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ABSTRACT.  We study boundedness and convergence on LP (R", d ) of the projection operators
P; given by MRA structures with non-necessarily compactly supported scaling function. As a

consequence, we prove that if w is a locally integrable function such that w ﬁ )1+ |x|)7N is
integrable for some N > 0, then the Muckenhoupt A, condition is necessary and sufficient for the
associated wavelet system to be an unconditional basis for the weighted space LP (R", w(x) dx),
l<p<oo.

1. Introduction

Our main purpose in this article is to solve the following problem which we shall
call (P1): search for necessary and sufficient conditions on the Borel measure p of R" for
which there is mean and almost everywhere convergence of multiresolution approximations
of L?(du) functions, when the scaling function is continuous and absolutely bounded by
an L' radial decreasing function. We also aim, as a byproduct of the results for (P1), to
study (P2): search for necessary and sufficient conditions on the Borel measure p for the
associated wavelet systems to be unconditional bases for the space L?(d ).

Let us briefly mention some previous articles related to the subject. K.S. Kazarian [10]
considers the problem (P2) in the Haar context for the interval. In two consecutive volumes
of Studia Mathematica both in 1994, independently, the issue is considered by P.G. Lemarie-
Rieusset [12] and by J. Garcia-Cuerva and K.S. Kazarian [5]. Both problems (P1) and (P2)
are considered in [12] for the compactly supported Daubechies MRA. Problem (P2) is
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considered in [5], where sufficient conditions on the measure, in terms of the Muckenhoupt
classes, are given for the case of splines. Necessary conditions are obtained by Garcia-
Cuerva and Kazarian in [6] for the spline wavelet system. For the special case of the Haar
system, problem (P2) is also considered in [6] where, modulo the analogy with the Haar
system in the segment [0, 1] given in [10], necessary and sufficient conditions, wider than
dyadic A, on the weight are obtained.

In this article, we accomplish and completely solve the following aspect of (P1): we
find necessary and sufficient conditions on the measure p of R” for which the multiresolution
approximations of L? (d ) functions are uniformly bounded (see Theorems 2 and 3). These
results generalize those in [12] both, because we obtain the results for more general MRA
and for dimension bigger than one. Nevertheless our proofs are different from those given
in [12]. Our approach relies on a weak positivity property of the kernels of the projection
operators (see Theorem 1).

Regarding problem (P2), our results are contained in Theorem 4. Let us point out that
we can not solve it completely, and as far as we know, the problem remains open in its full
generality. Let us emphasize that two compactly supported cases of (P2) are considered in
the literature: the Haar wavelet in [6] and the Daubechies wavelet in [12]. Both of them
give necessary and sufficient conditions on the weight function, but the surprising situation
is that while in [12] those conditions are given by Muckenhoupt A, classes, in [6] the class
of weights strictly contains dyadic Muckenhoupt classes. At this point we have to say that,
as it was pointed out by our referee in a previous version of this article, we are unable to
prove, without some extra condition on the weight, the implication (D1) = (D3) in [12]
which gives A, as necessary condition for the fact that the Daubechies wavelet system is an
unconditional basis for L? (di). Actually for the Daubechies case our result is contained in
Corollary 2 and we are only able to show that A, is necessary under the extra assumption

of the local integrability of w_l’%l.

The MRA covered by our approach through the weakly positive kernels do not include
the Haar case. However we can prove similar results changing the A, classes by the dyadic
A, classes Af,y (see Theorems 5 and 6).

The article is organized as follows: In Section 2 we state the results. Section 3 is
devoted to prove the basic theorem: Theorem 1. In Section 4 we give the proofs of the
results related to problems (P1) and (P2) when the scaling function is continuous. Finally,
in Section 5 we give the proofs of the results for the Haar case.

2. Statement of the Results

In order to state the results, let us recall that a weight w belongs to the class A, with
1 < p < oo if there exists a constant C such that for all cube Q

1/p L\
() ()" =t
o 9

where | Q| is the Lebesgue measure of Q and p’ is the conjugate exponent of p. We say
that w € A if there exists a constant C such that for all cube Q and almost every x € QO

ﬁ/waCw(x).
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Let us also recall that if the cubes Q in the definitions of A, are dyadic cubes, the classes
of weights are the dyadic A, classes and we shall denote them by A’,l,y .

