|
∫
Q

w ≤ Cc−1
n

1∣∣∣Q̃∣∣∣
∫
Q̃

w .

Letting Q̃ → x0 we get that 1
|Q|
∫
Q
w ≤ Cc−1

n w(x0) and we are done.

4. Proofs of Theorems 2, 3, and 4

The proofs of (A5) ⇒ (A4) ⇒ (A3), (A5) ⇒ (A2) ⇒ (A3), (B1) ⇒ (B2) and (B3)
⇒ (B2) are obvious. We notice also that (A1) ⇒ (A2) is an immediate consequence
of the Uniform Boundedness Principle while (B4) ⇒ (B1) follows from (2.2) and the
characterization of the weighted inequalities for the convolution operators associated to
dilations of an L1 radially decreasing function (see e.g., [14]). Therefore, to complete the
proofs of Theorems 2 and 3, we only have to show the following implications: (A3) ⇒
(A6) ⇒ (A5) ⇒ (A1), (A5) ⇒ (A), (B2) ⇒(B4) ⇒ (B3) and (Bi) ⇒ (B), i = 1, 2, 3, 4.

(A3) ⇒ (A6) and (B2) ⇒ (B4). We start proving the following lemma.

Lemma 1.
Let ϕ be a continuous function in RB such that

∑
k∈Zn

ϕ(x − k) = 0 for all x ∈ R
n.

Then F(x, y) = ∑
k∈Zn

ϕ(x − k)ϕ(y − k) satisfies{
(x, y) ∈ R

2n : |x − y| < �
}

⊂
{
(x, y) ∈ R

2n : F(x, y) > δ
}
, (4.1)

for some positive real numbers � and δ.

Proof of the lemma. Since ϕ ∈ RB the series F(x, y) = ∑
k∈Zn

ϕ(x − k)ϕ(y − k)

converges uniformly on each compact set of R
2n and F(x, y) results a continuous function.

On the other hand, F(x + k, y + k) = F(x, y) for all k ∈ Z
n. Then, we have that

F(x, x) ≥ α for some α > 0. Let 0 < δ < α and Eδ = {(x, y) ∈ R
2n : F(x, y) > δ}.

Notice that Eδ is open, it contains the diagonal � = {(x, x) : x ∈ R
n} and it is periodic:

(x, y) ∈ Eδ if and only if (x + k, y + k) ∈ Eδ . So, we have that the distance � from � to
the complement of Eδ is positive. Thus (4.1) holds.

Notice that if φ is a scaling function, then {φ(x− k), k ∈ Z
n} is an orthonormal basis

and we get that
∑
k∈Zn

φ(x−k) = 1 for almost every x ∈ R
n (see e.g., [13] or [15]). On the

other hand, since φ ∈ RB the series
∑
k∈Zn

φ(x−k) converges uniformly on each compact
set of R

n and since φ is continuous we get that
∑
k∈Zn

φ(x−k) = 1 for every x ∈ R
n. This

fact allows us to apply the above lemma to the functionP0(x, y) = ∑
k∈Zn

φ(x−k)φ(y − k)

and easily we obtain that the family {Pj (x, y)} = {2njP0(2j x, 2j y)} is weakly positive.
Then, applying Theorem 1 we get the desired implications.

(A6) ⇒ (A5) and (B4) ⇒ (B3). By using (2.2) and standard arguments we can prove
that

P ∗f (x) = sup
j∈Z

|Pjf (x)| ≤ C

(∫
Rn

H(|x|) dx
)
Mf (x) ,

where M is the Hardy–Littlewood maximal function. From the corresponding weighted
boundedness of M (see e.g., [8]) we get the desired implications.
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(A5) ⇒ (A) and (A5) ⇒ (A1). By the results in [11] we have that Pjf converge
to f almost everywhere when j → ∞ for all f ∈ Lp(dx) ∩ Lp(dµ) which is a dense
subset of Lp(dµ). This fact together with (A5) implies that the convergence holds for all
f ∈ Lp(dµ). On the other hand, by the Hölder inequality,

|Pjf (x)| ≤ 2nj/p‖H(| · |)‖p′ ‖f ‖p .
Since H(|x|) belongs to Lp

′
(Rn), 1 < p′ < ∞, we get that Pjf converges to 0 almost

everywhere when j → −∞ for all f ∈ Lp(dx), and, as before, the convergence holds for
all f ∈ Lp(dµ). This finishes the proof of (A5) ⇒ (A). To prove that (A5) ⇒ (A1) we
observe that (A5) implies obviously that the operators Pj are continuous on Lp(dµ) and
the limits in (A1) hold by (A5) ⇒ (A) and the dominated convergence theorem.

