CHARACTERIZATIONS OF $B M O_{\varphi}(w)$

ELEONOR HARBOURE, OSCAR SALINAS, AND BEATRIZ VIVIANI

Abstract

In this paper we give two characterizations of functions with weighted mean oscillation over cubes controlled by a non-negative function φ, that is functions in $\mathrm{BMO}_{\varphi}(w)$. The first one, by conditions on their rearrangements, and the second one, by means of Riesz transforms and φ-Lipschitz functions. These results extend those contained in $[\mathrm{S}]$ and $[\mathrm{J}]$.

1. Introduction

The aim of this paper is to obtain characterizations of spaces of functions whose oscillation, when averaged over cubes is controlled by means of a weight w and a growth function φ, measuring their degree of smoothness.

The first appearance of this kind of weighted spaces goes back to [MW]. There, the authors introduced $B M O(w)(\varphi \equiv 1$ in our context) as the natural space where weighted L^{∞} functions are mapped by \mathcal{H}, the Hilbert transform on the line, and generalizing the well known $B M O$ space of John and Niremberg. In the more general context $\varphi(t)=t^{\beta}, \quad 0<\beta<1$, it is shown in [HSV1] that the fractional integral operator I_{α} applies $L^{p}(w)$ with $p>n / \alpha$ into these spaces, under suitable conditions on the weight. Later on this result was extended to weighted Orlicz spaces [HSV2] giving rise to the spaces under consideration in their full generality. Finally in $[\mathrm{M}]$ it is shown that they are preserved by the Hilbert transform on the line.

We start by giving the precise definition of our spaces and reminding some basic notions about weights.

Let φ be a continuous non-negative and non-decreasing function defined on $[0, \infty)$ with $\varphi(0)=0$ and satisfying a doubling condition (or a Δ_{2}-condition), that is there exists a constant C such that

[^0]\[

$$
\begin{equation*}
\varphi(2 R) \leq C \varphi(R) \tag{1.1}
\end{equation*}
$$

\]

for every $R>0$. Let w be a weight in the A_{∞} Muckenhoupt's class, that is a non-negative a.e. and locally integrable function satisfying

$$
\begin{equation*}
\frac{w(E)}{w(Q)} \leq C\left(\frac{|E|}{|Q|}\right)^{\delta} \tag{1.2}
\end{equation*}
$$

for every cube Q in \mathbb{R}^{n} and every measurable set $E \subset Q$, where C and δ are positive constants depending neither on Q nor on E and $w(E)=\int_{E} w(x) d x$.

We shall say that a function f in $L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ has w-mean oscillations over cubes controlled by φ or, shorter, that it belongs to $B M O_{\varphi}(w)$, if there exists a constant C such that the inequality

$$
\begin{equation*}
\frac{1}{w(Q(x, r))} \int_{Q(x, r)}\left|f(y)-m_{Q(x, r)}\right| d y \leq C \varphi(r) \tag{1.3}
\end{equation*}
$$

holds for every cube $Q(x, r)=\left\{y \in \mathbb{R}^{n} /\left|x_{i}-y_{i}\right|<r, i=1, \ldots, n\right\}$ in \mathbb{R}^{n}, where $m_{Q(x, r)} f=|Q(x, r)|^{-1} \int_{Q(x, r)} f(y) d y$.

The infimum of the constants C satisfying (1.3) will be denoted by $\|f\|_{B M O_{\varphi}(w)}$. It is not too hard to see that it is a norm in $B M O_{\varphi}(w)$ modulo constants. When $w=1$, we will denote these spaces by $B M O_{\varphi}$. Note that, because of our hypothesis on w and ϕ, we can take balls $B(x, r)=\{y /|x-y|<r\}$ instead of cubes $Q(x, r)$ in (1.3) and obtain and equivalent version of $B M O_{\varphi}(w)$.

In connection with the above definition, we shall say that a function f belongs to the (w, φ)-Lipschitz space, denoted by $\Lambda_{\varphi}(w)$, if there exists a constant C such that

$$
\begin{equation*}
|f(x)-f(y)| \leq C(w(x)+w(y)) \varphi(|x-y|) \tag{1.4}
\end{equation*}
$$

holds for a.e. x and y in \mathbb{R}^{n}. It is easy to prove that $\Lambda_{\varphi}(w) \subset$ $B M O_{\varphi}(w)$. For $w=1$, as before, we write Λ_{φ} instead of $\Lambda_{\varphi}(w)$.

Some special cases and, moreover, generalizations of the spaces $B M O_{\varphi}(w)$ have been studied by several authors (see, for instance, [JN], [J], [S], [F], [FS], [B], [Y], [N]). In particular, in [S], S. Spanne considered the case $w \equiv 1$ and proved a characterization of the functions in BMO_{φ} by means of rearrangements.

On the other hand, S. Janson, in [J], gave another characterization of $B M O_{\varphi}$, this time in terms of Riesz transforms and Λ_{φ}, generalizing the well known decomposition of $B M O$ functions in terms of Riesz
transforms and L^{∞} (see [F] and [FS]). Also, in [MW] such characterization is given for the case $\varphi=1$) and w belonging to the A_{1} class of Muckenhoupt.

In this work we obtain similar characterizations to those in $[\mathrm{S}]$ and [J] for more general weighted spaces $B M O_{\varphi}(w)$. Before stating our results we recall some definitions.

A non negative and measurable function w is in the A_{1} class of Muckenhoupt if there exists a constant C such that

$$
\begin{equation*}
\frac{1}{|Q(x, r)|} \int_{Q(x, r)} w(y) d y \leq C \operatorname{ess} \inf _{Q(x, r)} w \tag{1.5}
\end{equation*}
$$

holds for every cube $Q(x, r)$ in \mathbb{R}^{n}.
A non-negative function ψ is quasi-decreasing when a constant C exists such that

$$
\begin{equation*}
\psi\left(t_{1}\right) \leq C \psi\left(t_{2}\right) \tag{1.6}
\end{equation*}
$$

is satisfied for every t_{1} and t_{2} with $0 \leq t_{2}<t_{1}$.
Now, we are in position to state our main results.

Theorem 1.7. Let w be in A_{1} and φ as in (1.1). Then, a locally integrable function f belongs to $B M O_{\varphi}(w)$ if and only if there exists a constant C such that

$$
\begin{equation*}
\left.f_{Q}^{*}(s) \leq C \int_{s^{\frac{1}{n}}}^{2 r_{Q}} \frac{|Q|}{C w(Q)}\right)^{\frac{1}{n}} \frac{\varphi(t)}{t} d t \tag{1.8}
\end{equation*}
$$

for every $s \in \mathbb{R}$ and every cube Q in \mathbb{R}^{n}, where f_{Q}^{*} means the non increasing rearrangement of $\mathcal{X}_{Q}\left|f-m_{\varphi} f\right| / w$ with respect to the measure given by w and r_{Q} denotes the half length edge of Q.

Corollary 1.9. If w and φ are as in the theorem above and, in addition, $\int_{0}^{1} \frac{\varphi(t)}{t} d t<\infty$, then $B M O_{\varphi}(w)$ is contained in $\Lambda_{\psi}(w)$ with $\psi(r)=\int_{0}^{r} \frac{\varphi(t)}{t} d t$, so it coincides with $B M O_{\varphi}(w)$ whenever $\psi(r) \leq$ $C \varphi(r)$ for every $r>0$.

Theorem 1.10. Let w be in A_{1} and φ as in (1.1) such that $\varphi(t) / t$ is quasi-decreasing. Then, given x_{0} in \mathbb{R}^{n}, the function

$$
h_{x_{0}}(x)=\int_{\left|x-x_{0}\right|}^{1} \frac{w\left(B\left(x_{0}, t\right)\right)}{t^{n}} \frac{\varphi(t)}{t} d t
$$

with $B\left(x_{0}, t\right)=\left\{y \in \mathbb{R}^{n} /\left|x_{0}-y\right|<t\right\}$, belongs to $B M O_{\varphi}(w)$. Moreover, there exist two constants C_{1} and C_{2}, not depending on x_{0}, such that the inequality

$$
\begin{equation*}
C_{1} \varphi(r) \leq \sup _{\substack{s \leq r \\ z \in \mathbb{R}^{n}}} \frac{1}{w(B(z, s))} \int_{Q(z, s)}\left|h_{x_{0}}(y)-m_{Q(z, s)} h_{x_{0}}\right| d y \leq C_{2} \varphi(r) \tag{1.11}
\end{equation*}
$$

holds for every $r>0$.

Corollary 1.12. Let w and φ be as in Theorem 1.10. If $\int_{0}^{1} \frac{\varphi(t)}{t} d t=$ ∞ then there are functions in $\mathrm{BMO}_{\varphi}(w)$ not belonging to $\Lambda_{\varphi}(w)$. In particular we get $\Lambda_{\varphi}(w) \subsetneq B M O_{\varphi}(w)$.

Remark 1.13. Notice that corollary 1.12 gives the converse of corollary 1.9 above under the additional assumption that $\varphi(t) / t$ is quasi decreasing.

The statement of the next theorem requires to specify some details about the weight w. We know that if w is in A_{1}, then it satisfies an A_{∞} condition (see (1.2)). In general if (1.2) holds for some fixed δ, we are going to say that w belongs to A_{∞}^{δ}. Now we get

Theorem 1.14. Let w be in $A_{1} \cap A_{\infty}^{\delta}$. If φ is as in (1.1) and satisfying

$$
r^{\delta} \int_{r}^{\infty} \frac{\varphi(t)}{t^{1+\delta}} d t \leq C \varphi(r)
$$

for every $r>0$, then $B M O_{\varphi}(w)=\Lambda_{\varphi}(w)+\sum_{j=1}^{n} \mathcal{R}_{i}\left(\Lambda_{\varphi}(w)\right)$, where \mathcal{R}_{j} denotes the modified Riesz transform of order j, defined by

$$
\begin{equation*}
\mathcal{R}_{j} f(x)=\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon}\left(\frac{x_{j}-y_{j}}{|x-y|^{n+1}}+\mathcal{X}_{B_{1}^{C}}(y) \frac{y_{j}}{|y|^{n+1}}\right) f(y) d y \tag{1.15}
\end{equation*}
$$

where B_{1} denotes the unit ball centered at the origin.

