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Abstract. We study the differentiation of integrals of functions in the Besov spaces

Bα,1p (Rn), α > 0, 1 ≤ p < ∞, with respect to the basis of arbitrarily oriented

rectangular parallelepipeds in Rn. We show that positive results hold if α ≥ n−1
p

and we give counterexamples for the case 0 < α < n
p
− 1. Similar results hold for

Bα,qp (Rn), q > 1. For more general bases we can also prove negative results for
n
p
− 1 ≤ α < n−1

p
.

1. definitions and main results.

Following de Guzmán [3, 4] we shall say that a differentiation basis A is a collection
of open bounded sets in Rn such that for each x ∈ Rn there is a sequence {Aj} ⊂ A with
x ∈ Aj for every j and diameter of Aj tending to 0.

A differentiation basis A is said to differentiate the integral of a locally integrable
function f defined in Rn if

lim
diam(A)→0, x∈A∈A

1
|A|

∫
A

f(y) dy = f(x)

for almost every x ∈ Rn, where |A| denotes the Lebesgue measure of the set A. If A
differentiates the integral of every function of a given class we say that A differentiates
that class.

We denote by B the basis of all arbitrarily oriented rectangular parallelepipeds in Rn

with diameter smaller than 1. Each element of B can be regarded as a proper rigid motion
of a multidimensional interval of the form

∏n
j=1(−bj , bj), bj > 0 and

∑n
j=1(2bj)2 ≤ 1.

The basis B does not differentiate the spaces Lp(Rn). Actually, it does not even differ-
entiate the characteristic functions of measurable sets in Rn, as was observed by Zygmund
(in Nikodym [6]) (see [3, 8]). Then, no restriction on the global growth of functions is
sufficient for differentiation of integrals with respect to that basis and it seems natural to
impose additional restrictions on the integral smoothness of functions. In that direction,
Stokolos [9, 10] considered the differentiation of the integral of functions in terms of the
integrability properties of the Lp modulus of continuity.

We define the Besov spaces Bα,qp (Rn) for α > 0 and 1 ≤ p, q ≤ ∞. Let ᾱ be the smallest
integer greater than α and denote by uf (x, t) = (f ∗ Pt)(x), x ∈ Rn, t > 0, the Poisson
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integral of f ∈ Lp(Rn), where Pt(x) = cnt/(t2 + |x|2)(n+1)/2, cn = Γ((n+1)/2)/π(n+1)/2.
Then Bα,qp (Rn) is the set of functions for which the norm

(1.1) ‖f‖Bα,qp (Rn) = ‖f‖Lp(Rn) + (
∫ ∞

0

‖tᾱ−α ∂
ᾱuf
∂tᾱ (·, t)‖qLp(Rn)

dt
t )

1
q

is finite (with the obvious changes for q =∞).

In this paper we study the differentiation of integrals of functions in Bα,qp (Rn) with
respect to B. The problem only has interest when n ≥ 2 and p < ∞ since otherwise we
are dealing with intervals or continuous functions. The main results are the following:

Theorem 1.2. a) If 1 ≤ p <∞ then B differentiates B(n−1)/p,1
p (Rn).

b) If 1 ≤ p < n and 0 < α < n
p − 1 then B does not differentiate Bα,1p (Rn).

Using the immersion theorems for Besov spaces we can extend the positive and nega-
tive results in the following way:
Corollary 1.3. a) Let 1 ≤ p < ∞. If either 1 < q ≤ ∞ and α > n−1

p or q = 1 and
α ≥ n−1

p then B differentiates Bα,qp (Rn).
b) If 1 ≤ p < n, 0 < α < n

p − 1 and 1 ≤ q ≤ ∞ then B does not differentiate Bα,qp (Rn).

Let us point out that we do not have a result for n
p − 1 ≤ α < n−1

p .

Part a) of Theorem 1.2 will follow from the next local weak type inequality:
Theorem 1.4. Let M be the maximal operator associated to B,

Mf(x) = sup
x∈R∈B

1
|R|

∫
R

|f(y)| dy.

If 1 ≤ p <∞ and r > 0 then

(1.5) |{x ∈ Rn :Mf(x) > λ}| ≤ c

λ
(r + 1)n−1 r1/p′‖f‖

B
(n−1)/p,1
p (Rn)

for every f ∈ B(n−1)/p,1
p (Rn) with supp(f) ⊂ B(0, r) = {x ∈ Rn : |x| < r}. Here c is a

constant independent of f and r and 1
p + 1

p′ = 1.

Part b) of Corollary 1.3 can be improved to get the following result:
Theorem 1.6. If 1 ≤ p < n, 0 < α < n

p − 1 and 1 ≤ q ≤ ∞ then there exists
f ∈ Bα,qp (Rn) such that

lim sup
diam(R)→0, x∈R∈B

1
|R|

∫
R

f(y) dy = +∞

for every x ∈ Q0 = {y = (y1, · · · , yn) : − 1
2 < yi ≤ 1

2 , i = 1, · · · , n}.

In §2 we enumerate different equivalent norms in Bα,qp (Rn) that we will use throughout
this paper and we state immersion and regularization results for Besov spaces. In §3 we
prove a trace inequality which is interesting by itself and will be useful in the proof
of Theorem 1.4. In §4 we give the proofs of parts a) of Theorem 1.2 and Corollary 1.3
(positive results). In §5 we present the proofs of parts b) of Theorem 1.2 and Corollary 1.3
and Theorem 1.6 (negative results). In §6 we consider the differentiation of integrals of
Besov functions with respect to a somehow more general basis. In particular we show
that the gap n

p − 1 ≤ α < n−1
p is filled with negative results.

