CHARACTERIZATIONS OF $BMO_{\varphi}(w)$

ELEONOR HARBOURE, OSCAR SALINAS, AND BEATRIZ VIVIANI

ABSTRACT. In this paper we give two characterizations of functions with weighted mean oscillation over cubes controlled by a non-negative function φ , that is functions in $BMO_{\varphi}(w)$. The first one, by conditions on their rearrangements, and the second one, by means of Riesz transforms and φ -Lipschitz functions. These results extend those contained in [S] and [J].

1. INTRODUCTION

The aim of this paper is to obtain characterizations of spaces of functions whose oscillation, when averaged over cubes is controlled by means of a weight w and a growth function φ , measuring their degree of smoothness.

The first appearance of this kind of weighted spaces goes back to [MW]. There, the authors introduced BMO(w) ($\varphi \equiv 1$ in our context) as the natural space where weighted L^{∞} functions are mapped by \mathcal{H} , the Hilbert transform on the line, and generalizing the well known BMO space of John and Niremberg. In the more general context $\varphi(t) = t^{\beta}$, $0 < \beta < 1$, it is shown in [HSV1] that the fractional integral operator I_{α} applies $L^{p}(w)$ with $p > n/\alpha$ into these spaces, under suitable conditions on the weight. Later on this result was extended to weighted Orlicz spaces [HSV2] giving rise to the spaces under consideration in their full generality. Finally in [M] it is shown that they are preserved by the Hilbert transform on the line.

We start by giving the precise definition of our spaces and reminding some basic notions about weights.

Let φ be a continuous non-negative and non-decreasing function defined on $[0, \infty)$ with $\varphi(0) = 0$ and satisfying a doubling condition (or a Δ_2 -condition), that is there exists a constant C such that

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B25.

Key words and phrases. weights, bounded mean oscillation, characterizations.

The authors were supported by the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and by the Universidad Nacional del Litoral.

(1.1)
$$\varphi(2R) \le C\varphi(R)$$

for every R > 0. Let w be a weight in the A_{∞} Muckenhoupt's class, that is a non-negative a.e. and locally integrable function satisfying

(1.2)
$$\frac{w(E)}{w(Q)} \le C \left(\frac{|E|}{|Q|}\right)^{\delta}$$

for every cube Q in \mathbb{R}^n and every measurable set $E \subset Q$, where C and δ are positive constants depending neither on Q nor on E and $w(E) = \int_E w(x) dx$.

We shall say that a function f in $L^1_{loc}(\mathbb{R}^n)$ has w-mean oscillations over cubes controlled by φ or, shorter, that it belongs to $BMO_{\varphi}(w)$, if there exists a constant C such that the inequality

(1.3)
$$\frac{1}{w(Q(x,r))} \int_{Q(x,r)} |f(y) - m_{Q(x,r)}| dy \le C\varphi(r)$$

holds for every cube $Q(x,r) = \{y \in \mathbb{R}^n / |x_i - y_i| < r, i = 1, ..., n\}$ in \mathbb{R}^n , where $m_{Q(x,r)}f = |Q(x,r)|^{-1} \int_{Q(x,r)} f(y) dy$.

The infimum of the constants C satisfying (1.3) will be denoted by $||f||_{BMO_{\varphi}(w)}$. It is not too hard to see that it is a norm in $BMO_{\varphi}(w)$ modulo constants. When w = 1, we will denote these spaces by BMO_{φ} . Note that, because of our hypothesis on w and ϕ , we can take balls $B(x,r) = \{y/|x-y| < r\}$ instead of cubes Q(x,r) in (1.3) and obtain and equivalent version of $BMO_{\varphi}(w)$.

In connection with the above definition, we shall say that a function f belongs to the (w, φ) -Lipschitz space, denoted by $\Lambda_{\varphi}(w)$, if there exists a constant C such that

(1.4)
$$|f(x) - f(y)| \le C(w(x) + w(y))\varphi(|x - y|),$$

holds for a.e. x and y in \mathbb{R}^n . It is easy to prove that $\Lambda_{\varphi}(w) \subset BMO_{\varphi}(w)$. For w = 1, as before, we write Λ_{φ} instead of $\Lambda_{\varphi}(w)$.

Some special cases and, moreover, generalizations of the spaces $BMO_{\varphi}(w)$ have been studied by several authors (see, for instance, [JN], [J], [S], [F], [FS], [B], [Y], [N]). In particular, in [S], S. Spanne considered the case $w \equiv 1$ and proved a characterization of the functions in BMO_{φ} by means of rearrangements.

On the other hand, S. Janson, in [J], gave another characterization of BMO_{φ} , this time in terms of Riesz transforms and Λ_{φ} , generalizing the well known decomposition of BMO functions in terms of Riesz transforms and L^{∞} (see [F] and [FS]). Also, in [MW] such characterization is given for the case $\varphi = 1$) and w belonging to the A_1 class of Muckenhoupt.

In this work we obtain similar characterizations to those in [S] and [J] for more general weighted spaces $BMO_{\varphi}(w)$. Before stating our results we recall some definitions.

A non negative and measurable function w is in the A_1 class of Muckenhoupt if there exists a constant C such that

(1.5)
$$\frac{1}{|Q(x,r)|} \int_{Q(x,r)} w(y) dy \le C \operatorname{ess\,inf}_{Q(x,r)} w$$

holds for every cube Q(x,r) in \mathbb{R}^n .

A non-negative function ψ is quasi-decreasing when a constant C exists such that

(1.6)
$$\psi(t_1) \le C\psi(t_2)$$

is satisfied for every t_1 and t_2 with $0 \le t_2 < t_1$.

Now, we are in position to state our main results.

THEOREM 1.7. Let w be in A_1 and φ as in (1.1). Then, a locally integrable function f belongs to $BMO_{\varphi}(w)$ if and only if there exists a constant C such that

(1.8)
$$f_Q^*(s) \le C \int_{s^{\frac{1}{n}} \left(\frac{|Q|}{Cw(Q)}\right)^{\frac{1}{n}}}^{2r_Q} \frac{\varphi(t)}{t} dt,$$

for every $s \in \mathbb{R}$ and every cube Q in \mathbb{R}^n , where f_Q^* means the non increasing rearrangement of $\mathcal{X}_Q|f-m_{\varphi}f|/w$ with respect to the measure given by w and r_Q denotes the half length edge of Q.

COROLLARY 1.9. If w and φ are as in the theorem above and, in addition, $\int_0^1 \frac{\varphi(t)}{t} dt < \infty$, then $BMO_{\varphi}(w)$ is contained in $\Lambda_{\psi}(w)$ with $\psi(r) = \int_0^r \frac{\varphi(t)}{t} dt$, so it coincides with $BMO_{\varphi}(w)$ whenever $\psi(r) \leq C\varphi(r)$ for every r > 0.

THEOREM 1.10. Let w be in A_1 and φ as in (1.1) such that $\varphi(t)/t$ is quasi-decreasing. Then, given x_0 in \mathbb{R}^n , the function

$$h_{x_0}(x) = \int_{|x-x_0|}^1 \frac{w(B(x_0,t))}{t^n} \frac{\varphi(t)}{t} dt,$$

with $B(x_0,t) = \{y \in \mathbb{R}^n / |x_0 - y| < t\}$, belongs to $BMO_{\varphi}(w)$. Moreover, there exist two constants C_1 and C_2 , not depending on x_0 , such that the inequality

(1.11)

$$C_1\varphi(r) \le \sup_{\substack{s\le r\\z\in \mathbb{R}^n}} \frac{1}{w(B(z,s))} \int_{Q(z,s)} |h_{x_0}(y) - m_{Q(z,s)}h_{x_0}| dy \le C_2\varphi(r)$$

holds for every r > 0.

COROLLARY **1.12.** Let w and φ be as in Theorem 1.10. If $\int_0^1 \frac{\varphi(t)}{t} dt = \infty$ then there are functions in $BMO_{\varphi}(w)$ not belonging to $\Lambda_{\varphi}(w)$. In particular we get $\Lambda_{\varphi}(w) \subseteq BMO_{\varphi}(w)$.

REMARK 1.13. Notice that corollary 1.12 gives the converse of corollary 1.9 above under the additional assumption that $\varphi(t)/t$ is quasi decreasing.

