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Abstract. We find necessary and sufficient conditions on a Banach space
X in order for the vector-valued extensions of several operators associated to the
Ormnstein—Uhlenbeck semigroup to be of weak type (1, 1) or strong type (p,p) in
the range 1 < p < oco. In this setting, we consider the Riesz transforms and the
Littlewood—Paley g-functions. We also deal with vector-valued extensions of some
maximal operators like the maximal operators of the Ornstein—Uhlenbeck and the
corresponding Poisson semigroups and the maximal function with respect to the
gaussian measure.

In all cases, we show that the condition on X is the same as that required for the
corresponding harmoric operator: UMD, Lusin cotype 2 and Hardy-Littlewood
property. In doing so, we also find some new equivalences even for the harmonic
case.

Introduction

The purpose of this work is to characterize those Banach spaces X for which
the Riesz transforms, Littlewood-Paley g-functions and maximal operators related
with the Ornstein—Uhlenbeck semigroup are bounded when acting on X-valued
functions.

The first reference to vector-valued extensions of operators associated with the
Ornstein—Uhlenbeck semigroup appears in Pisier [P] as part of an effort to prove
a dimensional-free LP(dv)-estimate for the Riesz transforms. The transference
method he used there gives the boundedness on L% (dv), p > 1 when X is UMD.
Unfortunately, this technique does not allow us to deal with functions in L} (dy),
nor does it seem to be applicable to other operators, as is our intention. We recall
that the UMD property for a Banach space X was first introduced by Burkholder
in a probability setting. However, it was shown to be equivalent to the fact that the
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Hilbert transform maps L% into itself for some p in the range 1 < p < oc; see [Bu]
and [Bo].

In recent years, there has been considerable activity in the study of the
operators associated to the Ornstein—Uhlenbeck semigroup following the original
one-dimensional approach of Muckenhoupt [Mu] of dividing R into two regions:
one where the gaussian and Lebesgue measures are equivalent and the correspond-
ing operators comparable, and the other where the kernels of the operators can be
estimated by a well-behaved positive kernel. These regions and the corresponding
parts of the operators are nowadays referred to as local and global, respectively.
Techniques to get the right bounds for the global part of the kernels in any finite di-
mension were first developed by Sjogren [Sj] for the maximal Ornstein—Uhlenbeck
semigroup operator and later extended to other operators by various authors; see
[FGS], [U], [PS], [GMST1].

This suggests that the gaussian operators might be extended to those Banach
spaces where their corresponding harmonic versions are well-defined. In fact,
using these techniques, we are able to prove this type of result. More precisely,
we show that a Banach space is UMD if and only if the gaussian Riesz transforms
(and their maximal operators) have all the expected boundedness properties (see
Theorem 1.10). Similarly, for the g function, we find that the Banach spaces are
the same as those in the euclidean case (see Theorem 1.12) and, following [X], we
say that these spaces have the Lusin cotype 2 property. Finally, we prove a similar
result for other maximal operators as well (see Theorem 1.13).

In proving these theorems, we need a deeper understanding of the local parts
in order to compare each gaussian operator with its precise harmonic version. For
example, in [FGS], [PS], [U], [GMST1], the local parts of the Riesz transforms
were compared to certain singular integral operators but not precisely to the har-
monic Riesz transforms. To make the right comparison, we follow the pattern
suggested by the definitions of the operators given through the spectral theory.
Following this thought, it is not difficult to see that the right choice is to start with
the Gauss-Weierstrass semigroup associated to ;A rather than to A. This is the
main content of Section 3.

For the harmonic Riesz transforms, it was already known that the UMD
condition on X is equivalent to the almost everywhere finiteness of the associ-
ated maximal operators for functions in LY (dz). However, there does not seem
to a be similar result for the Littlewood—Paley g-function or the maximal Hardy—
Littlewood operator in the literature. We prove the corresponding statements to be
true in Propositions 4.5 and 4.12.
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1 Preliminaries and statement of results

Let {T;} be a symmetric diffusion semigroup of operators acting on measurable
functions on R", with a second order differential operator —L as its infinitesimal
generator. In this context, the following operators can be considered; see [St1].

(1) Maximal operator: T*f(z) = sup,, |T:f(z)|.

(2) Maximal operator of the subordinated Poisson semigroup:

P* f(x) = sup;s¢ |P:f(z)|, where P, is defined by the following subordination
formula,

(1.1) P f(z) = \/—12=7r /ooo te™t /4T, f(z)s~%/%ds.

(3) Riesz potentials: For 0 < a, L™*f(z) = 155 Jo t*~'Tif(z)dt, which
can be derived from the identity s™* = 5 Jote et dt.

(4) Riesz transforms: For1 <i <n, Rif(z) = 2L~/ f(=).

(5) Littlewood-Paley g-functions:

2dt

@ =([ lgrs@]§)"

and

#:N@ = ([ ramrs@[ )" i=1n

Here 0/0z;,1 = 1,...,n are the partial derivatives associated to the operator L,
that is, if V; is the vector (8/0z;,...,0/0z,) it satisfies

(~L)(wP) = p(p — 1)uP 2| Vu/?

for functions u > 0 solutions of the equation Lu = 0.

In the classical case L = —A, that is, T; is the Gauss—Weierstrass semigroup, all
of these operators are well-known. We refer to [St2] for their L?(dz)-boundedness
properties, where dz is the Lebesgue measure in R®. However, for our purposes
it will be best to deal with the semigroup W, whose infinitesimal infinitesimal
generator is — 1A, that s,

(12) Wef(z) = (2nt)~"/2 / e~ 12t § () dy,

n

Anyway, we notice that the operators (1) to (5) defined above differ only in a
constant after this change in the infinitesimal generator.

Let us recall that in this case the Riesz transforms can be viewed as principal
values of the integrals against the kernels
Ti —Yi

Ki(z-y) = Cn g — gt
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which appear as the corresponding partial derivatives of the kernel associated to
the (—3A)~1/2 operator. Moreover, the maximal operators

Kif(@) = sup Kief@) =sup| [ Kino -], 1<i<n,
e>0 e>0 1 JRn

where K (r — y) = Ki(Z — y)X{jz—y|>¢}, are bounded on LP(dz), 1 < p < oo,
and of weak type (1,1). This implies both the almost everywhere convergence of
K; . f for f € L?(dz), 1 < p < oo and the convergence in LP(dz),1 < p < oo or the
weak-L!(dz) convergence; see [St2].

