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Abstract. In this paper we give two characterizations of func-
tions with weighted mean oscillation over cubes controlled by a
non-negative function ϕ, that is functions in BMOϕ(w). The first
one, by conditions on their rearrangements, and the second one,
by means of Riesz transforms and ϕ-Lipschitz functions. These
results extend those contained in [S] and [J].

1. Introduction

The aim of this paper is to obtain characterizations of spaces of
functions whose oscillation, when averaged over cubes is controlled by
means of a weight w and a growth function ϕ, measuring their degree
of smoothness.

The first appearance of this kind of weighted spaces goes back to
[MW]. There, the authors introduced BMO(w) (ϕ ≡ 1 in our con-
text) as the natural space where weighted L∞ functions are mapped
by H, the Hilbert transform on the line, and generalizing the well
known BMO space of John and Niremberg. In the more general con-
text ϕ(t) = tβ, 0 < β < 1, it is shown in [HSV1] that the fractional
integral operator Iα applies Lp(w) with p > n/α into these spaces,
under suitable conditions on the weight. Later on this result was ex-
tended to weighted Orlicz spaces [HSV2] giving rise to the spaces under
consideration in their full generality. Finally in [M] it is shown that
they are preserved by the Hilbert transform on the line.

We start by giving the precise definition of our spaces and reminding
some basic notions about weights.

Let ϕ be a continuous non-negative and non-decreasing function de-
fined on [0,∞) with ϕ(0) = 0 and satisfying a doubling condition (or
a ∆2-condition), that is there exists a constant C such that
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(1.1) ϕ(2R) ≤ Cϕ(R)

for every R > 0. Let w be a weight in the A∞ Muckenhoupt’s class,
that is a non-negative a.e. and locally integrable function satisfying

(1.2)
w(E)

w(Q)
≤ C

( |E|
|Q|

)δ

for every cube Q in IRn and every measurable set E ⊂ Q, where C
and δ are positive constants depending neither on Q nor on E and
w(E) =

∫
E

w(x)dx.
We shall say that a function f in L1

loc(IR
n) has w-mean oscillations

over cubes controlled by ϕ or, shorter, that it belongs to BMOϕ(w), if
there exists a constant C such that the inequality

(1.3)
1

w(Q(x, r))

∫

Q(x,r)

|f(y)−mQ(x,r)|dy ≤ Cϕ(r)

holds for every cube Q(x, r) = {y ∈ IRn/|xi − yi| < r, i = 1, . . . , n} in
IRn, where mQ(x,r)f = |Q(x, r)|−1

∫
Q(x,r)

f(y)dy.

The infimum of the constants C satisfying (1.3) will be denoted by
||f ||BMOϕ(w). It is not too hard to see that it is a norm in BMOϕ(w)
modulo constants. When w = 1, we will denote these spaces by BMOϕ.
Note that, because of our hypothesis on w and φ, we can take balls
B(x, r) = {y/|x− y| < r} instead of cubes Q(x, r) in (1.3) and obtain
and equivalent version of BMOϕ(w).

In connection with the above definition, we shall say that a function
f belongs to the (w, ϕ)-Lipschitz space, denoted by Λϕ(w), if there
exists a constant C such that

(1.4) |f(x)− f(y)| ≤ C(w(x) + w(y))ϕ(|x− y|),
holds for a.e. x and y in IRn. It is easy to prove that Λϕ(w) ⊂
BMOϕ(w). For w = 1, as before, we write Λϕ instead of Λϕ(w).

Some special cases and, moreover, generalizations of the spaces
BMOϕ(w) have been studied by several authors (see, for instance, [JN],
[J], [S], [F], [FS], [B], [Y], [N]). In particular, in [S], S. Spanne consid-
ered the case w ≡ 1 and proved a characterization of the functions in
BMOϕ by means of rearrangements.

On the other hand, S. Janson, in [J], gave another characterization
of BMOϕ, this time in terms of Riesz transforms and Λϕ, generaliz-
ing the well known decomposition of BMO functions in terms of Riesz
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transforms and L∞ (see [F] and [FS]). Also, in [MW] such characteri-
zation is given for the case ϕ = 1) and w belonging to the A1 class of
Muckenhoupt.

In this work we obtain similar characterizations to those in [S] and
[J] for more general weighted spaces BMOϕ(w). Before stating our
results we recall some definitions.

A non negative and measurable function w is in the A1 class of
Muckenhoupt if there exists a constant C such that

(1.5)
1

|Q(x, r)|
∫

Q(x,r)

w(y)dy ≤ C ess inf
Q(x,r)

w

holds for every cube Q(x, r) in IRn.
A non-negative function ψ is quasi-decreasing when a constant C

exists such that

(1.6) ψ(t1) ≤ Cψ(t2)

is satisfied for every t1 and t2 with 0 ≤ t2 < t1.
Now, we are in position to state our main results.

Theorem 1.7. Let w be in A1 and ϕ as in (1.1). Then, a locally
integrable function f belongs to BMOϕ(w) if and only if there exists a
constant C such that

(1.8) f ∗Q(s) ≤ C

∫ 2rQ

s
1
n ( |Q|

Cw(Q))
1
n

ϕ(t)

t
dt,

for every s ∈ IR and every cube Q in IRn, where f ∗Q means the non
increasing rearrangement of XQ|f−mϕf |/w with respect to the measure
given by w and rQ denotes the half length edge of Q.

Corollary 1.9. If w and ϕ are as in the theorem above and, in

addition,
∫ 1

0
ϕ(t)

t
dt < ∞, then BMOϕ(w) is contained in Λψ(w) with

ψ(r) =
∫ r

0
ϕ(t)

t
dt, so it coincides with BMOϕ(w) whenever ψ(r) ≤

Cϕ(r) for every r > 0.

Theorem 1.10. Let w be in A1 and ϕ as in (1.1) such that ϕ(t)/t is
quasi-decreasing. Then, given x0 in IRn, the function
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hx0(x) =

∫ 1

|x−x0|

w(B(x0, t))

tn
ϕ(t)

t
dt,

with B(x0, t) = {y ∈ IRn/|x0 − y| < t}, belongs to BMOϕ(w). More-
over, there exist two constants C1 and C2, not depending on x0, such
that the inequality

(1.11)

C1ϕ(r) ≤ sup
s≤r

z∈IRn

1

w(B(z, s))

∫

Q(z,s)

|hx0(y)−mQ(z,s)hx0|dy ≤ C2ϕ(r)

holds for every r > 0.