The statement of the next theorem requires to specify some details about the weight w. We know that if w is in A_1 , then it satisfies an A_{∞} condition (see (1.2)). In general if (1.2) holds for some fixed δ , we are going to say that w belongs to A_{∞}^{δ} . Now we get

THEOREM 1.14. Let w be in $A_1 \cap A_{\infty}^{\delta}$. If φ is as in (1.1) and satisfying

$$r^{\delta} \int_{r}^{\infty} \frac{\varphi(t)}{t^{1+\delta}} dt \leq C\varphi(r)$$

for every r > 0, then $BMO_{\varphi}(w) = \Lambda_{\varphi}(w) + \sum_{j=1}^{n} \mathcal{R}_{i}(\Lambda_{\varphi}(w))$, where \mathcal{R}_{j} denotes the modified Riesz transform of order j, defined by

(1.15)
$$\mathcal{R}_j f(x) = \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \left(\frac{x_j - y_j}{|x-y|^{n+1}} + \mathcal{X}_{B_1^C}(y) \frac{y_j}{|y|^{n+1}} \right) f(y) dy,$$

where B_1 denotes the unit ball centered at the origin.

The next section contains the proofs of Theorems 1.7 and 1.10 and their corollaries, while section 3 is devoted to prove Theorem 1.14. We wish to say that our techniques are based on those of S. Spanne and S. Janson.

2. $BMO_{\varphi}(w)$ in terms of rearrangements

In order to prove Theorem 1.7 we need a result about the behavior of the distribution function of $|f - m_Q f|/w$ over Q for each cube Q. It will be obtained as an easy consequence of the following lemma, whose proof can be found in [M].

LEMMA 2.1. Let w be in A_1 . Then there exist two constants a_1 and a_2 such that, for each cube Q_0 in \mathbb{R}^n , the inequality

(2.2)
$$w(\{x \in Q / \frac{|f(x) - m_Q f|}{w(x)} > \lambda\}) \le a_1 e^{\frac{a_2}{|f|_{Q_0}}\lambda} w(Q)$$

holds for every $\lambda > 0$, every cube $Q \subset Q_0$ and every f in $L^1(Q_0)$ where

$$[f]_{Q_0} = \sup_{Q \subset Q_0} \frac{1}{w(Q)} \int_Q |f(x) - m_Q f| dx.$$

COROLLARY 2.3. Let w be in A_1 . Then there exist two constants C_1 and C_2 , such that, for each cube $Q = Q(x_Q, r_Q)$ in \mathbb{R}^n , the inequality $w(\{x \in Q / \frac{|f(x) - m_Q f|}{w(x)} > C_1 t \varphi(r_Q) ||f||_{BMO_{\varphi}(w)}\}) \leq C_2 2^{-t} w(Q(x_Q, r_Q))$ holds for every t > 0 and f in $BMO_{\varphi}(w)$.

PROOF: Given a cube $Q = Q(x_Q, r_Q)$, it is clear that

$$\begin{split} [f]_Q &\leq \sup_{\substack{z \\ r \leq r_Q}} \frac{1}{w(Q(z,r))} \int_{Q(z,r)} |f(x) - m_{Q(z,r)}f| dx \\ &\leq \varphi(r_Q) ||f||_{BMO_{\varphi}(w)} \end{split}$$

is valid for every f in $BMO_{\varphi}(w)$. Then, from (2.2) we get

$$w(\{x \in Q / \frac{|f(x) - m_Q f|}{w(x)} > \lambda\}) \leq a_1 e^{-\frac{a_2}{|f|_Q}\lambda} w(Q)$$
$$\leq a_1 e^{-\frac{a_2}{\varphi(r_Q)||f||_{BMO\varphi}(w)}\lambda} w(Q),$$

Finally, taking $\lambda = t\varphi(r_Q)||f||_{BMO_{\varphi}(w)} \log 2/a_2$ we obtain the desired result with $C_1 = \log 2/a_2$ and $C_2 = a_1.\square$

Now we are able to proceed with the proof of our first theorem.

PROOF OF THEOREM 1.7: First we are going to prove that (1.8) is a necessary condition for f to be in $BMO_{\varphi}(w)$. Let $Q = Q(x_Q, r_Q)$ be a cube in \mathbb{R}^n . Given r > 0, we choose j such that $2^{-j}r_Q < r \leq 2^{-j+1}r_Q$. Now, by repeated halving all edges, let us divide Q into 2^{jn} subcubes Q_k with lenght edge equal to $r_Q 2^{-j}$. Given k, let $\{I_i^k\}_{i=0}^j$ be the subcubes of the dyadic partition such that $Q = I_0^k \supset \ldots \supset I_j^k = Q_k$ with $|I_i^k| = 2^n |I_{i+1}^k|$. Then, taking y in Q_k and recalling that $w \in A_1$, we get

$$(2.4) \qquad \frac{|m_{Q_k}f - m_Qf|}{w(y)} \leq \frac{1}{\inf_{Q_k}w} \sum_{i=0}^{j-1} |m_{I_{i+1}^k}f - m_{I_i^k}f| \\ \leq \frac{2^n}{\inf_{Q_k}w} \sum_{i=0}^{j-1} \frac{1}{|I_i^k|} \int_{I_i^k} |f(y) - m_{I_i^k}f| dy \\ \leq \frac{2^n ||f||_{BMO_{\varphi}(w)}}{\inf_{Q_k}w} \sum_{i=0}^{j-1} \frac{w(I_i^k)}{|I_i^k|} \varphi(2^{-i}r_Q) \\ \leq \frac{C_0 ||f||_{BMO_{\varphi}(w)}}{\inf_{Q_k}w} \sum_{i=0}^{j-1} \inf_{I_i^k} w\varphi(2^{-i}r_Q) \\ \leq C_0 ||f||_{BMO_{\varphi}(w)} \sum_{i=0}^{j-1} \varphi(2^{-i}r_Q).$$

Now, taking $\lambda_0 = (C_0 + C_1 n) ||f||_{BMO_{\varphi}(w)} \sum_{i=0}^{j-1} \varphi(2^{-i} r_Q)$, where C_1 and C_2 are the constants appearing in Corollary 2.3, from (2.2) and (2.4), we have

$$(2.5) \quad w(\{y \in Q / \frac{|f(y) - m_Q f|}{w(y)} > \lambda_0\})$$

$$\leq \sum_{k=1}^{2^{jn}} w(\{y \in Q_k / \frac{|f(y) - m_Q f|}{w(y)} > \lambda_0\})$$

$$\leq \sum_{k=1}^{2^{jn}} w(\{y \in Q_k / \frac{|f(y) - m_{Q_k} f|}{w(y)}$$

$$> C_1(n + \log 2 \log C_2)j||f||_{BMO_{\varphi}(w)}\varphi(2^{-j}r_Q)\})$$

$$\leq C_2 2^{-jn} \sum_{k=1}^{2^{jn}} w(Q_k)$$

$$= C_2 2^{-jn} w(Q) = C_2 (\frac{r_Q}{2^j})^n \frac{w(Q)}{|Q|}$$

$$< C_2 r^n \frac{w(Q)}{|Q|}.$$

On the other hand, we get

$$\begin{aligned} \lambda_0 &\leq \frac{1}{\log 2} (C_0 + C_1 n) ||f||_{BMO_{\varphi}(w)} \sum_{i=0}^{j-1} \int_{2^{-i} r_Q}^{2^{-i+1} r_Q} \frac{\varphi(t)}{t} dt \\ &\leq C_3 ||f||_{BMO_{\varphi}(w)} \int_r^{2r_Q} \frac{\varphi(t)}{t} dt. \end{aligned}$$

Then, from (2.5)

$$w(\{y \in Q / \frac{|f(y) - m_Q f|}{w(y)} > C_3 ||f||_{BMO_{\varphi}(w)} \int_r^{2r_Q} \frac{\varphi(t)}{t} dt\}) < C_2 r^n \frac{w(Q)}{|Q|}.$$