In the case L = —%A + 2.V, that is, T; is the Ornstein—Uhlenbeck semigroup
O, given by

Ouf(z) = (m(1 — e~2t))~"/?2 / emleT =/ (-e7) £ dy,

n

the above operators have been intensively studied over the last twenty years by
several authors. In this setting, the natural measure is the gaussian measure
dvy(z) = e~ dz. For the L?(dy)-boundedeness of the maximal operator O*, we
refer to [St1] and [Sj]; for the Riesz transforms R;, see [Mu}, [Gu], [Me], [P],
[FGS], [Gt], [U], [GMST?2]. As in the classical case, the Riesz transforms can be
viewed as principal values of integrals against the kernels

o) —t —t 2
] _ -1/2 -t € Ti—Yi _ Ie T - yl
Ri(z,y) = c,,/o t e ————(1 et/ exp ( ez dt,

which appear as the corresponding derivatives of the kernel associated to the
(—1A + 2.V)~1/2 operator. Namely, for functions f good enough, we have

Rif(@) = lim Rief(@), ae.z,

where Ri¢(z,y) = Ri(Z,Y)X{|z-y|>¢}-

The Littlewood—Paley g-functions studied in [PS] and [Gt] can be explicitly
expressed by taking the corresponding derivatives of the associated Poisson kernel
given by

o o]
(1.3) PAz,y):% /0 te= /48 (1 — e=29)) n/2gle " ey (1-e"2) s=3/2g

In the classical context, the study of the behaviour of the above operators is
closely related to a variant of the Hardy—Littlewood maximal operator

1
Mf(m) - f‘gg ‘ IB(IE,’I‘)' -L(z,r) f(y)dy‘
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It is well-known that this operator is one of the fundamentals in real analysis.
For that reason, we are led to consider the gaussian Hardy—Littlewood maximal
operator, that is,

1
My (@) = sup | o /B . f@a)]

Both operators share the same boundedness properties on L?(dy), where u denotes
either Lebesgue or gaussian measure; this is a consequence of a general theory for
centered Hardy—Littlewood maximal functions.

Next, we consider extensions of these operators to functions taking values on
a Banach space X, in both the Gauss—Weierstrass and the Ornstein—Uhlenbeck
semigroups.

Since the Riesz transforms R; are linear, they extend in a natural way to the
tensor product L?(dp) ® X as Ri(3_p_; 0evk) = Y peq Rilwr)ve, 1 < p < o0
In the harmonic case, it is known that the extensions of K; are bounded from
L% (dz), 1 < p < oo, into itself or from L% (dz) into weak-L} (dz) if and only if
X satisfies the so-called UMD property; see [Bu] and [Bo]. Moreover, in a UMD
space, one has the same result for the associated maximal operator K; and the
almost everywhere convergence of K;; . f to K f, as in the scalar case.

Concerning the Littlewood-Paley g-functions, we extend their definitions to
X-valued functions f by

@ = ([ Jemrsa], 5"

0@ = ([ Jromps@l, 3) " i=1m

where it is understood that P, being linear, has been extended to functions taking
values in X as above.

In the classical case, since these g-functions can be seen as vector-valued
Caderén—Zygmund operators (see [RRT]), their boundedness in some L% (dz),
1 < po < o0, is equivalent to the boundedness for all p,1 < p < o0, or even to
the boundedeness from LY (dz) into weak-L!(dz). This remains true for functions
defined in the torus, and the corresponding Banach spaces X have been called
in [X] of Lusin cotype 2. For functions defined on R", we shall adopt this
terminology.

Finally, for the maximal operators defined in (1) and (2) and for the Hardy—
Littlewood maximal operator, an extension of the type T'* f(z) = sup,s¢ ||T¢f ()| x
gives rise to a trivial problem, since in this case T*f(z) < T*(||f]|x)(z), and
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therefore the properties of the scalar version of the operator are automatically true
for every Banach space X. However, when X is a Banach lattice, following [GMT],
a nontrivial extension can be given by

(1.4) T f(z) = sup|T: f(z)|x,
£>0
(1.5) P*f(z) =sup|Pf(z)|]x and
>0
1.6) Mof(@) =swp| s [ ft)auty)
. # _r>g /I,(B(.T,T)) B(z,r) Yy x’

where |.|x is the absolute value of the Banach lattice X. The problem now is
that for a general Banach lattice we cannot guarantee that the supremum exists as
an element in X for a.e. z. However, these operators were considered by Rubio
de Francia [R] in the case that X is a Banach lattice of measurable functions in
a o-finite measure space (2, dw), often referred to as Kothe function spaces, see
[LT]. In this context, the above operators are well-defined and take the form

(1.7) T* f(z,w) =sup|T;f(z,w)|, z€R*, weqN,
t>0

(1.8) P f(z,w) =sup|P f(z,w), z€R", wef and
t>0

a9 M =swlomis [ fwodw] sew, wen
where | - | denotes the absolute value in X with the obvious definition |v|(w) =
[v(w)], v € X. The results in [GMT] can be applied to this context, yielding that
the boundedness of the classical Hardy-Littlewood operator in some L% (dz), 1 <
pe < 00, is equivalent to the boundedness for all p,1 < p < oo, or even to the
boundedness from L} (dz) into weak-L (dz). Following these authors the Kéthe
function spaces for which one of these boundedness holds are said to satisfy the
Hardy-Littlewood (H.L.) property.

We point out that the UMD property has been given a geometric description;
see [Bu] and [Bo]. There is also an equivalent geometric description for Lusin
cotype for functions in the torus; see [X]. For the Hardy-Littlewood property,
geometric conditions that are either sufficient or necessary were given in [GMT].

We are now in a position to state the main results of our paper.
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Theorem 1.10. Given a Banach space X, let R;, 1 < i < n, be the X-valued
extended Riesz transforms associated to the Orsntein—Uhlenbeck semigroup. Then
the following conditions are equivalent:

(i) X has the UMD property.

(i) {z € R* : ||R:i f(@)lIx > A} < § fou If@Ixy(2), 1 < i <.

(iii) For every p,1 < p < oo (and equivalently for some 1 < p < 00 ),

NRifllLz (av) S Cpllflle (ary, 15i<n

(iv) y{z €R* : R f(2) > A} € § fpa I/ (@)lIxdr(z). 1 < i <.
(v) For every p,1 < p < oo (and, equivalently, for some 1 < p < 00 ),

(1R fllLe(ay) < Cp”f”L’;((dv): 1<i<n.

(vi) For any f € L% (dv), Ri. f(z) convergesa.e.z,1 <i<n.

(vii) For every f € L% (dv), then R} f(z) < 0 a.e. z, 1 <i<n.
Here, the constants C and C, are independent of f but they may depend on the
Banach space X.

Remark 1.11. All the statements (ii) through (vii) hold true for the scalar
case. In particular, (vi) implies that the gaussian Riesz transforms exist in the
principal value sense for f € L!(dy), a fact that does not appear explicitly in the
literature.

In what follows, given an X -valued function f, we shall consider a Littlewood—
Paley square function, g{f), involving both ¢ and « derivatives, namely

n 1/2
9(f)(@) = (go(f)2(x) +3 g, (f)%z)) ,
=1

and we shall use lower-case letters g for the Orsntein—Uhlenbeck semigroup while
we shall denote with capital letters G the corresponding functions for the Gauss—
Weierstrass semigroup. With this notation we have the following theorem in the
context of the Ornstein—Uhlenbeck semigroup.

