
Tohoku Math. J.
66 (2014), 155–169

LOCAL MAXIMAL FUNCTIONS AND OPERATORS ASSOCIATED
TO LAGUERRE EXPANSIONS

PABLO VIOLA AND BEATRIZ VIVIANI

(Received March 9, 2012, revised April 16, 2013)

Abstract. In this paper we get sharp conditions on a weight v which allow us to obtain
some weighted inequalities for a local Hardy-Littlewood Maximal operator defined on an open
set in the Euclidean n-space. This result is applied to assure a pointwise convergence of the
Laguerre heat-diffusion semigroup u(x, t) = (T (t)f )(x) to f when t tends to zero for all
functions f in Lp(v(x)dx) for p greater than or equal to 1 and a weight v. In proving this
we obtain weighted inequalities for the maximal operator associated to the Laguerre diffusion
semigroup of the Laguerre differential operator of order greater than or equal to 0. Finally, as
a by-product, we obtain weighted inequalities for the Riesz-Laguerre operators.

1. Introduction and main results. In this paper we study weighted problem for local
maximal operators defined on an open set Ω in Rn. The weighted problem is the following:

For a linear or sublinear operator T , find conditions on a weight v which assure the
existence of a weight u such that T maps Lp(Ω, v(x)dx) into Lp(Ω, u(x)dx).

First, we establish the notation and the general background. Let us consider the setting
of Rn with Lebesgue measure m. If A is a measurable set, we write |A| for m(A). The cube
with center x and semidiagonal r will be denoted by Q(x, r). In such a case, its diameter will
be diam(Q(x, r)) = 2r . We have |Q(x, r)| = anr

n, where an := (2n−1/2)n. Let Ω be an
open set in Rn and suppose the complementary set F = Rn \ Ω is nonempty. For a positive
constant γ < 1/4, consider the family of cubes

(1) Fγ =
{
Q(x, r); x ∈ Ω, r > 0 with

γ dist(Q(x, r), ∂F )

r
> 1

}
,

where ∂F is the common boundary of F and Ω , and dist(Q, ∂F ) denotes the distance between
Q and ∂F . Now, we define the local maximal Hardy-Littlewood function MFγ

as

(2) MFγ
f (x) := sup

Q∈Fγ ,x∈Q

1

|Q|
∫

Q

|f (y)|dy

for any f ∈ L1
loc(Ω) and x ∈ Ω . This local maximal operator generalizes that contained

in [1] when Ω = (0,∞) and κ ≤ 3/2, that is, Mκ
locf (x) defined in (16). For the (global)

Hardy-Littlewood maximal function M , some class of weights for the weighted problem were
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obtained by Carleson and Jones [3], Rubio de Francia [15] and Gatto and Gutiérrez [5], in-
dependently. It is worth mentioning that the characterization of the weights v such that the
Hardy-Littlewood maximal function is bounded on Lp(Rn, v(x)dx), 1 < p < ∞, as much
as the weak-(1, 1) boundedness, was done by Muckenhoupt in the celebrated paper [13]. The
problem of characterization of the pairs (u, v) for which the Hardy-Littlewood function maps
Lp(Rn, v(x)dx) into Lp(Rn, u(x)dx) was solved by Sawyer in [16]. Now we can state the
main theorem

THEOREM 1.1. Let v be a weight in Ω . Let 1 ≤ p < ∞. The following statements
are equivalent:

(i) There exists a weight u such that MFγ
f (x) is bounded from Lp(Ω, v(x)dx) to

Lp(Ω, u(x)dx) for p > 1, and from L1(Ω, v(x)dx) to weak-L1(Ω, u(x)dx) for
p = 1.

(ii) There exists a weight u such that MFγ
f (x) is bounded from Lp(Ω, v(x)dx) to

weak-Lp(Ω, u(x)dx).

(iii) v−1/p ∈ L
p′
loc(Ω) for p > 1, and v−1 ∈ L∞

loc(Ω) for p = 1 (that is, v is locally
bounded from below).

This theorem is applied to study the convergence of the Laguerre Heat diffusion semi-
group. More precisely, for α > −1, let us consider the problem

(3)

⎧⎨
⎩

∂uα

∂t
= −Luα ,

uα(x, 0) = f (x) x > 0 ,

where L = Lα is the second order differential Laguerre operator defined by

(4) Lα = −x
d2

dx2
− d

dx
+ x

4
+ α2

4x

and, at least formally, uα(x, t) = Ttf (x) = e−tLαf (x) for t > 0.
Let Lα

n(x) be the Laguerre function

(5) Lα
n(x) =

(
n!

n + α + 1

)1/2

Lα
n(x)e−x/2xα/2 ,

where Lα
n(x) is the Laguerre polynomial of degree n given by

Lα
n(x) = 1

n!x
−αex

(
dn

dxn
(xα+ne−x)

)
, x > 0 , n = 0, 1, 2, . . . .