Corollary 1.12. Let w and ϕ be as in Theorem 1.10. If
∫ 1

0
ϕ(t)

t
dt =

∞ then there are functions in BMOϕ(w) not belonging to Λϕ(w). In
particular we get Λϕ(w) ( BMOϕ(w).

Remark 1.13. Notice that corollary 1.12 gives the converse of corol-
lary 1.9 above under the additional assumption that ϕ(t)/t is quasi
decreasing.

The statement of the next theorem requires to specify some details
about the weight w. We know that if w is in A1, then it satisfies an
A∞ condition (see (1.2)). In general if (1.2) holds for some fixed δ, we
are going to say that w belongs to Aδ

∞. Now we get

Theorem 1.14. Let w be in A1∩Aδ
∞. If ϕ is as in (1.1) and satisfying

rδ

∫ ∞

r

ϕ(t)

t1+δ
dt ≤ Cϕ(r)

for every r > 0, then BMOϕ(w) = Λϕ(w) +
∑n

j=1Ri(Λϕ(w)), where
Rj denotes the modified Riesz transform of order j, defined by

(1.15) Rjf(x) = lim
ε→0

∫

|x−y|>ε

(
xj − yj

|x− y|n+1
+ XBC

1
(y)

yj

|y|n+1

)
f(y)dy,

where B1 denotes the unit ball centered at the origin.
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The next section contains the proofs of Theorems 1.7 and 1.10 and
their corollaries, while section 3 is devoted to prove Theorem 1.14. We
wish to say that our techniques are based on those of S. Spanne and S.
Janson.

2. BMOϕ(w) in terms of rearrangements

In order to prove Theorem 1.7 we need a result about the behavior
of the distribution function of |f −mQf |/w over Q for each cube Q. It
will be obtained as an easy consequence of the following lemma, whose
proof can be found in [M].

Lemma 2.1. Let w be in A1. Then there exist two constants a1 and a2

such that, for each cube Q0 in IRn, the inequality

(2.2) w({x ∈ Q/
|f(x)−mQf |

w(x)
> λ}) ≤ a1e

a2
[f ]Q0

λ
w(Q)

holds for every λ > 0, every cube Q ⊂ Q0 and every f in L1(Q0) where

[f ]Q0 = sup
Q⊂Q0

1

w(Q)

∫

Q

|f(x)−mQf |dx.

Corollary 2.3. Let w be in A1. Then there exist two constants C1

and C2, such that, for each cube Q = Q(xQ, rQ) in IRn, the inequality

w({x ∈ Q/
|f(x)−mQf |

w(x)
> C1tϕ(rQ)||f ||BMOϕ(w)}) ≤ C22

−tw(Q(xQ, rQ))

holds for every t > 0 and f in BMOϕ(w).

Proof: Given a cube Q = Q(xQ, rQ), it is clear that

[f ]Q ≤ sup
z

r≤rQ

1

w(Q(z, r))

∫

Q(z,r)

|f(x)−mQ(z,r)f |dx

≤ ϕ(rQ)||f ||BMOϕ(w)

is valid for every f in BMOϕ(w). Then, from (2.2) we get

w({x ∈ Q/
|f(x)−mQf |

w(x)
> λ}) ≤ a1e

− a2
[f ]Q

λ
w(Q)

≤ a1e
− a2

ϕ(rQ)||f ||BMOϕ
(w)

λ
w(Q),



6 E. HARBOURE, O. SALINAS, AND B. VIVIANI

Finally, taking λ = tϕ(rQ)||f ||BMOϕ(w) log 2/a2 we obtain the desired
result with C1 = log 2/a2 and C2 = a1.¤

Now we are able to proceed with the proof of our first theorem.

Proof of Theorem 1.7: First we are going to prove that (1.8) is a
necessary condition for f to be in BMOϕ(w). Let Q = Q(xQ, rQ) be a
cube in IRn. Given r > 0, we choose j such that 2−jrQ < r ≤ 2−j+1rQ.
Now, by repeated halving all edges, let us divide Q into 2jn subcubes Qk

with lenght edge equal to rQ2−j. Given k, let {Ik
i }j

i=0 be the subcubes
of the dyadic partition such that Q = Ik

0 ⊃ . . . ⊃ Ik
j = Qk with

|Ik
i | = 2n|Ik

i+1|. Then, taking y in Qk and recalling that w ∈ A1, we get

|mQk
f −mQf |
w(y)

≤ 1

infQk
w

j−1∑
i=0

|mIk
i+1

f −mIk
i
f |(2.4)

≤ 2n

infQk
w

j−1∑
i=0

1

|Ik
i |

∫

Ik
i

|f(y)−mIk
i
f |dy

≤ 2n||f ||BMOϕ(w)

infQk
w

j−1∑
i=0

w(Ik
i )

|Ik
i |

ϕ(2−irQ)

≤ C0||f ||BMOϕ(w)

infQk
w

j−1∑
i=0

inf
Ik
i

wϕ(2−irQ)

≤ C0||f ||BMOϕ(w)

j−1∑
i=0

ϕ(2−irQ).

Now, taking λ0 = (C0 + C1n)||f ||BMOϕ(w)

∑j−1
i=0 ϕ(2−irQ), where C1

and C2 are the constants appearing in Corollary 2.3, from (2.2) and
(2.4), we have
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w({y ∈ Q/
|f(y)−mQf |

w(y)
> λ0})(2.5)

≤
2jn∑

k=1

w({y ∈ Qk/
|f(y)−mQf |

w(y)
> λ0})

≤
2jn∑

k=1

w({y ∈ Qk/
|f(y)−mQk

f |
w(y)

> C1(n + log 2 log C2)j||f ||BMOϕ(w)ϕ(2−jrQ)})

≤ C22
−jn

2jn∑

k=1

w(Qk)

= C22
−jnw(Q) = C2(

rQ

2j
)n w(Q)

|Q|
< C2r

n w(Q)

|Q| .