In the search of necessary conditions, the next result will be the key argument. To
state it we introduce the concept of a family of weakly positive kernels. Let n be a positive
integer and let {£; : j € Z} be a decreasing sequence of positive real numbers (£;41 < £;)
with £; — 0 when j — oo and £; — oo when j — —oo. A family {K; : j € Z} of
measurable real valued kernels defined on R?* = R” x R" is said to be “weakly positive”
if there exist a sequence {£;} as above and a positive constant C such that the set inclusion

[omer? =yl <4} c e e R Ky > e

holds true for every j € Z.

Theorem 1.

Let 1 < p < oo. Let L be the set of the bounded functions with compact support
and let i be a positive Borel measure on R" finite on compact sets. Assume that T; f (x) =
JKjx, ) f()dy, j € Zand f € L2, where {Kj : j € Z} is a family of weakly positive
kernels. If there exists C > 0 such that

w(x T3 £ > 20) < CAPI A1 b = CA PN s -

forallh > 0,all j € Zand all f € L, then u is absolutely continuous with density
w e A

Remark 1. We would like to point out that the finiteness of x on compact sets, under
the weak type assumption on 7, is implied by the existence of a Borel set A with [A]| > 0
and n(A) < oo.

The above theorem together with Lemma 2.8 in [11] allow us to get boundedness
and convergence results of multiresolution approximations. Following Meyer [13], by a
multiresolution analysis (MRA) on R” (n > 1) we mean an approximation of the space
L?(R") through an increasing sequence of closed subspaces V;, i.e.,

- VocVycVoCcViCVae--,

with the following properties
(i) NjezV; =1{0}and UjezV; = L2(R");
(ii) forevery f € L>(R") and every j € Z, f(x) € V; if and only if f(2x) € Vj11;
(iii)) forevery f € L?(R") and every k € Z", f(x) € Vp ifand only if f(x — k) € Vy;

(iv) there exists a function ¢ € L2(R") such that the family {¢x(x) = ¢ (x — k), k €
7'} is an orthonormal basis for Vj.

Such a function ¢ is called a scaling function. The family {¢; x(x) = 2"/2¢(2/x —k), k €
Z"} is an orthonormal basis for V;. Then, associated with the increasing sequence of
subspaces {V} jez we have the orthogonal projections of L?(R") onto V; given by

Pif=Y <fjx>djx, forfelL”(R").
keZn

From now on, we shall work with a scaling function ¢ in the class R3; that means
that ¢ is absolutely bounded by an L' radial decreasing function 7, i.e., | (x)| < n(x) with
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n(0) < o0, n(x1) = n(x2) whenever |x;| = |x2|, n(x1) < n(x2) whenever |xi| > |x2]
and n € L'(R™). Under the assumption ¢ € RB we get that the kernel Pj(x,y) of Pjis
given by 2V Py(2/x, 27 y) with Po(x, y) = Y yezn ¢ (x —k)$(y — k), in the sense that, for
[ e >R,

Pfe) = [ POy @

In [11], Kelly, Kon and Raphael proved that if ¢ € RB then the kernel Py(x, y)
satisfies

|Po(x, y)| = H(lx — y]) 2.2)

where H (|x|) is abounded radial decreasing L L(R™) function (see Lemma 2.8 in[11]). From
the estimate (2.2), in Theorem 2.6 [11], the operators P; f(x) = fR,, Pj(x,y)f(y) dy are
well defined for f € LP(R"), 1 < p < oo, and P; f converge to f almost everywhere and
in the L? norm, when j — oo.

The following two theorems are related to problem (P1). Notice that in these state-
ments and in the further development, P; f (x) is understood in the pointwise sense given
by (2.1).

Theorem 2 (p > 1).