Taking $s = C_2 r^n \frac{w(Q)}{|Q|}$ we have

$$w(\{y \in Q / \frac{|f(y) - m_Q f|}{w(y)} > C ||f||_{BMO_{\varphi}(w)} \int_{(\frac{s|Q|}{Cw(Q)})^{\frac{1}{n}}}^{2r_Q} \frac{\varphi(t)}{t} dt\}) < s,$$

where $C = \max(C_2, C_3)$, and (1.8) follows easily. Now, we assume (1.8) holds. Then, given a cube Q in \mathbb{R}^n , we have

$$\begin{aligned} \frac{1}{w(Q)} \int_{Q} |f(y) - m_{Q}f| dy &= \frac{1}{w(Q)} \int_{Q} \frac{|f(y) - m_{Q}f|}{w(y)} w(y) dy \\ &= \frac{1}{w(Q)} \int_{0}^{w(Q)} f_{Q}^{*}(s) ds \\ &\leq \frac{C}{w(Q)} \int_{0}^{w(Q)} \left(\int_{(\frac{s|Q|}{Cw(Q)})^{\frac{1}{n}}}^{2r_{Q}} \frac{\phi(t)}{t} dt\right) ds \\ &= \frac{C}{w(Q)} \int_{0}^{2r_{Q}} \frac{\varphi(t)}{t} \left(\int_{0}^{t^{n}C \frac{w(Q)}{|Q|}} ds\right) dt \\ &= \frac{C}{w(Q)} \int_{0}^{2r_{Q}} \frac{\varphi(t)}{t} t^{n} \frac{w(Q)}{|Q|} dt \\ &\leq \frac{C\varphi(2r_{Q})}{|Q|} (2r_{Q})^{n} \\ &\leq C\varphi(r_{Q}). \end{aligned}$$

Since the above inequality is valid for every Q, we get f is in $BMO_{\varphi}(w).\square$

PROOF OF COROLLARY 1.9: Let f be in $BMO_{\varphi}(w)$. Then, given x and y, we have

(2.6)
$$\frac{|f(x) - f(y)|}{w(x) + w(y)} \le \frac{|f(x) - m_Q f|}{w(x) + w(y)} + \frac{|f(y) - m_Q f|}{w(x) + w(y)} \le \frac{|f(x) - m_Q f|}{w(x)} + \frac{|f(y) - m_Q f|}{w(y)},$$

where Q is a cube containing x and y with length side $r_Q = |x - y|$. On the other hand, it is clear that

$$ess \sup_{z \in Q} \frac{|f(z) - m_Q f|}{w(z)} = \sup_{s} f_Q^*(s) = \lim_{s \to 0} f_Q^*(s).$$

Then, from the Theorem, we get

$$\operatorname{ess\,sup}_{z\in Q} \frac{|f(z) - m_Q f|}{w(z)} \leq C||f||_{BMO_{\varphi}(w)} \lim_{s\to 0} \int_{\left(\frac{s|Q|}{Cw(Q)}\right)^{\frac{1}{n}}}^{2r_Q} \frac{\varphi(t)}{t} dt$$
$$= C||f||_{BMO_{\varphi}(w)} \int_{0}^{2r_Q} \frac{\varphi(t)}{t} dt$$
$$= C||f||_{BMO_{\varphi}(w)} \int_{0}^{r_Q} \frac{\varphi(2t)}{t} dt$$
$$\leq C||f||_{BMO_{\varphi}(w)} \int_{0}^{r_Q} \frac{\varphi(t)}{t} dt.$$

Finally, combining this inequality with (2.6) we can write

$$|f(x) - f(y)| \le C ||f||_{BMO_{\varphi}(w)}(w(x) + w(y)) \int_{0}^{|x-y|} \frac{\varphi(t)}{t} dt,$$

for a.e. x and y in \mathbb{R}^n , proving that f belongs to $\Lambda_{\psi}(w)$ with $\psi(r) = \int_0^r \frac{\varphi(t)}{t} dt. \Box$

PROOF OF THEOREM 1.10: First, recall that, because of our hypothesis on w and φ , we can take balls $B(x,r) = \{y \in \mathbb{R}^n / |x-y| < r\}$ instead of cubes Q(x,r) in (1.1) and obtain an equivalent version of $BMO_{\varphi}(w)$. In this proof, for the sake of simplicity, we consider the version with balls.

Let $x_0 \in \mathbb{R}^n$ fixed and let B(z,r) a ball in \mathbb{R}^n . Suppose that $|z - x_0| < 2r$. Then, using the doubling property of w and φ , we have

$$\begin{aligned} (2.7) \\ \int_{B(z,r)} |h_{x_0}(x) - h_{x_0}(z + r\frac{z - x_0}{|z - x_0|})| dx \\ &= \int_{B(z,r)} (\int_{|x - x_0|}^{|x_0 - z| + r} \frac{w(B(x_0, t))}{t^n} \frac{\varphi(t)}{t} dt) dx \\ &\leq \int_0^{|x_0 - z| + r} \frac{w(B(x_0, t))}{t^n} \frac{\varphi(t)}{t} (\int_{B(x_0, t) \cap B(z, r)} dx) dt \\ &\leq C \int_0^{|x_0 - z| + r} \frac{w(B(x_0, t))}{t^n} \frac{\varphi(t)}{t} t^n dt \\ &\leq C\varphi(3r) \int_0^{|x_0 - z| + r} \frac{w(B(x_0, t))}{t} dt \\ &= C\varphi(3r) \sum_{i=0}^{\infty} \int_{(|x_0 - z| + r)/2^{i+1}}^{(|x_0 - z| + r)/2^i} \frac{w(B(x_0, t))}{t} dt \\ &\leq C\varphi(3r) \sum_{i=0}^{\infty} w(B(x_0, \frac{|x_0 - z| + r}{2^i})) \\ &\leq C\varphi(r) \sum_{i=0}^{\infty} w(B(x_0, \frac{|x_0 - z| + r}{2^i} - B(x_0, \frac{|x_0 - z| + r}{2^{i+1}})) \\ &\leq C\varphi(r)w(B(x_0, |x_0 - z| + r)) \\ &\leq C\varphi(r)w(B(x_0, r)). \end{aligned}$$

Now, assuming $|z - x_0| > 2r$ and keeping in mind that w satisfies the doubling condition, we have

$$\begin{split} \int_{B(z,r)} |h_{x_0}(x) &- h_{x_0}(z+r\frac{z-x_0}{|z-x_0|})|dx\\ &\leq \int_0^{|x_0-z|+r} \frac{w(B(x_0,t))}{t^n} \frac{\varphi(t)}{t} |B(z,r) \cap B(x_0,t)|dt\\ &\leq Cr^n \int_{|x_0-z|-r}^{|x_0-z|+r} \frac{w(B(x_0,t))}{t^n} \frac{\varphi(t)}{t} dt\\ &\leq Cr^n \int_{|x_0-z|-r}^{|x_0-z|+r} \frac{w(B(z,t))}{t^n} \frac{\varphi(t)}{t} dt. \end{split}$$

Note that, since $w \in A_1, w(B(z,t))/t^n$ is quasi-decreasing. Then from the above inequality and the fact that $|x_0 - z| - r \ge r$, having in mind that that $\varphi(t)/t$ is quasi-decreasing, we get

(2.8)
$$\int_{B(z,r)} |h_{x_0}(x) - h_{x_0}(z + r\frac{z - x_0}{|z - x_0|})| dx$$
$$\leq Cr^n \frac{w(B(z,r))}{r^n} \frac{\varphi(r)}{r} r$$
$$= Cw(B(z,r))\varphi(r).$$

So, from (2.7) and (2.8), it is immediate that $h_{x_0} \in BMO_{\varphi}(w)$. Moreover, the upper bound on (1.11) is clear. To check the lower bound, let us note first that there exists a constant C such that

$$\begin{aligned} \frac{1}{w(B(z,s))} \int_{B(z,s)} |h_{x_0}(y) - m_{B(z,s)} h_{x_0}| dy \\ \ge \frac{1}{2w(B(z,s))} \frac{1}{|B(z,s)|} \int_{B(z,s)} \int_{B(z,s)} |h_{x_0}(x) - h_{x_0}(y)| dy dx \end{aligned}$$

for every $z \in \mathbb{R}^n$ and s > 0. Then, we can write

$$\begin{split} \sup_{\substack{0 < s \leq r \\ z \in \mathbb{R}^{n}}} \frac{1}{w(B(z,s))} \int_{B(z,s)} |h_{x_{0}}(y) - m_{B(z,s)}h_{x_{0}}| dy \\ &\geq \frac{1}{w(B(x_{0},r))} \int_{B(x_{0},r)} |h_{x_{0}}(y) - m_{B(x_{0},r)}h_{x_{0}}| dy \\ &\geq \frac{C}{w(B(x_{0},r))} \frac{1}{|B(x_{0},r)|} \int_{|x-x_{0}| < \frac{r}{4}} \int_{\frac{r}{2} < |y-x_{0}| < r} |h_{x_{0}}(x) - h_{x_{0}}(y)| dy dx \\ &= \frac{C}{w(B(x_{0},r))} \frac{1}{|B(x_{0},r)|} \\ &\qquad \times \int_{|x-x_{0}| < \frac{r}{4}} dx \int_{\frac{r}{2} < |y-x_{0}| < r} dy (\int_{|x-x_{0}|}^{|y-x_{0}|} \frac{w(B(x_{0},t))}{t^{n}} \frac{\varphi(t)}{t} dt) \\ &\geq \frac{C}{w(B(x_{0},r))} \frac{1}{r^{n}} r^{2n} \int_{\frac{r}{4}}^{\frac{r}{2}} \frac{w(B(x_{0},t))}{t^{n}} \frac{\varphi(t)}{t} dt \\ &\geq \frac{Cr^{n}}{w(B(x_{0},r))} \frac{w(B(x_{0},r/4))}{r^{n+1}} \varphi(\frac{r}{4})r \end{split}$$