On the other hand, we get

λ0 ≤ 1

log2
(C0 + C1n)||f ||BMOϕ(w)

j−1∑
i=0

∫ 2−i+1rQ

2−irQ

ϕ(t)

t
dt

≤ C3||f ||BMOϕ(w)

∫ 2rQ

r

ϕ(t)

t
dt.

Then, from (2.5)

w({y ∈ Q/
|f(y)−mQf |

w(y)
> C3||f ||BMOϕ(w)

∫ 2rQ

r

ϕ(t)

t
dt}) < C2r

n w(Q)

|Q| .

Taking s = C2r
n w(Q)
|Q| we have

w({y ∈ Q/
|f(y)−mQf |

w(y)
> C||f ||BMOϕ(w)

∫ 2rQ

(
s|Q|

Cw(Q)
)
1
n

ϕ(t)

t
dt}) < s,

where C = max(C2, C3), and (1.8) follows easily.
Now, we assume (1.8) holds. Then, given a cube Q in IRn, we have
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1

w(Q)

∫

Q

|f(y)−mQf |dy =
1

w(Q)

∫

Q

|f(y)−mQf |
w(y)

w(y)dy

=
1

w(Q)

∫ w(Q)

0

f ∗Q(s)ds

≤ C

w(Q)

∫ w(Q)

0

(

∫ 2rQ

(
s|Q|

Cw(Q)
)
1
n

φ(t)

t
dt)ds

=
C

w(Q)

∫ 2rQ

0

ϕ(t)

t
(

∫ tnC
w(Q)
|Q|

0

ds)dt

=
C

w(Q)

∫ 2rQ

0

ϕ(t)

t
tn

w(Q)

|Q| dt

≤ Cϕ(2rQ)

|Q| (2rQ)n

≤ Cϕ(rQ).

Since the above inequality is valid for every Q, we get f is in BMOϕ(w).¤

Proof of Corollary 1.9: Let f be in BMOϕ(w). Then, given x
and y, we have

|f(x)− f(y)|
w(x) + w(y)

≤ |f(x)−mQf |
w(x) + w(y)

+
|f(y)−mQf |
w(x) + w(y)

(2.6)

≤ |f(x)−mQf |
w(x)

+
|f(y)−mQf |

w(y)
,

where Q is a cube containing x and y with length side rQ = |x − y|.
On the other hand, it is clear that

ess sup
z∈Q

|f(z)−mQf |
w(z)

= sup
s

f ∗Q(s) = lim
s→0

f ∗Q(s).

Then, from the Theorem, we get
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ess sup
z∈Q

|f(z)−mQf |
w(z)

≤ C||f ||BMOϕ(w) lim
s→0

∫ 2rQ

( s|Q|
Cw(Q))

1
n

ϕ(t)

t
dt

= C||f ||BMOϕ(w)

∫ 2rQ

0

ϕ(t)

t
dt

= C||f ||BMOϕ(w)

∫ rQ

0

ϕ(2t)

t
dt

≤ C||f ||BMOϕ(w)

∫ rQ

0

ϕ(t)

t
dt.

Finally, combining this inequality with (2.6) we can write

|f(x)− f(y)| ≤ C||f ||BMOϕ(w)(w(x) + w(y))

∫ |x−y|

0

ϕ(t)

t
dt,

for a.e. x and y in IRn, proving that f belongs to Λψ(w) with ψ(r) =∫ r

0
ϕ(t)

t
dt.¤

Proof of Theorem 1.10: First, recall that, because of our hypothesis
on w and ϕ, we can take balls B(x, r) = {y ∈ IRn/|x− y| < r} instead
of cubes Q(x, r) in (1.1) and obtain an equivalent version of BMOϕ(w).
In this proof, for the sake of simplicity, we consider the version with
balls.

Let x0 ∈ IRn fixed and let B(z, r) a ball in IRn. Suppose that |z −
x0| < 2r. Then, using the doubling property of w and ϕ, we have
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∫

B(z,r)

|hx0(x)− hx0(z + r
z − x0

|z − x0|)|dx

(2.7)

=

∫

B(z,r)

(

∫ |x0−z|+r

|x−x0|

w(B(x0, t))

tn
ϕ(t)

t
dt)dx

≤
∫ |x0−z|+r

0

w(B(x0, t))

tn
ϕ(t)

t
(

∫

B(x0,t)
⋂

B(z,r)

dx)dt

≤ C

∫ |x0−z|+r

0

w(B(x0, t))

tn
ϕ(t)

t
tndt

≤ Cϕ(3r)

∫ |x0−z|+r

0

w(B(x0, t))

t
dt

= Cϕ(3r)
∞∑
i=0

∫ (|x0−z|+r)/2i

(|x0−z|+r)/2i+1

w(B(x0, t))

t
dt

≤ Cϕ(3r)
∞∑
i=0

w(B(x0,
|x0 − z|+ r

2i
))

≤ Cϕ(r)
∞∑
i=0

w(B(x0,
|x0 − z|+ r

2i
−B(x0,

|x0 − z|+ r

2i+1
))

≤ Cϕ(r)w(B(x0, |x0 − z|+ r))

≤ Cϕ(r)w(B(x0, r)).

Now, assuming |z − x0| > 2r and keeping in mind that w satisfies
the doubling condition, we have

∫

B(z,r)

|hx0(x) − hx0(z + r
z − x0

|z − x0|)|dx

≤
∫ |x0−z|+r

0

w(B(x0, t))

tn
ϕ(t)

t
|B(z, r) ∩B(x0, t)|dt

≤ Crn

∫ |x0−z|+r

|x0−z|−r

w(B(x0, t))

tn
ϕ(t)

t
dt

≤ Crn

∫ |x0−z|+r

|x0−z|−r

w(B(z, t))

tn
ϕ(t)

t
dt.
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Note that, since w ∈ A1, w(B(z, t))/tn is quasi-decreasing. Then from
the above inequality and the fact that |x0− z| − r ≥ r, having in mind
that that ϕ(t)/t is quasi-decreasing, we get

∫

B(z,r)

|hx0(x)− hx0(z + r
z − x0

|z − x0|)|dx(2.8)

≤ Crn w(B(z, r))

rn

ϕ(r)

r
r

= Cw(B(z, r))ϕ(r).