Let {V;}jez be a MRA on R" with a continuous scaling function ¢ € RB. Let ju be a
positive Borel measure on R” finite on compact sets and p € (1, 00). Then, the following
Statements are equivalent:

(A1) the operators P; are continuous on LP(du) and for all f € LP(du),
Iim [|f =Pjfllpu =0 and lim ||P;fllp.=0;
j—o00 j——00

(A2) the operators P; are uniformly bounded on LP (d1);

(A3) the operators P; are uniformly of weak type (p, p) with respect to i,

(A4) the operator P* f = sup ez, | Pj f1 is of weak type (p, p) with respect to u;
(A5) the operator P* f is of strong type (p, p) with respect to |1,

(A6) p is absolutely continuous and dj = w dx withw € A.

Further, each one of the above statement implies
(A) for feLP(dp), Pif — fand P_;f — 0almost everywhere when j — oo.

Theorem 3 (p = 1).

Let {V;}jez be a MRA on R" with a continuous scaling function ¢ € RIB and let u
be a positive Borel measure on R" finite on compact sets. Then, the following statements
are equivalent:

(B1) the operators P; are uniformly bounded on LY (dp);

(B2) the operators P; are uniformly of weak type (1, 1) with respect to (i,
(B3) the operator P* f is of weak type (1, 1) with respect to ;

(B4) w is absolutely continuous and dp = w dx with w € Aj.

Further, each one of the above statement implies
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(B) for f € L'(dw), P;f — f almost everywhere and in L' norm, when j — oo
and P_j f — O a.e. when j — 0.

As an application of Theorem 2 we obtain results about the wavelet expansions. Now
we shall work with MRA with more regular scaling function.

We shall say that a MRA {V};cz on R" is r-regular (r € N) if the scaling function
¢ verifies that [0%p (x)| < Cp, (1 + |x]) ™™ for all « = («q, ..., ®,) such that || < r and
for all m € N, where 0% = (8/9x1)%' ... (8/0x,)* and |@| = a1 + ...+ .

Let{V;} ez beanr-regular MRA onR" and let W denote the orthogonal complement
of V; in V; . From the existence of ¢ it follows (see, e.g., [13]) that there exist 2" — 1
functions !, ..., ¥~ such that {I//j)-”k(x) =202y 2ix—k),jeZ kel 1 <A<
2" — 1} form an orthonormal basis for W; for fixed j, and form an orthonormal basis for
L*(R") as j, k vary. Moreover, the functions y* also verify that [d%y* (x)| < Co(1+]x[)~*
for all @ € N”" such that |«| < r and for all £ € N.

In the following theorem we give our partial answer to problem (P2), where we also
prove a result concerning the characterization through wavelet coefficients of the spaces
LP(dp).

Theorem 4.
Let {V;}jez be an 1-regular MRA on R", let u be a positive Borel measure on R"
finite on compact sets and p € (1, 00). Then, the following statements are equivalent:

(D1) the sequence {1//;",( cj €l ke 1 <A < 2" — 1} forms an unconditional
basis for LP (d ) and the functionals (I/J}’k)* (f)=<1f, I/f;"k > belong to the dual
space of LP(du);

(D2) w is absolutely continuous and dp = w dx withw € A);

D3) ||I/I?"k||p’ﬂ >O0forall j € Z, k € Z"and 1 < A < 2" — 1 and there exist two
constant Cy and Cy such that for all f € LP(dw),

1/2

2
| < Collfllpus -

»_]
o< || X X |« rvke [ |vi

JEZ keZ r=1
P
DY) w(Qjx) >O0forall j € Z, k € Z', where Qjx = {x € R" : 2/x —k €10, )"},
and there exist two constant C1 and Co such that for all f € LP(du),
n_y 1/2

2
Cillfllp = | [ 22 3 |< £ v = wia < Coll fllpe -

jeZkeZr r=1
D

where xj i (x) = Z"j/zx(ij — k) and x is the characteristic function x[o,1y».

If we start with a weighted measure, du(x) = w(x) dx, the continuity of the func-
I
tionals in (D1) is guaranteed a priori as soon as some integrability condition on w 7-T is

assumed. This is stated in the following corollary.