Finally, from the fact that w and φ satisfy a doubling condition we get

(2.9)
$$\sup_{\substack{0 < s \le r \\ z \in \in \mathbb{R}^n}} \frac{1}{w(B(z,s))} \int_{B(z,s)} |h_{x_0}(x) - m_{B(z,s)} h_{x_0}| dx \ge C\varphi(r)$$

as we wanted to prove. \Box

Our proof of Corollary 1.12 requires the following characterization of the functions in $\Lambda_{\varphi}(w)$ (see (1.4)).

LEMMA 2.10. Let w be in A_1 and φ satisfying a doubling condition. Then a function f belongs to $\Lambda_{\varphi}(w)$ if and only if $f \in L^1_{loc}(\mathbb{R}^n)$ and there exists a constant C such that

(2.11)
$$\operatorname{ess\,sup}_{\substack{x \in B(z,r) \\ z \in \mathbb{R}^n}} \frac{|f(x) - m_{B(z,r)}f|}{w(x)} \le C\varphi(r)$$

for every r > 0.

PROOF: It is easy to see that functions satisfying (2.11) are in $\Lambda_{\varphi}(w)$. Actually we do not need w be in A_1 nor the doubling condition on φ for this part. Let us prove the reciprocal. If f is in $\Lambda_{\varphi}(w)$, then, by (1.2), we get

(2.12)
$$|f(x) - f(y)| \le C(w(x) + w(y))\varphi(|x - y|)$$

for a.e. x and y in \mathbb{R}^n . Now, let B(z, r) be a ball in \mathbb{R}^n . Taking x and y in B(z, r) and integrating with respects to y both sides of (2.12) we get

$$\begin{aligned} |f(x)|B(z,r)| &- \int_{B(z,r)} f(y)dy| &\leq \int_{B(z,r)} |f(x) - f(y)|dy\\ &\leq C(w(x)|B(z,r)| + w(B(z,r)))\varphi(2r). \end{aligned}$$

for a.e. x in B(z, r). From this inequality, using our assumptions on w and φ , we have

$$|f(x) - m_{B(z,r)}f| \leq C(w(x) + \frac{w(B(z,r))}{|B(z,r)|})\varphi(2r)$$

$$\leq C(w(x) + C\inf_{B(z,r)}w)\varphi(r)$$

$$\leq Cw(x)\varphi(r)$$

for a.e. x in B(z, r). Now (2.11) is obvious.

PROOF OF COROLLARY 1.12: Let x_0 be a Lebesgue point of w such that $0 < w(x_0) < \infty$. Note that since w is finite a.e., for each ε in (0, 1) and we can find $A^{\varepsilon} \subset B(x_0, \varepsilon)$ such that $|A^{\varepsilon}| > 0$ and $w(x) \leq 2w(x_0)+1$ for every $x \in A^{\varepsilon}$. Now, let the function h_{x_0} be defined as in Theorem 1.10. Since $w \in A_1$, for each ε in (0, 1), we have

$$\frac{h_{x_0}(x)}{w(x)} = \frac{1}{w(x)} \int_{|x-x_0|}^1 \frac{w(B(x_0,t))}{t^n} \frac{\varphi(t)}{t} dt$$

$$\geq \frac{C}{w(x)} w(B(x_0,1)) \int_{|x-x_0|}^1 \frac{\varphi(t)}{t} dt$$

$$\geq \frac{C}{2w(x_0)+1} w(B(x_0,1)) \int_{\varepsilon}^1 \frac{\varphi(t)}{t} dt$$

for every $x \in A^{\varepsilon}$. Then, taking ε close enough to zero, it is clear that h_{x_0}/w is not bounded on $B(x_0, 1)$ and, consequently, since $w(x) \ge \operatorname{ess\,inf}_{B(x_0,1)} w > 0$ a.e. in $B(x_0, 1)$

ess
$$\sup_{x \in B(x_0,1)} \frac{|h_{x_0}(x) - m_{B(x_0,1)}h_{x_0}|}{w(x)} = \infty.$$

So, from Lemma 2.11, h_{x_0} does not belong to $\Lambda_{\varphi}(w)$. However, from Theorem 1.10, $h_{x_0} \in BMO_{\varphi}(w)$. This completes the proof of the Corollary.

3. $BMO_{\varphi}(w)$ in terms of Riesz transforms

In this section we shall give the proof of Theorem 1.14. We will use some technical lemmas and also an extension to n-dimensions of the following result appearing in [M] for the Hilbert transform. **PROPOSITION 3.1.** Let w be an A_{∞} weight and φ a non decreasing function defined on $[0, \infty)$ satisfying a doubling condition. Assume further that there exists a constant C such that

(3.2)
$$\frac{|B|^{1/n}}{\varphi(|B|^{1/n})} \int_{B^c} w(y) \frac{\varphi(|x_0 - y|)}{|x_0 - y|^{n+1}} dy \le C \frac{w(B)}{|B|}$$

holds for any ball B, where x_0 denotes the center of B. Then the Riesz-transforms \mathcal{R}_i given by (1.15) are finite almost everywhere for $f \in BMO_{\varphi}(w)$. Moreover there is a constant C such that

$$(3.3) ||\mathcal{R}_i f||_{BMO_{\varphi}(w)} \le C||f||_{BMO_{\varphi}(w)} 1 \le i \le n.$$

The proof follows the same lines of the one-dimensional case with some minor modifications.

Our next result shows that, under the assumptions of theorem 1.14, Proposition 3.1 holds

LEMMA 3.4. Let w be a weight in $A_1 \cap A_{\infty}^{\delta}$ and φ as in theorem 1.14, that is, there is a constant C such that

$$r^{\delta} \int_{r}^{\infty} \frac{\varphi(t)}{t^{1+\delta}} dt \leq C \varphi(r).$$

Then w and φ satisfy (3.2) above.

PROOF: For *B* a ball with center x_0 and radious *r*, we denote by B_k the ball with the same center and radious $2^k r$. Using that φ is non-increasing and doubling and that *w* belongs to A_1 we have

$$(3.5) \qquad \int_{B^c} w(y) \frac{\varphi(|x_0 - y|)}{|x_0 - y|^{n+1}} dy = \sum_{k=1}^{\infty} \int_{B_{k+1} - B_k} w(y) \frac{\varphi(|x_0 - y|)}{|x_0 - y|^{n+1}} dy$$
$$\leq C \sum_{k=1}^{\infty} \frac{\varphi(2^k r)}{2^k r} \frac{w(B_k)}{|B_k|}$$
$$\leq C \frac{w(B)}{|B|} \sum_{k=1}^{\infty} \frac{\varphi(2^k r)}{2^k r}$$
$$\leq C \frac{w(B)}{|B|} \int_r^{\infty} \frac{\varphi(t)}{t^2} dt$$
$$\leq C \frac{w(B)}{|B|r^{1-\delta}} \int_r^{\infty} \frac{\varphi(t)}{t^{1+\delta}} dt$$
$$\leq C \frac{w(B)}{|B|} \frac{\varphi(r)}{r}$$
$$= C \frac{\varphi(|B|^{1/n})w(B)}{|B|^{1+1/n}}$$

as we wished. \Box

Before stating the next lemma we introduce some notation. Let us denote by \mathcal{X}_r the characteristic function of the ball $B_r = B(0, r)$, and by $\psi_r = r^{-n} \mathcal{X}_r$. With this notation we have

$$\psi_r * f(x) = m_{B(x,r)} f.$$

Also, for a weight w and a locally integrable function f, we set

$$\rho_w(f,r) = \sup_{x,r' \le r} \frac{1}{w(B(x,r'))} \int_{B(x,r')} |f(y) - m_{B(x,r')}f| dy.$$

With this notation we state the following lemma.