Theorem 1.12. The following conditions are equivalent:
(1) X has Lusin cotype 2.

(i) e e B g(N@) >N < § [ W@lxna)
(iil) For every p,1 < p < oo (and, equivalently, for some 1 < p < © ),

”g(f)“LF(d‘y) < Cp”f”[,&(dﬂ.
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(iv) For every f € L\.(dv), then g(f)(z) < 00 a.e. z.
Here, the constants C and C, are independent of f but they may depend on the
Banach space X.

For the vector-valued extensions of the maximal operators given in (1.7), (1.8)
and (1.9), we introduce the following notation. In the case of the Ornstein—
Uhlenbeck semigroup, the operator T; will be called O, and O* will denote the
corresponding maximal operator, while we keep the notation P, and P* for the
subordinated Poisson semigroup. For the Gauss—Weierstrass semigroup, we use
the letters Wy, W*, U, and U*, respectively.

Theorem 1.13. Given a Kéthe function space X, let N denote the maximal
operator of the Ornstein—Uhlenbeck semigroup, O*, or the maximal operator of the
subordinated Poisson semigroup, P*, or the Hardy-Littlewood maximal operator
with respect to the gaussian measure, M,. Then the following statements are
equivalent:

(i) X satisfies the Hardy-Littlewood property.

(ii) 1{z € B : IV f(@)lIx > A} < § fon IF@)lIxY(z).

(iii) For every p,1 < p < oo (and, equivalently, for some 1 < p < 00 ),

W £l ay) < CollfllLz ay)-

(iv) For every f € Ly (dy), Nf(z) € X a.e. .
Here, the constants C and C, are independent of f but they may depend on the
Banach space X.

2 Previous results

In proving our theorems, following the technique initiated in [Mu], we make
systematic use of a partition of the operators into their local and global parts,
according to some particular region, where Lebesgue and gaussian measure are
equivalent, and its complement. In the literature, depending on the operator under
consideration, two kind of regions have been used: either

N¢={(z,y):|z—-yl< },forsomeﬁxedt>0

t
1+ 2| + [yl

or
Ng = {(:c,y) : |z — y| < min (R, %)}, for some fixed R > 0.

See [Sj], [FGS], [PS], [GMST1].
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For the global part of the operators, we want to make use of estimates given by
different authors for the kernels in the complement of regions like Np, while for
the local part, we will refer to the technique developed in [GMST1] in terms of
N,-regions. However, it is immediate that we have the relationship

2.1) N C N; C Nyeqa)-

In what follows, we shall make a partition using the region N, for t = n(n+3). This
choice of t together with (2.1) allows us to handle both parts for all the operators
involved. We denote this particular region simply by N.

Also, since some of the operators we deal with, even not linear, can be viewed
as linear operators taking values in some Banach spaces, we need to take in
consideration operators T as follows.

Given Banach spaces B, B, let di: denote either the Lebesgue or the Gauss
measure on R". Let T be a linear operator defined in Lg%g,, the space of B;-
valued, compactly supported and essentially bounded functions, into the space
of Bj-valued and strongly measurable functions on R"®, satisfying the following
conditions.

(a) T extends to a bounded operator either from L (dp) into L, (du) for some
¢, 1< g < 00, or from L} (dy) into weak-Ljp, (du).

(b) There exists a £(B, Bz)-valued measurable function K defined on the com-
plement of the diagonal in R* x R™ such that for every function f in L{% ,

T4 = [ K@) @)y,
for all z outside the support of f.

(c) The kernel K mentioned above satisfies the estimates

C
0 K (z, Il + 118, K (z,y)I| < g

K(z,y)ll < )
1K (z, 9| P

for all (z,y) in the local region N = Nap(n43). T # .
As in [GMST1], we introduce the following definitions.

For an operator T as above, given a smooth function ¢ on R* x K" such that
¢(z,y) = 1if (z,y) € N, p(z,y) = 0 for (z,y) ¢ N and

(2.2) [8z0(z, ¥)| + 10yp(z, )| < Clz —y|™' if z#y,
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we define the global and the local parts of the operator T by

Touonf (2) = / K(2,9)(1 - o) f(4)dy,
Tlocf(I) = Tf(:l:) - Tglobf(x)7

and accordingly call their kernels K05 and Ko, respectively.

We say that an operator T defined on L§°  into the space of Bp-valued strongly
measurable functions is local if its associated kernel in the sense of (b) is supported
in N.

We make use of the following results; cf. [GMST1].

Proposition 2.3. 1. If the operator T satisfies assumptions (a), (b) and (c)
as above, then the operator Tio. is bounded from L (dv) into L', (dv) and from
L% (dz) into Ly, (dx), for 1 < p < co. Moreover, Tio. is bounded from Ly (du)
into weak—L};z(d,u) with respect to the Lebesgue and the Gauss measure.

11 If T is an operator satisfying condition (a), (b) and only the size condition of
the kernel stated in (c), then Ty, inherits from T either the Li-boundedness or the
weak type (1,1), as the case may be. Moreover, the corresponding boundedness
holds for both Lebesgue and Gauss measure.

Proposition 2.4. If S is a local operator, then strong type (p,p) for Lebesgue
and gaussian measure are equivalent. The same holds for weak type (p,p), 1 <
p < 00.

Next, we review some known results for the scalar versions of the operators
associated to the Ornstein—Uhlenbeck semigroup. We state them as lemmas for
future reference.

Lemma 2.5. The global part of the Riesz transform kernels satisfies

IRi,E,glob(zay), S |Ri.glob(x7y)| S Q(Iay)a 1= 1a- N

for some nonnegative kernel Q(z,y), independent of €, supported in N¢ and such
that its associated integral operator is of weak type (1,1) and strong type (p,p),
1 < p < oo, with respect to the gaussian measure.

For a proof, see [FGS] and [PS].

Remark 2.6. These results imply in particular that the integrals
J Ricgton(®,9)f (4)dy and [ Rigion(z,y)f(y)dy are finite almost everywhere for
every f € L'(dv).
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For the nonlinear operators under consideration, we use the following notation:

stob(F)(z) = O7((1 - o(, ) f)(2),

aiob(f) (@) = 9((1 — (=, )) f)(z)

and
My q0(f)(@) = My ((1 — 9(z, ) ) (2).

Then we have

Lemma 2.7. The global parts of the operators defined above satisfy
(1) Ogiopf(x) < Jon Qlz, )| (W)ldy,
(i1) ggtob(f)(2) < fon Q(z, )1 (¥)ldy,
(i) My,gobf(2) < fonu S(z, )1 W)ldy

for some nonnegative kernels Q(z,y) and S{z,y), supported on N°¢ such that
the associated integral operators are of weak type (1,1) and strong type (p,p),
1 < p < oo, and of strong type (p,p), 1 < p < 00, respectively.