Corollary 1.
Let {V;} ez be an 1-regular MRA on R", let w > 0 be a locally integrable function

1
such that fw_l’j(x)(l + |x|)_N dx < oo, for some N > 0 and let p € (1, 00). Then,
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the sequence {1#;‘, v J €L, kel 1 <A <2 — 1} forms an unconditional basis for
LP(wdx) ifand only if w € A,

’ _ 1
The proof of the corollary is reduced to check that w])." ¢ € L? (w »=T). This follows
from the regularity of the MRA. We notice that in the case of the Daubechies’ wavelets, the
1

assumption on w 7-! can be weakened.

Corollary 2.
1
Let {V;}jez be a MRA of I. Daubechies on R", let w > 0 such that w and w™ 7!

are locally integrable functions and let p € (1, 00). Then, the sequence {W])'L,k 1jE€Z,ke
7", 1 < A < 2% — 1} forms an unconditional basis for L¥ (w dx) if and only if w € Ap.

The Haar MRA is generated by the scaling function x = x[o,1)». In this case the
projection operators P; are

Pif@ =Y < fotja > a0 = /R PO dy. 23)

keZ

where Pj(x,y) = 2nj Zkezn X0k (X)XQ_,;k (), with Q; x the dyadic cube defined in (D4)
of Theorem 4.
Theorem 5.

Let {V;} ez be the Haar MRA on R" and p a positive Borel measure on R" finite on
compact sets. Then, the conclusions of Theorems 2 and 3 hold for the operators P defined

in (2.3), changing the classes A to Af,y .
Now, we establish the result for the Haar wavelets. The n-dimensional Haar system

is generated by dilation and translation of 2" — 1 wavelet basics. In fact, let A be the set of
2" —1elements A = (A1, ..., A,) Where A; = OorA; = 1 except (0, ..., 0). The functions

W (X x) = 292 (2jx1 - kl) el <2jxn - k,,) ,

where h0 = X[0,1) and Kl = X[0,1/2) — X[1/2,1), form an orthonormal basis of L2(R”). For
this type of wavelet we can prove the following result.

Theorem 6.
Let {V;}jecz be the Haar MRA on R", |1 a positive Borel measure on R" finite on
compact sets and p € (1, 00). Then, the following statements are equivalent:

(H1) the sequence {h;f’k 1 j € Z,k € 7, » € A} forms an unconditional basis for
LP(dw) and the functionals (h; D) =< f, h’]\.’ , > belong to the dual space of
LP(dp);

(H2) w is absolutely continuous and dpu = w dx with w € A;l,y s

H3) Ixjxllp,n > Oforall j € Z, k € Z" and there exist two constants Cy and C; such

that for all f € LP(dw),

1/2

2
Cll e = | | 22D D2 |< £t =[ i < Gl fllpug -

JEL keZ he A
P,
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Finally, for weighted measures we have the following result which is similar to Corol-
lary 2.
Corollary 3.

1

Let {V;} ez be the Haar MRA on R", let w > O such that w and w »=T are locally
integrable functions and let p € (1, 00). Then, the sequence {h}\',k cJEZL, kel he A}

.. . . . dy
forms an unconditional basis for LP (d ) if and only if w € A}y .

3. Proof of Theorem 1

First, we prove that u is absolutely continuous. Let E be a set such that |E| = 0.
Since, being finite on compact sets, i is regular, then for each ¢ > 0 there exists an open set
G suchthat E C G and u(G \ E) < ¢. The open set G can be written as a countable union
of disjoint and dyadic cubes Q;. We denote with d(Q) the diameter of the cube Q. Let {£;}
be the sequence associated to the family {K;}. For fixed i, let jo be the integer such that
Cjo+1 <d(Qi) <. Ifx,y € Q; wegetthat |[x —y| < £, and K, (x,y) > C(£o+1)7".
Therefore, for all x € Q;

>C(j,+1) "QI\E| .