The next section contains the proofs of Theorems 1.7 and 1.10 and their corollaries, while section 3 is devoted to prove Theorem 1.14. We wish to say that our techniques are based on those of S. Spanne and S. Janson.

2. $B M O_{\varphi}(w)$ IN TERMS OF REARRANGEMENTS

In order to prove Theorem 1.7 we need a result about the behavior of the distribution function of $\left|f-m_{Q} f\right| / w$ over Q for each cube Q. It will be obtained as an easy consequence of the following lemma, whose proof can be found in $[\mathrm{M}]$.

Lemma 2.1. Let w be in A_{1}. Then there exist two constants a_{1} and a_{2} such that, for each cube Q_{0} in \mathbb{R}^{n}, the inequality

$$
\begin{equation*}
w\left(\left\{x \in Q / \frac{\left|f(x)-m_{Q} f\right|}{w(x)}>\lambda\right\}\right) \leq a_{1} e^{\frac{a_{2}}{\left[f f Q_{0}\right.} \lambda} w(Q) \tag{2.2}
\end{equation*}
$$

holds for every $\lambda>0$, every cube $Q \subset Q_{0}$ and every f in $L^{1}\left(Q_{0}\right)$ where

$$
[f]_{Q_{0}}=\sup _{Q \subset Q_{0}} \frac{1}{w(Q)} \int_{Q}\left|f(x)-m_{Q} f\right| d x .
$$

Corollary 2.3. Let w be in A_{1}. Then there exist two constants C_{1} and C_{2}, such that, for each cube $Q=Q\left(x_{Q}, r_{Q}\right)$ in \mathbb{R}^{n}, the inequality $w\left(\left\{x \in Q / \frac{\left|f(x)-m_{Q} f\right|}{w(x)}>C_{1} t \varphi\left(r_{Q}\right)| | f \|_{B M O_{\varphi}(w)}\right\}\right) \leq C_{2} 2^{-t} w\left(Q\left(x_{Q}, r_{Q}\right)\right)$
holds for every $t>0$ and f in $B M O_{\varphi}(w)$.
Proof: Given a cube $Q=Q\left(x_{Q}, r_{Q}\right)$, it is clear that

$$
\begin{aligned}
{[f]_{Q} } & \leq \sup _{\substack{z \leq r_{Q}}} \frac{1}{w(Q(z, r))} \int_{Q(z, r)}\left|f(x)-m_{Q(z, r)} f\right| d x \\
& \leq \varphi\left(r_{Q}\right)\|f\|_{B M O_{\varphi}(w)}
\end{aligned}
$$

is valid for every f in $B M O_{\varphi}(w)$. Then, from (2.2) we get

$$
\begin{aligned}
w\left(\left\{x \in Q / \frac{\left|f(x)-m_{Q} f\right|}{w(x)}>\lambda\right\}\right) & \leq a_{1} e^{-\frac{a_{2}}{\mid f I_{Q}} \lambda} w(Q) \\
& \leq a_{1} e^{-\frac{a_{2}}{\varphi\left(r_{Q}\right)| | f \|_{B M O_{\varphi}(w)}} \lambda} w(Q)
\end{aligned}
$$

Finally, taking $\lambda=t \varphi\left(r_{Q}\right)\|f\|_{B M O_{\varphi}(w)} \log 2 / a_{2}$ we obtain the desired result with $C_{1}=\log 2 / a_{2}$ and $C_{2}=a_{1}$.

Now we are able to proceed with the proof of our first theorem.

Proof of Theorem 1.7: First we are going to prove that (1.8) is a necessary condition for f to be in $B M O_{\varphi}(w)$. Let $Q=Q\left(x_{Q}, r_{Q}\right)$ be a cube in \mathbb{R}^{n}. Given $r>0$, we choose j such that $2^{-j} r_{Q}<r \leq 2^{-j+1} r_{Q}$. Now, by repeated halving all edges, let us divide Q into $2^{j n}$ subcubes Q_{k} with lenght edge equal to $r_{Q} 2^{-j}$. Given k, let $\left\{I_{i}^{k}\right\}_{i=0}^{j}$ be the subcubes of the dyadic partition such that $Q=I_{0}^{k} \supset \ldots \supset I_{j}^{k}=Q_{k}$ with $\left|I_{i}^{k}\right|=2^{n}\left|I_{i+1}^{k}\right|$. Then, taking y in Q_{k} and recalling that $w \in A_{1}$, we get

$$
\begin{align*}
\frac{\left|m_{Q_{k}} f-m_{Q} f\right|}{w(y)} & \leq \frac{1}{\inf _{Q_{k}} w} \sum_{i=0}^{j-1}\left|m_{I_{i+1}^{k}} f-m_{I_{i}^{k}} f\right| \tag{2.4}\\
& \leq \frac{2^{n}}{\inf _{Q_{k}} w} \sum_{i=0}^{j-1} \frac{1}{\left|I_{i}^{k}\right|} \int_{I_{i}^{k}}\left|f(y)-m_{I_{i}^{k}} f\right| d y \\
& \leq \frac{2^{n}| | f \|_{B M O_{\varphi}(w)}}{\inf _{Q_{k}} w} \sum_{i=0}^{j-1} \frac{w\left(I_{i}^{k}\right)}{\left|I_{i}^{k}\right|} \varphi\left(2^{-i} r_{Q}\right) \\
& \leq \frac{C_{0}| | f \|_{B M O_{\varphi}(w)}}{\inf _{Q_{k}} w} \sum_{i=0}^{j-1} \inf _{I_{i}^{k}} w \varphi\left(2^{-i} r_{Q}\right) \\
& \leq C_{0}\|f\|_{B M O_{\varphi}(w)} \sum_{i=0}^{j-1} \varphi\left(2^{-i} r_{Q}\right) .
\end{align*}
$$

Now, taking $\lambda_{0}=\left(C_{0}+C_{1} n\right)\|f\|_{B M O_{\varphi}(w)} \sum_{i=0}^{j-1} \varphi\left(2^{-i} r_{Q}\right)$, where C_{1} and C_{2} are the constants appearing in Corollary 2.3, from (2.2) and (2.4), we have

$$
\begin{align*}
w(\{y \in Q / & \left.\left.\frac{\left|f(y)-m_{Q} f\right|}{w(y)}>\lambda_{0}\right\}\right) \tag{2.5}\\
& \leq \sum_{k=1}^{2^{j n}} w\left(\left\{y \in Q_{k} / \frac{\left|f(y)-m_{Q} f\right|}{w(y)}>\lambda_{0}\right\}\right) \\
& \leq \sum_{k=1}^{2^{j n}} w\left(\left\{y \in Q_{k} / \frac{\left|f(y)-m_{Q_{k}} f\right|}{w(y)}\right.\right. \\
& \left.\left.>C_{1}\left(n+\log 2 \log C_{2}\right) j| | f \|_{B M O_{\varphi}(w)} \varphi\left(2^{-j} r_{Q}\right)\right\}\right) \\
& \leq C_{2} 2^{-j n} \sum_{k=1}^{2^{j n}} w\left(Q_{k}\right) \\
& =C_{2} 2^{-j n} w(Q)=C_{2}\left(\frac{r_{Q}}{2^{j}}\right)^{n} \frac{w(Q)}{|Q|} \\
\quad< & C_{2} r^{n} \frac{w(Q)}{|Q|}
\end{align*}
$$

On the other hand, we get

$$
\begin{aligned}
\lambda_{0} & \leq \frac{1}{\log 2}\left(C_{0}+C_{1} n\right)\|f\|_{B M O_{\varphi}(w)} \sum_{i=0}^{j-1} \int_{2^{-i r_{Q}}}^{2^{-i+1} r_{Q}} \frac{\varphi(t)}{t} d t \\
& \leq C_{3}\|f\|_{B M O_{\varphi}(w)} \int_{r}^{2 r_{Q}} \frac{\varphi(t)}{t} d t .
\end{aligned}
$$

Then, from (2.5)

$$
w\left(\left\{y \in Q / \frac{\left|f(y)-m_{Q} f\right|}{w(y)}>C_{3}| | f \|_{B M O_{\varphi}(w)} \int_{r}^{2 r_{Q}} \frac{\varphi(t)}{t} d t\right\}\right)<C_{2} r^{n} \frac{w(Q)}{|Q|}
$$

Taking $s=C_{2} r^{n} \frac{w(Q)}{|Q|}$ we have

$$
w\left(\left\{y \in Q / \frac{\left|f(y)-m_{Q} f\right|}{w(y)}>C\|f\|_{B M O_{\varphi}(w)} \int_{\left(\frac{s|Q|}{C w(Q)}\right)^{\frac{1}{n}}}^{2 r_{Q}} \frac{\varphi(t)}{t} d t\right\}\right)<s
$$

where $C=\max \left(C_{2}, C_{3}\right)$, and (1.8) follows easily.
Now, we assume (1.8) holds. Then, given a cube Q in \mathbb{R}^{n}, we have

$$
\begin{aligned}
\frac{1}{w(Q)} \int_{Q}\left|f(y)-m_{Q} f\right| d y & =\frac{1}{w(Q)} \int_{Q} \frac{\left|f(y)-m_{Q} f\right|}{w(y)} w(y) d y \\
& =\frac{1}{w(Q)} \int_{0}^{w(Q)} f_{Q}^{*}(s) d s \\
& \leq \frac{C}{w(Q)} \int_{0}^{w(Q)}\left(\int_{\left(\frac{s|Q|}{}\right.}^{2 r_{Q}} \frac{\phi(t)}{t w(Q)}{ }^{\frac{1}{n}} \frac{t^{2}}{t} d t\right) d s \\
& =\frac{C}{w(Q)} \int_{0}^{2 r_{Q}} \frac{\varphi(t)}{t}\left(\int_{0}^{t^{n} C \frac{w(Q)}{|Q|}} d s\right) d t \\
& =\frac{C}{w(Q)} \int_{0}^{2 r_{Q}} \frac{\varphi(t)}{t} t^{n} \frac{w(Q)}{|Q|} d t \\
& \leq \frac{C \varphi\left(2 r_{Q}\right)}{|Q|}\left(2 r_{Q}\right)^{n} \\
& \leq C \varphi\left(r_{Q}\right) .
\end{aligned}
$$

Since the above inequality is valid for every Q, we get f is in $B M O_{\varphi}(w)$.