In what follows c will denote a constant that can vary even within a single chain of
inequalities.
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2. norms, inmersions, regularization and localization of besov functions.

Throughout this paper we will use different norms equivalent to (1.1) in Bα,qp (Rn) :
1. For k an integer larger than α, an equivalent norm is given by

(2.7) ‖f‖Lp(Rn) + (
∫ ∞

0

‖tk−α ∂
kuf
∂tk

(·, t)‖qLp(Rn)
dt
t )

1
q .

(Taibleson [11]).
2. For k ∈ N and f ∈ Lp(Rn) we introduce the Lp modulus of continuity of f of order k,

ωk(f, t)p = sup
|h|≤t,h∈Rn

‖∆k
hf‖Lp(Rn)

where ∆k
hf(x) =

∑k
i=0

(
k
i

)
(−1)k−if(x+ ih) is the finite difference operator of order k

and step h. Then, if k > α,

(2.8) ‖f‖Lp(Rn)+
( ∫ ∞

0

(t−αωk(f, t)p)q dtt
) 1
q

is an equivalent norm in Bα,qp (Rn) (Triebel [12]).
3. Let ϕ ∈ S(Rn), the Schwartz class, be such that supp(ϕ̂) ⊂ {1/2 ≤ |ξ| ≤ 2} and
|ϕ̂(ξ)| ≥ c for 3/5 ≤ |ξ| ≤ 5/3 for some constant c > 0, where ϕ̂ denotes the Fourier
transform of ϕ. Another equivalent norm in Bα,qp (Rn) is given by

(2.9) ‖f‖Lp(Rn) +
(∫ ∞

0

(
t−α‖ϕt ∗ f‖Lp(Rn)

)q dt
t

)1/q
where ϕt(x) = t−nϕ(x/t) (Triebel [12],Bui-Paluszyński-Taibleson [2]).

In (2.7), (2.8) and (2.9) we have the obvious changes for q =∞ and if q < ∞,
∫∞

0
may

be replaced by
∫ 1

0
.

We have the following immersion results for Besov spaces (Taibleson [11]):
Proposition 2.10. Bα,qp (Rn) ↪→ Bβ,vw (Rn) if and only if either p ≤ w and α− n

p > β− n
w

or p ≤ w, α− n
p = β − n

w and q ≤ v.

Localization and regularization are two valid procedures in Besov spaces. The fol-
lowing lemma will be helpful in the proofs of the results in §4 (see Taibleson [11] and
Triebel [12]). In the following if ν = (ν1, · · · , νn) ∈ Nn0 is a multiindex then |ν| =

∑n
i=1 νi

and Dνg denotes the derivative of order ν of g. C∞0 (Rn) is the set of indefinitely differ-
entiable functions on Rn, with compact support.
Lemma 2.11. Let α > 0 and 1 ≤ p, q ≤ ∞.
a) If p, q <∞ and f ∈ Bα,qp (Rn) with supp(f) ⊂ B(0, r), r > 0, then, given ε > 0, there

exists g ∈ C∞0 (Rn) such that supp(g) ⊂ B(0, 2r) and ‖f − g‖Bα,qp (Rn) < ε.

b) If g ∈ C∞0 (Rn) then gf ∈ Bα,qp (Rn) for every f ∈ Bα,qp (Rn). Moreover if m ∈ N,
m > α, then

‖gf‖Bα,qp (Rn) ≤ c
∑
|ν|≤m

‖Dνg‖L∞(Rn)‖f‖Bα,qp (Rn).

where c is a constant independent of f and g.
c) We have C∞0 (Rn) ⊂ Bα,qp (Rn). Moreover, if p, q <∞ then C∞0 (Rn) is a dense subset

in Bα,qp (Rn).
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3. a trace inequality.

If x ∈ Rn we set x = (x′, xn) where x′ ∈ Rn−1 and xn ∈ R. For a function f of
variable x ∈ Rn, we write ‖f(·, xn)‖Bα,1p (Rn−1) for the norm in Bα,1p (Rn−1) of f(x′, xn)
as a function of x′.

In this section we are going to prove the following theorem:

Theorem 3.12. Let α > 0, 1 ≤ p ≤ ∞, r > 0 and f ∈ C∞0 (Rn). If supp(f) ⊂ B(0, r)
then ∫ r

−r
‖f(·, xn)‖Bα,1p (Rn−1) dxn ≤ c r

1/p′‖f‖Bα,1p (Rn)

where c is a constant independent of f and r.

For the proof of Theorem 3.12 we need the following lemmata:

Lemma 3.13. If f is an indefinitely differentiable function on Rn, k ∈ N and h ∈ Rn
then

∆k
hf(x) =

∫
R

∑
|ν|=k

k!
ν! (D

νf)(x+ ξh)hνMk(ξ) dξ,

where M1 = χ(0,1) and Mk = M1 ∗Mk−1 for k ≥ 2. Here hν = hν1
1 · · ·hνnn and ν! =

ν1! · · · νn! if h = (h1, · · · , hn) and ν = (ν1, · · · , νn).