Oi\E

Since |E| = 0 we get that | T}, (x0,\E)(x)| = c,, where ¢, is a constant depending only on
the constant C and on the dimension . So that, from the weak type inequality we have

w(Qi) < u({x :1Tjy(xonE)®)| > cu}) < Cen Pu(Qi\E) .

Summing in i we get

H(G) = Y (@) = Cey” Y QNE) = € " (G\E) < Ce; "

for all ¢ > 0. Then, u(E) = 0. Now, by the Radon—Nikodym Theorem, we get a locally
integrable function w such that du = w(x) dx. We shall prove that w € A,. Let us first
assume that 1 < p < oco. Let Q beacubeonR" and jo € Zsuchthat ;1 < d(Q) < £},

1
Witho, = (w +¢) 77T, e > 0, the inequalities

I Tjo(0e x0)(X)| = 'fQ Kj,(x, y)oe(y)dy| > C(5j0+1)_”/QGg > Cn|Q|_l/QU£ =4,

hold for all x € Q. From the uniformly weak type (p, p) of the operators T; we get
1-p
w(Q) < w(fx : |Tjy(gex)(X)| > A} < Ce, ”101” </ Gs) .
Y
Multiplying by (/. 0 0¢)P~! and letting & go to zero we obtain that w belongs to A p- Now,

we shall consider the case p = 1. Let xo be a Lebesgue point of w. Take Q and Q cubes
such that xo € Q C Q. Pick jo € Z suchthat £, 1 < d(Q) < £j,. Then, forall x € Q

T3 (1) @| > CCien | 0] = caloi™ [0
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From the weak type (1, 1) inequality we obtain that w(Q) < w({|T}, (XQ)(x)l > Cp % h <

Cc1a wi Therefore,
1 1
— | w=Cc — [ w
101 Jo ‘Q‘ 5]

“n 10l
Letting Q — xo we get that ﬁ fQ w < Cc;1 w(xp) and we are done.

4. Proofs of Theorems 2, 3, and 4

The proofs of (AS) = (A4) = (A3), (A5) = (A2) = (A3), (B1) = (B2) and (B3)
= (B2) are obvious. We notice also that (Al) = (A2) is an immediate consequence
of the Uniform Boundedness Principle while (B4) = (B1) follows from (2.2) and the
characterization of the weighted inequalities for the convolution operators associated to
dilations of an L! radially decreasing function (see e.g., [14]). Therefore, to complete the
proofs of Theorems 2 and 3, we only have to show the following implications: (A3) =
(A6) = (AS5) = (Al), (AS5) = (A), (B2) =(B4) = (B3) and (Bi) = (B),i =1, 2,3, 4.

(A3) = (A6) and (B2) = (B4). We start proving the following lemma.

Lemma 1.
Let ¢ be a continuous function in RB such that ) " .;» ¢(x — k) # 0 for all x € R".

Then F(x,y) = Y jeqn ©(x —k)@(y — k) satisfies
{(x, V) eRYM: |x — y| < z} c [(x, V) eR¥ : F(x,y) > 5} , 4.1)

for some positive real numbers £ and §.

Proof of the lemma. Since ¢ € RB the series F(x,y) = > ;o ¢(x — k)o(y —k)
converges uniformly on each compact set of R?” and F (x, y) results a continuous function.
On the other hand, F(x + k,y + k) = F(x,y) for all k € Z". Then, we have that
F(x,x) > aforsomea > 0. Let0 < § < o and Es = {(x,y) € R¥ : F(x, y) > §}.
Notice that Es is open, it contains the diagonal A = {(x, x) : x € R"} and it is periodic:
(x,y) € Esif and only if (x + k, y + k) € E;. So, we have that the distance £ from A to
the complement of Ej is positive. Thus (4.1) holds. L]

Notice that if ¢ is a scaling function, then {¢ (x — k), k € Z"} is an orthonormal basis
and we getthat ) ", ;. ¢ (x —k) = 1 foralmostevery x € R” (seee.g., [13] or [15]). On the
other hand, since ¢ € RB the series ) ;7. ¢ (x — k) converges uniformly on each compact
set of R and since ¢ is continuous we get that ) ", ezn @ (x —k) = 1forevery x € R". This
fact allows us to apply the above lemma to the function Py(x, y) = Z kezn ¢(x— k)¢ (y—k)
and easily we obtain that the family {P;(x, y)} = {2 Py(2/x,27y)} is weakly positive.
Then, applying Theorem 1 we get the desired implications.