Proof of Corollary 1.9: Let f be in $\mathrm{BMO}_{\varphi}(w)$. Then, given x and y, we have

$$
\begin{align*}
\frac{|f(x)-f(y)|}{w(x)+w(y)} & \leq \frac{\left|f(x)-m_{Q} f\right|}{w(x)+w(y)}+\frac{\left|f(y)-m_{Q} f\right|}{w(x)+w(y)} \tag{2.6}\\
& \leq \frac{\left|f(x)-m_{Q} f\right|}{w(x)}+\frac{\left|f(y)-m_{Q} f\right|}{w(y)}
\end{align*}
$$

where Q is a cube containing x and y with length side $r_{Q}=|x-y|$. On the other hand, it is clear that

$$
\operatorname{ess}_{z \in Q} \frac{\left|f(z)-m_{Q} f\right|}{w(z)}=\sup _{s} f_{Q}^{*}(s)=\lim _{s \rightarrow 0} f_{Q}^{*}(s) .
$$

Then, from the Theorem, we get

$$
\begin{aligned}
\underset{z \in Q}{\operatorname{ess} \sup _{z \in}} \frac{\left|f(z)-m_{Q} f\right|}{w(z)} & \leq C| | f \|_{B M O_{\varphi}(w)} \lim _{s \rightarrow 0} \int_{\left(\frac{s|Q|}{\left(\frac{2 r}{C w}(Q)\right.}\right)^{\frac{1}{n}}}^{2 r_{Q}} \frac{\varphi(t)}{t} d t \\
& =C| | f \|_{B M O_{\varphi}(w)} \int_{0}^{2 r_{Q}} \frac{\varphi(t)}{t} d t \\
& =C| | f \|_{B M O_{\varphi}(w)} \int_{0}^{r_{Q}} \frac{\varphi(2 t)}{t} d t \\
& \leq C| | f \|_{B M O_{\varphi}(w)} \int_{0}^{r_{Q}} \frac{\varphi(t)}{t} d t .
\end{aligned}
$$

Finally, combining this inequality with (2.6) we can write

$$
|f(x)-f(y)| \leq C| | f \|_{B M O_{\varphi}(w)}(w(x)+w(y)) \int_{0}^{|x-y|} \frac{\varphi(t)}{t} d t
$$

for a.e. x and y in \mathbb{R}^{n}, proving that f belongs to $\Lambda_{\psi}(w)$ with $\psi(r)=$ $\int_{0}^{r} \frac{\varphi(t)}{t} d t$.

Proof of Theorem 1.10: First, recall that, because of our hypothesis on w and φ, we can take balls $B(x, r)=\left\{y \in \mathbb{R}^{n} /|x-y|<r\right\}$ instead of cubes $Q(x, r)$ in (1.1) and obtain an equivalent version of $B M O_{\varphi}(w)$. In this proof, for the sake of simplicity, we consider the version with balls.

Let $x_{0} \in \mathbb{R}^{n}$ fixed and let $B(z, r)$ a ball in \mathbb{R}^{n}. Suppose that $\mid z-$ $x_{0} \mid<2 r$. Then, using the doubling property of w and φ, we have

$$
\begin{align*}
\int_{B(z, r)} \mid h_{x_{0}}(x) & \left.-h_{x_{0}}\left(z+r \frac{z-x_{0}}{\left|z-x_{0}\right|}\right) \right\rvert\, d x \tag{2.7}\\
& =\int_{B(z, r)}\left(\int_{\left|x-x_{0}\right|}^{\left|x_{0}-z\right|+r} \frac{w\left(B\left(x_{0}, t\right)\right)}{t^{n}} \frac{\varphi(t)}{t} d t\right) d x \\
& \leq \int_{0}^{\left|x_{0}-z\right|+r} \frac{w\left(B\left(x_{0}, t\right)\right)}{t^{n}} \frac{\varphi(t)}{t}\left(\int_{B\left(x_{0}, t\right) \cap B(z, r)} d x\right) d t \\
& \leq C \int_{0}^{\left|x_{0}-z\right|+r} \frac{w\left(B\left(x_{0}, t\right)\right)}{t^{n}} \frac{\varphi(t)}{t} t^{n} d t \\
& \leq C \varphi(3 r) \int_{0}^{\left|x_{0}-z\right|+r} \frac{w\left(B\left(x_{0}, t\right)\right)}{t} d t \\
& =C \varphi(3 r) \sum_{i=0}^{\infty} \int_{\left(\left|x_{0}-z\right|+r\right) / 2^{i+1}}^{\left(\left|x_{0}-z\right|+r\right) / 2^{i}} \frac{w\left(B\left(x_{0}, t\right)\right)}{t} d t \\
& \leq C \varphi(3 r) \sum_{i=0}^{\infty} w\left(B\left(x_{0}, \frac{\left|x_{0}-z\right|+r}{2^{i}}\right)\right) \\
& \leq C \varphi(r) \sum_{i=0}^{\infty} w\left(B\left(x_{0}, \frac{\left|x_{0}-z\right|+r}{2^{i}}-B\left(x_{0}, \frac{\left|x_{0}-z\right|+r}{2^{i+1}}\right)\right)\right. \\
& \leq C \varphi(r) w\left(B\left(x_{0},\left|x_{0}-z\right|+r\right)\right) \\
& \leq C \varphi(r) w\left(B\left(x_{0}, r\right)\right) .
\end{align*}
$$

Now, assuming $\left|z-x_{0}\right|>2 r$ and keeping in mind that w satisfies the doubling condition, we have

$$
\begin{aligned}
\int_{B(z, r)} \mid h_{x_{0}}(x) & \left.-h_{x_{0}}\left(z+r \frac{z-x_{0}}{\left|z-x_{0}\right|}\right) \right\rvert\, d x \\
& \leq \int_{0}^{\left|x_{0}-z\right|+r} \frac{w\left(B\left(x_{0}, t\right)\right)}{t^{n}} \frac{\varphi(t)}{t}\left|B(z, r) \cap B\left(x_{0}, t\right)\right| d t \\
& \leq C r^{n} \int_{\left|x_{0}-z\right|-r}^{\left|x_{0}-z\right|+r} \frac{w\left(B\left(x_{0}, t\right)\right)}{t^{n}} \frac{\varphi(t)}{t} d t \\
& \leq C r^{n} \int_{\left|x_{0}-z\right|-r}^{\left|x_{0}-z\right|+r} \frac{w(B(z, t))}{t^{n}} \frac{\varphi(t)}{t} d t .
\end{aligned}
$$

Note that, since $w \in A_{1}, w(B(z, t)) / t^{n}$ is quasi-decreasing. Then from the above inequality and the fact that $\left|x_{0}-z\right|-r \geq r$, having in mind that that $\varphi(t) / t$ is quasi-decreasing, we get

$$
\begin{align*}
\int_{B(z, r)} \mid h_{x_{0}}(x) & \left.-h_{x_{0}}\left(z+r \frac{z-x_{0}}{\left|z-x_{0}\right|}\right) \right\rvert\, d x \tag{2.8}\\
& \leq C r^{n} \frac{w(B(z, r))}{r^{n}} \frac{\varphi(r)}{r} r \\
& =C w(B(z, r)) \varphi(r) .
\end{align*}
$$

So, from (2.7) and (2.8), it is immediate that $h_{x_{0}} \in B M O_{\varphi}(w)$. Moreover, the upper bound on (1.11) is clear. To check the lower bound, let us note first that there exists a constant C such that

$$
\begin{aligned}
& \frac{1}{w(B(z, s)} \int_{B(z, s)}\left|h_{x_{0}}(y)-m_{B(z, s)} h_{x_{0}}\right| d y \\
& \geq \frac{1}{2 w(B(z, s))} \frac{1}{|B(z, s)|} \int_{B(z, s)} \int_{B(z, s)}\left|h_{x_{0}}(x)-h_{x_{0}}(y)\right| d y d x
\end{aligned}
$$

for every $z \in \mathbb{R}^{n}$ and $s>0$. Then, we can write

$$
\begin{aligned}
& \sup _{\substack{0<s \leq r \\
z \in \mathbb{R}^{n}}} \frac{1}{w(B(z, s))} \int_{B(z, s)}\left|h_{x_{0}}(y)-m_{B(z, s)} h_{x_{0}}\right| d y \\
& \geq \frac{1}{w\left(B\left(x_{0}, r\right)\right)} \int_{B\left(x_{0}, r\right)}\left|h_{x_{0}}(y)-m_{B\left(x_{0}, r\right)} h_{x_{0} \mid}\right| d y \\
& \geq \frac{C}{w\left(B\left(x_{0}, r\right)\right)} \frac{1}{\left|B\left(x_{0}, r\right)\right|} \int_{\left|x-x_{0}\right|<\frac{r}{4}} \int_{\frac{r}{2}<\left|y-x_{0}\right|<r}\left|h_{x_{0}}(x)-h_{x_{0}}(y)\right| d y d x \\
&= \frac{C}{w\left(B\left(x_{0}, r\right)\right)} \frac{1}{\left|B\left(x_{0}, r\right)\right|} \\
& \times \int_{\left|x-x_{0}\right|<\frac{r}{4}} d x \int_{\frac{r}{2}<\left|y-x_{0}\right|<r} d y\left(\int_{\left|x-x_{0}\right|}^{\left|y-x_{0}\right|} \frac{w\left(B\left(x_{0}, t\right)\right)}{t^{n}} \frac{\varphi(t)}{t} d t\right) \\
& \geq \frac{C}{w\left(B\left(x_{0}, r\right)\right)} \frac{1}{r^{n}} r^{2 n} \int_{\frac{r}{4}}^{\frac{r}{2}} \frac{w\left(B\left(x_{0}, t\right)\right)}{t^{n}} \frac{\varphi(t)}{t} d t \\
& \geq \frac{C r^{n}}{w\left(B\left(x_{0}, r\right)\right)} \frac{w\left(B\left(x_{0}, r / 4\right)\right)}{r^{n+1}} \varphi\left(\frac{r}{4}\right) r
\end{aligned}
$$

Finally, from the fact that w and φ satisfy a doubling condition we get

$$
\begin{equation*}
\sup _{\substack{0<s \leq r \\ z \in \in \mathbb{R}^{n}}} \frac{1}{w(B(z, s))} \int_{B(z, s)}\left|h_{x_{0}}(x)-m_{B(z, s)} h_{x_{0}}\right| d x \geq C \varphi(r) \tag{2.9}
\end{equation*}
$$

as we wanted to prove. \square

Our proof of Corollary 1.12 requires the following characterization of the functions in $\Lambda_{\varphi}(w)$ (see (1.4)).

