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A b s t r a c t .  We find necessary and sufficient conditions on a Banach space 
X in order for the vector-valued extensions of several operators associated to the 
Omstein-Uhlenbeck semigroup to be of weak type (1, 1) or strong type (p,p) in 
the range 1 < p < oo. In this setting, we consider the Riesz transforms and the 
Littlewood-Paley g-functions. We also deal with vector-valued extensions of some 
maximal operators like the maximal operators of the Omstein-Uhlenbeck and the 
corresponding Poisson semigroups and the maximal function with respect to the 
gaussian measure. 

In all cases, we show that the condition on X is the same as that required for the 
corresponding harmonic operator: UMD, Lusin cotype 2 and Hardy-Littlewood 
property. In doing so, we also find some new equivalences even for the harmonic 
case. 

Introduct ion  

The purpose of  this work is to characterize those Banach spaces X for which 

the Riesz transforms, Littlewood-Paley g-functions and maximal operators related 

with the Ornstein-Uhlenbeck sernigroup are bounded when acting on X-valued 

functions. 

The first reference to vector-valued extensions of operators associated with the 

Ornstein-Uhlenbeck semigroup appears in Pisier [P] as part of  an effort to prove 

a dimensional-free LP(dT)-estimate for the Riesz transforms. The transference 

method he used there gives the boundedness on L~ (dT), p > 1 when X is UMD. 

Unfortunately, this technique does not allow us to deal with functions in L~ (dr), 

nor does it seem to be applicable to other operators, as is our intention. We recall 
that the UMD property for a Banach space X was first introduced by Burkholder 

in a probability setting. However, it was shown to be equivalent to the fact that the 
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Hilbert transform maps L~ into itself for some p in the range i < p < 0o; see [Bu] 

and [Bo]. 

In recent years, there has been considerable activity in the study of the 

operators associated to the Ornstein-Uhlenbeck semigroup following the original 

one-dimensional approach of Muckenhoupt [Mu] of dividing l/~ into two regions: 

one where the gaussian and Lebesgue measures are equivalent and the correspond- 

ing operators comparable, and the other where the kernels of the operators can be 

estimated by a well-behaved positive kernel. These regions and the corresponding 

parts .of the operators are nowadays referred to as local and global, respectively. 

Techniques to get the right bounds for the global part of the kernels in any finite di- 

mension were first developed by Sj6gren [Sj] for the maximal Ornstein-Uhlenbeck 

semigroup operator and later extended to other operators by various authors; see 

[FGS], [U], [PS], [GMST1]. 

This suggests that the gaussian operators might be extended to those Banach 

spaces where their corresponding harmonic versions are well-defined. In fact, 

using these techniques, we are able to prove this type of result. More precisely, 

we show that a Banach space is UMD if and only if the gaussian Riesz transforms 

(and their maximal operators) have all the expected boundedness properties (see 

Theorem 1.10). Similarly, for the g function, we find that the Banach spaces are 

the same as those in the euclidean case (see Theorem 1.12) and, following [X], we 

say that these spaces have the Lusin cotype 2 property. Finally, we prove a similar 

result for other maximal operators as well (see Theorem 1.13). 

In proving these theorems, we need a deeper understanding of the local parts 

in order to compare each gaussian operator with its precise harmonic version. For 

example, in [FGS], [PS], [U], [GMST1], the local parts of the Riesz transforms 

were compared to certain singular integral operators but not precisely to the har- 

monic Riesz transforms. To make the right comparison, we follow the pattern 

suggested by the definitions of the operators given through the spectral theory. 

Following this thought, it is not difficult to see that the right choice is to start with 

the Gauss-Weierstrass semigroup associated to �89 A rather than to A. This is the 

main content of  Section 3. 

For the harmonic Riesz transforms, it was already known that the UMD 

condition on X is equivalent to the almost everywhere finiteness of the associ- 

ated maximal operators for functions in L~ (dz). However, there does not seem 

to a be similar result for the Littlewood-Paley g-function or the maximal Hardy- 

Littlewood operator in the literature. We prove the corresponding statements to be 

true in Propositions 4.5 and 4.12. 



VECTOR-VALUED EXTENSIONS OF OPERATORS 

1 Pre l iminar i e s  and s t a t e m e n t  of  results  

Let {Tt } be a symmetric diffusion semigroup of operators acting on measurable 

functions on R", with a second order differential operator - L  as its infinitesimal 

generator. In this context, the following operators can be considered; see [Stl ]. 

(1) M a x i m a l  o p e r a t o r :  T ' f  (x) = suPt>0 ITtf(x)l. 
(2) M a x i m a l  operator  o f  the subord inated  Poisson s e m i g r o u p :  

P ' f  (x) = supt>0 IPtf(x)l, where Pt is defined by the following subordination 

formula, 

// 1 te_t2/4STsf(x)s_3/2ds. (1.1) Ptf(x) = 

(3) R ie sz  p o t e n t i a l s :  For 0 < a, L -a f (x )  = ~ f ~  ta-lTt f(x)dt ,  which 
1 oo  ta_le_tSdt" can be derived from the identity s -'~ = r-Gl f0 

(4) Riesz  t r a n s f o r m s :  For I < i < n, Ri f(x)  = o-~ L-1/2 f(x) .  
(5) L i t t l e w o o d - P a l e y  g-functions:  

g~ = / Jo 0 2dt 1/2 t -~Ptf(x)  T )  

and 

(~o ~176 ~ P t f (  2~)1 /2  gx, ( f ) (x )= t x) , i =  l , . . . , n .  

Here O/Oxi, i = 1 , . . .  ,n  are the partial derivatives associated to the operator L, 

that is, if Vz is the vector (O/Oxl, . . . ,  O/OXn) it satisfies 

( -L ) (u  p) = p(p - 1)uP-2lV~u[ 2 

for functions u _> 0 solutions of the equation Lu = O. 
In the classical case L = - A ,  that is, Tt is the Gauss-Weierstrass semigroup, all 

of  these operators are well-known. We refer to [St2] for their LP(dx)-boundedness 
properties, where dx is the Lebesgue measure in R n . However, for our purposes 

it will be best to deal with the semigroup Wt whose infinitesimal infinitesimal 

generator is 1 - ~A, that is, 

(1.2) Wtf(x)  = (27rt) -n/2 fR, e-lz=~1212t f(y)dy" 

Anyway, we notice that the operators (1) to (5) defined above differ only in a 

constant after this change in the infinitesimal generator. 

Let us recall that in this case the Riesz transforms can be viewed as principal 

values of the integrals against the kernels 

xi - Yi 
Ki(x - y) = Cn ix _ y l ,+ l ,  
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which appear as the corresponding partial derivatives of the kernel associated to 

the (-�89 -1/2 operator. Moreover, the maximal operators 

K ~ f ( x ) = s u p K i . e f ( x ) = s u p l  f K i , e ( x - y ) f ( y ) d y ,  1 < i  < n ,  
e>0 e>0 IdR, ,  

where Ki,,(x - y) = Ki(x  - Y)X(Ix-y~>,}, are bounded on LP(dx), 1 < p < o0, 
and of weak type (1, 1). This implies both the almost everywhere convergence of  

K i , , f  for f E LP(dx), 1 < p < oo and the convergence in LP(dx), 1 < p < oo or the 
weak-Ll(dx)  convergence; see [St2]. 

