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Abstract. The purpose of this paper is to prove the Lp(Rn, dγ) boundedness,
for p > 1, of the non-centered Hardy-Littlewood maximal operator associated

with the Gaussian measure dγ = e−|x|
2
dx.

Let dγ = e−|x|
2
dx be a Gaussian measure in Euclidean space Rn. We consider

the non-centered maximal function defined by

Mf(x) = sup
x∈B

1
γ(B)

∫
B

|f | dγ,

where the supremum is taken over all balls B in Rn containing x. P. Sjögren [2]
proved thatM is not of weak type (1,1) with respect to dγ for n > 1. A more general
result was obtained by A. Vargas [4], who characterized those radial and strictly
positive measures for which the corresponding maximal operator is of weak type
(1,1). However, these papers leave open the question of the Lp(dγ) boundedness of
M for p > 1 and n > 1.

The main result in this paper is

Theorem 1. M is a bounded operator on Lp(dγ) for p > 1, that is, there exists a
constant C = C(n, p) such that for f ∈ Lp(dγ),

‖Mf‖Lp(dγ) ≤ C‖f‖Lp(dγ).

In a forthcoming paper [3], P. Sjögren and F. Soria prove estimates for the
maximal operator associated with a more general radial measure with decreasing
density.

We denote Sn−1
r = {x ∈ Rn : |x| = r} and Sn−1 = Sn−1

1 , and write dσ for the
area measure on Sn−1. The spherical maximal function

Mef(h) = sup
R>0

1
σ(|z′ − h| ≤ R)

∫
|z′−h|≤R

|f(z′)| dσ(z′), h ∈ Sn−1,

is bounded on Lp(dσ). We extend Me to functions defined in Rn by using polar
coordinates x = ρx′ with x′ ∈ Sn−1 and applyingMe in the x′ variable. ThenMe

is bounded on Lp(dγ).
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In order to prove Theorem 1, we need the following technical lemma, proved
later.

Lemma 1. Let B be a closed ball in Rn of radius r. Denote by q the point of B
whose distance to the origin is minimal. Assume that |q| ≥ 1 and that r ≥ 1/|q|.
Then for all x, y ∈ B

γ(B) ≥ C e−|q|
2

|q|

(
1 ∧ |y − x|2

|q|(|x| ∨ |y| − |q|)

)n−1
2

.(1)

Here and in the sequel, we write C for various positive finite constants and denote
a ∧ b = min(a, b) and a ∨ b = max(a, b).

Proof of Theorem 1. We assume that n ≥ 2, since the case n = 1 is well known;
see, e.g. [2]. Take 0 ≤ f ∈ Lp(dγ) and x ∈ Rn. For any ball B containing x, we

must estimate the average Af(B) =
1

γ(B)

∫
B

f dγ. Let r and q be defined as in

Lemma 1.
We first consider small balls B, and denote byM0f(x) the supremum of Af(B)

taken only over balls B containing x and verifying r < 1 ∧ |q|−1. Split Rn into
rings Rk = {x :

√
k − 1 ≤ |x| <

√
k}, k = 1, 2, ... . The width of Rk is no larger

than 1/
√
k, and so the Gaussian density is of constant order of magnitude in each

Rk. Using Lebesgue measure arguments, one can easily estimate the Lp(dγ) norm
of M0f in Rk in terms of the Lp(dγ) norm of f in

⋃
{Rk′ : |k′ − k| ≤ C}. This

takes care of small balls.
Consider now balls B with r ≥ 1 ∧ |q|−1. To begin with observe that the case

|q| < 2 is simple, since then γ(B) ≥ C and thus

Af(B) ≤ C
∫
fdγ ≤ C ‖ f ‖Lp(dγ) .

The corresponding part of Mf thus satisfies the Lp(dγ) estimate.
It remains to consider M̃f(x) = supAf(B), the supremum taken over balls B

containing x and with the property that r ≥ |q|−1 and |q| ≥ 2. Let B be such a
ball, and observe that it satisfies the hypotheses of Lemma 1.

For each ρ ≥ 1 such that Sn−1
ρ intersects B, let yρ ∈ Sn−1

ρ ∩ ∂B be such that
|yρ − x| = supz∈B∩Sn−1

ρ
|z − x|. Write x′ = x/|x|.