As is well known, the Laguerre functions Lα
n(x) are eigenfuncions of the differential

operator Lα with eigenvalues λα,n = −n − (α + 1)/2. Also they form an orthogonal basis on
L2(0,∞). The operator Lα is positive and symmetric on L2(0,∞).

One of the aim of this paper is to get conditions on a weight v such that

(6) lim
t→0

Ttf (x) = f (x) for almost all x > 0 and for all f ∈ Lp((0,∞), v(x)dx) .
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This problem was studied in the classical case, that is when L is the Laplacian operator,
in [10] and for L = 1

2 (−Δ + 2x · ∇), the Ohrstein-Uhlenbeck operator, in [8]. As is well
known, the a.e. convergence leads to study the behaviour of the maximal operator associated
to the heat difussion semigroup Tt of Lα defined by

(7) W∗
αf (x) := sup

t>0
|Ttf (x)| for all x > 0 .

The maximal operator W∗
α was studied by Stempak in 1994 for α ≥ 0 (see [19]), and

later on by Macías, Segovia and Torrea for negative values of α in [11] (unweighted case) and
in [12] (with power weights). Recently the family of weights was enlarged in [2]. We solved
this problem by using a non-constructive method due to J. L. Rubio de Francia. We state it in
Theorem 2.5. By using Theorem 1.1 we can show the following.

THEOREM 1.2. Let 1 ≤ p < ∞ and α ≥ 0. Assume that the weight v satisfies the
condition

(8) ‖v−1/p(y) (χ(0,1)(y) + e−c0yyα/2χ[1,∞)(y))‖
Lp′

((0,∞),dy)
= Cv < ∞ ,

where p′ = p/(p − 1) and c0 is any positive constant less than 1/4. (The constant c0 can be
choosed equal to 1/16.) Then there exists a weight u such that W∗

αf maps Lp((0,∞), v(x)dx)

into Lp((0,∞), u(x)dx) for p > 1, and L1((0,∞), v(x)dx) into weak-L1((0,∞), u(x)dx)

for p = 1.

As a consequence, the following result can be proved.

COROLLARY 1.3. Let 1 ≤ p < ∞ and α ≥ 0. If v satisfies (8), then

Ttf (x) → f (x) , as t → 0+ ,

for almost every x ∈ (0,∞) and every f ∈ Lp((0,∞), v(x)dx).

Finally, we apply Theorem 1.2 to get the weighted problem for the Riesz-Laguerre oper-
ators Rα+, α ≥ 0 (see (46)).

THEOREM 1.4. Given α ≥ 0 and 1 ≤ p < ∞, let v be a weight such that

(9) ‖v−1/p(y) (χ(0,1)(y) + e−c0yyα/2+1χ[1,∞)(y))‖
Lp′

((0,∞),dy)
= Cv < ∞ ,

where c0 is a constant less than 1/4. (The constant c0 can be choosed equal to 1/16.) Then
there exists a weight u such that Rα+f maps Lp((0,∞), v(x)dx) into Lp((0,∞), u(x)dx)

for p > 1, and L1((0,∞), v(x)dx) into weak-L1((0,∞), u(x)dx) for p = 1.

The proof of Theorem 1.1 is contained in Section 2. In Section 3, the proof of Theorem
1.2 and its corollary is given. The proof of Theorem 1.4 is obtained in Section 4 .

2. Local maximal Hardy-Littlewood operators. We shall need the following Whit-
ney type covering Lemma (see [18, p. 167] for details).
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LEMMA 2.1. Given a positive constant c, there exists a collection Wc of cubes, say
Wc = {Q1,Q2, . . . }, such that⋃

k

Qk = Ω = Rn \ F ,(10)

the interiors Q◦
k are pairwise disjoint, and(11)

c diam(Qk) ≤ dist(Qk, F ) ≤ 2(1 + c) diam(Qk) .(12)

DEFINITION 2.2. For a given p ≥ 1, we say that a non-negative weight w belongs
to L

p

loc,Fγ
if

∫
Q

wp ≤ Cw,Q < ∞ for any cube Q ∈ Fγ . Also, we understand that a non-

negative weight w is in L
p

loc(Ω) if
∫
E

wp < ∞ for any bounded set E such that Ē ⊂ Ω .