In the case L = - �89  + x.V, that is, Tt is the Ornstein-Uhlenbeck semigroup 

Ot given by 

Off(x)  = (Tr(1 - e-2t)) -n/2 fR n e-le-'x-'12/O-e-2') f (y)dy,  

the above operators have been intensively studied over the last twenty years by 

several authors. In this setting, the natural measure is the gaussian measure 

dT(x) = e-lZl2dx. For the/2(dT)-boundedeness of  the maximal operator O*, we 

refer to [Stl] and [Sj]; for the Riesz transforms Ri, see [Mu], [Gu], [Me], [P], 

[FGS], [Gt], [U], [GMST2]. As in the classical case, the Riesz transforms can be 

viewed as principal values of  integrals against the kernels 

Ri(x ,y)  = cn t_l/2e_t e- tx i  - Yi I - - 2 dr, 

which appear as the corresponding derivatives of the kernel associated to the 

( - �89  + z.V)-I/2 operator. Namely, for functions f good enough, we have 

Ri f ( x )  = lim R i , J ( x ) ,  a.e. x, 
e---~0 

where R/,,(z, y) = Ra(x, Y)X(Iz-yI>E}. 

The Littlewood-Paley g-functions studied in [PS] and [Gt] can be explicitly 

expressed by taking the corresponding derivatives of  the associated Poisson kernel 

given by 

1 te_t2/4.(~r(1 _ e_2.))_n/2e_le-.x_~12/(x_e-2.)s_Z/2ds. (1.3) Pt(x,y) = ~ 

In the classical context, the study of the behaviour of the above operators is 

closely related to a variant of  the Hardy-Littlewood maximal operator 

M r ( x )  = sup 1 / a  f (y)dy  . 
r>0 [B(x,r)l (x,r) 
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It is well-known that this operator is one of the fundamentals in real analysis. 

For that reason, we are led to consider the gaussian Hardy-Littlewood maximal 

operator, that is, 

M.~f(x) =sup.>0 7t~tx, r)) "nl fB(z,r) f(y)dV(y)" 

Both operators share the same boundedness properties on LP(d#), where/~ denotes 

either Lebesgue or gaussian measure; this is a consequence of a general theory for 

centered Hardy-Littlewood maximal functions. 

Next, we consider extensions of these operators to functions taking values on 

a Banach space X, in both the Gauss-Weierstrass and the Ornstein-Uhlenbeck 

semigroups. 

Since the Riesz transforms Ri are linear, they extend in a natural way to the 

tensor product LV(d#) | X as Ri(~k=ln ~kVk) = Ek=ln Ri(qOk)Vk, 1 <_ p < oo. 
In the harmonic case, it is known that the extensions of Ki are bounded from 

LPx(dX), 1 < p < co, into itself or from Llx(dx) into weak-Llx(dx) if and only if 

X satisfies the so-called UMD property; see [Bu] and [Bo]. Moreover, in a UMD 

space, one has the same result for the associated maximal operator K~ and the 

almost everywhere convergence of Ki,~f to Kif ,  as in the scalar case. 

Concerning the Littlewood-Paley g-functions, we extend their definitions to 

X-valued functions f by 

and 

oo t- e,y(z) x t / .o(:)(.) = ( fo o . 

fo ~ 0 2 dt I/2 g.,(s)(x)-- ( t P,S(x) x--i) ' i=  i , . . . ,n, 

where it is understood that Pt, being linear, has been extended to functions taking 

values in X as above. 

In the classical case, since these g-functions can be seen as vector-valued 

Cader6n-Zygmund operators (see [RRT]), their boundedness in some L~ (dx), 
1 < P0 < oo, is equivalent to the boundedness for all p, 1 < p < oo, or even to 

the boundedeness from Llx (dx) into weak-L l(dx). This remains true for functions 

defined in the toms, and the corresponding Banach spaces X have been called 

in [X] of L u s i n  eo type  2. For functions defined on IR n, we shall adopt this 

terminology. 

Finally, for the maximal operators defined in (1) and (2) and for the Hardy- 

Littlewood maximal operator, an extension of the type T* f (x) = supt>0 IITt/(z) llx 
gives rise to a trivial problem, since in this case T*f(z) <_ T*(llfllx)(z), and 
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therefore  the properties o f  the scalar version of  the operator are automatically true 

for every  Banach space X. However, when X is a Banach lattice, following [GMT], 

a nontrivial extension can be given by 

(1.4) T ' f  (x) = sup ITtf(x)lx, 
t>0  

(1.5) P*f(x) = sup IPtf(x)lx and 
t>0  

1 f 
(1.6) M u f ( x )  = sup #(BT-,-r))tx JBI f(y)dl~(y) 

x ~ r > 0  (z , r)  

where  I.Ix is the absolute value of  the Banach lattice X. The problem now is 

that for a general Banach lattice we cannot guarantee that the supremum exists as 

an element  in X for a . e . x .  However, these operators were considered by Rubio 

de Francia JR] in the case that X is a Banach lattice of  measurable functions in 

a a-finite measure space (f~, dw), often referred to as KSthe function spaces, see 

[LT]. In this context, the above operators are well-defined and take the form 

(1.7) T' f (x ,w)=suplTt f (x ,w) l ,  xEI~", w e f t ,  
t>0  

(1.8) P' f (x ,w)  = suplPtf(x,w)l , x E R n, w E fl and 
t>o  

1 f 
(1.9) M~f(x,w) sup ]B f(y,w)d#(y) , = xEI~ n, w e f t ,  

,->o #(B(x,r)) (z,,.) 

where l" I denotes the absolute value in X with the obvious definition Ivl(w) = 

Iv(w)J, v E X. The results in [GMT] can be applied to this context, yielding that 

the boundedness of  the classical Hardy-Li t t lewood operator in some L~ (dx), 1 < 
p0 < c~, is equivalent to the boundedness for all p, 1 < p < ~ ,  or even to the 

boundedness from Llx (dx) into weak-L~: (dx). Following these authors the KSthe 

function spaces for which one of  these boundedness holds are said to satisfy the 

H a r d y - L i t t l e w o o d  (I-I.L.) p r o p e r t y .  

We point out that the UMD property has been given a geometric description; 

see [Bu] and [Bo]. There  is also an equivalent geometric description for Lusin 

cotype for functions in the toms; see [X]. For the Hardy-Li t t lewood property, 

geometric conditions that are either sufficient or necessary were given in [GMT]. 

We are now in a position to state the main results of  our paper. 
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T h e o r e m  1.10. Given a Banach space X,  let Ri, 1 < i < n, be the X-valued 

extended Riesz transforms associated to the Orsntein-Uhlenbeck semigroup. Then 

the following conditions are equivalent: 

(i) X has the UMD property. 

(ii) 7{x �9 I~ n : IIRif(x)llx > ,X} < c fR~ IIf(x)llxd~(x), 1 < i < n. 

(iii) For every p, 1 < p < oo (and equivalently for  some 1 < p < oo ), 

IIRif[lL~(d~) ~ CpllfllL%(d-r), 1 < i < n. 

(iv) ~ { z  �9 I~ n : R 7 f ( z )  > ~} < c fR- IIf(x)llxd~(z),  1 < i < n. 

(v) For every p, 1 < p < c~ (and, equivalently, for  some 1 < p < c~ ), 

IIR~f[ILv(d~) ~ CpllfllL%(d~), I < i < n. 

(vi) For any f �9 Llx(dT), Ri,~f(x) convergesa.e, x, 1 < i < n. 

(vii) Forevery f �9 Llx(dT), then R~f (x )  < oo a.e. x, 1 < i < n. 

Here, the constants C and Cp are independent of  f but they may depend on the 

Banach space X.  

R e m a r k  1.11. All the statements (ii) through (vii) hold true for the scalar 

case. In particular, (vi) implies that the gaussian Riesz transforms exist in the 

principal value sense for f E L l (dT), a fact that does not appear explicitly in the 

literature. 

In what follows, given an X-valued function f ,  we shall consider a Lit t lewood- 

Paley square function, g(f) ,  involving both t and x derivatives, namely 

a(/)(x) = (g0(/)2(~) q- Z g x ' ( f ) 2 ( x )  ) 

and we shall use lower-case letters 9 for the Orsntein-Uhlenbeck semigroup while 

we shall denote with capital letters G the corresponding functions for the Gauss-  

Weierstrass semigroup. With this notation we have the following theorem in the 

context of  the Ornstein-Uhlenbeck semigroup. 