For each z′ ∈ Sn−1 such that ρz′ ∈ B we have

|x′ − z′| =
1
ρ
|ρx′ − ρz′|(2)

≤ 1
ρ

[|x− ρz′|+ |ρ− |x||]

≤ 2
ρ
|yρ − x|,

and trivially |x′ − z′| ≤ 2.
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Because of (2) and the definition ofMe,

Af(B) =
∫ |q|+2r

|q|

1
γ(B)

∫
Sn−1

χB(ρz′)f(ρz′)dσ(z′) ρn−1e−ρ
2
dρ

≤
∫ |q|+2r

|q|

1
γ(B)

∫
|z′−x′|≤2

(
1∧ |yρ−x|ρ

) f(ρz′)dσ(z′) ρn−1e−ρ
2
dρ

≤ C
∫ |q|+2r

|q|

{
1 ∧

(
|yρ−x|
ρ

)n−1
}

γ(B)
Mef(ρx′)ρn−1e−ρ

2
dρ

≤ C
∫ |q|+2r

|q|
|q|e|q|2

{
1 ∨

(
|q|(ρ ∨ |x| − |q|)
|x− yρ|2

)n−1
2
}{

1 ∧
(
|yρ − x|

ρ

)n−1
}

Mef(ρx′)ρn−1e−ρ
2
dρ,

(3)

where we applied Lemma 1 with y = yρ to get the last inequality.
Write M = ρ ∨ |x| and m = ρ ∧ |x|, so that |q| ≤ m ≤M .

Lemma 2. For |q| < ρ < |q|+ 2r and some C,

e|q|
2

{
1 ∨

(
|q|(M − |q|)
|x− yρ|2

)n−1
2
}{

1 ∧
(
|yρ − x|

ρ

)n−1
}

≤ Cem2
(

1
m2
∨ M −m

m

)n−1
2

.

Assuming this lemma for the moment, we conclude from (3) that

Af(B) ≤ C
∫ ∞

1

mem
2
(

1
m2
∨ M −m

m

)n−1
2

Mef(ρx′)ρn−1e−ρ
2
dρ.

We split this integral into five integrals taken over the following intervals:

I1 =
[
1,
|x|
2

]
, I2 =

(
|x|
2
, |x| − 1

|x|

]
, I3 =

(
|x| − 1

|x| , |x|+
1
|x|

]
,

I4 =
(
|x|+ 1

|x| ,
5
4
|x|
]
, I5 =

(
5
4
|x| ,+∞

)
.

Let for i = 1, ..., 5

Mif(x) =
∫
Ii

mem
2
(

1
m2
∨ M −m

m

)n−1
2

Mef(ρx′)ρn−1e−ρ
2
dρ.

Then M̃f ≤ C
∑5

1Mif.

Bound for M1f(x). One finds that

M1f(x) ≤ |x|n
|x|
2∫

1

Mef(ρx′) dρ.
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Hölder’s inequality and the Lp(dσ) boundedness of Me imply

‖ M1f ‖pLp(dγ)≤
+∞∫
1

∫
Sn−1

sn
s
2∫

1

Mef(ρx′)dρ


p

dσ(x′)sn−1e−s
2
ds

≤
+∞∫
1

∫
Sn−1

snp

s
2∫

1

|Mef(ρx′)|pρn−1e−ρ
2
dρ


s
2∫

1

ρ−(n−1) p
′
p e

p′
p ρ

2
dρ


p
p′

dσ(x′)sn−1e−s
2
ds

≤

 +∞∫
1

sCe−
3
4 s

2
ds

 ‖ f ‖pLp(dγ)≤ C ‖ f ‖
p
Lp(dγ) .

Bound for M2f(x). Making the change of variable ρ = |x| − t

|x| , we get

M2f(x) ≤ |x|n+1
2

|x|− 1
|x|∫

|x|/2

(|x| − ρ)
n−1

2 Mef(ρx′) dρ

≤
∫ |x|2/2

1

t
n−1

2 Mef

(
(|x| − t

|x| )x
′
)
dt.

From Minkowski’s integral inequality and the Lp(dσ) boundedness of Me, we
obtain

‖M2f‖Lp(dγ) ≤
∫ +∞

1

t
n−1

2

∥∥∥∥Mef

(
(|x| − t

|x| )x
′
)
χ{1≤t≤ |x|22 }

∥∥∥∥
Lp(dγ)

dt

=
∫ +∞

1

t
n−1

2

[∫
Sn−1

∫ +∞

√
2t

f

(
(s− t

s
)x′
)p

sn−1e−s
2
dsdσ(x′)

] 1
p

dt.