So, from (2.7) and (2.8), it is immediate that hx0 ∈ BMOϕ(w).
Moreover, the upper bound on (1.11) is clear. To check the lower
bound, let us note first that there exists a constant C such that

1

w(B(z, s)

∫

B(z,s)

|hx0(y)−mB(z,s)hx0|dy

≥ 1

2w(B(z, s))

1

|B(z, s)|
∫

B(z,s)

∫

B(z,s)

|hx0(x)− hx0(y)|dydx

for every z ∈ IRn and s > 0. Then, we can write

sup
0<s≤r

z∈IRn

1

w(B(z, s))

∫

B(z,s)

|hx0(y)−mB(z,s)hx0|dy

≥ 1

w(B(x0, r))

∫

B(x0,r)

|hx0(y)−mB(x0,r)hx0|dy

≥ C

w(B(x0, r))

1

|B(x0, r)|
∫

|x−x0|< r
4

∫
r
2
<|y−x0|<r

|hx0(x)− hx0(y)|dydx

=
C

w(B(x0, r))

1

|B(x0, r)|

×
∫

|x−x0|< r
4

dx

∫
r
2
<|y−x0|<r

dy(

∫ |y−x0|

|x−x0|

w(B(x0, t))

tn
ϕ(t)

t
dt)

≥ C

w(B(x0, r))

1

rn
r2n

∫ r
2

r
4

w(B(x0, t))

tn
ϕ(t)

t
dt

≥ Crn

w(B(x0, r))

w(B(x0, r/4))

rn+1
ϕ(

r

4
)r

Finally, from the fact that w and ϕ satisfy a doubling condition we get
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(2.9) sup
0<s≤r

z∈∈IRn

1

w(B(z, s))

∫

B(z,s)

|hx0(x)−mB(z.s)hx0|dx ≥ Cϕ(r)

as we wanted to prove.¤

Our proof of Corollary 1.12 requires the following characterization
of the functions in Λϕ(w) (see (1.4)).

Lemma 2.10. Let w be in A1 and ϕ satisfying a doubling condition.
Then a function f belongs to Λϕ(w) if and only if f ∈ L1

loc(IR
n) and

there exists a constant C such that

(2.11) ess sup
x∈B(z,r)

z∈IRn

|f(x)−mB(z,r)f |
w(x)

≤ Cϕ(r)

for every r > 0.

Proof: It is easy to see that functions satisfying (2.11) are in Λϕ(w).
Actually we do not need w be in A1 nor the doubling condition on ϕ
for this part. Let us prove the reciprocal. If f is in Λϕ(w), then, by
(1.2), we get

(2.12) |f(x)− f(y)| ≤ C(w(x) + w(y))ϕ(|x− y|)
for a.e. x and y in IRn. Now, let B(z, r) be a ball in IRn. Taking x and
y in B(z, r) and integrating with respects to y both sides of (2.12) we
get

|f(x)|B(z, r)| −
∫

B(z,r)

f(y)dy| ≤
∫

B(z,r)

|f(x)− f(y)|dy

≤ C(w(x)|B(z, r)|+ w(B(z, r)))ϕ(2r).

for a.e. x in B(z, r). From this inequality, using our assumptions on w
and ϕ, we have
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|f(x)−mB(z,r)f | ≤ C(w(x) +
w(B(z, r))

|B(z, r)| )ϕ(2r)

≤ C(w(x) + C inf
B(z,r)

w)ϕ(r)

≤ Cw(x)ϕ(r)

for a.e. x in B(z, r). Now (2.11) is obvious.¤

Proof of Corollary 1.12: Let x0 be a Lebesgue point of w such
that 0 < w(x0) < ∞. Note that since w is finite a.e., for each ε in (0, 1)
and we can find Aε ⊂ B(x0, ε) such that |Aε| > 0 and w(x) ≤ 2w(x0)+1
for every x ∈ Aε. Now, let the function hx0 be defined as in Theorem
1.10. Since w ∈ A1, for each ε in (0, 1), we have

hx0(x)

w(x)
=

1

w(x)

∫ 1

|x−x0|

w(B(x0, t))

tn
ϕ(t)

t
dt

≥ C

w(x)
w(B(x0, 1))

∫ 1

|x−x0|

ϕ(t)

t
dt

≥ C

2w(x0) + 1
w(B(x0, 1))

∫ 1

ε

ϕ(t)

t
dt

for every x ∈ Aε. Then, taking ε close enough to zero, it is clear that
hx0/w is not bounded on B(x0, 1) and, consequently, since w(x) ≥
ess infB(x0,1) w > 0 a.e. in B(x0, 1)

ess sup
x∈B(x0,1)

|hx0(x)−mB(x0,1)hx0|
w(x)

= ∞.

So, from Lemma 2.11, hx0 does not belong to Λϕ(w). However, from
Theorem 1.10, hx0 ∈ BMOϕ(w). This completes the proof of the
Corollary.¤

3. BMOϕ(w) in terms of Riesz transforms

In this section we shall give the proof of Theorem 1.14. We will use
some technical lemmas and also an extension to n-dimensions of the
following result appearing in [M ] for the Hilbert transform.
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Proposition 3.1. Let w be an A∞ weight and ϕ a non decreasing
function defined on [0,∞) satisfying a doubling condition. Assume
further that there exists a constant C such that

(3.2)
|B|1/n

ϕ(|B|1/n)

∫

Bc

w(y)
ϕ(|x0 − y|)
|x0 − y|n+1

dy ≤ C
w(B)

|B|

holds for any ball B, where x0 denotes the center of B. Then the
Riesz-transforms Ri given by (1.15) are finite almost everywhere for
f ∈ BMOϕ(w). Moreover there is a constant C such that

(3.3) ||Rif ||BMOϕ(w) ≤ C||f ||BMOϕ(w) 1 ≤ i ≤ n.

The proof follows the same lines of the one-dimensional case with
some minor modifications.

Our next result shows that, under the assumptions of theorem 1.14,
Proposition 3.1 holds

Lemma 3.4. Let w be a weight in A1 ∩Aδ
∞ and ϕ as in theorem 1.14,

that is, there is a constant C such that

rδ

∫ ∞

r

ϕ(t)

t1+δ
dt ≤ Cϕ(r).

Then w and ϕ satisfy (3.2) above.