T h e o r e m  1.12. The following conditions are equivalent: 

(i) X has Lusin cotype 2. 

(ii) 7{x E IR n : g( f ) (x )  > A} < -~ l b ,  Il f(z)llxd~(x).  

(iii) For every p, 1 < p < oo (and, equivalently, for  some 1 < p < ~ ), 

tlg(f)llLp(d~) <- CpllfllLPx(d'y) �9 
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(iv) For every f 6 L1x(d~/), then g(f)(x) < ~x~ a.e. x. 

Here, the constants C and Cp are independent of  f but they may depend on the 

Banach space X. 

For the vector-valued extensions of the maximal operators given in (1.7), (1.8) 

and (1.9), we introduce the following notation. In the case of the Ornstein- 

Uhlenbeck semigroup, the operator Tt will be called Ot and O* will denote the 

corresponding maximal operator, while we keep the notation Pt ,and P* for the 

subordinated Poisson semigroup. For the Gauss-Weierstrass semigroup, we use 

the letters Wt, W ~ Ut and U*, respectively. 

T h e o r e m  1.13. Given a K6the function space X, let A c denote the maximal 

operator of the Ornstein-Uhlenbeck semigroup, 0", or the maximal operator of the 

subordinated Poisson semigroup, P*, or the Hardy-Littlewood maximal operator 

with respect to the gaussian measure, M r. Then the following statements are 

equivalent: 

(i) X satisfies the Hardy-Littlewood property. 

(ii) 7{x 6 I~ n : IINf(z)llx > A} _< ~ fro II.f(z)llxd'~(z). 
(iii) For every p, 1 < p < oo (and, equivalently, for some 1 < p < oo ), 

[[NfIIL~Cd~) ~ CpllfllL~(d~)" 

(iv) For every f 6 Llx(dT), A/'f(z) 6 X a.e.z.  

Here, the constants C and Cp are independent of  f but they may depend on the 

Banach space X. 

2 Prev ious  results  

In proving our theorems, following the technique initiated in [Mu], we make 

systematic use of a partition of the operators into their local and global parts, 

according to some particular region, where Lebesgue and gaussian measure are 

equivalent, and its complement. In the literature, depending on the operator under 

consideration, two kind of  regions have been used: either 

o r  

{ t i} N t =  (z, y) : [z - V[ < l + l z l + l y  , f o r s o m e f i x e d t > O  

forsomo xodR 0 

See [Sj], [FGS], [PS], [GMSTI]. 
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For the global part of the operators, we want to make use of estimates given by 

different authors for the kernels in the complement of regions like Arn, while for 

the local part, we will refer to the technique developed in [GMST1] in terms of 

Nt-regions. However, it is immediate that we have the relationship 

(2.1) Nt C Art C Nt(t+3). 

In what follows, we shall make a partition using the region Nt for t = n(n + 3). This 

choice of t together with (2.1) allows us to handle both parts for all the operators 

involved. We denote this particular region simply by N. 

Also, since some of the operators we deal with, even not linear, can be viewed 

as linear operators taking values in some Banach spaces, we need to take in 

consideration operators T as follows. 

Given Banach spaces B1, B2, let d/z denote either the Lebesgue or the Gauss 

measure on IR '~. Let T be a linear operator defined in L ~176 the space of B1- 0,B1 ) 

valued, compactly supported and essentially bounded functions, into the space 

of B2-valued and strongly measurable functions on R '~, satisfying the following 

conditions. 

(a) T extends to a bounded operator either from L~2 (d/z) into L~2 (d#) for some 

q, 1 < q < oo, or from L]~2 (d/z) into weak-L~2 (d#). 

(b) There exists a Z;(B1, B2)-valued measurable function K defined on the com- 

plement of  the diagonal in IR " x IR '~ such that for every function f in L~,B~, 

for all x outside the support of f .  

(c) The kernel K mentioned above satisfies the estimates 

C C 
[IK(z,y)l[ < I x -  yl"' IIOzK(x,Y)II + IIO~K(z,y)II < i x_  yl,+a, 

for all (x, y) in the local region N = N2n(n+3), x ~ y. 

As in [GMST1], we introduce the following definitions. 

For an operator T as above, given a smooth function q0 on IR n x IR" such that 

~o(x, y) = 1 if (x, y) E N, ~(x, y) = 0 for (x, y) r N and 

(2.2) Icgz~o(x,y)[ + [O~(x,y)[ <_ C[x - y[-1 if x ~t y, 
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we define the global and the local parts of the operator T by 

T~tobf(x) = f K(x,  y)(1 - ~(x, y))f(y)dy, 

T, ocf(X) = T f ( x )  - Tgtobf(x), 

and accordingly call their kernels Kgtob and Ktoc, respectively. 

L ~176 into the space of B2-valued strongly We say that an operator T defined on 0,Sl 

measurable functions is local if its associated kernel in the sense of(b) is supported 

in/~. 

We make use of the following results; cf. [GMST1]. 

Propos i t ion  2.3. L If  the operator T satisfies assumptions (a), (b) and (c) 

as above, then the operator Ttoc is bounded from LPBI (dT) into LPB2 (dT) and from 

LPB~(dx) into LPs2(dx), for  1 < p < oo. Moreover, Ttoc is bounded from L1s,(d#) 

into weak-L~ (d#) with respect to the Lebesgue and the Gauss measure. 

IL I fT  is an operator satisfying condition (a), (b) and only the size condition of  

the kernel stated in (c), then Ttoc inherits from T either the Lq-boundedness or the 

weak type (1,1), as the case may be. Moreover, the corresponding boundedness 

holds for  both Lebesgue and Gauss measure. 

Propos i t ion  2.4. I f  S is a local operator, then strong type (p,p) for  Lebesgue 

and gaussian measure are equivalent. The same holds for  weak type (p, p), 1 < 

p < cx~. 

Next, we review some known results for the scalar versions of the operators 

associated to the Ornstein-Uhlenbeck semigroup. We state them as lemmas for 

future reference. 

L e m m a  2.5. The global part o f  the Riesz transform kernels satisfies 

IRi,E,gtob(x,y)l < IRi#ob(X,y)l < Q(x,y),  i = 1 , . . . , n  

for  some nonnegative kernel Q(x, y), independent o f  e, supported in N c and such 

that its associated integral operator is of  weak type (1, 1) and strong type (p,p), 

1 < p < ~ ,  with respect to the gaussian measure. 

For a proof, see [FGS] and [PS]. 

R e m a r k  2.6. These results imply in particular that the integrals 

f Ri,e,glob(X ,y)f(y)dy and f Ri,~tob(X,y)f(y)dy are finite almost everywhere for 

every f �9 L 1 (dT). 
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For the nonlinear operators under consideration, we use the following notation: 

O'gto b (f)(x) = O* ((1 - qo(x, .) ) f )  (x), 

and 

Then we have 

ggtob(f)(x) = g((1 -- qO(X, .) ) f ) (x)  

M-r,gtob(Y)(x ) = M-r((1 - •(x, ,))f)(x). 

L e m m a  2.7. The global parts o f  the operators defined above satisfy 

(i) O~tobf(z) <_ fR~ Q(x,y)If(y)Idy,  

(ii) ggtob(f)(x) < fR~ Q(x,Y)If(Y)IdY, 

(iii) M.r,gtobf(x ) < fR" S(x,y) lY(y)ldy 

for  some nonnegative kernels Q(x, y) and S(x ,y) ,  supported on N ~ such that 

the associated integral operators are o f  weak type (1, 1) and strong type (p,p), 
1 < p < r a n d o f s t r o n g  type (p,p), 1 < p < ~ ,  respectively. 