Lemma 2.10. Let w be in A_{1} and φ satisfying a doubling condition. Then a function f belongs to $\Lambda_{\varphi}(w)$ if and only if $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ and there exists a constant C such that

$$
\begin{equation*}
\text { ess } \sup _{\substack{x \in B(z, r) \\ z \in \mathbb{R}^{n}}} \frac{\left|f(x)-m_{B(z, r)} f\right|}{w(x)} \leq C \varphi(r) \tag{2.11}
\end{equation*}
$$

for every $r>0$.

Proof: It is easy to see that functions satisfying (2.11) are in $\Lambda_{\varphi}(w)$. Actually we do not need w be in A_{1} nor the doubling condition on φ for this part. Let us prove the reciprocal. If f is in $\Lambda_{\varphi}(w)$, then, by (1.2), we get

$$
\begin{equation*}
|f(x)-f(y)| \leq C(w(x)+w(y)) \varphi(|x-y|) \tag{2.12}
\end{equation*}
$$

for a.e. x and y in \mathbb{R}^{n}. Now, let $B(z, r)$ be a ball in \mathbb{R}^{n}. Taking x and y in $B(z, r)$ and integrating with respects to y both sides of (2.12) we get

$$
\begin{aligned}
|f(x)| B(z, r)\left|-\int_{B(z, r)} f(y) d y\right| & \leq \int_{B(z, r)}|f(x)-f(y)| d y \\
& \leq C(w(x)|B(z, r)|+w(B(z, r))) \varphi(2 r)
\end{aligned}
$$

for a.e. x in $B(z, r)$. From this inequality, using our assumptions on w and φ, we have

$$
\begin{aligned}
\left|f(x)-m_{B(z, r)} f\right| & \leq C\left(w(x)+\frac{w(B(z, r))}{|B(z, r)|}\right) \varphi(2 r) \\
& \leq C\left(w(x)+C \inf _{B(z, r)} w\right) \varphi(r) \\
& \leq C w(x) \varphi(r)
\end{aligned}
$$

for a.e. x in $B(z, r)$. Now (2.11) is obvious.

Proof of Corollary 1.12: Let x_{0} be a Lebesgue point of w such that $0<w\left(x_{0}\right)<\infty$. Note that since w is finite a.e., for each ε in $(0,1)$ and we can find $A^{\varepsilon} \subset B\left(x_{0}, \varepsilon\right)$ such that $\left|A^{\varepsilon}\right|>0$ and $w(x) \leq 2 w\left(x_{0}\right)+1$ for every $x \in A^{\varepsilon}$. Now, let the function $h_{x_{0}}$ be defined as in Theorem 1.10. Since $w \in A_{1}$, for each ε in $(0,1)$, we have

$$
\begin{aligned}
\frac{h_{x_{0}}(x)}{w(x)} & =\frac{1}{w(x)} \int_{\left|x-x_{0}\right|}^{1} \frac{w\left(B\left(x_{0}, t\right)\right)}{t^{n}} \frac{\varphi(t)}{t} d t \\
& \geq \frac{C}{w(x)} w\left(B\left(x_{0}, 1\right)\right) \int_{\left|x-x_{0}\right|}^{1} \frac{\varphi(t)}{t} d t \\
& \geq \frac{C}{2 w\left(x_{0}\right)+1} w\left(B\left(x_{0}, 1\right)\right) \int_{\varepsilon}^{1} \frac{\varphi(t)}{t} d t
\end{aligned}
$$

for every $x \in A^{\varepsilon}$. Then, taking ε close enough to zero, it is clear that $h_{x_{0}} / w$ is not bounded on $B\left(x_{0}, 1\right)$ and, consequently, since $w(x) \geq$ $\operatorname{ess}_{\inf _{B\left(x_{0}, 1\right)}} w>0$ a.e. in $B\left(x_{0}, 1\right)$

$$
\operatorname{ess} \sup _{x \in B\left(x_{0}, 1\right)} \frac{\left|h_{x_{0}}(x)-m_{B\left(x_{0}, 1\right)} h_{x_{0}}\right|}{w(x)}=\infty .
$$

So, from Lemma 2.11, $h_{x_{0}}$ does not belong to $\Lambda_{\varphi}(w)$. However, from Theorem 1.10, $h_{x_{0}} \in B M O_{\varphi}(w)$. This completes the proof of the Corollary.

3. $B M O_{\varphi}(w)$ in terms of Riesz transforms

In this section we shall give the proof of Theorem 1.14. We will use some technical lemmas and also an extension to n-dimensions of the following result appearing in $[M]$ for the Hilbert transform.

Proposition 3.1. Let w be an A_{∞} weight and φ a non decreasing function defined on $[0, \infty)$ satisfying a doubling condition. Assume further that there exists a constant C such that

$$
\begin{equation*}
\frac{|B|^{1 / n}}{\varphi\left(|B|^{1 / n}\right)} \int_{B^{c}} w(y) \frac{\varphi\left(\left|x_{0}-y\right|\right)}{\left|x_{0}-y\right|^{n+1}} d y \leq C \frac{w(B)}{|B|} \tag{3.2}
\end{equation*}
$$

holds for any ball B, where x_{0} denotes the center of B. Then the Riesz-transforms \mathcal{R}_{i} given by (1.15) are finite almost everywhere for $f \in \operatorname{BMO}_{\varphi}(w)$. Moreover there is a constant C such that

$$
\begin{equation*}
\left\|\mathcal{R}_{i} f\right\|_{B M O_{\varphi}(w)} \leq C\|f\|_{B M O_{\varphi}(w)} \quad 1 \leq i \leq n . \tag{3.3}
\end{equation*}
$$

The proof follows the same lines of the one-dimensional case with some minor modifications.

Our next result shows that, under the assumptions of theorem 1.14, Proposition 3.1 holds

LEMMA 3.4. Let w be a weight in $A_{1} \cap A_{\infty}^{\delta}$ and φ as in theorem 1.14, that is, there is a constant C such that

$$
r^{\delta} \int_{r}^{\infty} \frac{\varphi(t)}{t^{1+\delta}} d t \leq C \varphi(r)
$$

Then w and φ satisfy (3.2) above.

Proof: For B a ball with center x_{0} and radious r, we denote by B_{k} the ball with the same center and radious $2^{k} r$. Using that φ is non-increasing and doubling and that w belongs to A_{1} we have

$$
\begin{align*}
\int_{B^{c}} w(y) \frac{\varphi\left(\left|x_{0}-y\right|\right)}{\left|x_{0}-y\right|^{n+1}} d y & =\sum_{k=1}^{\infty} \int_{B_{k+1}-B_{k}} w(y) \frac{\varphi\left(\left|x_{0}-y\right|\right)}{\left|x_{0}-y\right|^{n+1}} d y \tag{3.5}\\
& \leq C \sum_{k=1}^{\infty} \frac{\varphi\left(2^{k} r\right)}{2^{k} r} \frac{w\left(B_{k}\right)}{\left|B_{k}\right|} \\
& \leq C \frac{w(B)}{|B|} \sum_{k=1}^{\infty} \frac{\varphi\left(2^{k} r\right)}{2^{k} r} \\
& \leq C \frac{w(B)}{|B|} \int_{r}^{\infty} \frac{\varphi(t)}{t^{2}} d t \\
& \leq C \frac{w(B)}{|B| r^{1-\delta}} \int_{r}^{\infty} \frac{\varphi(t)}{t^{1+\delta}} d t \\
& \leq C \frac{w(B)}{|B|} \frac{\varphi(r)}{r} \\
& =C \frac{\varphi\left(|B|^{1 / n}\right) w(B)}{|B|^{1+1 / n}}
\end{align*}
$$

as we wished
Before stating the next lemma we introduce some notation. Let us denote by \mathcal{X}_{r} the characteristic function of the ball $B_{r}=B(0, r)$, and by $\psi_{r}=r^{-n} \mathcal{X}_{r}$. With this notation we have

$$
\psi_{r} * f(x)=m_{B(x, r)} f
$$

Also, for a weight w and a locally integrable function f, we set

$$
\rho_{w}(f, r)=\sup _{x, r^{\prime} \leq r} \frac{1}{w\left(B\left(x, r^{\prime}\right)\right)} \int_{B\left(x, r^{\prime}\right)}\left|f(y)-m_{B\left(x, r^{\prime}\right)} f\right| d y
$$

With this notation we state the following lemma.

Lemma 3.6. Let w be a weight and f an integrable function. Then for any $r>0$

$$
\left\|f-\psi_{r} * f\right\|_{B M O(w)} \leq C \rho_{w}(f, 2 r) .
$$

In particular for $f \in B M O_{\varphi}(w)$,

$$
\left\|f-\psi_{r} * f\right\|_{B M O(w)} \leq C \varphi(r)
$$

Proof: We will use the following estimate for the averages:

$$
\begin{equation*}
\left|m_{B_{0}} f-m_{B_{1}} f\right| \leq\left(\frac{w\left(B_{2}\right)}{\left|B_{0}\right|}+\frac{w\left(B_{2}\right)}{\left|B_{1}\right|}\right) \rho_{w}\left(f, r_{2}\right) \tag{3.7}
\end{equation*}
$$

where B_{2} is a ball with radious r_{2} and such that $B_{0} \subset B_{1}$ and $B_{1} \subset B_{2}$. This can be easily seen by adding and substracting $m_{B_{2}} f$.