REMARK 2.3. We note that a weight w is in L
p

loc(Ω) if and only if w ∈ L
p

loc,Fγ
for

any 0 < γ < 1. In fact, the inclusion L
p

loc(Ω) ⊂ L
p

loc,Fγ
is clear. On the other hand, for a

given bounded set E such that Ē ⊂ Ω , consider a Whitney type covering for Ω as in Lemma
2.1 above for c = 2/γ . Then there exists a positive integer N verifying

Ē ⊂
N⋃

k=1

(2Q(xk, rk))
◦ =

N⋃
k=1

(2Qk)
◦ .

Here we write the cube Q(x, 2r) by 2Q when Q = Q(x, r). By (12) we have that

(13) 2rk ≤ γ

2
dist(Qk, F ) ≤ γ

2
3rk + γ

2
dist(2Qk,F ) .

Thus,

(14) 2rk <
γ

2 − 3γ /2
dist(2Qk,F ) < γ dist(2Qk,F ) .

Hence Q̃k = 2Qk ∈ Fγ , and consequently

(15)
∫

Ē

wp ≤
N∑

k=1

∫
Q̃k

w(x)p dx < ∞ ,

which implies that w ∈ L
p
loc(Ω).

The local maximal Hardy-Littlewood operator Mκ
loc is defined by

(16) Mκ
locf (x) = sup

0<a<x<b<κa

1

b − a

∫ b

a

|f (y)| dy , κ = 16 .

As a consequence of Theorem 1.1, for Ω = (0,∞) we have the following result.

THEOREM 2.4. For a given real number p, 1 ≤ p < ∞, and κ > 1, the following
statements are equivalent:

(i) The weight v satisfies

(17) v−1/p ∈ L
p′
loc(0,∞) for p > 1 , and v−1 ∈ L∞

loc(0,∞) for p = 1 .
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(ii) There exists a weight u such that Mκ
locf (x) is bounded from Lp((0,∞), v(x)dx) to

weak-Lp((0,∞), u(x)dx).
(iii) There exists a weight u such that Mκ

locf (x) is bounded from Lp((0,∞), v(x)dx) to
Lp((0,∞), u(x)dx) for p > 1 and from L1((0,∞), v(x)dx) to weak-L1((0,∞),

u(x)dx) for p = 1.

Before proving Theorems 1.1 and 2.4, we consider the following version of the Theorem
of Rubio de Francia (see, for example, [6, p. 554]).

THEOREM 2.5. Let (X,μ) a measurable space, B a Banach space and T a sublinear
operator T : B → Lq(X) for some q < p. Then the inequality

(18)

∥∥∥∥
( ∑

j

|Tfj |p
)1/p∥∥∥∥

Lq(X)

≤ C

( ∑
j

‖fj‖p

B

)1/p

holds if and only if there exists a non-negative weight u such that

(19) ‖Tf ‖Lp(u) ≤ C‖f ‖B .

This theorem suggests the following vector-valued inequality.

PROPOSITION 2.6. Let p be a real number with 1<p < ∞, and let {Qk =Q(xk, rk)}
be a sequence of cubes satisfying the condition of Lemma 2.1 for c = 1/γ . If v−1/p ∈ L

p′
loc(Ω)

and 0 < q < 1 < p, then there exists a positive constant Ck,v such that the following
inequality holds.

(20)

∥∥∥∥
( ∑

j

∣∣MFγ
fj

∣∣p)1/p∥∥∥∥
Lq(Qk)

≤ Ck,v

( ∑
j

‖fj‖p

Lp(Ω,v)

)1/p

.

PROOF. By replacing γ /2 by γ in (13), we clearly have 2rk < 3γ rk + γ dist(2Qk,F ).
Since γ < 1/4, we get that 2Qk ⊂ Ω . Now we can write

fj = fjχ2Qk + fjχ(2Qk)c =: f ′
j + f ′′

j .