For a proof of these facts, see [Sj], [PS], [HVT], [FSU].

Remark 2.8. In fact, from the proof given in [PS], Q(z,y) is a bound for

182 Po(z, y)l1L2((0,00)dt7) + Loty 1tz Pl ¥)ll2((0,00),dt/1), Whenever (z,y) €
Ne.

3 Comparison of the operators in the local region

The aim of this section is to show that in the local region, the difference
between the corresponding classical and Ornstein—Uhlenbeck operators, acting on
scalar functions, behaves nicely; more precisely, they define bounded operators on
all LP(dy), for 1 < p < oo, where du is either Lebesgue or the gaussian measure.

The local part of the Riesz transforms has already been defined in the previous
section. As for the the nonlinear operators under consideration, we introduce the
following notation:

Oloc(f)(z) = O ((0(z, Nf)(z) and  gioe(f)(z) = 9(((2, ) f)(2)-

Similarly, we define the corresponding local parts of the classical operators W*, G,
and M; they will be denoted by W, ., Gioc, and My,..
Now we are in position to state the main result of this section.
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Lemma 3.1. The difference between the local parts defined above satisfy
(1) |Rieoc(®y) — Kieoc(z,y)| < Li(z,y), wuniformlyin € >0,
(ii) |gtocf(2) — Grocf(2)] < foa La(z,y)|f (¥)ldy,
(iii) 10/,cf(x) = Wi f(@)] < fga La(z, 9)|f (y)ldy,
where L;, i = 1,2,3 are nonnegative kernels supported on N and satisfying
(3.2) swﬁp/]R L(z,y)dy < oo and sx;p/mﬁ Li(z,y)dz <0, i=1,2,3.

In particular, from (i) we have that the linear operator R; joc — K 1oc satisfies

Ruoc () = Kigue @I < [ Ta(ai)l @l

Consequently, all the integral operators associated to L;,i = 1,2, 3, are of strong
type (p,p),1 < p < 00, with respect to either Lebesgue or gaussian measure.

Remark 3.3. This lemma together with the estimates for K; 4,4 imply that
for good enough functions, say C! with compact support, the limit lim,_,¢ R; ¢ f(x)
exists for every z.

In fact, writing

Ri,ef(x) = (R‘i,s,loc - Ki,s,!oc)f(x) + Ki,e,tocf(x) + Ri,e,globf(x);

we see that the first and third integrals, taking absolute values inside, are bounded
independently of ¢ for any value of . This is a consequence of the previous lemma
and the precise estimate of the global part of the kernel given in [PS]. As for
the second term, the limit for e — 0 exists for all z since the same is true for the
harmonic Riesz transform whenever f is smooth and boundedly supported.

In order to prove the result above, we need the following technical lemma.

Lemma 3.4. For (z,y) € N, we have the estimates

1 ds 1+ |z
Ly = a. AU - 8 - — < T e
Di(z,y) /0 laxi (Os(z,y) — Wi(z — y)) sz S Clz T

% e~ lvl* ds

D) = [ |0u(e1) = xa.(6) Sy - Wila - 9)| £
< C( 1+ |z|? +lo )
S\ myp T B/
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Ei(z,y) = sup Wyu(z ~y) <

uZ% - |z_y‘ﬂ.—1

and

Clz|
E = W ~ ) — Ouog(1/u) (@, 9) < ———.
2(2,9) = B [Wiuy/2( = 9) = Otogta/uy (8,9 < = s

In particular, all of the above kernels when truncated by x n (z,y) satisfy conditions
like (3.2).

We prove Lemma 3.1 first, assuming that the above estimates hold, and then
return to the proof of Lemma 3.4,

Proof of Lemma 3.1. (i) The kernel for R; ¢ joc — K ¢ i0c is given by

> 9 dt
CnX{lz—yl>e}(Z,Y) p(2,Y) /0 3z, O = W@ 4) 5

Taking absolute values, we see that it is enough to bound the kernel

*® 9 dt
Dj(z,y) :/0 Ia_:c,-(ot - Wi)(z,y) a7

for (z,y} € N. Then (i) follows from the estimates given in Lemma 3.4.

(ii) First we consider g;, 1oc — Gz, toc; 1 <1 < n. Observe thatif P, and P, denote
the corresponding Poisson operators associated with the Ornstein—Ulhenbeck and
Gauss—Weierstrass semigroups, respectively, and their kernels as well, we have

921d0e (2) = Gptoe @) < [t (P = P) (2, 1))
3.5) <[ |tae

62),'
where we have used Minkowski’s integral inequality. Therefore, we only need
to get a bound for Htﬁ—‘(ﬁ — Pe){(z, ¥)iL7((0,00),at/t) fOT (2,3} € N. Using the
expression given in (1.3) for P, and the corresponding one for P, that is, replacing
O, by W, as given in (1.2), after taking derivatives with respect to z;, we get

L2({0,00),dt/t)

t=— (P — P)(z,y)e(z,y) |f(¥)|dy,

L2((0,00),dt/t)

o
t—(P; — ,
“ ax,.( OICR) L2((0,00),dt/t)

lcnt/ te_tQ/‘*"ai(O,J — W) (z,y)s%/%ds

0 Zi

00 0 1/2
<en / |-‘1(0, W@ )( / P at) " 2 ds,
0 al‘; 0

L2((0,00),dt/t)
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where we have again used Minkowski’s inequality. After a change of variables,
the inner integral can be estimated by Cs?. Therefore, to prove our claim we only
need to estimate

Do) = [ |00 - Wolaw)| 5

for (z,y) € N. But from Lemma 3.4, it follows easily that (3.2) holds for these
kernels when restricted to the region N.

Next, for go 10 — Go,i0c, proceeding as above, we reduce the problem to estimate
W2 (P — Pe)(z,9)l|2((0,00).02/¢) TOT (z,y) € N. Differentiation of the Poisson
kernels with respect to ¢ leads to the integral

o0
on [ (1= 826110 O, - W) @,)s Vs,
0
which can be rewritten replacing O, (z,y) by O, (z,y) — e‘“"z/vr"/2 since
e 2
3.6) / (1 —t2/2s)e~t /405=3/2ds = 0,

0

Therefore

t— -P
“ 1)(,9) L2((0,00),dt/t)

2
< CHt/ (1 - t—)e_‘z/“"’e_lmzs”s/?ds
0 2s

+ C“t/ooo (1 - %)6_t2/48(08(1’y)

L2%((0,00),dt/t)

2
e~ v _
- X(l,oo)(s)ﬂ,_n/g— ~ Wy(z,y))s™%/?

L2((0,00),dt/t)
=Ji + Jo.