Let now be $B=B\left(x_{0}, s\right)$ any ball. Then, to prove the lemma we need to estimate

$$
\begin{aligned}
& \Omega_{w}\left(B, f-\psi_{r} * f\right) \\
& \quad=\frac{1}{w\left(B\left(x_{0}, s\right)\right)} \int_{B\left(x_{0}, s\right)}\left|f(x)-\left(\psi_{r} * f\right)(x)-m_{B\left(x_{0}, s\right)}\left(f-\psi_{r} * f\right)\right| d x .
\end{aligned}
$$

Let us suppose first that $s \leq r$. Then

$$
\begin{aligned}
\Omega_{w}\left(B, f-\psi_{r} * f\right) \leq & \frac{1}{w\left(B\left(x_{0}, s\right)\right)} \int_{B\left(x_{0}, s\right)}\left|f(x)-m_{B\left(x_{0}, s\right)} f\right| d x \\
& +\frac{1}{w\left(B\left(x_{0}, s\right)\right)} \int_{B\left(x_{0}, s\right)}\left|m_{B(x, r)} f-m_{B\left(x_{0}, s\right)}\left(m_{B(., r)} f\right)\right| d x \\
= & I+I I
\end{aligned}
$$

Since $s \leq r$, the first term is bounded by $\rho_{w}(f, r)$. As for the second, we have

$$
\begin{aligned}
I I & \leq \frac{1}{w\left(B\left(x_{0}, s\right)\right)} \frac{1}{\left|B\left(x_{0}, s\right)\right|} \int_{B\left(x_{0}, s\right)} \int_{B\left(x_{0}, s\right)}\left|m_{B(x, r)} f-m_{B(y, r)} f\right| d x d y \\
& \leq \frac{C w\left(B\left(x_{0}, 2 r\right)\right)}{r^{n}} \frac{s^{n}}{w\left(B\left(x_{0}, s\right)\right)} \rho_{w}(f, 2 r),
\end{aligned}
$$

where we have used (3.7), since for any $z \in B\left(x_{0}, s\right), B(z, r) \subset B\left(x_{0}, 2 r\right)$. Now $w \in A_{1}$ implies the doubling property and also that the function $w(B(x, t)) / t^{n}$ is almost decreasing with a constant independent of x. Since $s \leq r$ we get the desired estimate.

Next we suppose that $s \geq r$. In this case we observe that

$$
\Omega_{w}\left(B, f-\psi_{r} * f\right) \leq \frac{2}{w\left(B\left(x_{0}, s\right)\right)} \int_{B\left(x_{0}, s\right)}\left|f(x)-m_{B(x, r)} f\right| d x
$$

Now we can cover the ball $B\left(x_{0}, s\right)$ by a finite family of balls $B_{i}=$ $B\left(x_{i}, r\right), i=1, \ldots, N$ and such that $B\left(x_{i}, r / 2\right)$ are mutually disjoint.

The number N of such balls is like $(s / r)^{n}$. Then the integral above is bounded by

$$
\begin{aligned}
\sum_{i=1}^{N} \int_{B\left(x_{i}, r\right)}\left|f(x)-m_{B(x, r)} f\right| d x \leq & \sum_{i=1}^{N} \int_{B\left(x_{i}, r\right)}\left|f(x)-m_{B\left(x_{i}, r_{i}\right)} f\right| \\
& +\sum_{i=1}^{N} \int_{B\left(x_{i}, r\right)}\left|m_{B\left(x_{i}, r_{i}\right)} f-m_{B(x, r)} f\right| \\
\leq & \rho_{w}(f, r) \sum_{i=1}^{N} w\left(B\left(x_{i}, r\right)\right) \\
& +2 \rho_{w}(f, 2 r) \sum_{i=1}^{N} w\left(B\left(x_{i}, 2 r\right)\right)
\end{aligned}
$$

where, for the second sum we use again (3.7) and that $B(x, r) \subset$ $B\left(x_{i}, 2 r\right)$ for $x \in B\left(x_{i}, r\right)$. Finally, using the doubling property of w and that $B\left(x_{i}, r / 2\right)$ are disjoint, we get also the desired estimate in this case.

Therefore, taking the supremum on x_{0} and s we get the result for the $B M O$-norm. To prove the estimate for $f \in B M O_{\varphi}(w)$ we just use that $\varphi(2 r) \leq C \varphi(r)$.

We have defined for functions on $\mathrm{BMO}_{\varphi}(w)$ the modified Riesz transforms \mathcal{R}_{j}. It is not hard to prove that, for good functions with zero average, they are equal to the classical version $R_{j} f$. For the latter operators it is known that the following formula holds

$$
\begin{equation*}
\int R_{j} f(x) \eta(x) d x=-\int f(x) R_{j} \eta(x) d x \tag{3.8}
\end{equation*}
$$

for $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and η, say, in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. In the next lemma we extend this result to $\Lambda_{\varphi}(w)$.

Lemma 3.9. Let η be a $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ function with zero average and $g \in$ $\Lambda_{\varphi}(w)$ with w and φ as in Theorem 1.14. Then

$$
\int \mathcal{R}_{j} g(x) \eta(x) d x=-\int g(x) R_{j} \eta(x) d x
$$

Proof: First, the integral on the left is absolutely convergent since we know that $\mathcal{R}_{j} g$ is in $B M O_{\varphi}(w)$ and hence locally integrable. Moreover $\mathcal{R}_{j} g$ equals $\mathcal{R}_{j}(g-C)$, where C is any constant. Therefore

$$
\begin{aligned}
\int \mathcal{R}_{j} g(x) \eta(x) d x= & \int \eta(x) \mathcal{R}_{j}(g-C)(x) d x \\
= & \int \eta(x) \mathcal{R}_{j}\left(\mathcal{X}_{R}(g-C)\right)(x) d x \\
& +\int \eta(x) \mathcal{R}_{j}\left(\mathcal{X}_{R}^{\prime}(g-C)\right)(x) d x \\
= & I_{1}+I_{2},
\end{aligned}
$$

where $\mathcal{X}_{R}=\mathcal{X}_{B(0, R)}, \mathcal{X}_{R}^{\prime}=1-\mathcal{X}_{R}$.
To estimate I_{1} we observe that g belongs locally to $L^{q}\left(\mathbb{R}^{n}\right)$ for some $q>1$. In fact, it is known that an A_{∞} weight satisfies a Reverse-Hölder inequality for some $q>1$ (see [CF]). Therefore for such q and any ball B with radious r we have

$$
\begin{aligned}
\int_{B}\left|g(x)-g\left(x_{0}\right)\right|^{q} d x & \leq C \int_{B}\left(w(x)+w\left(x_{0}\right)\right)^{q} \varphi\left(\left|x-x_{0}\right|\right) d x \\
& \leq C \varphi(r)\left(w\left(x_{0}\right)|B|+\int_{B}(w(x))^{q} d x\right)<\infty
\end{aligned}
$$

where we have chosen $x_{0} \in B$ to be a Lebesgue point of w. Therefore $R_{j}\left(\mathcal{X}_{R}(g-C)\right)$ is a function in L^{q} and, moreover, equals, up to a constant, to $\mathcal{R}_{j}\left(\mathcal{X}_{R}(g-C)\right)$. So, since η has zero average, an application of (3.8) gives

$$
I_{1}=\int \eta(x) R_{j}\left(\mathcal{X}_{R}(g-C)\right)(x) d x=-\int R_{j} \eta(y) \mathcal{X}_{R}(y)(g(y)-C) d y
$$

Now, to estimate I_{2} we choose R such that supp $\eta \subset B(0, R / 2)$ and $R>1$. Then

$$
\mathcal{R}_{j}\left(\mathcal{X}_{R}^{\prime}(g-C)\right)(x)=\lim _{\varepsilon \rightarrow 0} \int_{\substack{|x-y|>\varepsilon \\|y|>R}}\left(\frac{x_{j}-y_{j}}{|x-y|^{n+1}}+\frac{y_{j}}{|y|^{n+1}}\right)(g(y)-C) d y
$$

But for $x \in \operatorname{supp} \eta$ and $|y|>R$ we have $|x-y|>R / 2$ and, therefore, we may drop the limit above. Moreover taking absolute values inside the integral and applying the mean value theorem we have

$$
\begin{align*}
\int_{|y|>R} \left\lvert\, \frac{x_{j}-y_{j}}{|x-y|^{n+1}}\right. & \left.+\frac{y_{j}}{|y|^{n+1}}| | g(y)-C \right\rvert\, d y \tag{3.10}\\
& \leq C \int_{|y|>R} \frac{|x|}{|y|^{n+1}}|g(y)-C| \\
& \leq C|x| \int_{|y|>R} \frac{\varphi\left(\left|x_{0}-y\right|\right)}{|y|^{n+1}}\left(w\left(x_{0}\right)+w(y)\right) d y
\end{align*}
$$

where we have chosen $C=g\left(x_{0}\right)$ with $x_{0} \in B(0, R / 2)$ a Lebesgue point of w. Again $\left|x_{0}\right|<R / 2$ and $|y|>R$ imply $\left|x_{0}-y\right|<R / 2+|y|<2|y|$ so the last integral is bounded by

$$
C|x|\left(R^{\delta-1} \int_{R}^{\infty} \frac{\varphi(t)}{t^{1+\delta}} d t+\int_{|y|>R} \frac{w(y) \varphi(|y|)}{|y|^{n+1}} d y\right) \leq C|x|
$$

for $x \in \operatorname{supp} \eta$, since both integrals are finite as a consequence of lemma 3.4. In this way we have proved that the iterated integral

$$
\int|\eta(x)| \int\left|\mathcal{K}_{j}(x, y)\right| \mathcal{X}_{R^{\prime}}(y)|g(y)-C| d y d x
$$

is finite, where $\mathcal{K}_{j}(x, y)$ denotes the kernel of \mathcal{R}_{j}. Therefore in I_{2} the order of integration can be reversed and hence

$$
\begin{align*}
\int \eta(x) \mathcal{R}_{j}\left(\mathcal{X}_{R}^{\prime}\right. & (g-C))(x) d x \tag{3.11}\\
& =\int \mathcal{X}_{R}^{\prime}(y)(g(y)-C) \int K_{j}(x, y) \eta(x) d x d y \\
& =-\int \mathcal{X}_{R}^{\prime}(y)(g(y)-C) R_{j} \eta(y) d y
\end{align*}
$$