LEMMA **3.6.** Let w be a weight and f an integrable function. Then for any r > 0

 $||f - \psi_r * f||_{BMO(w)} \le C\rho_w(f, 2r).$ In particular for $f \in BMO_{\varphi}(w)$,

$$||f - \psi_r * f||_{BMO(w)} \le C\varphi(r)$$

PROOF: We will use the following estimate for the averages:

(3.7)
$$|m_{B_0}f - m_{B_1}f| \le \left(\frac{w(B_2)}{|B_0|} + \frac{w(B_2)}{|B_1|}\right)\rho_w(f, r_2)$$

where B_2 is a ball with radious r_2 and such that $B_0 \subset B_1$ and $B_1 \subset B_2$. This can be easily seen by adding and substracting $m_{B_2}f$.

Let now be $B = B(x_0, s)$ any ball. Then, to prove the lemma we need to estimate

$$\Omega_w(B, f - \psi_r * f) = \frac{1}{w(B(x_0, s))} \int_{B(x_0, s)} |f(x) - (\psi_r * f)(x) - m_{B(x_0, s)}(f - \psi_r * f)| dx.$$

Let us suppose first that $s \leq r$. Then

$$\begin{aligned} \Omega_w(B, f - \psi_r * f) &\leq \frac{1}{w(B(x_0, s))} \int_{B(x_0, s)} |f(x) - m_{B(x_0, s)} f| dx \\ &+ \frac{1}{w(B(x_0, s))} \int_{B(x_0, s)} |m_{B(x, r)} f - m_{B(x_0, s)} (m_{B(., r)} f)| dx \\ &= I + II \end{aligned}$$

Since $s \leq r$, the first term is bounded by $\rho_w(f, r)$. As for the second, we have

$$II \leq \frac{1}{w(B(x_0,s))} \frac{1}{|B(x_0,s)|} \int_{B(x_0,s)} \int_{B(x_0,s)} |m_{B(x,r)}f - m_{B(y,r)}f| dxdy$$

$$\leq \frac{Cw(B(x_0,2r))}{r^n} \frac{s^n}{w(B(x_0,s))} \rho_w(f,2r),$$

where we have used (3.7), since for any $z \in B(x_0, s)$, $B(z, r) \subset B(x_0, 2r)$. Now $w \in A_1$ implies the doubling property and also that the function $w(B(x,t))/t^n$ is almost decreasing with a constant independent of x. Since $s \leq r$ we get the desired estimate.

Next we suppose that $s \ge r$. In this case we observe that

$$\Omega_w(B, f - \psi_r * f) \le \frac{2}{w(B(x_0, s))} \int_{B(x_0, s)} |f(x) - m_{B(x, r)}f| dx$$

Now we can cover the ball $B(x_0, s)$ by a finite family of balls $B_i = B(x_i, r), i = 1, ..., N$ and such that $B(x_i, r/2)$ are mutually disjoint.

The number N of such balls is like $(s/r)^n$. Then the integral above is bounded by

$$\sum_{i=1}^{N} \int_{B(x_{i},r)} |f(x) - m_{B(x,r)}f| dx \leq \sum_{i=1}^{N} \int_{B(x_{i},r)} |f(x) - m_{B(x_{i},r_{i})}f| + \sum_{i=1}^{N} \int_{B(x_{i},r)} |m_{B(x_{i},r_{i})}f - m_{B(x,r)}f| \leq \rho_{w}(f,r) \sum_{i=1}^{N} w(B(x_{i},r)) + 2\rho_{w}(f,2r) \sum_{i=1}^{N} w(B(x_{i},2r))$$

where, for the second sum we use again (3.7) and that $B(x,r) \subset B(x_i, 2r)$ for $x \in B(x_i, r)$. Finally, using the doubling property of w and that $B(x_i, r/2)$ are disjoint, we get also the desired estimate in this case.

Therefore, taking the supremum on x_0 and s we get the result for the *BMO*-norm. To prove the estimate for $f \in BMO_{\varphi}(w)$ we just use that $\varphi(2r) \leq C\varphi(r).\square$

We have defined for functions on $BMO_{\varphi}(w)$ the modified Riesz transforms \mathcal{R}_j . It is not hard to prove that, for good functions with zero average, they are equal to the classical version $R_j f$. For the latter operators it is known that the following formula holds

(3.8)
$$\int R_j f(x) \eta(x) dx = -\int f(x) R_j \eta(x) dx$$

for $f \in L^p(\mathbb{R}^n)$ and η , say, in $C_0^{\infty}(\mathbb{R}^n)$. In the next lemma we extend this result to $\Lambda_{\varphi}(w)$.

LEMMA **3.9.** Let η be a $C_0^{\infty}(\mathbb{R}^n)$ function with zero average and $g \in \Lambda_{\varphi}(w)$ with w and φ as in Theorem 1.14. Then

$$\int \mathcal{R}_j g(x) \eta(x) dx = -\int g(x) R_j \eta(x) dx$$

PROOF: First, the integral on the left is absolutely convergent since we know that $\mathcal{R}_j g$ is in $BMO_{\varphi}(w)$ and hence locally integrable. Moreover $\mathcal{R}_j g$ equals $\mathcal{R}_j(g-C)$, where C is any constant. Therefore

$$\int \mathcal{R}_{j}g(x)\eta(x)dx = \int \eta(x)\mathcal{R}_{j}(g-C)(x)dx$$
$$= \int \eta(x)\mathcal{R}_{j}(\mathcal{X}_{R}(g-C))(x)dx$$
$$+ \int \eta(x)\mathcal{R}_{j}(\mathcal{X}'_{R}(g-C))(x)dx$$
$$= I_{1} + I_{2},$$

where $\mathcal{X}_R = \mathcal{X}_{B(0,R)}, \mathcal{X}'_R = 1 - \mathcal{X}_R$.

To estimate I_1 we observe that g belongs locally to $L^q(\mathbb{R}^n)$ for some q > 1. In fact, it is known that an A_∞ weight satisfies a Reverse-Hölder inequality for some q > 1 (see [CF]). Therefore for such q and any ball B with radious r we have

$$\int_{B} |g(x) - g(x_0)|^q dx \le C \int_{B} (w(x) + w(x_0))^q \varphi(|x - x_0|) dx$$
$$\le C \varphi(r) (w(x_0)|B| + \int_{B} (w(x))^q dx) < \infty$$

where we have chosen $x_0 \in B$ to be a Lebesgue point of w. Therefore $R_j(\mathcal{X}_R(g-C))$ is a function in L^q and, moreover, equals, up to a constant, to $\mathcal{R}_j(\mathcal{X}_R(g-C))$. So, since η has zero average, an application of (3.8) gives

$$I_1 = \int \eta(x) R_j (\mathcal{X}_R(g-C))(x) dx = -\int R_j \eta(y) \mathcal{X}_R(y) (g(y)-C) dy.$$

Now, to estimate I_2 we choose R such that $\operatorname{supp} \eta \subset B(0, R/2)$ and R > 1. Then

$$\mathcal{R}_{j}(\mathcal{X}_{R}'(g-C))(x) = \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon \atop |y| > R} \left(\frac{x_{j} - y_{j}}{|x-y|^{n+1}} + \frac{y_{j}}{|y|^{n+1}} \right) (g(y) - C) dy$$

But for $x \in \text{supp}\eta$ and |y| > R we have |x - y| > R/2 and, therefore, we may drop the limit above. Moreover taking absolute values inside the integral and applying the mean value theorem we have

$$(3.10) \quad \int_{|y|>R} \left| \frac{x_j - y_j}{|x - y|^{n+1}} + \frac{y_j}{|y|^{n+1}} \right| |g(y) - C| dy$$

$$\leq C \int_{|y|>R} \frac{|x|}{|y|^{n+1}} |g(y) - C|$$

$$\leq C|x| \int_{|y|>R} \frac{\varphi(|x_0 - y|)}{|y|^{n+1}} (w(x_0) + w(y)) dy,$$

where we have chosen $C = g(x_0)$ with $x_0 \in B(0, R/2)$ a Lebesgue point of w. Again $|x_0| < R/2$ and |y| > R imply $|x_0 - y| < R/2 + |y| < 2|y|$ so the last integral is bounded by

$$C|x|(R^{\delta-1}\int_R^\infty \frac{\varphi(t)}{t^{1+\delta}}dt + \int_{|y|>R} \frac{w(y)\varphi(|y|)}{|y|^{n+1}}dy) \le C|x|$$

for $x \in \text{supp}\eta$, since both integrals are finite as a consequence of lemma 3.4. In this way we have proved that the iterated integral

$$\int |\eta(x)| \int |\mathcal{K}_j(x,y)| \mathcal{X}_{R'}(y)| g(y) - C| dy dx$$

is finite, where $\mathcal{K}_j(x, y)$ denotes the kernel of \mathcal{R}_j . Therefore in I_2 the order of integration can be reversed and hence