To estimate J;, we observe that the integral

[ e e
0 0

is finite. This follows by splitting the outside integral into the intervals (0, v/2) and
(V2, 00). For the first piece, we use (3.6) to change the integration on the variable
s over the interval (0, 1) to (1, o). For the second piece, we bound the exponential
by a convenient negative power. Therefore J; is bounded by Ce~!¥*, which in the
local region has the desired properties.
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To estimate J» we apply Minkowski’s inequality to get

eIy’
Jz<C/ = X(1,00)(8 )W—Ws(z,y)

X (/ (1 - E) e—tz/g“dt) s_3/2ds.
0

After changing variables, the inner integral in ¢ is bounded by Cs. Hence we only
need to estimate

e~ lvl? ds

D(z,y)=/ |0 2,Y) = X(.00)(8) g — Wsl,9)|

That this kernel satisfies (3.2) on the region V is a consequence of Lemma 3.4.
(iii) We observe that

Wil (2) = Oef (@) < sup | [ Wale = vele.) )|

u>1/2

+ sup /Wu_uz)/z(fv—y)w(rv,y)f(y)dy‘
Ogugl

~ sup ‘/O]og(l/u)(z,y)w(x,y)f(y)dy|~

0<u<l
Therefore,
Wisef (2) = Oinef @1 < [ sp [Wale =)ot 9) 1101y
+ [ sup |Wa-unzz = Otogts ), 0)lolz, IS
Then the result follows by the estimates given in Lemma 3.4. O

Proof of Lemma 3.4. We begin by stating some simple inequalities that will
be used frequently.

(A) Given c, k nonnegative numbers and some 0 < € < 1, there exists a constant
g
ce such that
the=et < c.emeet’

, t>0.
(B) For every given € > 0 and (x,y) € N, there exists a constant C such that
e—cltz—y|?/(1-u") < C'Ee—slr—ylz/(l—uz)’ t>0, 0<u<t<l.

To prove the lemma, we first estimate D;(z,y) fori = 1,...,n. Differentiating the
expressions of Oy(x,y) and W,(z — y) with respect to z;, we get

3 _ e 'L — yi le”*z — y/?
8z, 0+ ®Y) = € S ey ez P ( Tl )
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and P
g )= Y —iz-ui/2s
82:¢W (z-y)= ﬂn/2(2s)n/2+1e )

For fixed (z,y) € N, set @ = min{1,1/|z|?}. Then split the integral defining D; to
get

Difa) < [ |504(e9) = 5 Wele = )] 375
o0
)
+/a Iax,- :vy)‘ 1/2 /a ’6 Wiz —y) 1/2
=L+ L+

For I3, using (A) for k = 1, we have for (z,y) € N,

<cL
=z -yt

As for I, we first use (A) with k = 1 and then apply (B), to get
0 o—elz—y|*/(1-e?*) ds 1 g—e'lz—yl*/s oo ds
—8 —8
I < C/ (1 _ e—2s)(n+1)/2 5172 < C(/a S(1+2)/2 ds + ./1 € 31/2)

1/2
—5/4 (1+ =)
= I""W / BHOS Oy

where we have again used (A) with k = n — 1 and that (z,y) € N.
To estimate I,, we set

o o)
L < c/ s~ D25 < (1 + [z

—Yi ey,
n/2+1

ulur; — Yi —|uz— _e~2s .
) = Y a0 and ) =
then
<C * = ds * —2s ds 2
L < A |fi(e )‘fl(l)lm'*'c A [fa(1—e )“‘f2(23)|s—1/3—11 + 17

For the derivatives of f; and f, we obtain, after using (B),

Ce—Elz-y|2/s ( Izl

! e had —a -5
[fiw)] < S/ 51/2) for e *<e*<u<l

and
’ Ce—¢lz-vl*/s o
|f2(v)| £ le —y| for1-e*<v<2s.

Therefore,

o o—elz—y|*/s 1/2
1 e lz| o Clz|
n< c/o sn/2 (1 + 31/2)d3 < |z — y|»-! + |z — yln—1/2’
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where we have used (A) withk=n—-1landk=n - 1/2.
Finally, since |1 — e™2% — 23| < Cs?, using (A) again, this time for k = n, we get

C
rP<— .
P -yt
Collecting the estimates for I}, IZ, I, and I3, we can conclude that in all cases they

are bounded by
1+ |z

e

Let us estimate D(z,y). Recall that
04(z,y) = (n(1 — e~28)) /2=l z=3l*/(1=e72)

and
Wiz —y) = (21rs)‘"/2e’|x‘y|2/2’.

As above, for fixed (z,y) € N, we set @ = min{1,1/|z|?} and split the integral
defining D(z,y) as follows:

« ds ! ds

D < [ 10den) - Wl + [ 0w
0 e~1v* ds 0 ds
+/1 Os(x,y)—ml-‘g"*‘/; Ws(z_y)?

=hL+L+I3+ 1.

For I, we get
n<cf[ -%_<c " <c—
L Y l2I™ < [z - yr1
since (z,y) € N. Now, to estimate I3, set

f(u) = (1 — u2)—n/2e—]uz—-y|2/(l—-u2).

It is easy to check, after using (A) and (B), that
—elz—y|*/(1-77)

(0] < Sy (o7 + lal(L = 7))

as long as (z,y) € N. Therefore, an application of the mean value theorem and the
estimate above for0 < r <e,0< ¢ <1 gives

(> <] oo d
E=C [ Ife)- 1015 <Ca+ia) [ e

1+ ]

"< Co—m—.
SO0+l <O
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For I,, we apply directly inequality (A) with & = n — 1, leading to the bound
CQA +|z)/|z -y~
Finally, for [, we consider the functions

o le—vl?/u o luz—y?/(1-e"2")
hi(u) = i ho(u) = = e 2eynr2

Then I, can be estimated by
e 4
I < c/ [ha(e™®) h2(1)|— +C/ |hi(1 —e™29) — h1(23)| =1 +I%
0

Next, we observe that we have, using (A),
' e_slz_yl2/7
|k(n)<C

n/2+1

Now for 7 such that 1 —e™2® < 7 < 2s with 0 < s < 1, we have 7 ~ s and
consequently the mean value theorem applied to h; gives
a —e'lx—y[é/s d a —¢'|lz—y|?/s d
1 _ -8 T 7 748 e - - %
I; < C/o (2s-1+e7) /Al g = /0 s(i-D/2 5172
C
=z -ynt’
where we have again used (A) with k =n — 1.
Similarly, fore~! < 7 < e~?, using (A) and (B) we get
e—clz—ul*/(1-e7%")

e—2s)(n+1)/2

lhy(7)] < CI$|

Since for 0 < s < 1, (1 — e~2%) ~ s, the mean value theorem applied to h, gives

o p—c'lz— v|?/s 1/lz)? 1/2
I} < Cla / ds < c— 12 / ds . Clal

s(n+1)/2 Iz__ 'n—1/2 g3/4 — |.’II— ln—1/2’

IA

where we have used (A) with k = n — 1 and that (z,y) € N. Collecting all the
estimates, we get the desired conclusion for D(z,y).
1t remains to take care of Ey and E,. By using (A) with k = n — 1, we get

Ce~I$—y'2/u C
Ey(z,y) < uszull;z W02 S g -yt

As for E,, we have
e~z /(1-v?)  o—juz—yl?/(1-u?)
IW(I—uz)/2(x - y) e Olog l/u(zy y)' = Cn (1 _ uz)n/g - (1 _ u2)”/2

I5(1) = h(w)
= a Ty
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For the derivative of h(t) = e~1t2-¥°/(1-*) we have the estimate

e—clz—y?/(1-u?)
K (t)] < Clal

—(1———2?—/5—— fOI‘uStSl,
—Uu

where we make use of (B) and (A) with £ = 1. Therefore, an application of the
mean value theorem to h gives

e—5|z—y|2/(1—u2) lxl

Bx(wy) < C swp ol a—mmoe SOy p
again using (A) withk =n — 1.