Proof: For B a ball with center x0 and radious r, we denote by
Bk the ball with the same center and radious 2kr. Using that ϕ is
non-increasing and doubling and that w belongs to A1 we have



CHARACTERIZATIONS OF BMOϕ(w) 15

∫

Bc

w(y)
ϕ(|x0 − y|)
|x0 − y|n+1

dy =
∞∑

k=1

∫

Bk+1−Bk

w(y)
ϕ(|x0 − y|)
|x0 − y|n+1

dy(3.5)

≤ C

∞∑

k=1

ϕ(2kr)

2kr

w(Bk)

|Bk|

≤ C
w(B)

|B|
∞∑

k=1

ϕ(2kr)

2kr

≤ C
w(B)

|B|
∫ ∞

r

ϕ(t)

t2
dt

≤ C
w(B)

|B|r1−δ

∫ ∞

r

ϕ(t)

t1+δ
dt

≤ C
w(B)

|B|
ϕ(r)

r

= C
ϕ(|B|1/n)w(B)

|B|1+1/n

as we wished.¤

Before stating the next lemma we introduce some notation. Let us
denote by Xr the characteristic function of the ball Br = B(0, r), and
by ψr = r−nXr. With this notation we have

ψr ∗ f(x) = mB(x,r)f.

Also, for a weight w and a locally integrable function f , we set

ρw(f, r) = sup
x,r′≤r

1

w(B(x, r′))

∫

B(x,r′)
|f(y)−mB(x,r′)f |dy.

With this notation we state the following lemma.

Lemma 3.6. Let w be a weight and f an integrable function. Then for
any r > 0

||f − ψr ∗ f ||BMO(w) ≤ Cρw(f, 2r).

In particular for f ∈ BMOϕ(w),

||f − ψr ∗ f ||BMO(w) ≤ Cϕ(r)
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Proof: We will use the following estimate for the averages:

(3.7) |mB0f −mB1f | ≤
(

w(B2)

|B0| +
w(B2)

|B1|
)

ρw(f, r2)

where B2 is a ball with radious r2 and such that B0 ⊂ B1 and B1 ⊂ B2.
This can be easily seen by adding and substracting mB2f .

Let now be B = B(x0, s) any ball. Then, to prove the lemma we
need to estimate

Ωw(B, f − ψr ∗ f)

=
1

w(B(x0, s))

∫

B(x0,s)

|f(x)− (ψr ∗ f)(x)−mB(x0,s)(f − ψr ∗ f)|dx.

Let us suppose first that s ≤ r. Then

Ωw(B, f − ψr ∗ f) ≤ 1

w(B(x0, s))

∫

B(x0,s)

|f(x)−mB(x0,s)f |dx

+
1

w(B(x0, s))

∫

B(x0,s)

|mB(x,r)f −mB(x0,s)(mB(.,r)f)|dx

= I + II

Since s ≤ r, the first term is bounded by ρw(f, r). As for the second,
we have

II ≤ 1

w(B(x0, s))

1

|B(x0, s)|
∫

B(x0,s)

∫

B(x0,s)

|mB(x,r)f −mB(y,r)f |dxdy

≤ Cw(B(x0, 2r))

rn

sn

w(B(x0, s))
ρw(f, 2r),

where we have used (3.7), since for any z ∈ B(x0, s), B(z, r) ⊂ B(x0, 2r).
Now w ∈ A1 implies the doubling property and also that the function
w(B(x, t))/tn is almost decreasing with a constant independent of x.
Since s ≤ r we get the desired estimate.

Next we suppose that s ≥ r. In this case we observe that

Ωw(B, f − ψr ∗ f) ≤ 2

w(B(x0, s))

∫

B(x0,s)

|f(x)−mB(x,r)f |dx

Now we can cover the ball B(x0, s) by a finite family of balls Bi =
B(xi, r), i = 1, . . . , N and such that B(xi, r/2) are mutually disjoint.
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The number N of such balls is like (s/r)n. Then the integral above is
bounded by

N∑
i=1

∫

B(xi,r)

|f(x)−mB(x,r)f |dx ≤
N∑

i=1

∫

B(xi,r)

|f(x)−mB(xi,ri)f |

+
N∑

i=1

∫

B(xi,r)

|mB(xi,ri)f −mB(x,r)f |

≤ ρw(f, r)
N∑

i=1

w(B(xi, r))

+2ρw(f, 2r)
N∑

i=1

w(B(xi, 2r))

where, for the second sum we use again (3.7) and that B(x, r) ⊂
B(xi, 2r) for x ∈ B(xi, r). Finally, using the doubling property of
w and that B(xi, r/2) are disjoint, we get also the desired estimate in
this case.

Therefore, taking the supremum on x0 and s we get the result for
the BMO-norm. To prove the estimate for f ∈ BMOϕ(w) we just use
that ϕ(2r) ≤ Cϕ(r).¤

We have defined for functions on BMOϕ(w) the modified Riesz trans-
forms Rj. It is not hard to prove that, for good functions with zero
average, they are equal to the classical version Rjf . For the latter
operators it is known that the following formula holds

(3.8)

∫
Rjf(x)η(x)dx = −

∫
f(x)Rjη(x)dx

for f ∈ Lp(IRn) and η, say, in C∞
0 (IRn). In the next lemma we extend

this result to Λϕ(w).

Lemma 3.9. Let η be a C∞
0 (IRn) function with zero average and g ∈

Λϕ(w) with w and ϕ as in Theorem 1.14. Then

∫
Rjg(x)η(x)dx = −

∫
g(x)Rjη(x)dx
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Proof: First, the integral on the left is absolutely convergent since we
know that Rjg is in BMOϕ(w) and hence locally integrable. Moreover
Rjg equals Rj(g − C), where C is any constant. Therefore

∫
Rjg(x)η(x)dx =

∫
η(x)Rj(g − C)(x)dx

=

∫
η(x)Rj(XR(g − C))(x)dx

+

∫
η(x)Rj(X ′

R(g − C))(x)dx

= I1 + I2,

where XR = XB(0,R),X ′
R = 1−XR.