(Bi) ⇒ (B), i = 1, 2, 3, 4. The proof of this implication is similar to (A5) ⇒ (A).

Now we shall prove Theorem 4.

(D1) ⇒ (D2). We shall divide the proof into several steps.

Step a: For every function f ∈ Lp(dµ) we have that (D1) implies that

f =
∑
j,k,λ

< f,ψλj,k > ψλj,k ,

where the sum is understood in the Lp(dµ)-sense. In fact, since {ψλj,k} is an unconditional
basis for Lp(dµ) we have that for all f ∈ Lp(dµ)

f =
∑
j,k,λ

αλj,kψ
λ
j,k ,

where the sum is understood in the Lp(dµ)-sense. Now, the continuity and the linearity of
(ψλj,k)

∗ gives that αλj,k = (ψλj,k)
∗(f ) =< f,ψλj,k >.

Step b: (D1) implies that the measure µ is equivalent to the Lebesgue measure, i.e.,
µ(A) = 0 if and only if |A| = 0. To prove it we may assume that A is a bounded Borel set.
If µ(A) = 0 then, for every j, k, λ we get that (ψλj,k)

∗(χA) = 0 since (ψλj,k)
∗ are bounded

functionals on Lp(µ). On the other hand,

χA =
∑
j,k,λ

(
ψλj,k

)∗
(χA)ψ

λ
j,k = 0 ,

where the sum is understood in the L2(dx)-sense. Then, χA = 0 in L2(dx) which implies
that |A| = 0. Conversely, assume that |A| = 0. Then, (ψλj,k)

∗(χA) = ∫
ψλj,k(x)χA(x) dx= 0 for every j, k, λ. Since χA ∈ Lp(µ), Step (a) gives that

χA =
∑
j,k,λ

(
ψλj,k

)∗
(χA)ψ

λ
j,k = 0,

in the Lp(µ)-sense. Therefore µ(A) = 0.

Step c: (D1) implies that the operators

Smf =
∑

j≤m,k,λ
< f,ψλj,k > ψλj,k (4.2)
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are uniformly bounded onLp(dµ), where the sum is understood in theLp(dµ)-sense. This
statement follows from the fact that {ψλj,k} is an unconditional basis for Lp(dµ) and

Smf =
∑
j,k,λ

βλj,k < f,ψλj,k > ψλj,k ,

with βλj,k = 1 for j ≤ m and 0 elsewhere (see [9], p. 213, Chapter 5, Lemma 2.7).

Step d: (D1) implies that if f ∈ L∞
c then Smf (x) = Pmf (x) a.e., where Smf is under-

stood as the sum in (4.2) in the Lp(dµ)-sense and Pmf as given by (2.1). We first observe
that if f ∈ L2(dx) then the sum in (4.2) is well defined with convergence in L2(dx) and
the sum is Pmf , the projection given by (2.1), since {ψλj,k} comes from a MRA. On the

other hand, if f ∈ L∞
c then f ∈ Lp(dµ)∩L2(dx) and the sum in (4.2) can be understood

in the Lp(dµ)-sense, Smf , and in the L2(dx)-sense, Pmf . Therefore, since the measure
µ is equivalent to the Lebesgue measure, Smf (x) = Pmf (x) a.e..

Now, the proof of (D1) ⇒ (D2) is easy. In fact, by Step c and Step d we have that

sup
m

||Pmf ||p,µ ≤ C||f ||p,µ ,

for all f ∈ L∞
c . Then, (D2) follows from Theorem 1.

(D2) ⇒ (D3). Since w ∈ Ap we have that ||ψλj,k||p,µ > 0 for all j ∈ Z, k ∈ Z
n and

1 ≤ λ ≤ 2n − 1. Now, let A be a finite subset of Z
n+1. For j ∈ Z and k ∈ Z

n we shall
write (j, k) = (j, k1, . . . , kn). Let us define the operators

TA,εf (x) =
∑

(j,k)∈A

2n−1∑
λ=1

ελj,k < f,ψλj,k > ψλj,k(x) ,

where ελj,k = ±1. The operators TA,ε can be written as integral operators TA,εf =∫
Rn
KA,ε(x, y)f (y) dy with kernel

KA,ε(x, y) =
∑

(j,k)∈A

2n−1∑
λ=1

ελj,kψ
λ
j,k(x)ψ

λ
j,k(y) .