Finally, observe that all the bounds given for D;, D, E; are uniformly bounded
in £ when integrated in y over the larger region {y : |t — y| < C/(1 + |z|)}. But
it is easy to see that 1 + |z| ~ 1 + |y| for (z,y) € N and hence the same argument
may be applied to show the uniform boundedness of the integrals in z. This ends
the proof of the lemma.

Remark 3.7. Infact, from the proof of (ii) in Lemma 3.1, we see that Ly (z, y) is
abound for ||tZ (P, —Py) (2, y) || L2((0.00),at/6) + 2oier 15 (Pe=P) (2, 91| L2((0,00) it /t)
whenever (z,y) belongs to V.

4 Proofs of the Theorems

We begin by recording the following useful observation for future reference.

Remark 4.1. Let B;, B, be Banach spaces, and V an operator mapping
B, -valued functions into B;-valued functions such that

IV f(@lle, < L(|fllB,)(z) forae.z,

where L is a positive linear operator that is either of strong type or of weak type
(p,p) for 1 < p < oo. Then V maps either L, into L%, or Ly into weak-L%, .

Next we point out that the statements (ii) through (vii) of Theorem 1.10 are
known to be equivalent to the UMD property for the vector-valued extensions of
the harmonic Riesz transforms. Therefore, in the process of proving Theorem
1.10, it is enough to show the equivalence between the corresponding gaussian and
harmonic statements.

Proof of Theorem 1.10. (i) = (ii). By Lemma 2.5 and Remark 4.1, we
get that R; 4,5 extended to X -valued functions maps LY (dvy) into weak-L} (dvy) no
matter what the Banach space X is. Now we want to apply part II of Proposition 2.3
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to the operators K;, ¢ = 1,...,n. By hypothesis, they satisfy assumption (a); and
clearly their kernels satisfy assumptions (b) and (c). Therefore we may conclude
that o

1o € B¢ [Kipoef(@)llx > 2} < § /R @il (z).

By Lemma 3.1 and Remark 4.1, we get

Yz € R Rl @lix > 0} S T [ 1 @lxdr(a)
Rn

(i) = (iii). We proceed as above, changing the weak type (1, 1) estimates to the
corresponding strong type (p, p) each time.
(i) = (iv). We consider the linear L$ (R*)-valued operator U given by

Uif(z) = {/Ri(m,y)X{|z—y|>s}f(y)dy}

5>0‘

By using Lemma 2.5 and Remark 4.1 with B; = X and B, = L (R*), no matter
what the Banach space X is, the global parts

Ui‘globf(z) = {/ Ri,glob(xv y)X{lz—y|>c}f(y)dy}e>0

are bounded from L% (dv) into weak-L!(dv) . Again we want to apply part II of
Proposition 2.3 to the corresponding harmonic operator, that is,

$:f@) = { [ Ko~ )xtte-siner [y}

?
>0

which by the UMD hypothesis is bounded from L (dz) into weak-L}&,, (r+) (dT).
Since it is also clear that the size condition on the kernel is satisfied, we get for the
local part that

1z € B < Sunc/ @iz > M < 5 [ 17@lxdr(@).
Rn

By using Lemma 3.1 and Remark 4.1 for B, and B; as in the global part and
V = Sii0c — Ui,loc, We obtain

1z € B s Wioaf Dlazan >} < § [ 15 @ilxdrta)
R!\

Putting together the estimates for the local and global parts of U; and the fact that
Ui f(2)llLpmr+) = R; f(x), we get (iv).

(i) = (v). We proceed as above changing the weak type (1,1) estimates to the
corresponding strong type (p, p) each time.
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(iv) = (vi). We observe that from Remark 3.3 we obtain that R; . f{x) converges
for every z whenever f € C§ ® X. This together with the weak-(1,1) type of R}
gives the a.e. convergence of R; . for every f € LY (dv)

(iv) = (vii). Obvious.

(ii) = (i). First we make use of Proposition 2.3 applied this time to the operator
R;. Clearly, by assumption R; is of weak type (1,1); and, in view of Lemma 3.1
and Lemma 3.4, its kernel has the right size on the local region N. Hence we may
conclude that R; .. is of weak type (1,1) with respect to the Lebesgue measure.
Using again Lemma 3.1, we get

(o € B Kool @llx > M < S [ 17@lxd,
Rn

Next we want to see that this inequality can be extended to the whole Riesz
transform K;. To this end, let us take f € L% (dz) with compact support and denote
by fF the dilation of f defined by f®(z) = f(Rz). By the homogeneity of the
Riesz kernel, we have K; f(z) = (K;f%)(z/R). We claim that for any fixed p > 0,
we may take R large enough {(depending on p and the support of f) such that

4.2) (Kif*)(@/R) = (Kitoc f*)(/R)
for any z with |z] < p. In fact, it is easy to check that for such z
suppf® C Noyr = {y : (z/R,y) € N}

taking R large enough.
Therefore, using the weak type estimate for K jo., we get

< J2] < p, and|K:f(@)llx 2 A} < Bz : [(Koroef D)) > A
<SE [ 177@)lxds
ST ) X

=5 [ 1@lxds

with C independent of p. Taking p — 0o, we obtain the desired estimate.

By the way, we remark that in proving (4.2) we made no use of any special
property of the Riesz transforms other than their invariance under dilations.

(iii) = (i). For the local part, we proceed as above, changing the weak type
(1,1) estimates to the strong type (p, p) estimates, to get

[ 1Kt @y < Coll il

By taking f with compact support, arguing as above and using Fatou’s lemma, we
get the L% (dz)-boundedness of the whole K;.
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(v) = (in1). Obvious.
(vi) = (i). For a function f € L% (dz) C L% (dy), we write

(43) Ki.sf(z) = (Ki,s,locf(x) - Ri,s,locf(x)) + Ri,s,locf(x) + Ki,e,ylobf(z)-

As a consequence of Lemma 3.1, we know that the first term converges a.e.  no
matter what the Banach space X is. The estimate

1

sup | K e,gtob (2, IIf (W)lIx £ Cxve(@,y) - [1f ()l x
>0 l:L‘ yl

(4.4) <SCA+ D)™ If Wlix

allows us to derive the a.e. convergence of the third term,

A similar argument, but using the precise estimates obtained in [PS], gives the
almost everywhere convergence for R; . g0 f(z) for f € L (dy) and hence for
f € LY (dz). This, together with the hypothesis on R; f, clearly imply the almost
everywhere convergence of the second term.