(A6) = (AS) and (B4) = (B3). By using (2.2) and standard arguments we can prove
that

P f(x) = Sup |IPif(x)=C (/ H(|x]) dX) Mf(x),
JEZL R
where M is the Hardy-Littlewood maximal function. From the corresponding weighted
boundedness of M (see e.g., [8]) we get the desired implications.
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(A5) = (A) and (AS5) = (Al). By the results in [11] we have that P; f converge
to f almost everywhere when j — oo for all f € LP(dx) N LP(dw) which is a dense
subset of L”(du). This fact together with (A5) implies that the convergence holds for all
f € LP(dw). On the other hand, by the Holder inequality,

[P FCO < 2PIH - DIl flp -

Since H (]x|) belongs to LY (R™"), 1 < p’ < oo, we get that P; f converges to 0 almost
everywhere when j — —oo for all f € L?(dx), and, as before, the convergence holds for
all f € LP(dw). This finishes the proof of (AS) = (A). To prove that (A5) = (Al) we
observe that (A5) implies obviously that the operators P; are continuous on L”(du) and
the limits in (A1) hold by (A5) = (A) and the dominated convergence theorem.

Bi) = (B),i =1, 2, 3, 4. The proof of this implication is similar to (AS) = (A).
Now we shall prove Theorem 4.
(D1) = (D2). We shall divide the proof into several steps.

Step a: For every function f € LP(du) we have that (D1) implies that

=) <fvle>vi.

Jik A

where the sum is understood in the L? (du)-sense. In fact, since {I/f;.\ &} 18 an unconditional
basis for L?(du) we have that for all f € L?(du)

Ao
f=2 Ve
Jok,A
where the sum is understood in the L? (dt)-sense. Now, the continuity and the linearity of

(W] )" gives that o, = (W5 )*(f) =< f, ¥, >.

Step b: (D1) implies that the measure u is equivalent to the Lebesgue measure, i.e.,
u(A) = 0ifand only if |[A| = 0. To prove it we may assume that A is a bounded Borel set.
If w(A) = 0 then, for every j, k, A we get that (Iﬂj)-:k)*()(A) = 0 since (Iﬂ?’k)* are bounded
functionals on L?(u). On the other hand,

xa= 2 (Vi) (vl =0,
Jok,

where the sum is understood in the L?(dx)-sense. Then, x4 = 0 in L?(dx) which implies
that |A| = 0. Conversely, assume that [A| = 0. Then, (W]A-,k)*(XA) = fl/f]*’k(x)XA(x)dx
= 0 for every j, k, A. Since x4 € L?(u), Step (a) gives that

%
xa=> (Vi) vl =0,
JukA
in the L? (u)-sense. Therefore w(A) = 0.

Step c: (D1) implies that the operators

Suf= Y. <f[¥je>¥h 4.2)

j<m,k,\
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are uniformly bounded on L? (d ), where the sum is understood in the L? (d)-sense. This
statement follows from the fact that {Wﬁ «) 18 an unconditional basis for L?(du) and

Swf=Y B <fvi>vi.

jikoA
with ,B/k.,k = 1 for j < m and 0 elsewhere (see [9], p. 213, Chapter 5, Lemma 2.7).

Step d: (D1) implies that if f € L2° then S,, f (x) = Py f (x) a.e., where S,, f is under-
stood as the sum in (4.2) in the L” (du)-sense and P, f as given by (2.1). We first observe
that if f € L?(dx) then the sum in (4.2) is well defined with convergence in L?(dx) and
the sum is P, f, the projection given by (2.1), since {Wﬁ ] comes from a MRA. On the

other hand, if f € L° then f € LP(du) N L?(dx) and the sum in (4.2) can be understood
in the L?(du)-sense, S, f, and in the Lz(dx)-sense, P,, f. Therefore, since the measure
W is equivalent to the Lebesgue measure, S, f (x) = P, f(x) a.e..