Lemma 3.14. If 1 ≤ p ≤ ∞ and f ∈ C∞0 (Rn) then uf (x′, xn, y)→ f(x′, xn) in Lp(Rn−1)
as y → 0 for every xn ∈ R.

Proof of Theorem 3.12. Fix r > 0, α > 0, 1 ≤ p ≤ ∞ and k ∈ N, k > α.
Let f ∈ C∞0 (Rn) with supp(f) ⊂ B(0, r), y, t > 0, y < t, and consider the following

integral version of Taylor’s formula

uf (x′, xn, y) =
k−1∑
m=0

1
m!

∂muf
∂tm (x′, xn, t)(y − t)m − 1

k−1!

∫ t

y

(y − s)k−1 ∂
kuf
∂sk

(x′, xn, s) ds.

For h ∈ Rn−1 let us perform the finite difference operator of order k and step h in the
variable x′, then

∆k
huf (x′, xn, y) =

k−1∑
m=0

1
m!∆

k
h
∂muf
∂tm (x′, xn, t)(y − t)m

− 1
k−1!

∫ t

y

(y − s)k−1∆k
h
∂kuf
∂sk

(x′, xn, s) ds.

By Lemma 3.13 applied to ∂muf
∂tm (x′, xn, t) as a function of x′ for m = 0, · · · , k− 1, where

the order of derivation ν belongs to Nn−1
0 , we obtain

∆k
huf (x′, xn, y) =

k−1∑
m=0

1
m!

∫
R

∑
|ν|=k

k!
ν! (D

ν ∂
muf
∂tm )(x′ + ξh, xn, t)hνMk(ξ) dξ (y − t)m

− 1
k−1!

∫ t

y

(y − s)k−1∆k
h
∂kuf
∂sk

(x′, xn, s) ds.
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Applying Minkowski’s integral inequality and noting that
∫
R
Mk(ξ) dξ = 1 and that

‖∆k
h
∂kuf
∂sk

(·, xn, s)‖Lp(Rn−1) ≤ 2k‖∂
kuf
∂sk

(·, xn, s)‖Lp(Rn−1) it turns out that

‖∆k
huf (·, xn, y)‖Lp(Rn−1) ≤

k−1∑
m=0

1
m!

∑
|ν|=k

k!
ν!‖D

ν ∂
muf
∂tm (·, xn, t)‖Lp(Rn−1)|h|k (t− y)m

+ 2k

k−1!

∫ t

y

(s− y)k−1‖∂
kuf
∂sk

(·, xn, s)‖Lp(Rn−1) ds.

Since by Lemma 3.14
∆k
huf (x′, xn, y)→ ∆k

hf(x′, xn)

in Lp(Rn−1) as y → 0 then

‖∆k
hf(·, xn)‖Lp(Rn−1) ≤

k−1∑
m=0

1
m!

∑
|ν|=k

k!
ν!‖D

ν ∂
muf
∂tm (·, xn, t)‖Lp(Rn−1)|h|k tm

+ 2k

k−1!

∫ t

0

sk−1‖∂
kuf
∂sk

(·, xn, s)‖Lp(Rn−1) ds.

Taking supremun for |h| ≤ t, multiplying by t−α and integrating in (0,∞) with respect
to dt

t we have∫ ∞
0

t−αωk(f(·, xn), t)p dtt ≤
k−1∑
m=0

1
m!

∑
|ν|=k

k!
ν!

∫ ∞
0

‖tm+k−αDν ∂
muf
∂tm (·, xn, t)‖Lp(Rn−1)

dt
t

+ 2k

k−1!

∫ ∞
0

t−α
∫ t

0

sk−1‖∂
kuf
∂sk

(·, xn, s)‖Lp(Rn−1) ds
dt
t .

Applying Hardy’s inequality to the second term on the right hand side, integrating in
(−r, r) with respect to dxn and then applying Hölder’s inequality, we get∫ r

−r

∫ ∞
0

t−αωk(f(·, xn), t)p dtt dxn

≤
k−1∑
m=0

1
m!

∑
|ν|=k

k!
ν!

∫ ∞
0

(2r)1/p′‖tm+k−αDν ∂
muf
∂tm (·, t)‖Lp(Rn)

dt
t

+ 2k

k−1!α

∫ ∞
0

(2r)1/p′‖tk−α ∂
kuf
∂tk

(·, t)‖Lp(Rn)
dt
t .

Using that, for |ν| = k, we have (see Taibleson [11, Lemma 4 and Theorem 1])∫ ∞
0

‖tm+k−αDν ∂
muf
∂tm (·, t)‖Lp(Rn)

dt
t ≤ c

∫ ∞
0

‖tk−αDνuf (·, t)‖Lp(Rn)
dt
t

≤ c
∫ ∞

0

‖tk−α ∂
kuf
∂tk

(·, t)‖Lp(Rn)
dt
t ,

then ∫ r

−r

∫ ∞
0

t−αωk(f(·, xn), t)p dtt dxn ≤ c r
1/p′

∫ ∞
0

‖tk−α ∂
kuf
∂tk

(·, t)‖Lp(Rn)
dt
t .

This last inequality and the fact that
∫ r
−r ‖f(·, xn)‖Lp(Rn−1) dxn ≤ (2r)1/p′‖f‖Lp(Rn) give

the desired result. �
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Proof of Lemma 3.13. We follow Bennett-Sharpley [1]. We first prove the lemma for
n = 1 by induction on k. Noting by f ′ the first derivative of f, we have for k = 1,

∫
R

f ′(x+ ξh)hM1(ξ) dξ =
∫ 1

0

f ′(x+ ξh)h dξ

= f(x+ h)− f(x)

= ∆1
hf(x).