For each k, we first estimate MFγ
f ′

j on the cube Qk . Since MFγ
is of weak type (1, 1), by

invoking the Theorem of Kolmogorov for q < 1 and applying the condition v−1/p ∈ L
p′
loc(Ω),

we have∥∥∥∥
( ∑

j

|MFγ
f ′

j |p
)1/p∥∥∥∥

Lq(Qk)

≤ C|Qk|1/q−1
∥∥∥∥
( ∑

j

|MFγ
f ′

j |p
)1/p∥∥∥∥

weak-L1(Qk, dx)

≤ C|Qk|1/q−1
∫

2Qk

( ∑
j

|fj (x)|p
)1/p

v1/p(x)v−1/p(x)dx

≤ C|Qk|1/q−1
( ∑

j

‖fj‖p

Lp(Ω,v)

)1/p( ∫
2Qk

v−p′/p(x)dx

)1/p′

.
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Therefore,

(21)

∥∥∥∥
( ∑

j

|MFγ
f ′

j |p
)1/p∥∥∥∥

Lq(Qk)

≤ Ck,v|Qk|1/q−1
( ∑

j

‖fj‖p

Lp(Ω,v)

)1/p

.

Now we estimate the term dealing with f ′′
j . Suppose that x ∈ Qk . We have to analyze

the expression

MFγ
f ′′(x) = sup

Q∈Fγ ,Q
x

1

|Q|
∫

Q∩(2Qk)
c

|f (y)|dy .

Let Q = Q(x0, r) be a cube in Fγ . Consider a point y ∈ Q∩ (2Qk)
c. Since x ∈ Qk , we have

(22) 2rk ≤ |y − xk| ≤ |y − x| + |x − xk| ≤ 2r + rk .

Hence, we must have rk ≤ 2r , and hence |2Q| ≥ |Qk|. From that, we obtain

(23) MFγ
f ′′(x) ≤ 2n

|Qk| sup
Q∈Fγ ,Q
x

∫
Q∩(2Qk)c

|f (y)|dy .

Now, we look for a ball Bk = B(xk, Rk) such that its center xk is the same as that of Qk ,
Q ⊂ Bk and Bk ⊂ Ω . In view of this, for y ∈ Q, we get from (22) that

|y − xk| ≤ 2r + rk

≤ 2γ d(x, ∂F ) + rk

≤ 2γ |x − xk| + 2γ d(xk, ∂F ) + rk

≤ (1 + 2γ )rk + 2γ d(xk, ∂F )

=: Rk .

We claim that this value Rk fulfills our goals. Indeed, the calculations above give us Q ⊂ Bk .
Also, since γ < 1/4, by using (12), we get

Rk <

(
1 + 2γ

2
+ 2

)
γ d(xk, ∂F ) <

11

16
d(xk, ∂F ) .

Then, for x ∈ Qk , it follows that⋃
{Q; Q ∈ Fγ , x ∈ Q} ⊂ Bk ⊂ Ω .

Now, from (23) and the fact that v−1/p ∈ L
p′
loc(Ω), we can write

MFγ
f ′′

j (x) ≤ 2n

|Qk |
∫

Bk

|fj |v1/pv−1/p

≤ 2n

|Qk |
( ∫

Bk

v−p′/p(y)dy

)1/p′

‖fj‖Lp(Ω,v)
(24)

=: Ck,v|Qk|−1‖fj‖Lp(Ω,v)
.
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Then, it follows

(25)

( ∫
Qk

(∑
j

∣∣MFγ
f ′′

j (x)
∣∣p)q/p)1/q

≤ Ck,v|Qk|1/q−1
(∑

j

‖fj‖p

Lp(Ω,v)

)1/p

.

Putting (21) and (25) together, we can finally obtain the inequality (20), and the proof is
finished. �

REMARK 2.7. We note that Proposition 2.6 holds for the local maximal Hardy-
Littlewood operator defined by (16) for any κ > 1. In fact, we take an interval Qk = Q(xk, rk)

verifying Lemma 2.1 in such a way that 2Qk ⊂ Ω (it is enough to take c > 3/2). Then (21)
holds for Mκ

locf
′
j (x). In order to estimate the expression

Mκ
locf

′′
j (x) = sup

0<a<x<b<κa

1

b − a

∫
(a,b)∩(2Qk)c

|f (y)|dy ,

by (22), we clearly have

(26) Mκ
locf

′′
j (x) ≤ 2n

|Qk| sup
0<a<x<b<κa

∫
(a,b)∩(2Qk)c

|f (y)|dy .

But, for x ∈ Qk ,⋃
{(a, b); a < x < b < κa} ⊂ (x/κ, κx) ⊂

[
xk − rk

κ
, κ(xk + rk)

]
⊂ (0,∞) .

Therefore, (25) follows for Mκ
locf

′′
j (x).