To estimate I1 we observe that g belongs locally to Lq(IRn) for some
q > 1. In fact, it is known that an A∞ weight satisfies a Reverse-Hölder
inequality for some q > 1 (see [CF]). Therefore for such q and any ball
B with radious r we have

∫

B

|g(x)− g(x0)|qdx ≤ C

∫

B

(w(x) + w(x0))
qϕ(|x− x0|)dx

≤ Cϕ(r)(w(x0)|B|+
∫

B

(w(x))qdx) < ∞,

where we have chosen x0 ∈ B to be a Lebesgue point of w. Therefore
Rj(XR(g − C)) is a function in Lq and, moreover, equals, up to a
constant, toRj(XR(g−C)). So, since η has zero average, an application
of (3.8) gives

I1 =

∫
η(x)Rj(XR(g − C))(x)dx = −

∫
Rjη(y)XR(y)(g(y)− C)dy.

Now, to estimate I2 we choose R such that suppη ⊂ B(0, R/2) and
R > 1. Then

Rj(X ′
R(g − C))(x) = lim

ε→0

∫
|x−y|>ε
|y|>R

(
xj − yj

|x− y|n+1
+

yj

|y|n+1

)
(g(y)− C)dy

But for x ∈ suppη and |y| > R we have |x − y| > R/2 and, therefore,
we may drop the limit above. Moreover taking absolute values inside
the integral and applying the mean value theorem we have
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∫

|y|>R

∣∣∣∣
xj − yj

|x− y|n+1
+

yj

|y|n+1

∣∣∣∣ |g(y)− C|dy(3.10)

≤ C

∫

|y|>R

|x|
|y|n+1

|g(y)− C|

≤ C|x|
∫

|y|>R

ϕ(|x0 − y|)
|y|n+1

(w(x0) + w(y))dy,

where we have chosen C = g(x0) with x0 ∈ B(0, R/2) a Lebesgue point
of w. Again |x0| < R/2 and |y| > R imply |x0 − y| < R/2 + |y| < 2|y|
so the last integral is bounded by

C|x|(Rδ−1

∫ ∞

R

ϕ(t)

t1+δ
dt +

∫

|y|>R

w(y)ϕ(|y|)
|y|n+1

dy) ≤ C|x|

for x ∈ suppη, since both integrals are finite as a consequence of lemma
3.4. In this way we have proved that the iterated integral

∫
|η(x)|

∫
|Kj(x, y)|XR′(y)|g(y)− C|dydx

is finite, where Kj(x, y) denotes the kernel of Rj. Therefore in I2 the
order of integration can be reversed and hence

∫
η(x)Rj(X ′

R(g − C))(x)dx(3.11)

=

∫
X ′

R(y)(g(y)− C)

∫
Kj(x, y)η(x)dxdy

= −
∫
X ′

R(y)(g(y)− C)Rjη(y)dy

Adding I1 and I2 we get

I1 + I2 = −
∫

Rjη(y)(g(y)− C)dy = −
∫

Rjη(y)g(y)dy.¤

Now we turn into the proof of the last theorem.

Proof of Theorem 1.14: First, if f can be written as

(3.12) f =
n∑
0

Rj(fj)
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with f0, . . . , fn in Λϕ(w), it follows easily that f ∈ BMOϕ(w). In fact,
we noticed that Λϕ(w) is continuously embedded in BMOϕ(w) so, from
Lemma 3.4 and Proposition 3.1, the function on the right hand side of
(3.12) belongs to BMOϕ(w) and, moreover,

(3.13) ||f ||BMOw(ϕ) ≤ C

n∑
0

||fi||Λϕ(w).

On the other hand, let f belong to BMOϕ(w). Following [J], since
ϕ is continuous, there are numbers ri such that ϕ(ri) = 2iϕ(r0) for a
fixed r0 with ϕ(r0) 6= 0. The numbers ri will be defined for i ∈ ZZ and
belonging to a certain interval [−L,M ] where L and M may be finite
or infinite, depending on the boundedness properties of ϕ. For each ri,
according to Lemma 3.5, the function f − ψri

∗ f belongs to BMO(w)
and moreover

(3.14) ||f − ψri
∗ f ||BMO(w) ≤ Cϕ(ri) = C2i.

From here we have that

(3.15) ||ψri
∗ f − ψri+1

∗ f ||BMO(w) ≤ C(ϕ(ri) + ϕ(ri+1)) = Cϕ(ri).

Now, we apply the decomposition result of Muckenhoupt and Wheeden
(see [MW]), for the space BMO(w) to each of the functions on the left
hand side of (3.15). In this way we get

(3.16) ψri
∗ f − ψri+1

∗ f =
n∑

j=0

Rj(u
i
j),

where ui
j are in L∞(w) with

(3.17) ||ui
j||L∞(w) ≤ Cϕ(ri).

The tempting idea now is to recover f adding these pieces since, at
least when L and M are infinite, the sum of the series will give f back.
But, even in that case, the sum of the functions ui

j will be not smooth
enough to provide a Λϕ(w)-function for each j. To make things work
we need to smoother the functions ui

j. To this end, let us choose a
point x0 such that is a Lebesgue point for the weight w and for the
functions (ψri

+ ψri+1
) ∗ ui

j and define

vi
j = (ψri

+ ψri+1
) ∗ ui

j − Cij
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where Cij = ((ψri
+ψri+1

) ∗ui
j)(x0). Now, we want to prove that vi

j are

functions in Λϕ(w), giving an estimate for ||vi
j||Λϕ(w). For each i and j

fixed, we take x, z two points in IRn and we consider the two possible
cases

Case 1: |x− z| > ri

|vi
j(x)− vi

j(z)| ≤ 1

rn
i

∫

B(x,ri)

|ui
j|+

1

rn
i+1

∫

B(x,ri+1)

|ui+1
j |

+
1

rn
i

∫

B(z,ri)

|ui
j|+

1

rn
i+1

∫

B(z,ri+1)

|ui+1
j |

≤ 1

rn
i

||ui
j||L∞(w)(w(B(x, ri)) + w(B(z, ri)))

+
1

rn
i+1

||ui+1
j ||L∞(w)(w(B(x, ri+1)) + w(B(z, ri+1)))

Using now estimate (3.17) and that w ∈ A1, we obtain

(3.18) |vi
j(x)− vi

j(z)| ≤ C(ϕ(ri) + ϕ(ri+1))(w(x) + w(z)).