Adding I_{1} and I_{2} we get

$$
I_{1}+I_{2}=-\int R_{j} \eta(y)(g(y)-C) d y=-\int R_{j} \eta(y) g(y) d y . \square
$$

Now we turn into the proof of the last theorem.
Proof of Theorem 1.14: First, if f can be written as

$$
\begin{equation*}
f=\sum_{0}^{n} \mathcal{R}_{j}\left(f_{j}\right) \tag{3.12}
\end{equation*}
$$

with f_{0}, \ldots, f_{n} in $\Lambda_{\varphi}(w)$, it follows easily that $f \in B M O_{\varphi}(w)$. In fact, we noticed that $\Lambda_{\varphi}(w)$ is continuously embedded in $B M O_{\varphi}(w)$ so, from Lemma 3.4 and Proposition 3.1, the function on the right hand side of (3.12) belongs to $B M O_{\varphi}(w)$ and, moreover,

$$
\begin{equation*}
\|f\|_{B M O_{w}(\varphi)} \leq C \sum_{0}^{n}\left\|f_{i}\right\|_{\Lambda_{\varphi}(w)} \tag{3.13}
\end{equation*}
$$

On the other hand, let f belong to $\mathrm{BMO}_{\varphi}(w)$. Following [J], since φ is continuous, there are numbers r_{i} such that $\varphi\left(r_{i}\right)=2^{i} \varphi\left(r_{0}\right)$ for a fixed r_{0} with $\varphi\left(r_{0}\right) \neq 0$. The numbers r_{i} will be defined for $i \in \mathbb{Z}$ and belonging to a certain interval $[-L, M]$ where L and M may be finite or infinite, depending on the boundedness properties of φ. For each r_{i}, according to Lemma 3.5, the function $f-\psi_{r_{i}} * f$ belongs to $B M O(w)$ and moreover

$$
\begin{equation*}
\left\|f-\psi_{r_{i}} * f\right\|_{B M O(w)} \leq C \varphi\left(r_{i}\right)=C 2^{i} . \tag{3.14}
\end{equation*}
$$

From here we have that

$$
\begin{equation*}
\left\|\psi_{r_{i}} * f-\psi_{r_{i+1}} * f\right\|_{B M O(w)} \leq C\left(\varphi\left(r_{i}\right)+\varphi\left(r_{i+1}\right)\right)=C \varphi\left(r_{i}\right) . \tag{3.15}
\end{equation*}
$$

Now, we apply the decomposition result of Muckenhoupt and Wheeden (see [MW]), for the space $B M O(w)$ to each of the functions on the left hand side of (3.15). In this way we get

$$
\begin{equation*}
\psi_{r_{i}} * f-\psi_{r_{i+1}} * f=\sum_{j=0}^{n} \mathcal{R}_{j}\left(u_{j}^{i}\right), \tag{3.16}
\end{equation*}
$$

where u_{j}^{i} are in $L^{\infty}(w)$ with

$$
\begin{equation*}
\left\|u_{j}^{i}\right\|_{L^{\infty}(w)} \leq C \varphi\left(r_{i}\right) \tag{3.17}
\end{equation*}
$$

The tempting idea now is to recover f adding these pieces since, at least when L and M are infinite, the sum of the series will give f back. But, even in that case, the sum of the functions u_{j}^{i} will be not smooth enough to provide a $\Lambda_{\varphi}(w)$-function for each j. To make things work we need to smoother the functions u_{j}^{i}. To this end, let us choose a point x_{0} such that is a Lebesgue point for the weight w and for the functions $\left(\psi_{r_{i}}+\psi_{r_{i+1}}\right) * u_{j}^{i}$ and define

$$
v_{j}^{i}=\left(\psi_{r_{i}}+\psi_{r_{i+1}}\right) * u_{j}^{i}-C_{i j}
$$

where $C_{i j}=\left(\left(\psi_{r_{i}}+\psi_{r_{i+1}}\right) * u_{j}^{i}\right)\left(x_{0}\right)$. Now, we want to prove that v_{j}^{i} are functions in $\Lambda_{\varphi}(w)$, giving an estimate for $\left\|v_{j}^{i}\right\|_{\Lambda_{\varphi}(w)}$. For each i and j fixed, we take x, z two points in \mathbb{R}^{n} and we consider the two possible cases

Case 1: $|x-z|>r_{i}$

$$
\begin{aligned}
\left|v_{j}^{i}(x)-v_{j}^{i}(z)\right| \leq & \frac{1}{r_{i}^{n}} \int_{B\left(x, r_{i}\right)}\left|u_{j}^{i}\right|+\frac{1}{r_{i+1}^{n}} \int_{B\left(x, r_{i+1}\right)}\left|u_{j}^{i+1}\right| \\
& +\frac{1}{r_{i}^{n}} \int_{B\left(z, r_{i}\right)}\left|u_{j}^{i}\right|+\frac{1}{r_{i+1}^{n}} \int_{B\left(z, r_{i+1}\right)}\left|u_{j}^{i+1}\right| \\
\leq & \frac{1}{r_{i}^{n}}\left\|u_{j}^{i}\right\|_{L^{\infty}(w)}\left(w\left(B\left(x, r_{i}\right)\right)+w\left(B\left(z, r_{i}\right)\right)\right) \\
& +\frac{1}{r_{i+1}^{n}}\left\|u_{j}^{i+1}\right\|_{L^{\infty}(w)}\left(w\left(B\left(x, r_{i+1}\right)\right)+w\left(B\left(z, r_{i+1}\right)\right)\right)
\end{aligned}
$$

Using now estimate (3.17) and that $w \in A_{1}$, we obtain

$$
\begin{equation*}
\left|v_{j}^{i}(x)-v_{j}^{i}(z)\right| \leq C\left(\varphi\left(r_{i}\right)+\varphi\left(r_{i+1}\right)\right)(w(x)+w(z)) \tag{3.18}
\end{equation*}
$$

Case 2: $|x-z| \leq r_{i}$. In this case $B\left(x, r_{i}\right)$ and $B\left(z, r_{i}\right)$ have a thick intersection and, since r_{i} is increasing, the same happens with $B\left(x, r_{i+1}\right)$ and $B\left(z, r_{i+1}\right)$. Let us call $A_{i}=B\left(x, r_{i}\right) \Delta B\left(z, r_{i}\right), A_{i+1}=$ $B\left(x, r_{i+1}\right) \Delta B\left(z, r_{i+1}\right), \widetilde{B}_{i}=B\left(x, 3 r_{i}\right)$ and $\widetilde{B}_{i+1}=B\left(x, 3 r_{i+1}\right)$. Then we have $A_{i} \subset \widetilde{B}_{i}$ and $A_{i+1} \subset \widetilde{B}_{i+1}$ and, using the A_{∞}^{δ} condition in w, we have for $k=i, i+1$

$$
w\left(A_{k}\right) \leq C w\left(\widetilde{B}_{k}\right)\left(\frac{\left|A_{k}\right|}{\left|\widetilde{B}_{k}\right|}\right)^{\delta} \leq C w\left(B_{k}\right)\left(\frac{|x-z|}{r_{k}}\right)^{\delta},
$$

where, for the last inequality, we have used the estimate $\left|A_{k}\right| \leq C \mid x-$ $z \mid r_{k}^{n-1}$. Thus

$$
\begin{aligned}
\left|v_{j}^{i}(x)-v_{j}^{i}(z)\right| & \leq \frac{1}{r_{i}^{n}} \int_{A_{i}}\left|u_{j}^{i}\right|+\frac{1}{r_{i+1}^{n}} \int_{A_{i+1}}\left|u_{j}^{i+1}\right| \\
& \leq\left\|u_{j}^{i}\right\|_{L^{\infty}(w)} \frac{w\left(A_{i}\right)}{r_{i}^{n}}+\left\|u_{j}^{i+1}\right\|_{L^{\infty}(w)} \frac{w\left(A_{i+1}\right)}{r_{i+1}^{n}} \\
& \leq C|x-z|^{\delta}\left(\frac{\varphi\left(r_{i}\right)}{r_{i}^{\delta}} \frac{w\left(B_{i}\right)}{r_{i}^{n}}+\frac{\varphi\left(r_{i+1}\right)}{r_{i+1}^{\delta}} \frac{w\left(B_{i+1}\right)}{r_{i+1}^{n}}\right) \\
& \leq C \varphi\left(r_{i}\right)\left(\frac{|x-z|}{r_{i}}\right)^{\delta}(w(x)+w(z))
\end{aligned}
$$

where in the last inequality we have used that $w \in A_{1}$.
Therefore in both cases we have proved the inequality

$$
\begin{equation*}
\left|v_{j}^{i}(x)-v_{j}^{i}(z)\right| \leq C \varphi\left(r_{i}\right)\left(\frac{|x-z|}{r_{i}}\right)^{\delta}(w(x)+w(z)) \tag{3.19}
\end{equation*}
$$