PROOF OF THEOREM 1.1. First, let us suppose that v−1/p ∈ L
p′
loc(Ω). By applying

Proposition 2.6 above for 0 < q < 1 < p, we have that the operator MFγ
satisfies the

condition of Theorem 2.5 in each set Qk . Hence a family of weights uk supported in Qk

satisfying (19) in Theorem 2.5 can be found. Thus the weight defined by

u(x) :=
∑
k

2−kpc
−p

k uk(x)χQk(x)

satisfies (i) as we wanted.
For the case p = 1, we use the weak-(1, 1) continuity of the Hardy-Littlewood maximal

operator, and then

|{x ∈ Qk;MFγ
f ′(x) > λ}| ≤ C

λ
‖f ′‖L1 = C

λ

∫
2Qk

|f (x)|dx

≤ C

λ

( ∫
2Qk

|f (x)|v(x)dx

)∥∥∥v−1(·)χ2Qk(·)
∥∥∥

L∞(Rn,dx)
(27)

≤ Ck,v

λ

∫
|f (x)|v(x)dx .

Pasting (24) and (27) together, we get

(28) |{x ∈ Qk;MFγ
f (x) > λ}| ≤ Ck,v

λ

∫
|f (x)|v(x)dx .
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Hence the weight u(x) = ∑
k 1/2kCk,vχQk (x) gives (ii)

Now, suppose that (ii) holds. Let Q(x0, R) a fixed cube such that 4Q(x0, R) ∈ Fγ .
Since then Q(x0, R) ⊂ Q(x, 2R) for x ∈ Q(x0, R) and Q(x, 2R) ∈ Fγ , for any nonnegative
f , we have

MFγ
f (x) ≥ 1

Rn

∫
Q(x,2R)

f (y)dy >
1

Rn

∫
Q(x0,R)

f (y)dy, x ∈ Q(x0, R) .

Therefore, by (ii) and the Kolmogorov inequality, we have for s < p,(
1

Rn

∫
Q(x0,R)

f (y)dy

)(
u(Q(x0, R))

)1/s

≤ C

( ∫
Q(x0,R)

MFγ
f (x)su(x)dx

)1/s

≤ Cu(Q(x0, R))1/s−1/p

( ∫
f p(y)v(y)dy

)1/p

.

Given an arbitrary positive function g ∈ Lp(Q(x0, R)), we choose f = gv−1/p, then we
have (

1

Rn

∫
Q(x0,R)

g(y)v−1/p(y)dy

)
≤ Cu(Q(x0, R))−1/p

( ∫
gp(y)dy

)1/p

.

By duality we conclude that v−1/p belongs to Lp′
(Q(x0, R), dx). Since any cube Q ∈ Fγ

can be covered by a finite family of cubes Qi with the property that 4Qi ∈ Fγ , the statement
(iii) follows. �

PROOF OF THEOREM 2.4. We first note that the case κ ≤ 3/2 is contained in Theorem
1.1. For any κ > 1, assume first that (iii) holds. Then, the statement (i) follows as in Theorem
1.1, in view of Remark 2.7. To prove the implication (ii) ⇒ (iii), we proceed as in the proof
of Theorem 1.1, but taking this time an interval Q ⊂ Ω such that 4Q ∈ Fκ , where

Fκ = {Q = (a, b) ⊂ Ω; a < b < κa} .

�

3. The heat diffusion Laguerre operators. For the heat diffusion semigroup Tt , we
recall the well-known expression

Ttf (x) =
∫

Kα(t, x, y)f (y) dy ,

where

Kα(t, x, y) = Wα

(
1 − et/2

1 + et/2
, x, y

)
with

(29) Wα(s, x, y) = 1 − s2

4s
e−(s+1/s)(x1/2−y1/2)2/4e−(s+1/s)(xy)1/2/2Iα

(
1 − s2

2s
(xy)1/2

)
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after the change of parameters s = (1 − e−t/2)/(1 + e−t/2). Here, Iα is the modified Bessel
function of order α, any α > −1. In this way, we have

W∗
αf (x) = sup

0<s<1

∫
Wα(s, x, y)f (y) dy .

The proof of Theorem 1.2 is based on the pointwise estimate (see [2])

(30) W∗
αf (x) ≤ (H

α/2
0 + Mκ

loc + T α/2)f (x) ,

where H
α/2
0 is a Hardy operator modified at the origin

(31) H
α/2
0 f (x) := x−α/2−1

∫ x

0
f (y)yα/2 dy, α/2 > −1 ,

and T α/2 is the maximal operator

T α/2f (x) = sup
0<s<1

|T α/2
s f (x)| ,

with T
α/2
s the operator given by

(32)
T

α/2
s f (x) = xα/2

∫ ∞

x

[(y

s

)α+1
e−c0y/s

]
y−α/2−1f (y) dy

=: xα/2
∫ ∞

x

φ(s, y) y−α/2−1f (y) dy .