Assume the formula is true for k = 1, · · · ,m and let us prove it for k = m + 1. We
note by f (k) the derivative of f of order k. Applying ∆1

h to both sides of the induction
hypothesis for k = m, ∆m

h f(x) =
∫
R
f (m)(x + ξh)hmMm(ξ) dξ, and using the induction

hypothesis for k = 1 applied to f (m) we obtain

h−(m+1)∆m+1
h f(x) =

∫
R

h−1(∆1
hf

(m))(x+ ξh)Mm(ξ) dξ

=
∫
R

h−1
(∫
R

f (m+1)(x+ ξh+ τh)hM1(τ) dτ
)
Mm(ξ) dξ

=
∫
R

(∫
R

f (m+1)(x+ uh)M1(u− ξ) du
)
Mm(ξ) dξ

=
∫
R

f (m+1)(x+ uh)
(∫
R

M1(u− ξ)Mm(ξ) dξ
)
du

=
∫
R

f (m+1)(x+ uh)Mm+1(u) du.

In the next to the last equality we have used Fubini’s Theorem since the integrals converge
absolutely.

Assume now n ≥ 2. Let g(t) = f(x+ t h|h| ), t ∈ R. Observe that ∆k
|h|g(t) = (∆k

hf)(x+

t h|h| ) and that g(k)(ξ|h|) =
∑
|ν|=k

k!
ν! (D

νf)(x + ξh)
(
h
|h|
)ν
. Applying the thesis of the

lemma for n = 1 to g in t = 0 we obtain

∆k
hf(x) = ∆k

|h|g(0) =
∫
R

g(k)(ξ|h|)|h|kMk(ξ) dξ

=
∫
R

∑
|ν|=k

k!
ν! (D

νf)(x+ ξh)
(
h
|h|
)ν |h|kMk(ξ) dξ

=
∫
R

∑
|ν|=k

k!
ν! (D

νf)(x+ ξh)hνMk(ξ) dξ.

�

Proof of Lemma 3.14. Let f ∈ C∞0 (Rn). Observe that uf (x, y) → f(x) uniformly in Rn

as y → 0, so in particular uf (x′, xn, y) → f(x′, xn) in L∞(Rn−1) as y → 0 for every
xn ∈ R. So we may assume 1 ≤ p <∞. We follow some ideas of Taibleson [11, Theorem
12].
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Let j ∈ N0. Then∫
Rn−1

|∂
juf
∂yj (x′,xn, y)|p dx′ =

∫
Rn−1

|∂
juf
∂yj (x′, xn, y/2) ∗ Py/2(x′, xn)|p dx′

≤
∫
x′∈Rn−1

(∫
z∈Rn

|∂
juf
∂yj (z, y/2)|Py/2(x′ − z′, xn − zn) dz

)p
dx′

≤
∫
x′∈Rn−1

∫
z∈Rn

|∂
juf
∂yj (z, y/2)|p Py/2(x′ − z′, xn − zn) dz dx′

≤ c y−1

∫
z∈Rn

|∂
juf
∂yj (z, y/2)|p dz.

In particular, uf (·, xn, y) ∈ Lp(Rn−1) and

(3.15) ‖∂uf∂y (·, xn, y)‖Lp(Rn−1) ≤ c y−1/p‖∂uf∂y (·, y/2)‖Lp(Rn).

Observe that if 0 < γ < 1/p′ then

(3.16) ‖∂uf∂y (·, y)‖Lp(Rn) ≤ c yγ−1/p′ .

In fact, taking into account that ‖∂uf∂y (·, y)‖Lp(Rn) is a non increasing function of y for
y ∈ (0,+∞)(Stein [7, page 154, Lemma 6 ]) we have

(1/p′ − γ)−1y1/p′−γ‖∂uf∂y (·, y)‖Lp(Rn) =
∫ y

0

t1/p
′−γ‖∂uf∂y (·, y)‖Lp(Rn)

dt
t

≤
∫ y

0

t1/p
′−γ‖∂uf∂t (·, t)‖Lp(Rn)

dt
t

≤
∫ ∞

0

t1/p
′−γ‖∂uf∂t (·, t)‖Lp(Rn)

dt
t .

Since f ∈ C∞0 (Rn) ⊂ B1−1/p′+γ,1
p (Rn) (Lema 2.11) the last integral is finite and then we

have (3.16).
From (3.15) and (3.16) we obtain ‖∂uf∂y (·, xn, y)‖Lp(Rn−1) ≤ c yγ−1. So, if y′ < y,

‖uf (·, xn, y)− uf (·, xn, y′)‖Lp(Rn−1) ≤
∫ y

y′
‖∂uf∂t (·, xn, t)‖Lp(Rn−1) dt

≤ c
∫ y

y′
tγ−1 dt.

We then have that uf (x′, xn, y) converges in Lp(Rn−1) to a function gxn(x′) ∈ Lp(Rn−1)
as y → 0. Since uf (x, y)→ f(x) uniformly in Rn as y → 0, it must be gxn(x′) = f(x′, xn)
and we obtain the desired result. �

4. proofs of 1.2.a and 1.3.a (positive results).