(3.11)
$$\int \eta(x) \mathcal{R}_j(\mathcal{X}'_R(g-C))(x) dx$$
$$= \int \mathcal{X}'_R(y)(g(y)-C) \int K_j(x,y) \eta(x) dx dy$$
$$= -\int \mathcal{X}'_R(y)(g(y)-C) R_j \eta(y) dy$$

Adding I_1 and I_2 we get

$$I_1 + I_2 = -\int R_j \eta(y)(g(y) - C)dy = -\int R_j \eta(y)g(y)dy.\Box$$

Now we turn into the proof of the last theorem. PROOF OF THEOREM 1.14: First, if f can be written as

(3.12)
$$f = \sum_{0}^{n} \mathcal{R}_{j}(f_{j})$$

with f_0, \ldots, f_n in $\Lambda_{\varphi}(w)$, it follows easily that $f \in BMO_{\varphi}(w)$. In fact, we noticed that $\Lambda_{\varphi}(w)$ is continuously embedded in $BMO_{\varphi}(w)$ so, from Lemma 3.4 and Proposition 3.1, the function on the right hand side of (3.12) belongs to $BMO_{\varphi}(w)$ and, moreover,

(3.13)
$$||f||_{BMO_w(\varphi)} \le C \sum_{0}^{n} ||f_i||_{\Lambda_{\varphi}(w)}.$$

On the other hand, let f belong to $BMO_{\varphi}(w)$. Following [J], since φ is continuous, there are numbers r_i such that $\varphi(r_i) = 2^i \varphi(r_0)$ for a fixed r_0 with $\varphi(r_0) \neq 0$. The numbers r_i will be defined for $i \in \mathbb{Z}$ and belonging to a certain interval [-L, M] where L and M may be finite or infinite, depending on the boundedness properties of φ . For each r_i , according to Lemma 3.5, the function $f - \psi_{r_i} * f$ belongs to BMO(w) and moreover

(3.14)
$$||f - \psi_{r_i} * f||_{BMO(w)} \le C\varphi(r_i) = C2^i$$

From here we have that

$$(3.15) \quad ||\psi_{r_i} * f - \psi_{r_{i+1}} * f||_{BMO(w)} \le C(\varphi(r_i) + \varphi(r_{i+1})) = C\varphi(r_i).$$

Now, we apply the decomposition result of Muckenhoupt and Wheeden (see [MW]), for the space BMO(w) to each of the functions on the left hand side of (3.15). In this way we get

(3.16)
$$\psi_{r_i} * f - \psi_{r_{i+1}} * f = \sum_{j=0}^n \mathcal{R}_j(u_j^i),$$

where u_i^i are in $L^{\infty}(w)$ with

$$(3.17) ||u_j^i||_{L^{\infty}(w)} \le C\varphi(r_i).$$

The tempting idea now is to recover f adding these pieces since, at least when L and M are infinite, the sum of the series will give f back. But, even in that case, the sum of the functions u_j^i will be not smooth enough to provide a $\Lambda_{\varphi}(w)$ -function for each j. To make things work we need to smoother the functions u_j^i . To this end, let us choose a point x_0 such that is a Lebesgue point for the weight w and for the functions $(\psi_{r_i} + \psi_{r_{i+1}}) * u_j^i$ and define

$$v_j^i = (\psi_{r_i} + \psi_{r_{i+1}}) * u_j^i - C_{ij}$$

where $C_{ij} = ((\psi_{r_i} + \psi_{r_{i+1}}) * u_j^i)(x_0)$. Now, we want to prove that v_j^i are functions in $\Lambda_{\varphi}(w)$, giving an estimate for $||v_j^i||_{\Lambda_{\varphi}(w)}$. For each *i* and *j* fixed, we take x, z two points in \mathbb{R}^n and we consider the two possible cases

Case 1: $|x - z| > r_i$

$$\begin{aligned} |v_{j}^{i}(x) - v_{j}^{i}(z)| &\leq \frac{1}{r_{i}^{n}} \int_{B(x,r_{i})} |u_{j}^{i}| + \frac{1}{r_{i+1}^{n}} \int_{B(x,r_{i+1})} |u_{j}^{i+1}| \\ &+ \frac{1}{r_{i}^{n}} \int_{B(z,r_{i})} |u_{j}^{i}| + \frac{1}{r_{i+1}^{n}} \int_{B(z,r_{i+1})} |u_{j}^{i+1}| \\ &\leq \frac{1}{r_{i}^{n}} ||u_{j}^{i}||_{L^{\infty}(w)} (w(B(x,r_{i})) + w(B(z,r_{i}))) \\ &+ \frac{1}{r_{i+1}^{n}} ||u_{j}^{i+1}||_{L^{\infty}(w)} (w(B(x,r_{i+1})) + w(B(z,r_{i+1}))) \end{aligned}$$

Using now estimate (3.17) and that $w \in A_1$, we obtain

(3.18)
$$|v_j^i(x) - v_j^i(z)| \le C(\varphi(r_i) + \varphi(r_{i+1}))(w(x) + w(z)).$$

Case 2: $|x - z| \leq r_i$. In this case $B(x, r_i)$ and $B(z, r_i)$ have a thick intersection and, since r_i is increasing, the same happens with $B(x, r_{i+1})$ and $B(z, r_{i+1})$. Let us call $A_i = B(x, r_i)\Delta B(z, r_i), A_{i+1} = B(x, r_{i+1})\Delta B(z, r_{i+1}), \widetilde{B}_i = B(x, 3r_i)$ and $\widetilde{B}_{i+1} = B(x, 3r_{i+1})$. Then we have $A_i \subset \widetilde{B}_i$ and $A_{i+1} \subset \widetilde{B}_{i+1}$ and, using the A_{∞}^{δ} condition in w, we have for k = i, i + 1

$$w(A_k) \le Cw(\widetilde{B}_k) (\frac{|A_k|}{|\widetilde{B}_k|})^{\delta} \le Cw(B_k) (\frac{|x-z|}{r_k})^{\delta},$$

where, for the last inequality, we have used the estimate $|A_k| \leq C|x - z|r_k^{n-1}$. Thus

$$\begin{aligned} |v_{j}^{i}(x) - v_{j}^{i}(z)| &\leq \frac{1}{r_{i}^{n}} \int_{A_{i}} |u_{j}^{i}| + \frac{1}{r_{i+1}^{n}} \int_{A_{i+1}} |u_{j}^{i+1}| \\ &\leq ||u_{j}^{i}||_{L^{\infty}(w)} \frac{w(A_{i})}{r_{i}^{n}} + ||u_{j}^{i+1}||_{L^{\infty}(w)} \frac{w(A_{i+1})}{r_{i+1}^{n}} \\ &\leq C|x - z|^{\delta} (\frac{\varphi(r_{i})}{r_{i}^{\delta}} \frac{w(B_{i})}{r_{i}^{n}} + \frac{\varphi(r_{i+1})}{r_{i+1}^{\delta}} \frac{w(B_{i+1})}{r_{i+1}^{n}}) \\ &\leq C\varphi(r_{i}) (\frac{|x - z|}{r_{i}})^{\delta} (w(x) + w(z)) \end{aligned}$$

where in the last inequality we have used that $w \in A_1$.