Case 2: |x − z| ≤ ri. In this case B(x, ri) and B(z, ri) have a
thick intersection and, since ri is increasing, the same happens with
B(x, ri+1) and B(z, ri+1). Let us call Ai = B(x, ri)∆B(z, ri), Ai+1 =

B(x, ri+1)∆B(z, ri+1), B̃i = B(x, 3ri) and B̃i+1 = B(x, 3ri+1). Then

we have Ai ⊂ B̃i and Ai+1 ⊂ B̃i+1 and, using the Aδ
∞ condition in w,

we have for k = i, i + 1

w(Ak) ≤ Cw(B̃k)(
|Ak|
|B̃k|

)δ ≤ Cw(Bk)(
|x− z|

rk

)δ,

where, for the last inequality, we have used the estimate |Ak| ≤ C|x−
z|rn−1

k . Thus
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|vi
j(x)− vi

j(z)| ≤ 1

rn
i

∫

Ai

|ui
j|+

1

rn
i+1

∫

Ai+1

|ui+1
j |

≤ ||ui
j||L∞(w)

w(Ai)

rn
i

+ ||ui+1
j ||L∞(w)

w(Ai+1)

rn
i+1

≤ C|x− z|δ(ϕ(ri)

rδ
i

w(Bi)

rn
i

+
ϕ(ri+1)

rδ
i+1

w(Bi+1)

rn
i+1

)

≤ Cϕ(ri)(
|x− z|

ri

)δ(w(x) + w(z))

where in the last inequality we have used that w ∈ A1.
Therefore in both cases we have proved the inequality

(3.19) |vi
j(x)− vi

j(z)| ≤ Cϕ(ri)(
|x− z|

ri

)δ(w(x) + w(z))

With (3.18) and (3.19) we are ready to show that the function gj =∑
i v

j
i is well defined and, moreover, it belongs to Λϕ(w). In fact, using

the estimates (3.18) and (3.19) for fixed x and z, we have

∑
i

|vi
j(x)− vi

j(z)| = (
∑

ri<|x−z|
+

∑

ri≥|x−z|
)|vi

j(x)− vi
j(z)|

≤ C(w(x) + w(z))(
∑

ri<|x−z|
ϕ(ri) + |x− z|δ

∑

ri≥|x−z|

ϕ(ri)

rδ
i

).

But, since ϕ(ri) = 2ϕ(ri−1) and {ri} is non-decreasing, we get

m∑

k

ϕ(ri) = 2
m∑

k

(ϕ(ri)− ϕ(ri−1))

= 2(ϕ(rm)− ϕ(rk−1)

≤ 2ϕ(rm),

and
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m∑

k

ϕ(ri)

rδ
i

= 2
m∑

k

ϕ(ri)− ϕ(ri−1)

rδ
i

= 2
m−1∑

k

ϕ(ri)(
1

rδ
i

− 1

rδ
i+1

) + 2
ϕ(rm)

rδ
m

− 2
ϕ(rk−1)

rδ
k

≤ C

(
m−1∑

k

ϕ(ri)

∫ ri+1

ri

dt

t1+δ
+ ϕ(rm)

∫ ∞

rm

dt

t1+δ

)

≤ C

∫ ∞

rk

ϕ(t)

t1+δ
dt.

With these estimates we obtain

∑
i

|vi
j(x)− vi

j(z)| ≤ C(w(x)− w(z))(ϕ|x− z|+ |x− z|δ
∫ ∞

|x−z|

ϕ(t)

t1+δ
dt)

and using the hypothesis on ϕ we conclude

(3.20)
∑

i

|vi
j(x)− vi

j(z)| ≤ C(w(x)− w(z))ϕ(|x− z|)

Therefore, taking z = x0 in the above inequality, we have

∑
i

|vi
j(x)| ≤ C(w(x)− w(x0))ϕ(|x− x0|),

which implies that the series
∑

vi
j(x) converges absolutely for almost

every x, in fact for the Lebesgue points of w. Also if we set gj =
∑

i v
i
j,

the inequality (3.20) gives

|gj(x)− gj(z)| ≤ C(w(x)− w(z))ϕ(|x− z|),
proving that gj is in Λϕ(w) and ||gj||Λϕ(w) ≤ C.

Now we would like to show that f and
∑n

j=0Rjgj are basically the
same, in the sense that their difference is either zero or a function which
can be decomposed in the way we want.

First we observe that for each fixed i we have
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n∑
j=0

Rj(v
i
j) =

n∑
j=0

Rj((ψri
+ ψri+1

) ∗ ui
j)(3.21)

=
n∑
j

(ψri
+ ψri+1

) ∗ Rj(u
i
j)

= (ψri
+ ψri+1

) ∗ (ψri
− ψri+1

) ∗ f

= ψri
∗ ψri

∗ f − ψri+1
∗ ψri+1

∗ f

Since for approximations to the identity, say ρr(x) = r−nρ(x/r), we
know that limr→∞(ρr∗f) = 0 and limr→0(ρr∗f) = f , we may expect to
recover f from adding up on i the last equality. But, since the sequence
ri belongs to the range of ϕ, we have to distinguish whether or not L
and M are finite.

In any case, if η is a C∞
0 function with

∫
η = 0, according to Lemma

3.9 we have

∫
Rjgjη = −

∫
gjRjη(3.22)

= −
∑

i

∫
vi

jRjη

=
∑

i

∫
Rjv

i
jη

where in order to take the sum outside of the integral we have made use
of the fact that

∑
i |vi

j| converges almost everywhere to a function in
Λϕ(w) and, by Lemma 3.8, the integral of the product of this function
by Rjη is absolutely convergent. From (3.21) and (3.22) we obtain

∫
(

n∑
j=0

Rjgj)η =
∑

i

∫
(

n∑
j=0

Rjv
i
j)η

(3.23)

=
∑

i

(

∫
(ψri

∗ ψri
∗ f)η −

∫
(ψri+1

∗ ψri+1
∗ f)η)

= lim
i→−L

∫
(ψri

∗ ψri
∗ f)η − lim

i→M

∫
(ψri

∗ ψri
∗ f)η

where the limit should be understood as the evaluation in −L or M
when they are finite. To evaluate each of these terms we consider
the different possibilities for L and M . The goal is to prove that the
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first limit gives either
∫

fη or
∫

(f + H)η where H is a sum of Riesz
transforms of Λϕ(w)-functions; similarly we will prove that the second
limit gives either zero or