Since the proof of Theorem 1.4 follows that of Stokolos [9, Lemma1] which makes use
of the non-increasing rearrangement of a function, we give its definition here and we state
a property (equality (4.17)) which will be useful in the proofs of both Theorem 1.4 and
Lemma 4.18 below.

Suppose f is a measurable function in Rn. The non-increasing rearrangement of f is
the function f∗ defined in [0,+∞) by

f∗(t) = inf{λ ≥ 0 : mf (λ) ≤ t} t ≥ 0,

where mf is the distribution function of f, that is, mf (λ) = |{x ∈ Rn : |f(x)| > λ}|.
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Let t > 0, then

(4.17)
∫ t

0

f∗(s) ds = sup
|E|=t, E⊂Rn

∫
E

|f(x)| dx.

See for example Bennett-Sharpley [1, page 53, Propotition 3.3 ].
For the proof of Theorem 1.4 we also need the following estimate of rearrangements

in terms of Besov norms.

Lemma 4.18. For 1 ≤ p <∞ we have

1
t

∫ t

0

f∗(s) ds ≤ c ‖f‖
B
n/p,1
p (Rn)

for all t > 0. Here c is a constant independent of f and t.

Proof of Theorem 1.4. Fix 1 ≤ p < ∞ and r > 0. By part a) of Lemma 2.11 and
using standard arguments it is enough to prove inequality (1.5) for f ∈ C∞0 (Rn) with
supp(f) ⊂ B(0, r). We follow Stokolos [9, Lemma 1] to get the proof of the theorem.

Let f ∈ C∞0 (Rn) with supp(f) ⊂ B(0, r) and x = (x′, xn) ∈ R ∈ B. It can be shown
that there exists a measurable set R̄, containing R, whose measure and diameter are
comparable to those of R, whose projection onto a coordinate axis, yn for instance,
is an interval I and the section of R̄ by the hyperplane yn = t, denoted by R̄t (i.e.
R̄t = {y′ ∈ Rn−1 : (y′, t) ∈ R̄}), has constant measure for t ∈ I. We denote by f∗(t, yn)
the non-increasing rearrangement of f(y′, yn) for each fixed yn as a function of y′. Then,
using (4.17) and Lemma 4.18 we have

1
|R|

∫
R

|f(y)| dy ≤ c 1
|R̄|

∫
R̄

|f(y)| dy

= c
1
|I|

∫
I

1
|R̄yn |

∫
R̄yn

|f(y′, yn)| dy′ dyn

≤ c 1
|I|

∫
I

1
|R̄yn |

∫ |R̄yn |
0

f∗(t, yn) dt dyn

≤ c 1
|I|

∫
I

‖f(·, yn)‖
B

(n−1)/p,1
p (Rn−1)

dyn.

Then, if Mhl denotes the Hardy-Littlewood maximal operator on R, it turns out that

Mf(x) ≤ cMhl(‖f(·, ·)‖
B

(n−1)/p,1
p (Rn−1)

)(xn),

and since the sets in B have diameter smaller than 1, supp(f) ⊂ B(0, r) and Mhl is of
weak type (1, 1) , it follows that

|{x ∈ Rn :Mf(x) > λ}| = |{x ∈ B(0, r + 1) :Mf(x) > λ}|

≤ c (r + 1)n−1

λ

∫ r

−r
‖f(·, xn)‖

B
(n−1)/p,1
p (Rn−1)

dxn.

Taking into account the result of Theorem 3.12 we complete the proof of the theorem. �

Proof of part a) of Theorem 1.2. By part b) of Lemma 2.11 it is enough to prove the
theorem for functions of compact support. Let f ∈ B(n−1)/p,1

p (Rn), supp(f) ⊂ B(0, r),
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r > 0 and

Γf(x) = lim sup
R→x

1
|R|

∫
R

|f(y)− f(x)| dy

= inf
δ>0

sup{ 1
|R|

∫
R

|f(y)− f(x)| dy, x ∈ R ∈ B, diam(R) < δ}.

Set t > 0 and Et(f) = {x ∈ Rn : Γf(x) > t}. We are done if we prove that |Et(f)|e = 0
for every t > 0, where |.|e denotes outer measure.

By part a) of Lemma 2.11, given ε > 0 there exists g ∈ C∞0 (Rn) such that supp(g) ⊂
B(0, 2r) and ‖f − g‖

B
(n−1)/p,1
p (Rn)

< ε. We have

Γf(x) ≤ Γ(f − g)(x) + Γg(x)

≤M(f − g)(x) + |f(x)− g(x)|+ Γg(x)

=M(f − g)(x) + |f(x)− g(x)|.

So, using Theorem 1.4,

|Et(f)|e ≤ |{x ∈ Rn :M(f − g)(x) > t
2}|+ |{x ∈ R

n : |f(x)− g(x)| > t
2}|

≤ (c/t)(2r + 1)n−1(2r)1/p′‖f − g‖
B

(n−1)/p,1
p (Rn)

+ (2/t)p‖f − g‖pLp(Rn)

≤ (c/t)(2r + 1)n−1(2r)1/p′ε+ (2/t)pεp.