Therefore in both cases we have proved the inequality

(3.19)
$$|v_j^i(x) - v_j^i(z)| \le C\varphi(r_i)(\frac{|x-z|}{r_i})^{\delta}(w(x) + w(z))$$

With (3.18) and (3.19) we are ready to show that the function $g_j = \sum_i v_i^j$ is well defined and, moreover, it belongs to $\Lambda_{\varphi}(w)$. In fact, using the estimates (3.18) and (3.19) for fixed x and z, we have

$$\begin{split} \sum_{i} |v_{j}^{i}(x) - v_{j}^{i}(z)| &= (\sum_{r_{i} < |x-z|} + \sum_{r_{i} \ge |x-z|})|v_{j}^{i}(x) - v_{j}^{i}(z)| \\ &\leq C(w(x) + w(z))(\sum_{r_{i} < |x-z|} \varphi(r_{i}) + |x-z|^{\delta} \sum_{r_{i} \ge |x-z|} \frac{\varphi(r_{i})}{r_{i}^{\delta}}). \end{split}$$

But, since $\varphi(r_i) = 2\varphi(r_{i-1})$ and $\{r_i\}$ is non-decreasing, we get

$$\sum_{k}^{m} \varphi(r_{i}) = 2 \sum_{k}^{m} (\varphi(r_{i}) - \varphi(r_{i-1}))$$
$$= 2(\varphi(r_{m}) - \varphi(r_{k-1}))$$
$$\leq 2\varphi(r_{m}),$$

and

$$\begin{split} \sum_{k}^{m} \frac{\varphi(r_{i})}{r_{i}^{\delta}} &= 2\sum_{k}^{m} \frac{\varphi(r_{i}) - \varphi(r_{i-1})}{r_{i}^{\delta}} \\ &= 2\sum_{k}^{m-1} \varphi(r_{i}) (\frac{1}{r_{i}^{\delta}} - \frac{1}{r_{i+1}^{\delta}}) + 2\frac{\varphi(r_{m})}{r_{m}^{\delta}} - 2\frac{\varphi(r_{k-1})}{r_{k}^{\delta}} \\ &\leq C \left(\sum_{k}^{m-1} \varphi(r_{i}) \int_{r_{i}}^{r_{i+1}} \frac{dt}{t^{1+\delta}} + \varphi(r_{m}) \int_{r_{m}}^{\infty} \frac{dt}{t^{1+\delta}}\right) \\ &\leq C \int_{r_{k}}^{\infty} \frac{\varphi(t)}{t^{1+\delta}} dt. \end{split}$$

With these estimates we obtain

$$\sum_{i} |v_{j}^{i}(x) - v_{j}^{i}(z)| \le C(w(x) - w(z))(\varphi|x - z| + |x - z|^{\delta} \int_{|x - z|}^{\infty} \frac{\varphi(t)}{t^{1 + \delta}} dt)$$

and using the hypothesis on φ we conclude

(3.20)
$$\sum_{i} |v_{j}^{i}(x) - v_{j}^{i}(z)| \leq C(w(x) - w(z))\varphi(|x - z|)$$

Therefore, taking $z = x_0$ in the above inequality, we have

$$\sum_{i} |v_{j}^{i}(x)| \leq C(w(x) - w(x_{0}))\varphi(|x - x_{0}|),$$

which implies that the series $\sum v_j^i(x)$ converges absolutely for almost every x, in fact for the Lebesgue points of w. Also if we set $g_j = \sum_i v_j^i$, the inequality (3.20) gives

$$|g_j(x) - g_j(z)| \le C(w(x) - w(z))\varphi(|x - z|),$$

proving that g_j is in $\Lambda_{\varphi}(w)$ and $||g_j||_{\Lambda_{\varphi}(w)} \leq C$. Now we would like to show that f and $\sum_{j=0}^n \mathcal{R}_j g_j$ are basically the same, in the sense that their difference is either zero or a function which can be decomposed in the way we want.

First we observe that for each fixed i we have

(3.21)
$$\sum_{j=0}^{n} \mathcal{R}_{j}(v_{j}^{i}) = \sum_{j=0}^{n} \mathcal{R}_{j}((\psi_{r_{i}} + \psi_{r_{i+1}}) * u_{j}^{i})$$
$$= \sum_{j}^{n} (\psi_{r_{i}} + \psi_{r_{i+1}}) * \mathcal{R}_{j}(u_{j}^{i})$$
$$= (\psi_{r_{i}} + \psi_{r_{i+1}}) * (\psi_{r_{i}} - \psi_{r_{i+1}}) * f$$
$$= \psi_{r_{i}} * \psi_{r_{i}} * f - \psi_{r_{i+1}} * \psi_{r_{i+1}} * f$$

Since for approximations to the identity, say $\rho_r(x) = r^{-n}\rho(x/r)$, we know that $\lim_{r\to\infty} (\rho_r * f) = 0$ and $\lim_{r\to0} (\rho_r * f) = f$, we may expect to recover f from adding up on i the last equality. But, since the sequence r_i belongs to the range of φ , we have to distinguish whether or not L and M are finite.

f

In any case, if η is a C_0^{∞} function with $\int \eta = 0$, according to Lemma 3.9 we have

(3.22)
$$\int \mathcal{R}_{j}g_{j}\eta = -\int g_{j}R_{j}\eta$$
$$= -\sum_{i}\int v_{j}^{i}R_{j}\eta$$
$$= \sum_{i}\int \mathcal{R}_{j}v_{j}^{i}\eta$$

where in order to take the sum outside of the integral we have made use of the fact that $\sum_{i} |v_{i}^{i}|$ converges almost everywhere to a function in $\Lambda_{\varphi}(w)$ and, by Lemma 3.8, the integral of the product of this function by $R_j\eta$ is absolutely convergent. From (3.21) and (3.22) we obtain

$$(3.23) \int (\sum_{j=0}^{n} \mathcal{R}_{j} g_{j}) \eta = \sum_{i} \int (\sum_{j=0}^{n} \mathcal{R}_{j} v_{j}^{i}) \eta$$
$$= \sum_{i} (\int (\psi_{r_{i}} * \psi_{r_{i}} * f) \eta - \int (\psi_{r_{i+1}} * \psi_{r_{i+1}} * f) \eta)$$
$$= \lim_{i \to -L} \int (\psi_{r_{i}} * \psi_{r_{i}} * f) \eta - \lim_{i \to M} \int (\psi_{r_{i}} * \psi_{r_{i}} * f) \eta$$

where the limit should be understood as the evaluation in -L or Mwhen they are finite. To evaluate each of these terms we consider the different possibilities for L and M. The goal is to prove that the

24

first limit gives either $\int f\eta$ or $\int (f+H)\eta$ where H is a sum of Riesz transforms of $\Lambda_{\varphi}(w)$ -functions; similarly we will prove that the second limit gives either zero or $\int G\eta$ with G satisfying the desired property.

i) $L = \infty$. In this case $r_i \to 0$ for $i \to -L$ and therefore

(3.24)
$$\lim_{i \to -L} \int (\psi_{r_i} * \psi_{r_i} * f) \eta = \lim_{r \to 0} \int f(\psi_r * \psi_r * \eta) = \int f \eta,$$

since f es locally integrable, $\eta \in C_0^{\infty}$ and ψ_{r_i} has compact support.

ii) $L < \infty$. In this case $\varphi(r_{-L}) \leq 2\varphi(r)$ for all r > 0 since otherwise r_{-L-1} could have been constructed. Also, by Lemma 3.6

$$\begin{aligned} ||f - \psi_{r_{-L}} * \psi_{r_{-L}} * f||_{BMO(w)} &\leq ||f - \psi_{r_{-L}}f||_{BMO(w)} \\ &+ ||\psi_{r_{-L}} * (f - \psi_{r_{-L}} * f)||_{BMO(w)} \\ &\leq 2||f - \psi_{r_{-L}} * f||_{BMO(w)} \\ &\leq C\varphi(r_{-L}). \end{aligned}$$

Therefore, using again the decomposition result for BMO(w), we get

$$(\psi_{r_{-L}} * \psi_{r_{-L}} * f) - f = \sum_{j=0}^{n} \mathcal{R}_j(h_j)$$

with $||h_j||_{L^{\infty}(w)} \leq C\varphi(r_{-L})$. Moreover we have

$$|h_j(x) - h_j(y)| \le (w(x) + w(y))||h_j||_{L^{\infty}(w)} \le C(w(x) + w(y))\varphi(|x - y|)$$

giving that $h_j \in \Lambda_{\varphi}(w)$. In this way we have shown that

(3.25)
$$\lim_{i \to -L} \int (\psi_{r_i} * \psi_{r_i} * f) \eta = \int f \eta + \sum_{j=0}^n \int \mathcal{R}_j h_j \eta$$

with $h_j \in \Lambda_{\varphi}(w)$.

iii) $M = \infty$. In this case $r_i \to \infty$ for $i \to M$ and therefore $\operatorname{supp} \eta \subset B(0, r_i)$ for any *i* large enough.