For a proof of these facts, see [Sj], [PSI, [HVT], [FSU]. 

R e m a r k  2.8. In fact, from the proof given in [PS], Q(x, y) is a bound for 

II t~ Y)llL~((o,oo),at/,) + Zi=I 0 n IIt~TPt(x,y)l]L2((O,oo),dt/t), whenever (x,y) E 
N c" 

3 Comparison  of the operators in the local region 

The aim of this section is to show that in the local region, the difference 

between the corresponding classical and Ornstein-Uhlenbeck operators, acting on 

scalar functions, behaves nicely; more precisely, they define bounded operators on 

all LP(d#), for 1 < p < c~, where d# is either Lebesgue or the gaussian measure. 

The local part of the Riesz transforms has already been defined in the previous 

section. As for the the nonlinear operators under consideration, we introduce the 

following notation: 

O~oc(f)(x) = O*((~o(x,.))f)(x) and gloc(f)(x) = g((~p(x,.))f)(x). 

Similarly, we define the corresponding local parts of the classical operators W ~ G, 

and M; they will be denoted by Wto c, Gtoc, and Mtoc. 
Now we are in position to state the main result of this section. 
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L e m m a  3.1. The difference between the local parts defined above satisfy 

(i) IRi,E,toc(X,y) - Ki,e,toe(X,y)l < Ll(X,y) ,  uniformlyin e > O, 

(ii) ]gtocf(x) - Glocf(x)l < fR,  L2(x,y) l f (y) ldy,  

(iii) 107oJ(X) - Wt*ocf(x)l < fR,  La(x,y)IY(Y)IdY, 

where Li, i -- 1, 2, 3 are nonnegative kernels supported on N and satisfying 

(3.2) supj~[L,(z,y)dy < co and sup ; L,(z,y)dz < co, i = 1,2,3. 
y JR n 

In particular, from ( i) we have that the linear operator Ra,toc - Kijoc satisfies 

IR~,,oJ(X) - K~,~ocf(x)l <_ fR. Lx(x,y)lY(y)ldy. 

Consequently, all the integral operators associated to Li, i = 1, 2, 3, are o f  strong 

type (p,p), 1 < p < co, with respect to either Lebesgue or gaussian measure. 

R e m a r k  3.3. This lemma together with the estimates for K~,gtob imply that 

for good enough functions, say C 1 with compact support, the limit lim~_~0 Ri,ef(x)  
exists for every x. 

In fact, writing 

Ri,ef(x)  = (Ri,e,toc - Ki,~,toc)Y(x) + Ki,e,tocf(x) + Ri,~,gtobf(x), 

we see that the first and third integrals, taking absolute values inside, are bounded 

independently of e for any value of x. This is a consequence of the previous lemma 

and the precise estimate of the global part of  the kernel given in [PS]. As for 

the second term, the limit for e ~ 0 exists for all x since the same is true for the 

harmonic Riesz transform whenever f is smooth and boundedly supported. 

In order to prove the result above, we need the following technical lemma. 

L e m m a  3.4. For (x, y) E N, we have the estimates 

f0 ~176 ~x~ y)) s_~/2 l+ ,x ,  O i ( x , y ) =  . ( O s ( x , y ) - W s ( x -  ds < C i x _ y l . _ a  ' 

fo ~176 Os(x,y) e-1~12 D(x,y)  = - X(1,oo)(8) 71.n/2 

< G (  l+lx[ �89 logr---~l,  '} - + 

I x - y l  / 

- -  - W s ( x  - y )  ds 
8 
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and 

C 
Et (x,y) = sup Wu(x - y) < 

~>_�89 Ix - yl "-1 

Clxl 
E2(x,y) = sup IWO_u2)/2(x- y ) -  OiogO/~,)(x,y)l <_ ix yln_l. 

0<u<l  

In particular, all of  the above kernels when truncated by XN (x, y) satisfy conditions 
like (3.2). 

We prove Lemma 3.1 first, assuming that the above estimates hold, and then 

return to the proof of Lemma 3.4. 

P r o o f  o f  L e m m a  3.1. (i) The kernel for Ri,e,loc - Ki,,,tor is given by 

fo ~ 0 dt cnx~lx_~l>,~(x, y) ~(x, y) ~ (o, - w,)(z, ~) t l /2.  

Taking absolute values, we see that it is enough to bound the kernel 

Di(x,y)= fo ~176 ~(Ot-Wt)(x,y)  t~/2, 

for (x, y) E N. Then (i) follows from the estimates given in Lemma 3.4. 

(ii) First we consider gx,,toc - G~,,toc, 1 < i < n. Observe that if Pt and Pt denote 

the corresponding Poisson operators associated with the Ornstein-Ulhenbeck and 

Gauss-Weierstrass semigroups, respectively, and their kernels as well, we have 

- a x , , , o j ( x ) l  <_ t o ~ ( P t  - P t ) @ ( x , ' ) f ) ( x )  Igx,,locf(x) Lz((O,cc),dt/t) 

where we have used Minkowski's integral inequality. Therefore, we only need 

to get a bound for tlto-~,(Pt - Pt)(x,Y)llL2((O,~),dt/t) for (z,y) E N. Using the 

expression given in (1.3) for Pt and the corresponding one for Pt, that is, replacing 

Ot by Wt as given in (1.2), after taking derivatives with respect to xi, we get 

t o-~i(Pt - Pt)(x,y) L2((O,~176 

= c . t  ( o .  - W . l ( x ,  Jo Oxi L2((O,oo),dt/t) 
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where we have again used Minkowski's inequality. After a change of variables, 

the inner integral can be estimated by Cs 2. Therefore, to prove our claim we only 

need to estimate 

L~O-~ i  I sll2dS Di(x, y) = (0,  - W,)(x,y)l 

for (x, y) E N. But from Lemma 3.4, it follows easily that (3.2) holds for these 

kernels when restricted to the region N. 

Next, for go,toc - Go,toe, proceeding as above, we reduce the problem to estimate 

Ht~(Pt - ~ t ) ( x , y ) i l L 2 ( ( O , ~ ) , d t / t )  for (x,y) e N. Differentiation of the Poisson 
kernels with respect to t leads to the integral 

cn L~176 - t2/2s)e -t2/4s (Os - Ws)(x, y)s--Z/2ds, 

which can be rewritten replacing O,(x, y) by O,(x, y) - e-1~12/Tr n/2 since 

L ~176 - t212s)e-t214S s-a/2 ds = O. (3.6) 

Therefore 

t~t(Pt - Pt)(x,y) 
Li((O,oo),dt / t )  

< C t L i ( 1 -  t2---~e-t2/4"e-lyl2s-~/~ds[l 
- 2s ] II L2 ((0,co),dt/t) 

+ C  t L ~ 1 7 6  - t2 - t ' / , t s  

e - l y :  2 

- Xtl,oo)(S) rrn/2 W'(z'Y))S-3/2ds L:((O,~),et/t) 

= Jl + J2. 

To estimate J1, we observe that the integral 

I 

is finite. This follows by splitting the outside integral into the intervals (0, x/~) and 

(x/2, oo). For the first piece, we use (3.6) to change the integration on the variable 

s over the interval (0, 1) to (1, oo). For the second piece, we bound the exponential 

by a convenient negative power. Therefore J1 is bounded by Ce -lul2, which in the 

local region has the desired properties. 
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To estimate J2 we apply Minkowski 's inequality to get 

f0 ~ e -ly12 .1'2 <_ C O~(x,y) - X ( 1 , ~ ) ( s ) : ~ -  - Ws(x,y)  

(/5( • t 1 -  t2"~2e-?/2~dt]l/2s-Z/Zds. 
2 s /  ] 

After changing variables, the inner integral in t is bounded by Cs. Hence we only 

need to estimate 

fo ~ e -lu12 __ D(x ,y)  = O,(x ,y)  - XCa,~)(s) rr,/---- T - Ws(x,y)  as 
8 " 

That this kernel satisfies (3.2) on the region N is a consequence of  Lemma 3.4. 