Since ε is arbitrary, this ends the proof of the theorem. �

Proof of part a) of Corollary 1.3. It is a direct consequence of part a) of Theorem 1.2 and
Proposition 2.10. In fact, we have Bα,qp (Rn) ⊂ B

(n−1)/p,1
p (Rn) if α > n−1

p , 1 ≤ q ≤ ∞
and 1 ≤ p <∞. �

Proof of Lemma 4.18. We will prove the lemma using a result which is essentially
Calderón’s representation formula for tempered distributions. More precisely, it can be
shown that for µ a finite Borel measure satisfying the standard Tauberian condition (for
all ξ ∈ Rn, ξ 6= 0, there exists s > 0 such that µ̂(sξ) 6= 0) there exists η ∈ S(Rn) such that
supp(η̂) is contained in an annulus and

∫∞
0
µ̂(sξ)η̂(sξ) dss = 1 for ξ 6= 0 (Heideman [5]).

Fix 1 ≤ p <∞. We assume f ∈ Bn/p,1p (Rn) since otherwise there is nothing to prove.
Consider in B

n/p,1
p (Rn) the norm (2.9) and let η ∈ S(Rn) be associated to µ = ϕ(x) dx

according to Heideman’s result above. We then define

ψ̂(ξ) =
{ ∫∞

1
ϕ̂(sξ)η̂(sξ) dss , ξ 6= 0,

1, ξ = 0.

Observe that ψ̂ ∈ C∞0 (Rn) and ψ̂ = 1 in a neighborhood of the origin. In fact, if
supp(η̂) ⊂ {ξ : 0 < a < |ξ| < b}, then ψ̂(ξ) = 1 if |ξ| < a and ψ̂(ξ) = 0 if |ξ| > b. It is
now clear that ψ̂ ∈ C∞0 (Rn). Then ψ ∈ S(Rn) and

∫
Rn
ψ(x)dx = 1. So that ψ is a good

approximation to the identity.
Set Iε,a(x) =

∫ a
ε

(ϕs ∗ ηs)(x) dss , ε < a. The function Iε,a ∈ L1(Rn) since∫
Rn

|Iε,a(x)| dx ≤
∫ a

ε

∫
Rn

|(ϕs ∗ ηs)(x)| dx ds
s

≤ ‖ϕ‖L1(Rn)‖η‖L1(Rn) log
(
a
ε

)
.
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By Fubini’s theorem,

ˆIε,a(ξ) =
∫
Rn

∫ a

ε

(ϕs ∗ ηs)(x)e−ixξ dss dx

=
∫ a

ε

∫
Rn

(ϕs ∗ ηs)(x)e−ixξ dx ds
s

=
∫ a

ε

(ϕs ∗ ηs)̂(ξ) dss

=
∫ a

ε

ϕ̂(sξ)η̂(sξ) dss

= ψ̂(εξ)− ψ̂(aξ)

= ψ̂ε(ξ)− ψ̂a(ξ).

So Iε,a ∈ S(Rn) and Iε,a = ψε − ψa. Then, since convolution with f commutes with the
integral, we arrive at

(4.19) (ψε ∗ f)(x)− (ψa ∗ f)(x) = (Iε,a ∗ f)(x) =
∫ a

ε

(ϕs ∗ ηs ∗ f)(x) dss .

Applying Minkowski’s integral inequality and Young’s inequality we have

‖ψε ∗ f − ψa ∗ f‖Lp(Rn) ≤ ‖η‖L1(Rn)

∫ a

ε

‖ϕs ∗ f‖Lp(Rn)
ds
s

and since ψε ∗ f → f in Lp(Rn) as ε→ 0, it turns out that

(4.20) ‖f − ψa ∗ f‖Lp(Rn) ≤ ‖η‖L1(Rn)

∫ a

0

‖ϕs ∗ f‖Lp(Rn)
ds
s .

On the other hand, taking a = 1 (ψa = ψ) in (4.19) and applying Hölder’s inequality,

|(ψε ∗ f)(x)| ≤ |(ψ ∗ f)(x)|+
∫ 1

ε

|(ϕs ∗ ηs ∗ f)(x)| dss

≤ ‖ψ‖Lp′ (Rn)‖f‖Lp(Rn) +
∫ 1

ε

‖ηs‖Lp′ (Rn)‖ϕs ∗ f‖Lp(Rn)
ds
s

= ‖ψ‖Lp′ (Rn)‖f‖Lp(Rn) + ‖η‖Lp′ (Rn)

∫ 1

ε

s−n/p‖ϕs ∗ f‖Lp(Rn)
ds
s

≤ c
(
‖f‖Lp(Rn) +

∫ 1

ε

s−n/p‖ϕs ∗ f‖Lp(Rn)
ds
s

)
.(4.21)

Then, using (4.17), Hölder’s inequality, (4.20) and (4.21) we have, for a < 1,

1
t

∫ t

0

f∗(s) ds =
1
t

sup
E⊂Rn, |E|=t

∫
E

|f(x)| dx

≤ 1
t

sup
E⊂Rn, |E|=t

∫
E

|f(x)− (ψa ∗ f)(x)| dx+ ‖ψa ∗ f‖L∞(Rn)

≤ 1
t1/p
‖f − ψa ∗ f‖Lp(Rn) + ‖ψa ∗ f‖L∞(Rn)

≤
‖η‖L1(Rn)

t1/p

∫ a

0

‖ϕs ∗ f‖Lp(Rn)
ds
s + c

(
‖f‖Lp(Rn) +

∫ 1

a

s−n/p‖ϕs ∗ f‖Lp(Rn)
ds
s

)
.
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If t < 1 and a = t1/n we obtain

1
t1/p

∫ t1/n

0

‖ϕs ∗ f‖Lp(Rn)
ds
s ≤

∫ t1/n

0

s−n/p‖ϕs ∗ f‖Lp(Rn)
ds
s

and then

1
t

∫ t

0

f∗(s) ds ≤ c ‖f‖
B
n/p,1
p (Rn)

, t < 1.