(vii) = (i). By taking norms and supremain (4.3), we getthat K™ f(z) is bounded
by three terms. Proceeding as above, using Lemma 3.1 and estimate (4.4), we see
that the first and third terms are finite a.e. for f € L% (dz) no matter what the Banach
space X is. Again we use the estimates in {PS] to get sup,, || Ri ¢, g106 f (2)]] < 00
a.e. This together with the hypothesis imply the a.e. finiteness of the second term.
O

Before turning to the proof of Theorem 1.12, we recall that given a Banach
space X, the statements (ii) and (iii) are known to be equivalent in the harmonic
case as a consequence of the vector-valued Calder6n—-Zygmund theory (see [RRT]
and [X]). Recall also that if any of these conditions is satisfied, X is said to be of
Lusin cotype 2.

Since, to our knowledge, the almost everywhere finiteness of the G function
has not been proved to be equivalent to the other statements, we give a proof of
this fact in the following

Proposition 4.5. Let X be a Banach space and denote by G the X -valued
extended Littlewood—Paley function for the Gauss—Weierstrass semigroup. Then
X is of Lusin cotype 2 if and only if G(f)(z) < oo a.e. z for every f € L (dz).

Proof. From the (1,1)-weak type of G, it is easily derived that G(f)(z) < oo
a.e. z, for every f € L% (dz). For the converse, we introduce the linear operators

S (@) = X1 metany (1) £ PS ).
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Observe that the maximal operator S*f(z) = sup,||Saf(<)l|r2 (ar/r) coincides
pointwise with Gy f (=) and therefore by hypothesis S* f(z) < oo a.e. z. Also, forall
n, the operators S, are continuous in measure from L (dz) into L9,  (dt/1) (da:) since
they are integral operators against integrable kernels. Arguing as in Proposition
VI.1.4 of [GR], we may conclude that S* = Gy is continuous in measure from
L% (dz) into L%(dz). Now, as Gy is also invariant under translations and dilations,
applying the vector-valued version of Corollary V1.2.9 of [GR], we obtain the weak
type (1, 1) for the operator Gy. The same argument can be applied to the operators
Ge.. O

In view of the latter result, in proving Theorem 1.12 we can make use of any of
the statements (ii) thru (iv) for the harmonic G function as an alternative definition
that X is of Lusin cotype 2.

Proof of Theorem 1.12, First we observe that in order to prove the bound-
edness of g (respectively, G), it will be enough to prove it for go and each g,
(respectively, Gy and each G,,). Conversely, go and g,, (respectively, Gy and G;,)
inherit the boundedness property of g (respectively, of &)

(i) = (ii). For any Banach space X, we consider the linearization of the
go-function given by

Io}
4.6) HI@W® = [ t5 PG
Then gof(z) = [|H f(2)(*)|IL2 ((0,00),at/1) and also
4.7 go,tocf(2) = [|Hioc F(2) (L2, ((0,00).dt/8)
(4.8) 90,9106 f () = |[Hgton f(2) (]2, ((0,00).d2 /1)

From Lemma 2.7 and Remark 2.8,

[ Hgtob f(2)()L2 ((0,00),2) < / ”t—Pt
4.9) < [ aEwlsulxd,

where the last integral operator is of weak type (1,1) on L!(dy). Hence Hgyp
is bounded from L (dvy) into weak-L}J2 (0.00).dt¢) (@), Which gives in turn the
boundedness of go, 4105 from L (dv) into weak Ll(d'y)

It remains to take care of go;,.. We consider now the linearization of the
Go-function given by

1- d
Lg‘((o,w),dt/t)( oz, y)I f(llxdy

/ t—Pt (z,9) f (¥)dy.
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To apply Proposition 2.3 to this operator, we observe that, by hypothesis, J is
bounded from L% (dz) into weak—Lng‘ ((0,00).dz/¢)(d%) and that its kernel has the
right size, being a vector-valued singular integral (see [St2]). Therefore, we may
conclude that Ji,. has the same boundedness as J but also with respect to the
gaussian measure. Now, since a similar inequality to (4.9) holds for Hjoc — Jioc, by
using Lemma 3.1 and Remark 3.7, we obtain the weak type (1, 1) for the difference
and hence for H;,.. Combining the results for the local and global parts, we see
that the same holds for H. Consequently, by (4.6), go has the desired boundedness.
Finally, the same argument can be applied to each g,, fori =1,...,n.

(i) = (iii). We proceed as above, changing the weak type (1, 1) estimates to the
corresponding strong type (p, p) each time.

(ii) = (iv). Obvious.

(ii) = (i). Again we deal only with Gy and go. As was shown in (i) = (ii),
for any Banach space X, the operator Hy, is bounded from LY (dvy) into weak-
L}& ((0,00),d2/8) (dv). Since by hypothesis H satisfies the same boundedness, Hy,. is
of weak type (1, 1) with respect to the-gaussian measure and hence, by Proposition
2.4, also with respect to Lebesgue measure. With the same notation as above, we
set

Jlocf = (Jlocf - Hlocf) + Hlocf-

Applying an inequality like (4.9) for the difference Jjocf — Hjoc f and Lemma 3.1
together with Remark 3.7, we get the weak type (1, 1) for this operator and hence
for Jyoc.

Next, as in the proof of (ii) = (i) of Theorem 1.10, we extend the weak type
(1, 1) to the whole operator J. As was pointed out there, we only need the invariance
under dilations of the operator, which is certainly true for J.

(iii) = (i). For the local part, we proceed as above changing the weak type
(1, 1) estimates to strong type (p, p) estimates. Hence

Go,toc f(y)Pdy < CrllfIIF5 -
R™ X

We conclude the argument as in the preceding proof with the obvious changes.
(iv) = (i). Again we argue just for Go. We have

Gof(z) < Gouocf(z) + Go,gtos f ().

According to the inequality

Go,g1o6 () = || Jgt00 £ (@)l 2, ((0,00),a27) < C(L+ |2))"[| fll s (az)»
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the second term is finite for any z as long as f € L% (dz). For the first term, we
write
Gotoc f(x) < |Gotocf(2) — gotoc F(T)] + goj10c f(T)-

Since |Go,iocf () — gojocf ()| < |[Hioef(2) = Jiocf ()|12 ((0,00),at/t)> arguing as
in (4.9) and using Lemma 3.1 together with Remark 3.7, we get the pointwise
finiteness of the difference for f € L) (dz). On the other hand, by (4.8) and (4.9),
go,giobf () is finite a.e. z for f € L (dy) and hence for f € L} (dz). Now the
hypothesis together with the inequality goiocf(2) < gof(Z) + go,g100 f(z) gives us
the result. a

Before turning to the proof of Theorem 1.13 we recall that, given a K&the
function space X, statements (ii) and (iii) for the Hardy-Littlewood maximal
operator are known to be equivalent in the harmonic case; see [GMT]. Althoughin
that paper they consider, for a general Banach lattice X, maximal functions taking
suprema over finite sets of averages, their results can be extended in our setting to
the whole maximal function. In fact, for a Kéthe function space, we have
(4.10)

1 _ n
8 T Sy /0= 38, 5 o, S0 2 0
Since the statements referred to above involve boundedness properties with a
constant independent of the finite set of averages, our claim follows.