(iii) We observe that 

Wiocf(X ) - Otocf(X ) <_ sup f wu(z y)qa(x, y) f (y)dy 
u > 1 / 2  d 

+ sup [ W ( 1 - u = ) / 2 ( x -  y )~ (x , y ) f ( y )dy  
O < u < l  J 

- o<u<lsup fO,og(1 /u) (X ,U)~(x ,y ) f (u)du .  

Therefore, 

IWtocf(x) - O~o~f(x)l ~ f sup IW~,(x - y)~(x,y)l  If(y)ldy 
u>_V2 

+ f o<~,<lsup I(Wo_u2)/2 - Olog(1/~,))(x,y)ko(x, y l l f (y) ldy .  

Then the result follows by the estimates given in Lemma 3.4. [] 

P r o o f  o f  L e m m a  3.4. We begin by stating some simple inequalities that will 

be used frequently. 

(A) Given c, k nonnegative numbers and some 0 < c < 1, there exists a constant 

c~ such that 
tke -ct2 <_ c~e -~ct2, t > O. 

(B) For every given e > 0 and (x, y) E N, there exists a constant C such that 

e -~ltx-ul2/(1-u2) <_ C~e -elz-yl2/(1-u~), t > O, 0 < u < t < 1. 

To prove the lemma, we first estimate Di(x, y) for i = 1 , . . . ,  n. Differentiating the 

expressions of  08(x,  y) and Ws(x - y) with respect to xi, we get 

0 0 s ( x , y ) = e _  8 e-~xi - yi exp ( ]e-Sx - y]2~ 
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and 
Jx  xi - Yi W s ( z  - y) = ~ , , / ~ 2 s ) ~ 2 + ~  e - j~-~j~/2~.  

For fixed (x,y) E N, set a = rain{l, 1/[x[2}. Then split the integral defining Di to 

get 

- sl/S 
+ ~oo ~_~iOs(x,y ) ds co ds 

s'~7~ + f~ o ~ i W ' ( x -  Y) s--~2 

= I~ + I2 + Ia. 

For/3 ,  using (A) for k = 1, we have for (x, y) E N,  

I3 < c s-(n+2)/2ds < c(1 + Ixl) n _< clx yln-l " 

As for /2 ,  we first use (A) with k = 1 and then apply (B), to get 

~oo  (1 -- c--2s) (n-l-I)/2 8-~ [ ~ 1C-e'lx-y'*~/$8 (n4"s)]2 i ~176 e-elz-yl2/(1-e-2") -s ds -s  ds "~ 
Is < C e <_ C ~, ds + e ~-i-z ) 

C .~l _ (1 + Ixl) 1/2 
<-]x_yl,~_l/s -~ s -5 /4ds4-C <- (") l ' x - - y ~  ' 

where we have again used (A) with k = n - ~ and that (x, y) e N. 

To estimate/1,  we set 

u(uxi - Yi) e_l,,~_~12/(l_e -2.) xi - yie_lz_vl2/u" 
fa(u) : (1 =e'~s-~-+l and fs(U) = ~ , 

then 

ds e_2S ) ds 
I1 <_C I f l ( e - " l - f l ( l l l s - i ~ / 2 + C  1/2(1 - -/2(2s11 s--~/2 = / 1  + / ~ .  

For the derivatives of  f l  and f2 we obtain, after using (B), 

and 

Ce-elx-vl2/s (1 + Ix l '~  

Ce-~lx-ul2/s 
I/~(v)l < s . /S+s I x -  ul 

Therefore,  

e-elx-ul2/~ (1 + ds < 
I~ <_ c sn/S sl/2 } _ 

~ r  e - ~ < e - S < u < l  

for 1 - e  - 2 s < v < 2 s .  

C Clzl 1/2 
+ 

Ix - yl "-a I x -  yl "-a/s  ' 
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where we have used (A) with k = n - 1 and k = n - 1/2. 

Finally, since ll - e -2~ - 2s[ ~ Cs 2, using (A) again, this time for k = n, we get 

C 
12 < Ix - y l - - l "  

Collecting the estimates for I~,/12, I2 and I3, we can conclude that in all cases they 

are bounded by 
1 + Ix I 

C 
Ix - yl(n-1)" 

Let us estimate D(x, y). Recall that 

08(x, y)  = (zr(1 - e - 2 8 ) ) - " / 2 e  - l e - ' x - ~ 1 2 / ( i - e - 2 ~  

and 
Wa(x - y) = ( 27rs)-n/Z e -Ix-~12 /28. 

As above, for fixed (x, y) 6 N, we set a = rain{l,  1/Ix[ 2} and split the integral 

defining D(x, y) as follows: 

O(z ,y)  < [O , ( z , y ) -  Ws(z,y)[ + O,(z, 
- -  8 

7+L w , ( x -  Y) 7 + 
j 1  o 

=/~ + I 2  + h  + h .  

For 12, we get 

L 1 ds Izl 
t2 < C s./2+a <_ Clxl" <_ C lx y[ n-1 

since (x, y) 6 N.  Now, to estimate I3, set 

f(u) = (1 - U2)-n/Ze -luz-yl2/(1-u2). 

It is easy to check, after using (A) and (B), that 

e - e l z - 1 4 2 / ( 1 - r  2) 

If'(T)l < (1 - T2) n12+1 (CT -4- lxl(1 - T2) 1/2)  

as long as (z, y) 6 N. Therefore, an application of  the mean value theorem and the 

estimate above for 0 < r < e, 0 < c < I gives 

1 + Izl 
< C(1 + Izl)" _< C Ix - Y[ n-x" 
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F o r / 4 ,  we apply directly inequality (A) with k = n - 1, leading to the bound 

C(1 + I~l)/Iz - yl n-1. 

Finally, for Ii ,  we consider the functions 

e-lx-lJl2 /u e-I~'z-Yl=/(1-e-2") 
h i ( u )  - -  un/2 I h2(lz) = (1 --  e-2S) n/2 

Then I1 can be estimated by 

/; , /0 ~ 
I1 <_ C [h2(e-") - h2(1), ds - - + C  Ih~(1-e-~S)-h~(2s)ld-2s = I~ + I~. 

8 $ 

Next,  we observe that we have, using ( A ) ,  

ce-elz-~121r 
Ih~(r)l _< rnl2+l �9 

Now f o r t  such that 1 - e  -2s < r <_ 2s with 0 _< s < 1, we h a v e T  ~ s and 

consequently the mean value theorem applied to h, gives 

L a -~" e-glx-~121"ds < C L  <~e-~'l~-vi21" ds 
I~ < C  ( 2 s - l + e  ) ~ s sen-l)~ ~ sl/2 

C < 
- I z  - y l  ' ' - l '  

where we have again used (A) with k = n - 1. 