If t ≥ 1 then

1
t

∫ t

0

f∗(s) ds ≤ 1
t1/p

( ∫ t

0

f∗(s)p ds
) 1
p≤

(∫ ∞
0

f∗(s)p ds
) 1
p = ‖f‖Lp(Rn) ≤ ‖f‖Bn/p,1p (Rn)

.

�

5. proofs of 1.2.b, 1.3.b and 1.6 (negative results).

Proof of part b) of Theorem 1.2. Fix 1 ≤ p < n and 0 < α < n
p − 1. Following

Stokolos [9, 10], we consider in Q0 = {(y1, · · · , yn) : − 1
2 < yi ≤ 1

2 , i = 1, · · · , n}, mn

disjoint equal cubes Imj of measure |Imj | = m−n. Let Qmj be the cube concentric with

Imj of measure |Qmj | = 2−nm. Let ψ be a non-negative function in B
(n−1)/p,∞
∞ (Rn) with

supp(ψ) ⊂ B(0, 1) and ψ ≡ 1 in B(0, 1
2 ). We define fmj (x) = 2mψ(2m+1(x − xmj )),

where xmj is the center of Qmj . Then supp(fmj ) ⊂ Qmj and since, from (2.8), |∆n
hψ(x)| ≤

c |h|(n−1)/p for every h ∈ Rn and x ∈ Rn, we have

|∆n
hf

m
j (x)| = |

n∑
i=0

(
n

i

)
(−1)n−ifmj (x+ ih)|

= |2m
n∑
i=0

(
n

i

)
(−1)n−iψ(2m+1(x+ ih− xmj ))|

= |2m∆n
2m+1hψ(2m+1(x− xmj ))|

≤ c 2m|2m+1h|
n−1
p

= c 2m(1+
n−1
p )|h|

n−1
p .

Set

f(x) =
∞∑
m=1

mn∑
j=1

fmj (x)

for x ∈ Rn. Clearly f ∈ Lp(Rn) since

‖f‖Lp(Rn) ≤
∞∑
m=1

mn∑
j=1

‖fmj ‖Lp(Rn) = 2−
n
p ‖ψ‖Lp(Rn)

∞∑
m=1

mn2m(1−np )
<∞.
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Moreover f ∈ Bα,1p (Rn). In fact, if t > 0 and l ∈ N are such that 2−(l+1) ≤ t < 2−l and
h ∈ Rn with |h| < t, we have

‖∆n
hf‖Lp(Rn) ≤

l∑
m=1

mn∑
j=1

‖∆n
hf

m
j ‖Lp(cnQmj ) + 2n

∞∑
m=l+1

mn∑
j=1

‖fmj ‖Lp(Rn)

≤ c (|h|
n−1
p

l∑
m=1

mn2m(1+
n−1
p )2−

nm
p +

∞∑
m=l+1

mn2m(1−np ))

≤ c (|h|
n−1
p ln+12l(1−

1
p ) +

∞∑
m=l+1

mn2m(1−np )).

Since |h| < t,
∑∞
m=l+1m

n2m(1−np ) ≤ c (l + 1)n+12(l+1)(1−np ) for 1 ≤ p < n and t ≥
2−(l+1), then both terms on the right hand side of the above inequality are bounded

above by c t
n−1
p ln+12l(1−

1
p )
. We then have,∫ 1

0

t−αωn(f, t)p dtt ≤ c
∞∑
l=0

∫ 2−l

2−(l+1)
t
n−1
p −αln+12l(1−

1
p ) dt

t

= c
∞∑
l=0

ln+12l(1−
1
p )(2−l(

n−1
p −α) − 2−(l+1)(

n−1
p −α)) <∞

since α < n
p − 1.

Let us now prove that

lim sup
diam(R)→0, x∈R∈B

1
|R|

∫
R

f(y) dy = +∞

for every x ∈ Q0 by showing that if x ∈ Imj , there exists a convex set K(x), and then
a rectangular parallelepiped (de Guzmán [3, page 139, Lemma 2.2 (John’s Lemma) ]),
such that x ∈ K(x), diam(K(x)) ≤ cm−1 and

1
|K(x)|

∫
K(x)

fmj (y) dy ≥ cm.

Set x ∈ Imj and consider the closed segment J joining x with xmj . Let Bmj be the ball
with center xmj circumscribing Qmj (that is, Bmj = B(xmj , (

√
n/2)2−m)) and K(x) =

∪y∈JB(y, (
√
n/2)2−m). Then Qmj ⊂ K(x),

diam(K(x)) = l(J) + diam(Bmj ) ≤ 2diam(Imj ) ≤ cm−1,

and
|K(x)| ≤ c (l(J) + diam(Bmj ))(diam(Bmj ))n−1 ≤ cm−12−(n−1)m.

Finally, observing that fmj (x) = 2m in 1
2
√
n
Qmj , the cube concentric with Qmj whose side

measures 1
2
√
n

times the side of Qmj , we have

1
|K(x)|

∫
K(x)

fmj (y) dy ≥ c
2m| 1

2
√
n
Qmj |

2−(n−1)mm−1
= cm.