Moreover, it is also true that each of the statements (ii) and (iii) is equivalent for
all the three harmonic maximal operators: Hardy—Littlewood, Gauss—Weierstrass
and Poisson. This is an easy consequence of the pointwise inequalities valid for
nonnegative functions f,

(4'11) Mf(a:,w) S ClP‘f(-’E,W) S CZW*f(.’B,w) S C3Mf(m,w),

see [St2]. Therefore, all of the statements (i), (ii) and (iii) are equivalent for
these operators. Since, to our knowledege, the facts that these harmonic operators
applied to L (dz)-functions belong to X for almost all z have not been proved to
be equivalent to the Hardy-Littlewood property, we prove them in the following

Proposition 4.12. Let X be a Kéthe function space. If M denotes any of the
three harmonic operators above, then X satisfies the Hardy—Littlewood property
if and only if for every f € L (dz), M f(z) belongs to X for a.e. z € R™.

Proof. If X satisfies the Hardy-Littlewood property, then M maps L (dz)
into weak-L (dz) and hence M f(z) is well-defined for functions in L (dz).
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Conversely, consider the linear operators M,, r € Qt, defined by

1

— fly,w)dy.
Ba ) Jagn )

M (f)(z,w) =
Clearly, these operators are bounded from L) (dz) into itself and therefore
continuous in measure from L (dz) into LY (dz). By hypothesis, the operator
Uf(z,w) = {M.(f)(z,w)} e+ belongs to Lg((lw)(dz). Arguing as in Proposition
VI.1.4 of [GR], we may conclude that the operator M is continuous in measure
from L% (dz) into L% (dz). Now as M is also invariant under translations and
dilations, applying the vector valued version of Corollary V1.2.9 of [GR], we ob-
tain the weak type (1,1) for the operator M, and this implies that X satisfies the
Hardy-Littlewood property. The equivalence for the other two operators follows
now from inequalities (4.11). 0

Proof of Theorem 1.13 for ' = M,. Clearly, it is enough to deal with
nonnegative functions.

(i) = (ii). First we observe that for any Kothe function space, we get from (iii)
in Lemma 2.7 that

(4.13) 1y &l < [ S@,0) 170l

where the last integral operator is of strong (1,1) in L'(dy). Hence M, g is
bounded from L (dy) into L% (dy). It remains to take care of M, ... It is
a well-known fact and goes back to Muckenhoupt (see [Mu] and also [HVT])
that M jo.f(x,:) ~ Miocf(z,-) and also M, f(z,) < Mf(z,-); then, using the
hypothesis, M, 0. is of weak type (1,1) with respect to Lebesgue measure. Next,
we consider the linearization of M, ;.. f(z,-) given by

. 1
Vil @,) = {5y [ e@n )}
Since
(4.14) ”M ,locf(za )”X = ”Vlocf(x’w)”X(L“((O,oo))a

by using Proposition 2.4, it follows that Vj,. is bounded from L} (dvy) into weak-
L}(( L>(0,00)) (d); therefore, M., 1o, is of weak type (1, 1) with respect to the gaussian
measure.

(i) = (iii). We proceed as above changing the weak type (1,1) estimates to the
corresponding strong type (p, p) each time.

(ii) = (iv). Obvious.
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(ii) = (1). First, for the local part, we proceed as in the proof of (i) = (ii), that
is, we use

(4~15) Mlon(xa ) ~ M’y,lacf(zv ) S M’Yf(xa )

Again Proposition 2.4, applied this time to the corresponding linearization of
My, gives the weak type (1,1) with respect to Lebesgue measure. Now we
proceed as in the proof of (ii) = (i) of Theorem 1.10. Clearly, our operator is
invariant under dilations; therefore, the argument given there allows us to extend
the estimate we just proved for M, to the whole of M.

(iii) = (i). We proceed as in the previous proof. For the local part, replace the
weak type (1, 1) estimate by the strong type (p, p) estimates; then, by the invariance
under dilations argument, we extend the strong type (p,p) estimate to the entire
operator M.

(iv) = (i). By using the hypothesis and (4.15), it is clear that M,. f(z, -) belongs
to X for functions f in L% (dvy) and hence for f € L (dz). On the other hand, the
inequality

@ llx <O [ (o) = 0t

<0 [ xwelen ) g 17w lledy < OO+ 1Pl oo

R~ -yl

guarantees that for any z, Mg f(z,-) € X as long as f belongs to L (dz). a

To prove the equivalence of the statements for the Poisson and Ornstein—
Uhlenbeck maximal operators, we proceed similarly with some minor changes
that we sketch in what follows. The global parts of the gaussian operators P*
and O* always satisfy all the required boundedness properties; this follows from
P pf(z,w) < 04 f(z,w) and Lemma 2.7. The same can be said about the
corresponding harmonic operators in view of inequalities (4.11). As for the local
parts, (iii) in Lemma 3.1, together with the inequality

|Pl;cf(za w) - ,Pi:,cf(.’ll,(d)[ < IO;ocf(xa w) - I/Vl;cf(x, w)l

allow us to go back and forth from Lebesgue boundedness to gaussian boundedness,
by means of Proposition 2.4 applied to the appropiate linearization of each of the
maximal operators, as we did for the Hardy-Littlewood maximal operator. a

We finish by offering some comments on a somewhat more general setting for
Theorem 1.13.

For a general lattice X, the maximal Hardy-Littlewood operator can only be
defined by taking the supremum over a finite number of averages, as was done
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in [GMT]. If we further assume that X is o-order complete we may define
the maximal function considering now a countable number of averages, say, for
example, averages over balls centered at z and with rational radius, whenever
f € L' (dz)® X. Infact, for f = 3, cipi, we have

Mf@) =swp | [ )] < §:j|c,|sup Bl e

reQ reQ
n

<Y lalMpi(a),
i=1

where M is the scalar maximal function and hence finite a.e. The right hand
size gives an element in X proving the existence of the supremum. With this
observation, Proposition 4.12 still holds true. Similar considerations can be made
for the other maximal operators.

Therefore, we can restate Theorem 1.13, this time in terms of the gaussian max-
imal operators obtained by taking suprema over ¢ € @t and applied to functions
valued in X, for X a o-order complete Banach lattice.
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