We now make the change of variables s → ρ = s − t/s, observing that s ≤ 2ρ
and −s2 = −ρ2 − 2t+ t2/s2 ≤ −ρ2 − 3t/2 and dρ/ds ≥ 1. Thus

‖M2f‖Lp(dγ) ≤ C
∫ +∞

1

t
n−1

2

[∫
Sn−1

∫ +∞

√
t/2

|f (ρx′) |pρn−1e−ρ
2
e−3t/2dρdσ(x′)

] 1
p

dt

≤ C ‖f‖Lp(dγ)

(∫ +∞

1

t
n−1

2 e−
3t
2p dt

)
≤ C ‖f‖Lp(dγ).

Bound for M3f(x). Let dµ = ρn−1e−ρ
2
dρ in R+. We have

M3f(x) ≤ C|x|
∫ |x|+1/|x|

|x|−1/|x|
Mef(ρx′)dρ

≤ C(µ(|x| − 1/|x|, |x|+ 1/|x|))−1

∫ |x|+1/|x|

|x|−1/|x|
Mef(ρx′)dµ(ρ).

LetMµ denote the one-dimensional centered maximal operator defined in terms of
µ, acting in the ρ variable. Then

M3f(x) ≤ CMµMef(|x|x′).
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ButMµ is known to be bounded on Lp(dµ); see [1] or [2]. The Lp(dγ) boundedness
of M3 follows.

Bound for M4f(x). Making the change of variable ρ = |x|+ t

|x| , we have

M4f(x) ≤ C|x|n+1
2 e|x|

2
∫ 5

4 |x|

|x|+ 1
|x|

(ρ− |x|)n−1
2 Mef(ρx′) e−ρ

2
dρ

≤ C

∫ |x|2
4

1

t
n−1

2 Mef

(
(|x| + t

|x| )x
′
)
e−2t e

− t2

|x|2 dt.

Minkowski’s integral inequality implies

‖M4f‖Lp(dγ)≤ C
∫ +∞

1

t
n−1

2

∥∥∥∥Mef

(
(|x|+ t

|x| )x
′
)
e
− t2

|x|2 χ{1≤t≤ |x|24 }

∥∥∥∥
Lp(dγ)

e−2tdt.

But Me is bounded on Lp(dσ), so that

‖Mef((|x| + t

|x| )x
′) e−

t2

|x|2 χ{1≤t≤ |x|24 }
‖pLp(dγ)

≤ C

∫ ∞
2
√
t

∫
Sn−1

|f((s+
t

s
)x′)e−

t2

s2 |pdσ(x′)sn−1e−s
2
ds.

Almost as in the case ofM2, we make the change of variable ρ = s+t/s and observe
that s ≤ ρ and −s2 = −ρ2 + 2t+ t2/s2 and dρ/ds ≥ 1/2. Since e−pt

2/s2et
2/s2 < 1,

it follows that the above double integral is at most

C

∫
Sn−1

∫ +∞

1

|f(ρx′)|pρn−1e−ρ
2
dρdσ(x′) e2t ≤ C‖f‖pLp(dγ)e

2t.

Thus

‖M4f‖Lp(dγ) ≤ C

∫ +∞

1

t
n−1

2 ‖f‖Lp(dγ)e
2t
p e−2tdt ≤ C‖f‖Lp(dγ).

Bound for M5f(x). Observe that

M5f(x) ≤ |x|
3−n

2 e|x|
2

+∞∫
5
4 |x|

Mef(ρx′) ρ
n−1

2 ρn−1e−ρ
2
dρ.

We take the Lp norm and then apply Hölder’s inequality, getting

‖M5f‖pLp(dγ) ≤
+∞∫
1

∫
Sn−1

eps
2

sp
n−3

2

 +∞∫
5s
4

Mef(ρx′) ρ
3(n−1)

2 e−ρ
2
dρ


p

dσ(x′)sn−1e−s
2
ds

≤
+∞∫
1

∫
Sn−1

eps
2

sp
n−3

2

+∞∫
0

|Mef(ρx′)|pρn−1e−ρ
2
dρ

+∞∫
5s
4

ρ( p
′

2 +1)(n−1)e−ρ
2
dρ


p
p′

dσ(x′)sn−1e−s
2
ds

≤ ‖f‖pLp(dγ)

(∫ +∞

1

sCe(p−1)s2e−(p−1)( 5
4 s)

2
ds

)
≤ C‖f‖pLp(dγ).