Since the MRA is 1-regular we get that TA,ε is a family of Calderón–Zygmund operators
(see [13]). Then, by a classical result of harmonic analysis (see [1]) we get that if w ∈ Ap
then

||TA,εf ||Lp(w) ≤ C||f ||Lp(w)
for all f ∈ Lp(w) and where C does not depend on A and ε. Then, by using Khintchine
inequality we get the right hand side inequality in (D3) as in the non-weighted case (see
[13]). The left hand side inequality follows by using a duality argument (see e.g., the proof
of Theorem 4.16 in [7]).

To prove (D3) ⇒ (D1) we shall follow the lines of [7]. First we shall prove that
ψλj,k ∈ Lp(dµ). Let N > 0 be such that

∫
B(0,N) |ψλj,k(x)| dx > 0. Then, by using (D3)

with f = sgn(ψλj,k)χB(0,N), where sgn is the sign function, we get that
∫ |ψλj,k|pdµ ≤

C2µ(B(0, N))
(∫
B(0,N) |ψλj,k(x)| dx

)−p
< ∞. By (D3) we can also prove that the func-

tionals (ψλj,k)
∗(f ) =< f,ψλj,k > belong to the dual of Lp(dµ). In fact, | < f,ψλj,k > | ≤
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C2||ψλj,k||−1
Lp(dµ)||f ||Lp(dµ). On the other hand, for the operators TA,ε defined above we

get that

||TA,εf ||p,µ ≤ 1

C1

∥∥∥∥∥∥∥

 ∑
(j,k)∈A

2n−1∑
λ=1

∣∣∣ελj,k < f,ψλj,k >

∣∣∣2 ∣∣∣ψλj,k∣∣∣2



1/2
∥∥∥∥∥∥∥
p,µ

≤ C2

C1
||f ||p,µ .

So the partial sum operators and the modified partial sum operators with any sequence
of signs are uniformly bounded in Lp(dµ). Finally, we shall prove that, for every f ∈
Lp(dµ), its wavelet expansion converges. By the hypothesis the series of positive terms∑
(j,k)∈A

∑2n−1
λ=1 | < f,ψλj,k > |2|ψλj,k(x)|2 converges almost everywhere and by using the

dominated convergence theorem we get that∥∥∥∥∥∥∥

∑
j∈Z

∑
k∈Zn

2n−1∑
λ=1

∣∣∣< f − TAf,ψ
λ
j,k >

∣∣∣2 ∣∣∣ψλj,k∣∣∣2



1/2
∥∥∥∥∥∥∥
p,µ

→ 0 ,

when A ↗ Z
n+1 and by using (D3) again we get that

f =
∑
j∈Z

∑
k∈Zn

2n−1∑
λ=1

< f,ψλj,k > ψλj,k ,

in Lp(dµ).

(D4) ⇒ (D1). It follows the same lines of (D3) ⇒ (D1) (see also [7]).

(D2) ⇒ (D4). As in [12], in order to apply the weighted inequalities for Calderón–
Zygmund operators in their standard form, one can take a smooth function ϕ with certain
decay such that |ϕ| ≥ χ[0,1]n and, at the same time, {ϕj,k = 2nj/2ϕ(2j x − k), j ∈ Z, k ∈
Z
n} is a Bessel sequence (see [2]). In one dimension we can take, for instance, ϕ(x) =
Cψ(ax + b), where ψ is a C1 Daubechies wavelet and the constants a, b and C are
chosen in such a way that |ϕ| ≥ χ[0,1]. We can apply Lemma 1 (p. 31) in [2] in order
to obtain that {ϕj,k, j ∈ Z, k ∈ Z

n} is a Bessel sequence. For dimension n we can take
ϕ̃(x) = ϕ(x1)ϕ(x2) . . . ϕ(xn). Now the operators

T̃A,εf (x) =
∑

(j,k)∈A

2n−1∑
λ=1

ελj,k < f,ψλj,k > ϕ̃j,k

constitute a family of Calderón–Zygmund operators. Using the uniform boundedness of
T̃A,ε in Lp(w) with w ∈ Ap, Khintchine inequality and

∥∥∥∥∥∥∥

 ∑
(j,k)∈A

2n−1∑
λ=1

∣∣∣< f,ψλj,k >

∣∣∣2 χj,k



1/2
∥∥∥∥∥∥∥
p,w

≤

∥∥∥∥∥∥∥

 ∑
(j,k)∈A

2n−1∑
λ=1

∣∣∣< f,ψλj,k >

∣∣∣2 ∣∣ϕ̃j,k∣∣2



1/2
∥∥∥∥∥∥∥
p,w

we get the right hand side inequality in (D4). The left hand side inequality follows as usual
by a duality argument.
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5. Proofs of Theorems 5 and 6

Proof of Theorem 5. We shall use the same notation that in Theorems 2 and 3. As in
the proofs of Theorems 2 and 3, the implications (A5) ⇒ (A4) ⇒ (A3), (A5) ⇒ (A2) ⇒
(A3), (B1) ⇒ (B2) and (B3) ⇒ (B2) are obvious. On the other hand, the implications (A1)
⇒ (A2), (A5) ⇒ (A), (A5) ⇒ (A1) and (Bi) ⇒ (B), i = 1, 2, 3, 4, follow as in the proof
of the corresponding results in Theorems 2 and 3. Therefore, we only have to show that
(A3) ⇒ (A6) ⇒ (A5), (B2) ⇒ (B4) ⇒ (B1) and (B4) ⇒ (B3).