Similarly, for e -~ < r < e - ' ,  using (A) and (B) we get 

e - e l z - y l ~ / ( 1 - e  -~~ 
Ih~(T)l _< Cl~l ~ - ~ -  

Since for 0 < s < 1, (1 - e -2s) ~ s, the mean value theorem applied to h2 gives 

L ~̀ e-~'l~-~12/~ds < ix] L ~ll~l~ ds < Cixl~12 11 < clzl  
s(-+~)/2 C lz _ yln-ll2 83/4 I x -  yl n-~12 ' 

where we have used (A) with k = n - �89 and that (x, y) 6 N. Collecting all the 

estimates, we get the desired conclusion for D(x, y). 
It remains to take care o f  E1 and/772. By using (A) with k = n - 1, we get 

Ce -Ix-yl2/u C 
E l ( x , y )  < sup < 

- u>1/2 u (n-l)/2 - ] x - Y l  n - l "  

As for E2, we have 

I e-1:~-~12/(l-,./' ) 
I W ( , - . ~ ) 1 2 ( ~  - y )  - O , o , , I . ( ~ ,  y)l = on I ( - 1 -  ~)./---z - 

Ih(1) - h(u)l 
= 

e-l.x-~l"/(1-.2) 
( i  - u 2 ) " / ~  
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For the derivative of h(t) = e -Itz-ul=/(1-u2), we have the estimate 

e-elz-ul2/(1-u =) 
[h'(t)[ < Clzl ~ ~ for u < t < 1, 

where we make use of (B) and (A) with k = 1. Therefore, an application of the 

mean value theorem to h gives 

e -elz- l t l2/Cl-u2) Izl 
E2(x,y) < C sup I x l y r , - ~ < l  u-z,- -,,- -< cIx gin-1, 0<u<l  

again using (A) with k = n - 1. 

Finally, observe that all the bounds given for Di, D, Ei are uniformly bounded 

in z when integrated in y over the larger region {y : Iz - Yl < C/(1 + Izl)}. But 

it is easy to see that 1 + Izl -~ 1 + lyl for (z, y) E N and hence the same argument 

may be applied to show the uniform boundedness of the integrals in z. This ends 

the proof of the lemma. 

R e m a r k  3.7. In fact, from the proof of (ii) in Lemma 3.1, we see that L2 (z, g) is 

a bound for Ilt-~(Pt-Tc't)(z, y)lln~((o,oo),at/t)+Ei"=l [[ta-~,(Pt-Pt)(x, Y)llL2((o,~),at/t) 
whenever (x, y) belongs to N. 

4 Proof s  o f  the  T h e o r e m s  

We begin by recording the following useful observation for future reference. 

R e m a r k  4.1. Let Bx,B2 be Banach spaces, and V an operator mapping 

Bl-valued functions into B2-valued functions such that 

IIVI(x)IIB~ <_ L(IIIIIB1)(z) fora.e.x, 

where L is a positive linear operator that is either of strong type or of weak type 

(p, p) for i < p < c~. Then V maps either L~, into L~2 or L~I into weak-L~ . 

Next we point out that the statements (ii) through (vii) of Theorem 1.10 are 

known to be equivalent to the UMD property for the vector-valued extensions of 

the harmonic Riesz transforms. Therefore, in the process of proving Theorem 

1.10, it is enough to show the equivalence between the corresponding gaussian and 

harmonic statements. 

P r o o f  o f  T h e o r e m  1.10. (i) => (ii). By Lemma 2.5 and Remark 4.1, we 

get that Ri,glob extended to X-valued functions maps L~ (dT) into weak-L~ (dT) no 

matter what the Banach space X is. Now we want to apply part II of Proposition 2.3 
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to the operators Ki, i = 1,. . .  ,n. By hypothesis, they satisfy assumption (a); and 

clearly their kernels satisfy assumptions (b) and (c). Therefore we may conclude 

that 

7 { z  �9 I~ n : IIK~,~oj(z)llx > ~} <_ -~ n IlI(x)llxdT(z). 

By Lemma 3.1 and Remark 4.1, we get 

"r{z �9 R '~ : IIRi,toJ(x)llx > ht  <_ -~ ~ IlY(x)llxdT(x). 

(i) =~ (iii). We proceed as above, changing the weak type (1, 1) estimates to the 

corresponding strong type (p, p) each time. 

(i) =~ (iv). We consider the linear L~(I~ + )-valued operator U given by 

Uif(x)  = { f Ri(x,Y)X,lx-~l>,.lf(Y)d~},>o. 

By using Lemma 2.5 and Remark 4.1 with B1 = X and B~ = L~(I~+), no matter 

what the Banach space X is, the global parts 

Ui,globf(X) = { f Ri,glob(X, y)x{Iz-ul>~} f(y)dy},>o 

are bounded from Llx(dT) into weak-Lt(dT)L,~. Again we want to apply part II of 

Proposition 2.3 to the corresponding harmonic operator, that is, 

S,f(z) = { / g,(x - Y)Xflx-ul>~rf(Y)dg},>o, 

which by the UMD hypothesis is bounded from Ltx(dx) into weak-L[~,(R+ ) (dx). 
Since it is also clear that the size condition on the kernel is satisfied, we get for the 
local part that 

7{z �9 li~ n : IISi.to~](x)llL~(R+~ > A} < ~- ~ Ilf(x)llxdT(x). 

By using Lemma 3.1 and Remark 4.1 for B1 and Bg. as in the global part and 

V = Si.toe - Ui,to~, we obtain 

"y{m �9 IR" : IIUi,lo~f(x)[IL~(R+) > ),} < -~ ~ IIf(x)llxdT(z). 

Putting together the estimates for the local and global parts of Ui and the fact that 

IIU~f(z)l lx.~(R+) = RTf(z ) ,  w e  g e t  ( iv) .  

(i) ~ (v). We proceed as above changing the weak type (1, 1) estimates to the 
corresponding strong type (p, p) each time. 
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(iv) =~ (vi). We observe that from Remark 3.3 we obtain that Ri,~f(x) converges 

for every x whenever f E C~ | X. This together with the weak-(l ,  1) type of R~ 

gives the a.e. convergence of Ri,~ for every f E L 1 (dT) 

(iv) ~ (vii). Obvious. 

(ii) =~ (i). First we make use of Proposition 2.3 applied this time to the operator 

Ri. Clearly, by assumption Ri is of weak type (1, 1); and, in view of Lemma 3.1 

and Lemma 3.4, its kernel has the right size on the local region N. Hence we may 

conclude that Ri,loc is of weak type (1, 1) with respect to the Lebesgue measure. 

Using again Lemma 3.1, we get 

I{X e I~ n : IIKi,~ocf(x)llx > ~}1 -< ~ IIf(x)llxdx. 
n 

Next we want to see that this inequality can be extended to the whole Riesz 

transform Ki. To this end, let us take f E L~x(dx) with compact support and denote 

by f n  the dilation of f defined by fR(x) = f(Rz).  By the homogeneity of the 

Riesz kernel, we have Kif(x) = (KJn)(x/R).  We claim that for any fixed p > 0, 

we may take R large enough (depending on p and the support of  f )  such that 

(4.2) (Kifa)(x/R) = (Ki,tocfR)(x/R) 

for any x with Izl < p. In fact, it is easy to check that for such x 

suppf n C Nx/n = {Y: (x/R, y) e N} 

taking R large enough. 

Therefore, using the weak type estimate for Ki,toc, we get 

l{ x :  Ixl < P, andllKif(x)llx > )~}l < Rnl{ z: II(Ki,tocfR)(z)llx > A}I 

C Rn fR < --- f -  ,, IIfR(x)ll xdx  

C f 
-- ~ ]R~ IIf(x)llxdx, 

with C independent of p. Taking p ~ c~, we obtain the desired estimate. 

By the way, we remark that in proving (4.2) we made no use of  any special 

property of the Riesz transforms other than their invariance under dilations. 

(iii) =~ (i). For the local part, we proceed as above, changing the weak type 

(1, 1) estimates to the strong type (p,p) estimates, to get 

fR,, IIK~'t~ <- C, , l l f l l~  �9 

By taking f with compact support, arguing as above and using Fatou's lemma, we 

get the LPx (dx)-boundedness of the whole Ki. 
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(v) =V (iii). Obvious. 

(vi) :* (i). For a function f E Llx (dx) C L1x (d"/), we write 

(4.3) Ki , j ( x )  = (Ki,~,toc/(x) - Ri,~,tocf(x)) + n~,e,tocf(x) + Ki,e,gtobf(x). 