�

Proof of part b) of Corollary 1.3. It is a consequence of part b) of Theorem 1.2 and
Proposition 2.10 since we have Bα,1p (Rn) ⊂ Bα,qp (Rn), q ≥ 1. �
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Proof of Theorem 1.6. It is a consequence of the proof of part b) of Theorem 1.2 and
Proposition 2.10. �

6. stokolos’ basis of pliable tubes.

Theorem 1.4 is valid for more general bases. Given i = 1, · · · , n, let E be a measurable
set whose projection onto the xi−axis is an interval I and such that the section of E by
the hyperplane xi = t has constant measure for t ∈ I. We denote by Pi the differentiation
basis of all such sets with diameter smaller than 1 and set P = ∪ni=1Pi. This is what
Stokolos [9] calls the basis of pliable tubes. It is clear that the proof of Theorem 1.4
allows to show inequality (1.5) for the maximal operator associated to P instead of M.
In fact, we have used in the proof that every element of B is contained in an element of
P of comparable measure and diameter. So P differentiates Bα,qp (Rn) with α, p and q in
the range of the positive results for B. We can give a complete answer to the question of
differentiation of integrals of Besov functions in this case.
Theorem 6.22. Let 0 < α < n−1

p , 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Then P does not
differentiate Bα,qp (Rn).

Proof. We use the following

Lemma 6.23. Let α > 0, 1 ≤ p, q ≤ ∞, m, n ∈ N, m ≤ n. For φ ∈ Bα,qp (Rm) and
g ∈ Bα,qp (Rn−m) let

f(x1, · · · , xn) = φ(x1, · · · , xm)g(xm+1, · · · , xn).

Then f ∈ Bα,qp (Rn).

The proof of Theorem 6.22 we present here is essentially that of Stokolos [9, Theorem
1]. Fix 0 < α < n−1

p , 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, then there exists a non-negative
function v ∈ Bα,qp (Rn−1) such that v /∈ L∞(Rn−1). Let {mi}i∈N be a dense subset in
R
n−1 and define

φ(y) =
∞∑
i=1

2−iv(y +mi), y ∈ Rn−1.

Then φ ∈ Bα,qp (Rn−1) and φ is unbounded in every neighborhood of every point of Rn−1.
Let g ∈ Bα,qp (R) be a non-negative function such that g = 1 in (−1, 1) and consider

f(x1, · · · , xn) = φ(x1, · · · , xn−1)g(xn).

Then, by Lemma 6.23, f ∈ Bα,qp (Rn). We will see that P does not differentiate the
integral of f by showing that for every x = (x1, · · · , xn) with |xn| < 1 we have

lim sup
diam(E)→0, x∈E∈P

1
|E|

∫
E

f(y) dy = +∞.

Fix x = (x1, · · · , xn) ∈ Rn with |xn| < 1. Given an n − 1 dimensional neighborhood
N of (x1, · · · , xn−1) let Q be an (n − 1)−dimensional ball contained in N such that

1
|Q|
∫
Q
φ(y′) dy′ is great enough. Let w = (w1, · · · , wn−1) be the center of Q and a < b < c

numbers such that b − a = c − b, (a, c) ⊂ (−1, 1) and xn ∈ (b, c). Let J be the segment
through x starting at (w1, · · · , wn−1, b) and such that its projection onto the xn−axis is
the closed interval [b, c]. We define E1 as the union of all balls congruent to Q with center
in J and E2 = Q× (a, b). Let E = E1 ∪E2, so E ∈ P, x ∈ E, |E| = 2|Q|(b− a) and the
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diameter of E can be made small enough taking N and c− a small enough; moreover we
have

1
|E|

∫
E

f(y) dy ≥ 1
2|Q|(b− a)

∫
E2

f(y) dy =
1

2|Q|

∫
Q

φ(y′) dy′.

�

Proof of Lemma 6.23. Let φ, g, f be as in the statement of the lemma. Observe that
f ∈ Lp(Rn), since ‖f‖Lp(Rn) = ‖φ‖Lp(Rm)‖g‖Lp(Rn−m). Let t > 0, h ∈ R, |h| < t and
k ∈ N, k > α. Then, if j = 1, · · · ,m, we have

∆k
hejf(x1, · · · , xn) =

k∑
i=0

(
k

i

)
(−1)k−iφ(x1, · · · , xj + ih, · · · , xm)g(xm+1, · · · , xn)

= g(xm+1, · · · , xn)∆k
hejφ(x1, · · · , xm).

So, ‖∆k
hej
f‖Lp(Rn) = ‖g‖Lp(Rn−m)‖∆k

hej
φ‖Lp(Rm) and then

ωjk(f, t)p := sup
|h|<t, h∈R

‖∆k
hejf‖Lp(Rn) = ‖g‖Lp(Rn−m)ω

j
k(φ, t)p

for j = 1, · · · ,m. Analogously it follows that

ωjk(f, t)p = ‖φ‖Lp(Rm)ω
j−m
k (g, t)p.

if j = m+ 1, · · · , n. Since (Triebel [12])

‖f‖Bα,qp (Rn) ∼ ‖f‖Lp(Rn) +
n∑
j=1

(∫ 1

0

(t−αωjk(f, t)p)q dtt
) 1
q ,

with the obvious changes for q = ∞, φ ∈ Bα,qp (Rm) and g ∈ Bα,qp (Rn−m), we have that
f ∈ Bα,qp (Rn). �
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