(A3) ⇒ (A6) and (B2) ⇒ (B4). First we shall prove that µ is absolutely continuous.
Given a set E such that |E| = 0 and ε > 0 there exists an open set G such that E ⊂ G,
µ(G \ E) < ε. For each j ∈ Z large enough, take Gj the union of the dyadic cubes Qj,k

of side length 2−j and such that Qj,k ⊂ G. Now, for each x ∈ Gj there is k0 ∈ Z
n such

that x ∈ Qj,k0 and
Pj (χG\E)(x) = 2nj |Qj,k0\E| = 1 ,

since |E| = 0. So, because of the uniform weak type (p, p) with respect to µ of Pj , we
get that µ(Gj ) ≤ Cµ(G\E). On the other hand, since the family of sets Gj is increasing
(Gj ⊂ Gj+1) and ∪jGj = G we get

µ(E) ≤ µ(G) = lim
j→∞µ(Gj ) ≤ Cµ(G\E) < Cε ,

for all ε > 0. Therefore µ(E) = 0. It follows, by Radon–Nikodym Theorem that there
exists a locally integrable function w such that dµ = w(x) dx. Now we shall prove that
w ∈ A

dy
p . Let us suppose that 1 < p < ∞, let Q be a dyadic cube with side length 2−j

and σε = (w + ε)
− 1
p−1 , ε > 0. Then, for all x ∈ Q we get that

Pj (σεχQ)(x) = 2nj
∫
Q

σε(y) dy = |Q|−1σε(Q) .

By using the weak type inequality we obtain that w(Q) ≤ C|Q|pσε(Q)1−p and letting ε
go to zero we obtain that w ∈ Adyp .
Consider now the case p = 1. Let x0 be a Lebesgue point of w, Q a dyadic cube of side
length 2−j and Q̃ a cube such that x0 ∈ Q̃ ⊂ Q. Then, for all x ∈ Q∣∣∣Pj (χQ̃) (x)∣∣∣ = 2nj

∣∣∣Q̃∣∣∣ = |Q|−1
∣∣∣Q̃∣∣∣ ,

and by the hypothesis we obtain that

1

|Q|
∫
Q

w ≤ C
1∣∣∣Q̃∣∣∣
∫
Q̃

w ,

and letting Q̃ → x0 we get that 1
|Q|
∫
Q
w ≤ Cw(x0) and we are done.

(B4) ⇒ (B1). This implication follows from the inequalities

||Pjf ||L1(w) ≤
∑
k∈Zn

(∫
Qj,k

|f (y)|
(

1

|Qj,k|
∫
Qj,k

w(x) dx

)
dy

)

≤ C
∑
k∈Zn

(∫
Qj,k

|f (y)|w(y) dy
)

= C||f ||L1(w) ,



Multiresolution Approximations and Wavelet Bases of WeightedLp Spaces 509

where in the last inequality we have used the condition Ady1 .

(A6) ⇒ (A5) and (B4) ⇒ (B3). These implications follow easily from the pointwise
estimate P ∗f (x) ≤ Mdyf (x), whereMdy is the Hardy–Littlewood maximal function over
dyadic cubes, and the fact that, for 1 < p < ∞, the dyadic condition Adyp characterize the
boundedness of Mdy on the spaces Lp(w) (see Corollary 4.5 in [8]). On the other hand,
when p = 1 it easy to prove that condition Ady1 implies thatMdy is of weighted weak type
(1, 1).

Proof of Theorem 6. The implications (H1) ⇒ (H2) and (H3) ⇒ (H1) can be proved as
the corresponding implications in Theorem 4. In order to prove (H2) ⇒ (H3), we can argue
again as in Theorem 4. Let TA,ε denote the operators defined in the proof of Theorem 4 with
hλj,k instead ofψλj,k . Even when the operators TA,ε are no longer standard singular integrals
because of the lack of regularity, in [6] it was proved that they are uniformly bounded on
Lp(w), 1 < p < ∞, if w ∈ Adyp . This is actually the only point needed to finish the proof
of the theorem.
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