To finish the proof of Theorem 1 , it now only remains to prove the two lemmas.
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Proof of Lemma 1. Consider the hyperplane orthogonal to q whose distance from
the origin is |q| + t, with 1/(2|q|) < t < 1/|q|. Its intersection with B is an (n −
1)-dimensional ball whose radius is at least C

√
rt ≥ C

√
r/|q|. Integrating the

Gaussian density first along this (n− 1)-dimensional ball and then in t, we get

γ(B) ≥
∫ 1/|q|

1/(2|q|)
e−(|q|+t)2

dt

∫
|v|<C

√
r/|q|

e−|v|
2
dv,

where v is an (n − 1)-dimensional variable. The inner integral here is at least
C min(1, (r/|q|)(n−1)/2), and e−(|q|+t)2 ≥ Ce−|q|2 for these t; therefore

γ(B) ≥ C e
−|q|2

|q|

(
1 ∧

(
r

|q|

)n−1
2
)
.(4)

To estimate r from below, we let z be the center of B and w the projection of
x onto the line passing through 0, q and z. Write h = |x − w| and a = |w − q|.
Applying the Pythagorean Theorem twice, we get

|x− z|2 − (r − a)2 = h2 = |x− q|2 − a2.

Since |x− z| ≤ r, we conclude that 2ar ≥ |x− q|2. Clearly a ≤ |x| − |q| so that

r ≥ |x− q|2
2(|x| − |q|) ≥

|x− q|2
2(|x| ∨ |y| − |q|) .

Since x and y are arbitrary points of B, the same argument also implies

r ≥ |y − q|2
2(|x| ∨ |y| − |q|) .

From the triangle inequality we conclude that 2|x− q| ∨ |y − q| ≥ |x− y|, and so

r ≥ |x− y|2
8(|x| ∨ |y| − |q|) .

Combining this with (4), we obtain the inequality of Lemma 1.

Proof of Lemma 2. We write LHS for the left-hand side of the inequality to be
proved. Assume first that (

|q|(M − |q|)
|x− yρ|2

)n−1
2

≤ 1.(5)

Then LHS ≤ e|q|2(|x− yρ|/ρ)n−1. The angles at q of the triangles 0qx and 0qyρ are
obtuse, so that |x|2 ≥ |q|2 + |x − q|2 and |yρ|2 ≥ |q|2 + |yρ − q|2. But |x − yρ| ≤
|x− q|+ |yρ − q|, and this implies

|x− yρ|2 ≤ 4 max(|x− q|2, |yρ − q|2)

≤ 4 max(|x|2 − |q|2, |yρ|2 − |q|2) = 4(M2 − |q|2).

If |x| ≤ 2ρ, this last quantity is at most 16ρ(M − |q|), and then

LHS ≤ Ce|q|2
(
M − |q|

ρ

)n−1
2

.(6)

In the contrary case |x| > 2ρ, we simply observe that LHS ≤ Ce|q|
2

whereas the
right-hand side is at least Cem

2
. This case of the lemma is thus trivial.
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BOUNDEDNESS OF GAUSSIAN HARDY-LITTLEWOOD FUNCTION 79

Assume now that (5) is false. Then

LHS ≤ e|q|2 (|q|(M − |q|))n−1
2

ρn−1

and we arrive again at (6).
It thus only remains to see that (6) implies Lemma 2. This would follow from

the estimate

e|q|
2−m2

(M − |q|)n−1
2 ≤ C((1/m) ∨ (M −m))

n−1
2 .(7)

To prove (7), we use the fact that

(M − |q|)n−1
2 ≤ C

(
(M −m)

n−1
2 + (m− |q|)n−1

2

)
and when m− |q| > 1/m also

e|q|
2−m2

= e−(m−|q|)(m+|q|) ≤ C

(m− |q|)n−1
2 m

n−1
2

.

Now (7) and Lemma 2 follow.
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