Now, as above

$$\int (\psi_{r_i} * f * f)\eta = \int f(\psi_{r_i} * \psi_{r_i} * \eta)$$

But, for *i* large enough, $\psi_{r_i} * \psi_{r_i} * \eta$ vanishes outside of $\tilde{B} = B(0, 3r_i)$ and has zero average. Thus

$$\begin{aligned} |\int f(\psi_{r_{i}} * \psi_{r_{i}} * \eta)| &\leq \int_{B(0,3r_{i})} |f - m_{\tilde{B}}f| |\psi_{r_{i}} * \psi_{r_{i}} * \eta| \\ &\leq Cw(B(0,3r_{i})\varphi(r_{i})) ||\psi_{r_{i}} * \psi_{r_{i}} * \eta||_{\infty} \end{aligned}$$

since $f \in BMO_{\varphi}(w)$. Also, using again the zero average for η ,

$$\begin{split} ||\psi_{r_{i}} * \psi_{r_{i}} * \eta||_{\infty} &\leq r_{i}^{-n} ||\psi_{r_{i}} * \eta||_{1} \\ &\leq r_{i}^{-n} \int_{B(0,2r_{i})} \int_{B(0,r_{i})} |\psi_{r_{i}}(x-y) - \psi_{r_{i}(x)}| |\eta(y)| dy dx \\ &\leq r_{i}^{-n} \int_{B(0,r_{i})} |\eta(y)| (\int_{B(0,2r_{i})} |\psi_{r_{i}}(x-y) - \psi_{r_{i}}(x)| dx) dy \\ &\leq r_{i}^{-2n} \int_{B(0,r_{i})} |\eta(y)| |B(0,r_{i}) \Delta B(y,r_{i})| dy \\ &\leq Cr_{i}^{-n-1} \int_{B(0,r_{i})} |y| |\eta(y)| dy = Cr_{i}^{-n-1}. \end{split}$$

With this estimate we get for i large enough

$$\int (\psi_{r_i} * \psi_{r_i} * f)\eta) \le C \frac{w(B(0, 3r_i))}{r_i^n} \frac{\varphi(r_i)}{r_i} \le C \inf_{x \in B(0, 1)} w(x) \frac{\varphi(r_i)}{r_i}$$

Now, using that φ is non-decreasing, we have

$$\frac{\varphi(r)}{r} \leq C r^{\delta-1} \int_r^\infty \frac{\varphi(t)}{t^{1+\delta}} dt,$$

where the right side tends to zero when $r \to \infty$, because of $\delta \leq 1$ and $\int_1^\infty (\varphi(t)/t^{1+\delta}) dt < \infty$. Hence we get

(3.26)
$$\lim_{i \to M} \int (\psi_{r_i} * \psi_{r_i} * f) \eta = 0.$$

iv) $M < \infty$. In this case we have $\varphi(r) \leq 2\varphi(r_M)$ for any r > 0 and therefore the given function f belongs to BMO(w) with $||f||_{BMO(w)} \leq C\varphi(r_M)$. Applying the decomposition result for functions in this space we get

$$f = \sum_{j=0}^{n} \mathcal{R}_j h'_j$$

with $||h'_j||_{L^{\infty}(w)} \leq C\varphi(r_M)$. Then we have

$$\int (\psi_{r_M} * \psi_{r_M} * f)\eta = \sum_{j=0}^n \int (\psi_{r_M} * \psi_{r_M} * \mathcal{R}_j(h'_j)\eta)$$
$$= \sum_{j=0}^n \int \mathcal{R}_j(\psi_{r_M} * \psi_{r_M} * h'_j)\eta$$

So, if we are able to prove that the functions $\tilde{h}_j = \psi_{r_M} * \psi_{r_M} * h'_j$ belong to $\Lambda_{\varphi}(w)$, we would get the desired result, i. e.:

(3.27)
$$\lim_{i \to -M} \int (\psi_{r_i} * \psi_{r_i} * f) \eta = \sum_{j=0}^n \int \mathcal{R}_j \tilde{h}_j \eta$$

with $\tilde{h}_j \in \Lambda_{\varphi}(w)$. To do that, we first observe that $\phi_{r_M}(x) = (\psi_{r_M} * \psi_{r_M})(x) = r_M^{-n}(\mathcal{X}_{B_1} * \mathcal{X}_{B_1})(x/r_M)$ and that $\mathcal{X}_{B_1} * \mathcal{X}_{B_1}$ is a Lipschitz function supported in B(0,3). Therefore ϕ_{r_M} is supported in $B(0,3r_M)$ and satisfies

(3.28)
$$|\phi_{r_M}(x)| \le \frac{C}{r_M^n} \text{ and } |\phi_{r_M}(x) - \phi_{r_M}(y)| \le \frac{C}{r_M^n} \frac{|x-y|}{r_M}$$

Now, for x and y such that $|x - y| < r_M$ we have

$$\begin{split} |\tilde{h}_{j}(x) - \tilde{h}_{j}(y)| &\leq \int |\phi_{r_{M}}(x - z) - \phi_{r_{M}}(y - z)| |h'_{j}(z)| dz \\ &\leq C ||h'_{j}||_{L^{\infty}(w)} \frac{|x - y|}{r_{M}} \frac{1}{r_{M}^{n}} \int_{B(x, 3r_{M}) \bigcup B(y, 3r_{M})} w(z) dz \\ &\leq C \varphi(r_{M}) \frac{|x - y|}{r_{M}} (w(x) + w(y)) \\ &\leq C \varphi(|x - y|) (w(x) + w(y)), \end{split}$$

where in the last inequality we have used that $\varphi(t)/t$ is almost decreasing. Finally for x and y such that $|x - y| \ge r_M$ we have

$$\begin{aligned} |\tilde{h}_j(x) - \tilde{h}_j(y)| &\leq |\tilde{h}_j(x)| + |\tilde{h}_j(y)| \\ &\leq C||h'_j||_{L^{\infty}(w)}(w(x) + w(y)) \\ &\leq C\varphi(r_M)(w(x) + w(y)). \end{aligned}$$

In this way we proved $\tilde{h}_j \in \Lambda_{\varphi}(w)$.

The conclusion of the theorem follows now by (3.24), (3.25), (3.26) and (3.27).

References

- [B] Bloom, S.: Pointwise multipliers of weighted BMO spaces, Proc. of Amer. Math. Soc., V. 105 (1989), p. 950-960.
- [CF] Coifman, R. R. and Fefferman, C: Weighted norm inequalities for maximal functions and singular integrals, Studia Math., V. 51 (1974), p. 241-250.
- [F] Fefferman, C. L.: Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc., V. 77 (1971), p. 587-588.
- [FS] Fefferman, C. L. and Stein, E. M.: H^p-spaces of several variables, Acta Math., V. 129 (1972), p. 137-193.
- [HSV1] Harboure, E.; Salinas, O and Viviani, B.: Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. of the Amer. Math. Soc., V. 349, 1 (1997), p. 235-255.
- [HSV2] Harboure, E.; Salinas, O and Viviani, B.: Relations between weighted Orlicz and BMO_{ϕ} spaces through fractional integrals, Comment. Math. Univ. Carolinae, V. 40, 1 (1999), p. 53-69.
- [J] Janson, S.: On functions with conditions on the mean oscillation, Ark. Math., V. 14 (1976), p. 189-196.
- [JN] John, F. and Nirenberg, L.: On functions of bounded mean oscillation, Comm. Pure Appl. Math, V. 14 (1961), p. 415-426.
- [M] Morvidone, M.: Weighted BMO_{ϕ} spaces and the Hilbert transform, Revista de la Unión Matemática Argentina, V. 44 (2002), p. 1-16.
- [MW] Muckenhoupt, B. and Wheeden, R.: On the dual of weighted H¹ of the half-space, Studia Math., V. 63 (1978), p. 57-79.
- [N] Nakai, E.: Pointwise multipliers for functions of weighted bounded main oscillation, Studia Math., V. 105 (1993), p. 105-119.
- [S] Spanne, S.: Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa, V.19 (1965), p. 593-607.
- [Y] Yabuta, K.: Pointwise multipliers of weighted BMO spaces, Proc. of Amer. Math. Soc., V. 117 (1993), p. 737-744.

Instituto de Matemática Aplicada del Litoral, Güemes 3450, 3000 Santa Fe, República Argentina

E-mail address: harbour@ceride.gov.ar

E-mail address: salinas@ceride.gov.ar

E-mail address: viviani@ceride.gov.ar