With (3.18) and (3.19) we are ready to show that the function $g_{j}=$ $\sum_{i} v_{i}^{j}$ is well defined and, moreover, it belongs to $\Lambda_{\varphi}(w)$. In fact, using the estimates (3.18) and (3.19) for fixed x and z, we have

$$
\begin{aligned}
\sum_{i}\left|v_{j}^{i}(x)-v_{j}^{i}(z)\right| & =\left(\sum_{r_{i}<|x-z|}+\sum_{r_{i} \geq|x-z|}\right)\left|v_{j}^{i}(x)-v_{j}^{i}(z)\right| \\
& \leq C(w(x)+w(z))\left(\sum_{r_{i}<|x-z|} \varphi\left(r_{i}\right)+|x-z|^{\delta} \sum_{r_{i} \geq|x-z|} \frac{\varphi\left(r_{i}\right)}{r_{i}^{\delta}}\right) .
\end{aligned}
$$

But, since $\varphi\left(r_{i}\right)=2 \varphi\left(r_{i-1}\right)$ and $\left\{r_{i}\right\}$ is non-decreasing, we get

$$
\begin{aligned}
\sum_{k}^{m} \varphi\left(r_{i}\right) & =2 \sum_{k}^{m}\left(\varphi\left(r_{i}\right)-\varphi\left(r_{i-1}\right)\right) \\
& =2\left(\varphi\left(r_{m}\right)-\varphi\left(r_{k-1}\right)\right. \\
& \leq 2 \varphi\left(r_{m}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k}^{m} \frac{\varphi\left(r_{i}\right)}{r_{i}^{\delta}} & =2 \sum_{k}^{m} \frac{\varphi\left(r_{i}\right)-\varphi\left(r_{i-1}\right)}{r_{i}^{\delta}} \\
& =2 \sum_{k}^{m-1} \varphi\left(r_{i}\right)\left(\frac{1}{r_{i}^{\delta}}-\frac{1}{r_{i+1}^{\delta}}\right)+2 \frac{\varphi\left(r_{m}\right)}{r_{m}^{\delta}}-2 \frac{\varphi\left(r_{k-1}\right)}{r_{k}^{\delta}} \\
& \leq C\left(\sum_{k}^{m-1} \varphi\left(r_{i}\right) \int_{r_{i}}^{r_{i+1}} \frac{d t}{t^{1+\delta}}+\varphi\left(r_{m}\right) \int_{r_{m}}^{\infty} \frac{d t}{t^{1+\delta}}\right) \\
& \leq C \int_{r_{k}}^{\infty} \frac{\varphi(t)}{t^{1+\delta}} d t .
\end{aligned}
$$

With these estimates we obtain
$\sum_{i}\left|v_{j}^{i}(x)-v_{j}^{i}(z)\right| \leq C(w(x)-w(z))\left(\varphi|x-z|+|x-z|^{\delta} \int_{|x-z|}^{\infty} \frac{\varphi(t)}{t^{1+\delta}} d t\right)$
and using the hypothesis on φ we conclude

$$
\begin{equation*}
\sum_{i}\left|v_{j}^{i}(x)-v_{j}^{i}(z)\right| \leq C(w(x)-w(z)) \varphi(|x-z|) \tag{3.20}
\end{equation*}
$$

Therefore, taking $z=x_{0}$ in the above inequality, we have

$$
\sum_{i}\left|v_{j}^{i}(x)\right| \leq C\left(w(x)-w\left(x_{0}\right)\right) \varphi\left(\left|x-x_{0}\right|\right)
$$

which implies that the series $\sum v_{j}^{i}(x)$ converges absolutely for almost every x, in fact for the Lebesgue points of w. Also if we set $g_{j}=\sum_{i} v_{j}^{i}$, the inequality (3.20) gives

$$
\left|g_{j}(x)-g_{j}(z)\right| \leq C(w(x)-w(z)) \varphi(|x-z|)
$$

proving that g_{j} is in $\Lambda_{\varphi}(w)$ and $\left\|g_{j}\right\|_{\Lambda_{\varphi}(w)} \leq C$.
Now we would like to show that f and $\sum_{j=0}^{n} \mathcal{R}_{j} g_{j}$ are basically the same, in the sense that their difference is either zero or a function which can be decomposed in the way we want.

First we observe that for each fixed i we have

$$
\begin{align*}
\sum_{j=0}^{n} \mathcal{R}_{j}\left(v_{j}^{i}\right) & =\sum_{j=0}^{n} \mathcal{R}_{j}\left(\left(\psi_{r_{i}}+\psi_{r_{i+1}}\right) * u_{j}^{i}\right) \tag{3.21}\\
& =\sum_{j}^{n}\left(\psi_{r_{i}}+\psi_{r_{i+1}}\right) * \mathcal{R}_{j}\left(u_{j}^{i}\right) \\
& =\left(\psi_{r_{i}}+\psi_{r_{i+1}}\right) *\left(\psi_{r_{i}}-\psi_{r_{i+1}}\right) * f \\
& =\psi_{r_{i}} * \psi_{r_{i}} * f-\psi_{r_{i+1}} * \psi_{r_{i+1}} * f
\end{align*}
$$

Since for approximations to the identity, say $\rho_{r}(x)=r^{-n} \rho(x / r)$, we know that $\lim _{r \rightarrow \infty}\left(\rho_{r} * f\right)=0$ and $\lim _{r \rightarrow 0}\left(\rho_{r} * f\right)=f$, we may expect to recover f from adding up on i the last equality. But, since the sequence r_{i} belongs to the range of φ, we have to distinguish whether or not L and M are finite.

In any case, if η is a C_{0}^{∞} function with $\int \eta=0$, according to Lemma 3.9 we have

$$
\begin{align*}
\int \mathcal{R}_{j} g_{j} \eta & =-\int g_{j} R_{j} \eta \tag{3.22}\\
& =-\sum_{i} \int v_{j}^{i} R_{j} \eta \\
& =\sum_{i} \int \mathcal{R}_{j} v_{j}^{i} \eta
\end{align*}
$$

where in order to take the sum outside of the integral we have made use of the fact that $\sum_{i}\left|v_{j}^{i}\right|$ converges almost everywhere to a function in $\Lambda_{\varphi}(w)$ and, by Lemma 3.8, the integral of the product of this function by $R_{j} \eta$ is absolutely convergent. From (3.21) and (3.22) we obtain

$$
\begin{align*}
\int\left(\sum_{j=0}^{n} \mathcal{R}_{j} g_{j}\right) \eta & =\sum_{i} \int\left(\sum_{j=0}^{n} \mathcal{R}_{j} v_{j}^{i}\right) \eta \tag{3.23}\\
& =\sum_{i}\left(\int\left(\psi_{r_{i}} * \psi_{r_{i}} * f\right) \eta-\int\left(\psi_{r_{i+1}} * \psi_{r_{i+1}} * f\right) \eta\right) \\
& =\lim _{i \rightarrow-L} \int\left(\psi_{r_{i}} * \psi_{r_{i}} * f\right) \eta-\lim _{i \rightarrow M} \int\left(\psi_{r_{i}} * \psi_{r_{i}} * f\right) \eta
\end{align*}
$$

where the limit should be understood as the evaluation in $-L$ or M when they are finite. To evaluate each of these terms we consider the different possibilities for L and M. The goal is to prove that the
first limit gives either $\int f \eta$ or $\int(f+H) \eta$ where H is a sum of Riesz transforms of $\Lambda_{\varphi}(w)$-functions; similarly we will prove that the second limit gives either zero or $\int G \eta$ with G satisfying the desired property.
i) $L=\infty$. In this case $r_{i} \rightarrow 0$ for $i \rightarrow-L$ and therefore

$$
\begin{equation*}
\lim _{i \rightarrow-L} \int\left(\psi_{r_{i}} * \psi_{r_{i}} * f\right) \eta=\lim _{r \rightarrow 0} \int f\left(\psi_{r} * \psi_{r} * \eta\right)=\int f \eta \tag{3.24}
\end{equation*}
$$

since f es locally integrable, $\eta \in C_{0}^{\infty}$ and $\psi_{r_{i}}$ has compact support.
ii) $L<\infty$. In this case $\varphi\left(r_{-L}\right) \leq 2 \varphi(r)$ for all $r>0$ since otherwise r_{-L-1} could have been constructed. Also, by Lemma 3.6

$$
\begin{aligned}
\left\|f-\psi_{r_{-L}} * \psi_{r_{-L}} * f\right\|_{B M O(w)} \leq & \left\|f-\psi_{r_{-L}} f\right\|_{B M O(w)} \\
& +\left\|\psi_{r_{-L}} *\left(f-\psi_{r_{-L}} * f\right)\right\|_{B M O(w)} \\
\leq & 2\left\|f-\psi_{r_{-L}} * f\right\|_{B M O(w)} \\
\leq & C \varphi\left(r_{-L}\right) .
\end{aligned}
$$

Therefore, using again the decomposition result for $B M O(w)$, we get

$$
\left(\psi_{r_{-L}} * \psi_{r_{-L}} * f\right)-f=\sum_{j=0}^{n} \mathcal{R}_{j}\left(h_{j}\right)
$$

with $\left\|h_{j}\right\|_{L^{\infty}(w)} \leq C \varphi\left(r_{-L}\right)$. Moreover we have

$$
\left|h_{j}(x)-h_{j}(y)\right| \leq(w(x)+w(y))\left\|h_{j}\right\|_{L^{\infty}(w)} \leq C(w(x)+w(y)) \varphi(|x-y|)
$$

giving that $h_{j} \in \Lambda_{\varphi}(w)$. In this way we have shown that

$$
\begin{equation*}
\lim _{i \rightarrow-L} \int\left(\psi_{r_{i}} * \psi_{r_{i}} * f\right) \eta=\int f \eta+\sum_{j=0}^{n} \int \mathcal{R}_{j} h_{j} \eta \tag{3.25}
\end{equation*}
$$

with $h_{j} \in \Lambda_{\varphi}(w)$.
iii) $M=\infty$. In this case $r_{i} \rightarrow \infty$ for $i \rightarrow M$ and therefore supp $\eta \subset$ $B\left(0, r_{i}\right)$ for any i large enough.