∫
Gη with G satisfying the desired property.

i) L = ∞. In this case ri → 0 for i → −L and therefore

(3.24) lim
i→−L

∫
(ψri

∗ ψri
∗ f)η = lim

r→0

∫
f(ψr ∗ ψr ∗ η) =

∫
fη,

since f es locally integrable, η ∈ C∞
0 and ψri

has compact support.

ii) L < ∞. In this case ϕ(r−L) ≤ 2ϕ(r) for all r > 0 since otherwise
r−L−1 could have been constructed. Also, by Lemma 3.6

||f − ψr−L
∗ ψr−L

∗ f ||BMO(w) ≤ ||f − ψr−L
f ||BMO(w)

+ ||ψr−L
∗ (f − ψr−L

∗ f)||BMO(w)

≤ 2||f − ψr−L
∗ f ||BMO(w)

≤ Cϕ(r−L).

Therefore, using again the decomposition result for BMO(w), we
get

(ψr−L
∗ ψr−L

∗ f)− f =
n∑

j=0

Rj(hj)

with ||hj||L∞(w) ≤ Cϕ(r−L). Moreover we have

|hj(x)− hj(y)| ≤ (w(x) + w(y))||hj||L∞(w) ≤ C(w(x) + w(y))ϕ(|x− y|)
giving that hj ∈ Λϕ(w). In this way we have shown that

(3.25) lim
i→−L

∫
(ψri

∗ ψri
∗ f)η =

∫
fη +

n∑
j=0

∫
Rjhjη

with hj ∈ Λϕ(w).

iii) M = ∞. In this case ri → ∞ for i → M and therefore suppη ⊂
B(0, ri) for any i large enough.

Now, as above

∫
(ψri

∗ f ∗ f)η =

∫
f(ψri

∗ ψri
∗ η)
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But, for i large enough, ψri
∗ ψri

∗ η vanishes outside of B̃ = B(0, 3ri)
and has zero average. Thus

|
∫

f(ψri
∗ ψri

∗ η)| ≤
∫

B(0,3ri)

|f −mB̃f ||ψri
∗ ψri

∗ η|

≤ Cw(B(0, 3ri)ϕ(ri)||ψri
∗ ψri

∗ η||∞
since f ∈ BMOϕ(w). Also, using again the zero average for η,

||ψri
∗ ψri

∗ η||∞ ≤ r−n
i ||ψri

∗ η||1
≤ r−n

i

∫

B(0,2ri)

∫

B(0,ri)

|ψri
(x− y)− ψri(x)||η(y)|dydx

≤ r−n
i

∫

B(0,ri)

|η(y)|(
∫

B(0,2ri)

|ψri
(x− y)− ψri

(x)|dx)dy

≤ r−2n
i

∫

B(0,ri)

|η(y)||B(0, ri)∆B(y, ri)|dy

≤ Cr−n−1
i

∫

B(0,ri)

|y||η(y)|dy = Cr−n−1
i .

With this estimate we get for i large enough

∫
(ψri

∗ ψri
∗ f)η) ≤ C

w(B(0, 3ri))

rn
i

ϕ(ri)

ri

≤ C inf
x∈B(0,1)

w(x)
ϕ(ri)

ri

Now, using that ϕ is non-decreasing, we have

ϕ(r)

r
≤ Crδ−1

∫ ∞

r

ϕ(t)

t1+δ
dt,

where the right side tends to zero when r →∞, because of δ ≤ 1 and∫∞
1

(ϕ(t)/t1+δ)dt < ∞. Hence we get

(3.26) lim
i→M

∫
(ψri

∗ ψri
∗ f)η = 0.

iv) M < ∞. In this case we have ϕ(r) ≤ 2ϕ(rM) for any r > 0 and
therefore the given function f belongs to BMO(w) with ||f ||BMO(w) ≤
Cϕ(rM). Applying the decomposition result for functions in this space
we get

f =
n∑

j=0

Rjh
′
j
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with ||h′j||L∞(w) ≤ Cϕ(rM). Then we have

∫
(ψrM

∗ ψrM
∗ f)η =

n∑
j=0

∫
(ψrM

∗ ψrM
∗ Rj(h

′
j)η)

=
n∑

j=0

∫
Rj(ψrM

∗ ψrM
∗ h′j)η

So, if we are able to prove that the functions h̃j = ψrM
∗ψrM

∗h′j belong
to Λϕ(w), we would get the desired result, i. e.:

(3.27) lim
i→−M

∫
(ψri

∗ ψri
∗ f)η =

n∑
j=0

∫
Rjh̃jη

with h̃j ∈ Λϕ(w). To do that, we first observe that φrM
(x) = (ψrM

∗
ψrM

)(x) = r−n
M (XB1 ∗ XB1)(x/rM) and that XB1 ∗ XB1 is a Lipschitz

function supported in B(0, 3). Therefore φrM
is supported in B(0, 3rM)

and satisfies

(3.28) |φrM
(x)| ≤ C

rn
M

and |φrM
(x)− φrM

(y)| ≤ C

rn
M

|x− y|
rM

Now, for x and y such that |x− y| < rM we have

|h̃j(x)− h̃j(y)| ≤
∫
|φrM

(x− z)− φrM
(y − z)||h′j(z)|dz

≤ C||h′j||L∞(w)
|x− y|

rM

1

rn
M

∫

B(x,3rM )
⋃

B(y,3rM )

w(z)dz

≤ Cϕ(rM)
|x− y|

rM

(w(x) + w(y))

≤ Cϕ(|x− y|)(w(x) + w(y)),

where in the last inequality we have used that ϕ(t)/t is almost decreas-
ing. Finally for x and y such that |x− y| ≥ rM we have

|h̃j(x)− h̃j(y)| ≤ |h̃j(x)|+ |h̃j(y)|
≤ C||h′j||L∞(w)(w(x) + w(y))

≤ Cϕ(rM)(w(x) + w(y)).

In this way we proved h̃j ∈ Λϕ(w).
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The conclusion of the theorem follows now by (3.24), (3.25), (3.26)
and (3.27).¤
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