Now, the proof of (D1) = (D2) is easy. In fact, by Step ¢ and Step d we have that

sup || P fllpe = ClLf N pu s
m

forall f € L. Then, (D2) follows from Theorem 1.
(D2) = (D3). Since w € A), we have that ||‘//])'\,k||1’»# > 0forall j € Z,k € Z" and
1 <A <2"—1. Now, let A be a finite subset of Z" 1!, For j € Z and k € Z" we shall

write (j, k) = (j, k1, ..., kn). Let us define the operators
2" -1
Taef()= Y Y &< fivi>vix),
(j,k)eA rA=1
where S;Yyk = =£1. The operators T4 . can be written as integral operators T4 . f =

Jrn Ka.e(x, y) f(y) dy with kernel

2"—1

Kae@ )= Y Y &bk vk

(j.k)eA r=1

Since the MRA is 1-regular we get that 74  is a family of Calder6n—-Zygmund operators
(see [13]). Then, by a classical result of harmonic analysis (see [1]) we get thatif w € A,
then

T e fllLe ) < ClfllLew)

for all f € L?(w) and where C does not depend on A and €. Then, by using Khintchine
inequality we get the right hand side inequality in (D3) as in the non-weighted case (see
[13]). The left hand side inequality follows by using a duality argument (see e.g., the proof
of Theorem 4.16 in [7]).

To prove (D3) = (D1) we shall follow the lines of [7]. First we shall prove that
w},k € LP(du). Let N > 0 be such that fB(O’N) |1ﬁ;‘,k(x)| dx > 0. Then, by using (D3)

with f = sgn(zﬂj{k)xg(o,/v), where sgn is the sign function, we get that f |¢;k|pdu <

-P
Cou(B(0, N)) (fB(O’N) |1pj)."k(x)| dx) < 00. By (D3) we can also prove that the func-
tionals (Iﬂ}”‘k)*(f) =< f wj{k > belong to the dual of L?(du). In fact, | < f, 1/;},{ >|<

s
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Cs| IK])-‘J( | |Zzl>(du) [l fllzr@w- On the other hand, for the operators T4 . defined above we
get that

172
n
] ‘2

1 2
acflpn= g || 2 X [ehe < £vie>] |vix

C
< C_||f||p,p. .
(j.eA a=1 1

pp

So the partial sum operators and the modified partial sum operators with any sequence
of signs are uniformly bounded in L”(dw). Finally, we shall prove that, for every f €
L?(du), its wavelet expansion converges. By the hypothesis the series of positive terms
Z(j,k)eA Zil:_ll | < f, w;’k > |2 W}‘,k(x) |2 converges almost everywhere and by using the
dominated convergence theorem we get that

| 1/2

)IDID B EVEE VR

jeZkezn a=1

‘2
P,

when A 7 Z"*! and by using (D3) again we get that

2"—1

F=YD > <fvhi=vh.

JEL keZ™ r=1

in LP(duw).
(D4) = (D1). It follows the same lines of (D3) = (D1) (see also [7]).

(D2) = (D4). Asin [12], in order to apply the weighted inequalities for Calderén—
Zygmund operators in their standard form, one can take a smooth function ¢ with certain
decay such that || > x[o,1» and, at the same time, {¢; ; = 2”j/2<p(2jx —k),jelke
7"} is a Bessel sequence (see [2]). In one dimension we can take, for instance, ¢(x) =
Cyr(ax + b), where ¢ is a C I Daubechies wavelet and the constants a, b and C are
chosen in such a way that |¢| > xj0,17- We can apply Lemma 1 (p. 31) in [2] in order
to obtain that {¢; «, j € Z,k € Z"} is a Bessel sequence. For dimension n we can take
¢(x) = p(xe(x2) ...9(x,). Now the operators

2"—1

Taef@)= > Y &< vl >k

(kA r=1

constitute a family of Calderén—Zygmund operators. Using the uniform boundedness of
Ta,e in LP(w) with w € A, Khintchine inequality and