Now, as above

$$
\int\left(\psi_{r_{i}} * f * f\right) \eta=\int f\left(\psi_{r_{i}} * \psi_{r_{i}} * \eta\right)
$$

But, for i large enough, $\psi_{r_{i}} * \psi_{r_{i}} * \eta$ vanishes outside of $\tilde{B}=B\left(0,3 r_{i}\right)$ and has zero average. Thus

$$
\begin{aligned}
\left|\int f\left(\psi_{r_{i}} * \psi_{r_{i}} * \eta\right)\right| & \leq \int_{B\left(0,3 r_{i}\right)}\left|f-m_{\tilde{B}} f \| \psi_{r_{i}} * \psi_{r_{i}} * \eta\right| \\
& \leq \operatorname{Cw}\left(B\left(0,3 r_{i}\right) \varphi\left(r_{i}\right)\left\|\psi_{r_{i}} * \psi_{r_{i}} * \eta\right\|_{\infty}\right.
\end{aligned}
$$

since $f \in B M O_{\varphi}(w)$. Also, using again the zero average for η,

$$
\begin{aligned}
\left\|\psi_{r_{i}} * \psi_{r_{i}} * \eta\right\|_{\infty} & \leq r_{i}^{-n}\left\|\psi_{r_{i}} * \eta\right\|_{1} \\
& \leq r_{i}^{-n} \int_{B\left(0,2 r_{i}\right)} \int_{B\left(0, r_{i}\right)}\left|\psi_{r_{i}}(x-y)-\psi_{r_{i}(x) \mid}\right| \eta(y) \mid d y d x \\
& \leq r_{i}^{-n} \int_{B\left(0, r_{i}\right)}|\eta(y)|\left(\int_{B\left(0,2 r_{i}\right)}\left|\psi_{r_{i}}(x-y)-\psi_{r_{i}}(x)\right| d x\right) d y \\
& \leq r_{i}^{-2 n} \int_{B\left(0, r_{i}\right)}\left|\eta(y) \| B\left(0, r_{i}\right) \Delta B\left(y, r_{i}\right)\right| d y \\
& \leq C r_{i}^{-n-1} \int_{B\left(0, r_{i}\right)}|y||\eta(y)| d y=C r_{i}^{-n-1} .
\end{aligned}
$$

With this estimate we get for i large enough

$$
\left.\int\left(\psi_{r_{i}} * \psi_{r_{i}} * f\right) \eta\right) \leq C \frac{w\left(B\left(0,3 r_{i}\right)\right)}{r_{i}^{n}} \frac{\varphi\left(r_{i}\right)}{r_{i}} \leq C \inf _{x \in B(0,1)} w(x) \frac{\varphi\left(r_{i}\right)}{r_{i}}
$$

Now, using that φ is non-decreasing, we have

$$
\frac{\varphi(r)}{r} \leq C r^{\delta-1} \int_{r}^{\infty} \frac{\varphi(t)}{t^{1+\delta}} d t
$$

where the right side tends to zero when $r \rightarrow \infty$, because of $\delta \leq 1$ and $\int_{1}^{\infty}\left(\varphi(t) / t^{1+\delta}\right) d t<\infty$. Hence we get

$$
\begin{equation*}
\lim _{i \rightarrow M} \int\left(\psi_{r_{i}} * \psi_{r_{i}} * f\right) \eta=0 \tag{3.26}
\end{equation*}
$$

iv) $M<\infty$. In this case we have $\varphi(r) \leq 2 \varphi\left(r_{M}\right)$ for any $r>0$ and therefore the given function f belongs to $B M O(w)$ with $\|f\|_{B M O(w)} \leq$ $C \varphi\left(r_{M}\right)$. Applying the decomposition result for functions in this space we get

$$
f=\sum_{j=0}^{n} \mathcal{R}_{j} h_{j}^{\prime}
$$

with $\left\|h_{j}^{\prime}\right\|_{L^{\infty}(w)} \leq C \varphi\left(r_{M}\right)$. Then we have

$$
\begin{aligned}
\int\left(\psi_{r_{M}} * \psi_{r_{M}} * f\right) \eta & =\sum_{j=0}^{n} \int\left(\psi_{r_{M}} * \psi_{r_{M}} * \mathcal{R}_{j}\left(h_{j}^{\prime}\right) \eta\right) \\
& =\sum_{j=0}^{n} \int \mathcal{R}_{j}\left(\psi_{r_{M}} * \psi_{r_{M}} * h_{j}^{\prime}\right) \eta
\end{aligned}
$$

So, if we are able to prove that the functions $\tilde{h}_{j}=\psi_{r_{M}} * \psi_{r_{M}} * h_{j}^{\prime}$ belong to $\Lambda_{\varphi}(w)$, we would get the desired result, i. e.:

$$
\begin{equation*}
\lim _{i \rightarrow-M} \int\left(\psi_{r_{i}} * \psi_{r_{i}} * f\right) \eta=\sum_{j=0}^{n} \int \mathcal{R}_{j} \tilde{h}_{j} \eta \tag{3.27}
\end{equation*}
$$

with $\tilde{h}_{j} \in \Lambda_{\varphi}(w)$. To do that, we first observe that $\phi_{r_{M}}(x)=\left(\psi_{r_{M}} *\right.$ $\left.\psi_{r_{M}}\right)(x)=r_{M}^{-n}\left(\mathcal{X}_{B_{1}} * \mathcal{X}_{B_{1}}\right)\left(x / r_{M}\right)$ and that $\mathcal{X}_{B_{1}} * \mathcal{X}_{B_{1}}$ is a Lipschitz function supported in $B(0,3)$. Therefore $\phi_{r_{M}}$ is supported in $B\left(0,3 r_{M}\right)$ and satisfies

$$
\begin{equation*}
\left|\phi_{r_{M}}(x)\right| \leq \frac{C}{r_{M}^{n}} \text { and }\left|\phi_{r_{M}}(x)-\phi_{r_{M}}(y)\right| \leq \frac{C}{r_{M}^{n}} \frac{|x-y|}{r_{M}} \tag{3.28}
\end{equation*}
$$

Now, for x and y such that $|x-y|<r_{M}$ we have

$$
\begin{aligned}
\left|\tilde{h}_{j}(x)-\tilde{h}_{j}(y)\right| & \leq \int\left|\phi_{r_{M}}(x-z)-\phi_{r_{M}}(y-z)\right|\left|h_{j}^{\prime}(z)\right| d z \\
& \leq C| | h_{j}^{\prime} \|_{L^{\infty}(w)} \frac{|x-y|}{r_{M}} \frac{1}{r_{M}^{n}} \int_{B\left(x, 3 r_{M}\right) \cup B\left(y, 3 r_{M}\right)} w(z) d z \\
& \leq C \varphi\left(r_{M}\right) \frac{|x-y|}{r_{M}}(w(x)+w(y)) \\
& \leq C \varphi(|x-y|)(w(x)+w(y)),
\end{aligned}
$$

where in the last inequality we have used that $\varphi(t) / t$ is almost decreasing. Finally for x and y such that $|x-y| \geq r_{M}$ we have

$$
\begin{aligned}
\left|\tilde{h}_{j}(x)-\tilde{h}_{j}(y)\right| & \leq\left|\tilde{h}_{j}(x)\right|+\left|\tilde{h}_{j}(y)\right| \\
& \leq C| | h_{j}^{\prime} \|_{L^{\infty}(w)}(w(x)+w(y)) \\
& \leq C \varphi\left(r_{M}\right)(w(x)+w(y))
\end{aligned}
$$

In this way we proved $\tilde{h}_{j} \in \Lambda_{\varphi}(w)$.

The conclusion of the theorem follows now by (3.24), (3.25), (3.26) and (3.27). \square

References

[B] Bloom, S.: Pointwise multipliers of weighted BMO spaces, Proc. of Amer. Math. Soc., V. 105 (1989), p. 950-960.
[CF] Coifman, R. R. and Fefferman, C: Weighted norm inequalities for maximal functions and singular integrals, Studia Math., V. 51 (1974), p. 241-250.
[F] Fefferman, C. L.: Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc., V. 77 (1971), p. 587-588.
[FS] Fefferman, C. L. and Stein, E. M.: H^{p}-spaces of several variables, Acta Math., V. 129 (1972), p. 137-193.
[HSV1] Harboure, E.; Salinas, O and Viviani, B.: Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. of the Amer. Math. Soc., V. 349, 1 (1997), p. 235-255.
[HSV2] Harboure, E.; Salinas, O and Viviani, B.: Relations between weighted Orlicz and $B M O_{\phi}$ spaces through fractional integrals, Comment. Math. Univ. Carolinae, V. 40, 1 (1999), p. 53-69.
[J] Janson, S.: On functions with conditions on the mean oscillation, Ark. Math., V. 14 (1976), p. 189-196.
[JN] John, F. and Nirenberg, L.: On functions of bounded mean oscillation, Comm. Pure Appl. Math, V. 14 (1961), p. 415-426.
[M] Morvidone, M.: Weighted $B M O_{\phi}$ spaces and the Hilbert transform, Revista de la Unión Matemática Argentina, V. 44 (2002), p. 1-16.
[MW] Muckenhoupt, B. and Wheeden, R.: On the dual of weighted H^{1} of the half-space, Studia Math., V. 63 (1978), p. 57-79.
[N] Nakai, E.: Pointwise multipliers for functions of weighted bounded main oscillation, Studia Math., V. 105 (1993), p. 105-119.
[S] Spanne, S.: Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa, V. 19 (1965), p. 593-607.
[Y] Yabuta, K.: Pointwise multipliers of weighted BMO spaces, Proc. of Amer. Math. Soc., V. 117 (1993), p. 737-744.

Instituto de Matemática Aplicada del Litoral, Güemes 3450, 3000 Santa Fe, República Argentina

E-mail address: harbour@ceride.gov.ar
E-mail address: salinas@ceride.gov.ar
E-mail address: viviani@ceride.gov.ar

[^0]: 1991 Mathematics Subject Classification. Primary 42B25.
 Key words and phrases. weigths, bounded mean oscillation, characterizations.
 The authors were supported by the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and by the Universidad Nacional del Litoral.