As a consequence of Lemma 3.1, we know that the first term converges a.e. z no 

matter what the Banach space X is. The estimate 

1 
sup < cxN~ 

(4.4) < c(1 + Izl)"llf(y)llx 

allows us to derive the a.e. convergence of the third term. 

A similar argument, but using the precise estimates obtained in [PS], gives the 

almost everywhere convergence for Ri,e,globf(X) for f E Llx(d'~) and hence for 

f E Llx(dx). This, together with the hypothesis on Rif ,  clearly imply the almost 

everywhere convergence of the second term. 

(vii) =v (i). By taking norms and suprema in (4.3), we get that K* f(x)  is bounded 

by three terms. Proceeding as above, using Lemma 3.1 and estimate (4.4), we see 

that the first and third terms are finite a.e. for f E Llx (dx) no matter what the Banach 

space X is. Again we use the estimates in [PS] to get sups>0 IIR~,~,~tobf(x)ll < oo 
a.e. This together with the hypothesis imply the a.e. finiteness of the second term. 
[] 

Before turning to the proof of Theorem 1.12, we recall that given a Banach 

space X, the statements (ii) and (iii) are known to be equivalent in the harmonic 

case as a consequence of the vector-valued Calder6n-Zygmund theory (see [RRT] 

and [X]). Recall also that if any of these conditions is satisfied, X is said to be of 

Lusin cotype 2. 

Since, to our knowledge, the almost everywhere finiteness of the G function 

has not been proved to be equivalent to the other statements, we give a proof of 

this fact in the following 

P ropos i t i on  4.5. Let X be a Banach space and denote by G the X-valued 
extended Littlewood-Paley function for the Gauss-Weierstrass semigroup. Then 
X is ofLusin cotype 2 if and only i fG(f)(x) < oo a.e. x for every f E Llx (dx). 

Proof .  From the (1, 1)-weak type of G, it is easily derived that G(f)(x) < oo 
a.e. x, for every f E L~ (dx). For the converse, we introduce the linear operators 

Snf(X) : X(1/n<t<n} (t) t ~'~ Ptf(x).  
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Observe that the maximal operator S ' f  (x) = supn [ISnf(x)]lL%(dt/t) coincides 

pointwise with Gof(x) and therefore by hypothesis S ' f  (x) < ~ a.e.x.  Also, for all 

n, the operators Sn are continuous in measure from Llx (dx) into L~ (dr~t) (dx) since 

they are integral operators against integrable kernels. Arguing as in Proposition 

VI.1.4 of [GR], we may conclude that S* = Go is continuous in measure from 

Ll(dx)  into L~ Now, as Go is also invariant under translations and dilations, 

applying the vector-valued version of Corollary VI.2.9 of [GR], we obtain the weak 

type (1, 1) for the operator Go. The same argument can be applied to the operators 

G~,. [] 

In view of the latter result, in proving Theorem 1.12 we can make use of any of 

the statements (ii) thru (iv) for the harmonic G function as an alternative definition 

that X is of Lusin cotype 2. 

P r o o f  o f  T h e o r e m  1.12. First we observe that in order to prove the bound- 

edness of g (respectively, G), it will be enough to prove it for 9o and each g2, 

(respectively, Go and each G~,). Conversely, g0 and g~, (respectively, Go and G~,) 

inherit the boundedness property of g (respectively, of G) 

(i) =~ (ii). For any Banach space X, we consider the linearization of the 

go-function given by 

f 0 
(4.6) Hf(x)(t)  = [ t-ATPt(x,y)f(y)dy. 

j R , ~  tl~, 

Then gof(x) = IIHf(z)(')lb4 <(o,~),dt/t) and also 

(4.7) 9o,tocf(x) = I I Hlocf(z)(.)lf L~:<(0,~).dt/t), 

(4.8) 90,globf(x) = l[Hgtobf(X)(')[[L~x ((O,oo),dtlt). 

From Lemma 2.7 and Remark 2.8, 

f 0 
t-~Pt(x,y) L% ((o,~),d,/,) (1 - ~(x, y) )llf (Yllxdy I[nat~176176176 < JR~ 

(4.9) <_ /R~ Q(z,y))ll/(Yllxdy, 

where the last integral operator is of weak type (1, 1) on Ll(d'r). Hence Hgtob 
1 is hounded from Llx(dT) into weak-LL2x((o,oo),dt/t)(d'r ), which gives in turn the 

boundedness of go,gtob from L~ (dT) into weak-L 1 (d')'). 

It remains to take care of go,toc. We consider now the linearization of the 

Go-function given by 

0 
J f(x)(t) = fR. t-~7:'t(z, y)f(y)dy. 
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To apply Proposition 2.3 to this operator, we observe that, by hypothesis, J is 

bounded from Llx(dx) into weak-L12x((o,oo),dt#)(dx ) and that its kernel has the 
right size, being a vector-valued singular integral (see [St2]). Therefore, we may 

conclude that Jtoc has the same boundedness as J but also with respect to the 

gaussian measure. Now, since a similar inequality to (4.9) holds for Htoc - Jto~, by 

using Lemma 3.1 and Remark 3.7, we obtain the weak type (1, 1) for the difference 

and hence for Hto~. Combining the results for the local and global parts, we see 

that the same holds for H.  Consequently, by (4.6), go has the desired boundedness. 

Finally, the same argument can be applied to each gx, for i = 1 , . . . ,  n. 

(i) ~ (iii). We proceed as above, changing the weak type (1, 1) estimates to the 

corresponding strong type (p,p) each time. 

(ii) ~ (iv). Obvious. 

(ii) ~ (i). Again we deal only with Go and go. As was shown in (i) ~ (ii), 

for any Banach space X, the operator Hgtob is bounded from L~ (dT) into weak- 

L ~  ((o,oo).dt/t)(dT). Since by hypothesis H satisfies the same boundedness, Hloc is 
of  weak type (1, 1) with respect to thegaussian measure and hence, by Proposition 

2.4, also with respect to Lebesgue measure. With the same notation as above, we 

set 

dtocf = (d, ocf - Htocf) + Htocf. 

Applying an inequality like (4.9) for the difference Jto~f - H t o j  and Lemma 3.1 

together with Remark 3.7, we get the weak type (1, 1) for this operator and hence 

for Jto~. 

Next, as in the proof of (ii) =~ (i) of Theorem 1.10, we extend the weak type 

(1, 1) to the whole operator J. As was pointed out there, we only need the invariance 

under dilations of the operator, which is certainly true for J. 

(iii) ~ (i). For the local part, we proceed as above changing the weak type 

(1, 1) estimates to strong type (p,p) estimates. Hence 

JR- < c.Ilfll~. Go,tocf (y)P dy 

We conclude the argument as in the preceding proof with the obvious changes. 

(iv) ~ (i). Again we argue just for Go. We have 

e o f ( x )  ~ Go,tocf(X) q- Go,gtobf(x). 

According to the inequality 

Go,gtobf(x) ~ ]]dgtobf(x)]]L~((O,oo),dt# ) ~ C(1 + ]x])n]]f]]L~x(dx), 
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the second term is finite for any x as long as f E Llx (dx). For the first term, we 

write 

Go,tool(x) < IGo,tocf(x) - gO,toJ(X)l + gO,tocf(x). 

Since IGo,to~f(x) - go,lo~f(x)l <_ IIn~ocf(x) - &oH(X)llL~((O,~),dt/t), arguing as 
in (4.9) and using Lemma 3.1 together with Remark 3.7, we get the pointwise 

finiteness of the difference for f E Llx(dx). On the other hand, by (4.8) and (4.9), 

go,g~obf(z) is finite a.e. x for f E Llx(dT) and hence for f E Llx(dx). Now the 

hypothesis together with the inequality go,toef(x) < gof(x) + go,gtobf(x) gives us 

the result. [] 

Before turning to the proof of  Theorem 1.13 we recall that, given a Ktthe 

function space X, statements (ii) and (iii) for the Hardy-Littlewood maximal 

operator are known to be equivalent in the harmonic case; see [GMT]. Although in 

that paper they consider, for a general Banach lattice X, maximal functions taking 

suprema over finite sets of averages, their results can be extended in our setting to 

the whole maximal function. In fact, for a KSthe function space, we have 

(4.10) 

1 I f  B f(y,w)dy 1 I f  B t sup = sup f(y, w)dy , x E It{ n, w E f2. 
~>o IS(x,e)l (~,,) ~cQ+ IB(z,r)l (=,,) 

Since the statements referred to above involve boundedness properties with a 

constant independent of  the finite set of  averages, our claim follows. 