2] 172 ] 172
- 2 - L2 2
)RID I R 78 B I (1 S SH RV O
(JeA r=1 (jheA r=1

pw pw

we get the right hand side inequality in (D4). The left hand side inequality follows as usual
by a duality argument.
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5. Proofs of Theorems 5 and 6

Proof of Theorem 5. We shall use the same notation that in Theorems 2 and 3. As in
the proofs of Theorems 2 and 3, the implications (AS) = (A4) = (A3), (A5) = (A2) =
(A3), (B1) = (B2) and (B3) = (B2) are obvious. On the other hand, the implications (A1)
= (A2), (AS) = (A), (AS) = (Al) and (Bi) = (B),i = 1, 2, 3, 4, follow as in the proof
of the corresponding results in Theorems 2 and 3. Therefore, we only have to show that
(A3) = (A6) = (AS), (B2) = (B4) = (B1) and (B4) = (B3).

(A3) = (A6) and (B2) = (B4). First we shall prove that i is absolutely continuous.
Given a set E such that |E| = 0 and ¢ > 0 there exists an open set G such that £ C G,
(G \ E) < e. For each j € Z large enough, take G ; the union of the dyadic cubes Q «
of side length 27/ and such that Q; x C G. Now, for each x € G there is kg € Z" such
that x € Qjx, and

Pi(xc\E)(x) =2" Qi \El =1,
since |E| = 0. So, because of the uniform weak type (p, p) with respect to u of P;, we

get that (G ;) < Cu(G\E). On the other hand, since the family of sets G is increasing
(G; CGji1)and U;Gj = G we get

p(E) = n(G) = lim u(G;) < Cu(G\E) < Ce,

for all ¢ > 0. Therefore u(E) = 0. It follows, by Radon—Nikodym Theorem that there
exists a locally integrable function w such that du = w(x) dx. Now we shall prove that

w € A;i,y. Let us suppose that 1 < p < oo, let Q be a dyadic cube with side length 2~/
1
and o, = (w + &) »=1, & > 0. Then, for all x € Q we get that

Pi(0exo)(x) = 2" /Qos(w dy = 1011 0.(0) .

By using the weak type inequality we obtain that w(Q) < C|Q|Po.(Q)' P and letting &
g0 to zero we obtain that w € Af,y .

Consider now the case p = 1. Let xg be a Lebesgue point of w, Q a dyadic cube of side
length 2=/ and Q a cube such that xo € Q C Q. Then, forall x € Q

1P (1) 0| =27 [0| = 101! |0

and by the hypothesis we obtain that

o Jor =51
— w=<C— w,
101 Jo 0|/

and letting Q — xo we get that ﬁ f oW = Cw(xg) and we are done.

)

(B4) = (B1). This implication follows from the inequalities

1
1Pl = X ([ 1ron( g [ weod) av

keZ

=C). (/Q If(y)lw(y)dy> = Cllf Ity -

keZ
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where in the last inequality we have used the condition Aally .

(A6) = (AS5) and (B4) = (B3). These implications follow easily from the pointwise
estimate P* f(x) < M% f(x), where M? is the Hardy—Littlewood maximal function over
dyadic cubes, and the fact that, for 1 < p < oo, the dyadic condition A‘,l,y characterize the
boundedness of M4 on the spaces L? (w) (see Corollary 4.5 in [8]). On the other hand,

when p = 1 it easy to prove that condition A‘liy implies that M4 is of weighted weak type
1, D). []

Proof of Theorem 6. The implications (H1) = (H2) and (H3) = (H1) can be proved as
the corresponding implications in Theorem 4. In order to prove (H2) = (H3), we can argue
again as in Theorem 4. Let T4 . denote the operators defined in the proof of Theorem 4 with
h)‘  instead of 1/1?‘ - Even when the operators Ty . are no longer standard singular integrals
because of the lack of regularlty, in [6] it was proved that they are uniformly bounded on

LP(w),l < p <oo,ifwe Ap}. This is actually the only point needed to finish the proof
of the theorem. L]
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