Moreover, it is also true that each of the statements (ii) and (iii) is equivalent for 

all the three harmonic maximal operators: Hardy-Littlewood, Gauss-Weierstrass 

and Poisson. This is an easy consequence of the pointwise inequalities valid for 

nonnegative functions f ,  

(4.11) Mf(x ,w)  < C1P*f(x,w) < C2W*f(x,w) < C3Mf(x,w),  

see [St2]. Therefore, all of the statements (i), (ii) and (iii) are equivalent for 

these operators. Since, to our knowledege, the facts that these harmonic operators 

applied to L~ (dx)-functions belong to X for almost all x have not been proved to 

be equivalent to the Hardy-Littlewood property, we prove them in the following 

Proposition 4.12.  Let X be a KOthe function space. I f  M denotes any of the 
three harmonic operators above, then X satisfies the Hardy-Littlewood property 
if and only if for every f E Llx(dx), Mr (x )  belongs to X for a.e. x E R '~. 

Proof ,  If X satisfies the Hardy-Littlewood property, then .A4 maps Llx (dr) 
into weak-L~ (dx) and hence A4f(x) is well-defined for functions in Llx (dx). 
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Conversely, consider the linear operators Mr, r E Q+, defined by 

1 fB f(y, w)dy. Mr(f)(x,w)- IB(z,r)l (x,r) 

Clearly, these operators are bounded from Llx(dx) into itself and therefore 

continuous in measure from Llx (dx) into L ~ (dx). By hypothesis, the operator 

o (dx). Arguing as in Proposition U f(x, w) = {Mr(/)(x, w)}r~Q+ belongs to Lx(l~ ) 
VI. 1.4 of [GR], we may conclude that the operator .M is continuous in measure 

from Llx(dx) into L ~ (dx). Now as .A4 is also invariant under translations and 

dilations, applying the vector valued version of Corollary VI.2.9 of  [GR], we ob- 

tain the weak type (1, 1) for the operator M,  and this implies that X satisfies the 

Hardy-Littlewood property. The equivalence for the other two operators follows 

now from inequalities (4.11). [3 

P r o o f  o f  T h e o r e m  1.13 for  A/" = M r. Clearly, it is enough to deal with 

nonnegative functions. 

(i) ~ (ii). First we observe that for any KSthe function space, we get from (iii) 

in Lemma 2.7 that 

(4.13) IIM,~,g~obf(Z,.)llx <_ f S(x,y) IIf(Y,')llxdy, 
JR n 

where the last integral operator is of strong (1, 1) in Ll(dT). Hence M.r,gtob is 

bounded from L~(dT) into Llx(dT). It remains to take care of M.r,toc. It is 

a well-known fact and goes back to Muckenhoupt (see [Mu] and also [HVT]) 

that M,./,tocf(x, .),',, Mtocf(x, .) and also M~ocf(X, .) < M f(x, .); then, using the 

hypothesis, M.r,toc is of  weak type (1, 1) with respect to Lebesgue measure. Next, 

we consider the linearization of  MT,tocf(x, .) given by 

fB r }r" Vt~ {7(B~x,r)) (x,r) 

Since 

(4.14) [lM-r,tocf( x, ")fix = llV*ocf(x,w)llx(Loo((o,oo)), 

by using Proposition 2.4, it follows that Vtoc is bounded from L~: (tiT) into weak- 
Llx(LoO(o,oo)) (d-y); therefore, M.r,toc is of weak type (1, 1) with respect to the ganssian 
measure. 

(i) =~ (iii). We proceed as above changing the weak type (1, 1) estimates to the 

corresponding strong type (p, p) each time. 

(ii) =r (iv). Obvious. 
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(ii) =~ (i). First, for the local part, we proceed as in the proof of (i) ~ (ii), that 

is ,  w e  u s e  

(4.15) Mtoj(:c, ") "~ M.r,to~Y(x, ") < M.rf(x, "). 

Again Proposition 2.4, applied this time to the corresponding linearization of 

Mtoc, gives the weak type (1, 1) with respect to Lebesgue measure. Now we 

proceed as in the proof of (ii) ~ (i) of Theorem 1.10. Clearly, our operator is 

invariant under dilations; therefore, the argument given there allows us to extend 

the estimate we just proved for Mloc to the whole of M. 

(iii) ~ (i). We proceed as in the previous proof. For the local part, replace the 

weak type (1, 1) estimate by the strong type (p, p) estimates; then, by the invariance 

under dilations argument, we extend the strong type (/9, p) estimate to the entire 

operator M. 

(iv) ~ (i). By using the hypothesis and (4.15), it is clear that Mlocf(:c, ") belongs 

to X for functions f in L~x(d'~) and hence for f E Llx(d:r). On the other hand, the 

inequality 

f~ ,, 1 ][Mgtobf(x, ")llx _< CII X N o ( X , y ) ~  If(Y, .)[dy IIx 

<_ C ,, XNc(X,y)~-~ '~  [If(Y, ")[[xdy <_ C(1 + [zl)'~llf[lL~x(ax) 

guarantees that for any x, Mglobf(x, .) E X as long as f belongs to L~ (dz). [] 

To prove the equivalence of the statements for the Poisson and Ornstein- 

Uhlenbeck maximal operators, we proceed similarly with some minor changes 

that we sketch in what follows. The global parts of the gaussian operators P* 

and O* always satisfy all the required boundedness properties; this follows from 

P~*loJ(x,w) < OgtoJ(x,w) and Lemma 2.7. The same can be said about the 

corresponding harmonic operators in view of inequalities (4.11). As for the local 

parts, (iii) in Lemma 3.1, together with the inequality 

IPt*cf(x, ~) - PloJ(x, w)l < IOToJ(x, w) - w?oJ(x, ~)l 

allow us to go back and forth from Lebesgue boundedness to gaussian boundedness, 

by means of Proposition 2.4 applied to the appropiate linearization of each of the 

maximal operators, as we did for the Hardy-Littlewood maximal operator. [] 

We finish by offering some comments on a somewhat more general setting for 

Theorem 1.13. 

For a general lattice X, the maximal Hardy-Littlewood operator can only be 

defined by taking the supremum over a finite number of averages, as was done 
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in [GMT]. If we further assume that X is a-order  complete we may define 

the maximal function considering now a countable number of  averages, say, for 

example, averages over balls centered at x and with rational radius, whenever 
'O, 

f E L 1 (dx) | X .  In fact, for f = ~ i = l  ci~i, we have 

.A/If(x) = sup 1 fR dy 1 s  dy reQ IB( x, r)l Y(y) <_ Ic, I sup I~Pi(Y)l 
~ i = 1  r e Q  IB(x,r)l (.,.) 

n 

<-- ~ IcilMg)i(x), 
i=l  

where M is the scalar maximal function and hence finite a.e. The right hand 

size gives an element in X proving the existence of  the supremum. With this 

observation, Proposition 4.12 still holds true. Similar considerations can be made 

for the other maximal operators. 

Therefore,  we can restate Theorem 1.13, this time in terms of  the gaussian max- 

imal operators obtained by taking suprema over  e E Q+ and applied to functions 

valued in X, for X a a-order  complete Banach lattice. 
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