Here c0 is equal to 1/16. Besides, we have implicitly defined

(33) φ(s, y) =
(y

s

)α+1
e−c0y/s .

REMARK 3.1. We note that the constant c0 is not optimal. This depends on the local
region considered. It is not hard to check that c0 tends to 1/4 when κ tends to ∞. The constant
c0 = 1/16 is obtained by considering in [2, pp. 343] the local region defined by

(34)
x

4
< y < 4x ,

where κ = 16. In this way, for the global case at infinity 4x < y < ∞, we have

(35) e−|x1/2−y1/2|2/4s ≤ e−y/16s ≡ e−c0y/s ,

whose right-hand side appeared in (32).

In view of (30), we devote the rest of this section to solve the weighted problem for the
operators Hα

0 f and T α/2f . Since the operators T α/2, α ≥ 0, are pointwise bounded by Hardy
type modified operators at the infinity, they are of weak type (1, 1) (see [1]). Therefore, we
can proceed in a similar way as in Proposition 2.6, obtaining the following Proposition.

PROPOSITION 3.2. Let 1 ≤ p < ∞ and α ≥ 0. Assume that the weight v satisfies

(36) ‖v−1/p(y) (χ(0,1)(y) + e−c0yyα/2χ[1,∞)(y))‖
Lp′

((0,∞),dy)
= Cv < ∞ .



164 P. VIOLA AND B. VIVIANI

Then, for 0 < q < 1 < p,∥∥∥∥
( ∑

j

∣∣T α/2fj

∣∣p(·)
)1/p∥∥∥∥

Lq((0,∞)dx)

≤ C

( ∑
j

‖fj‖p

Lp((0,∞),v(x)dx)

)1/p

.

Moreover, there exists a weight u such that T α/2f (x) is bounded from Lp((0,∞), v(x)dx) to
Lp((0,∞), u(x)dx) for p > 1, and from L1((0,∞), v(x)dx) to weak-L1((0,∞), u(x)dx)

for p = 1.

PROOF. Before starting, we set the constant

A := α + 1

c0
.

Let {Qk}k≥1 be the sequence of intervals Qk = (Ak,Ak+1] for k ≥ 1, and denote Q0 =
(0, A]. Also, let us write

fj = fjχ(0,Ak+1] + fjχ(Ak+1,∞) =: f ′
j + f ′′

j .

Proceeding as in Proposition 2.6, we can see that∥∥∥∥
( ∑

j

|T α/2f ′
j |p

)1/p∥∥∥∥
Lq(Qk)

≤ C|Qk|1/q−1
( ∑

j

‖fj‖p

Lp((0,∞),v)

)1/p(∫
(0,Ak+1]

v−p′/p(x)dx

)1/p′

(37)

≤ C′
k,v|Qk|1/q

( ∑
j

‖fj‖p

Lp((0,∞),v)

)1/p

,

where

C′
k,v := |Qk |−1

( ∫
(0,Ak+1]

v−p′/p(x)dx

)1/p′

.

Now, we analyze T α/2f ′′
j (x) for x ∈ Qk . The function φ(s, y) (see equation (33)) is increas-

ing in the variable s whenever y ≥ A; therefore, it attains its maximum at s = 1. Finally, with
the aid of Hölder inequality, we have

(38)
T α/2f ′′

j (x) ≤ sup
0<s<1

A(k+1)α/2
∫ ∞

Ak+1
φ(s, y)y−α/2−1fj (y)dy

≤ C′′
k,v‖f ‖Lp((0,∞),v(x)dx) ,

where

(39) C′′
k,v

.=
(

Ap′(k+1)α/2
∫ ∞

1
e−p′c0yyp′α/2 v−p′/p(y) dy

)1/p′

< ∞ .

By denoting Ck,v = C′
k,v + C′′

k,v , we clearly have

Ck,v ≤ Ck

( ∫ ∞

0
v−p′/p(y) (χ(0,1) + e−p′c0yypα/2χ[1,∞)(y)) dy

)1/p′

.
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Putting (37) and (38) together, we see that the operator satisfies the condition of Theorem 2.5
on each set Qk . Therefore, as before, a family of weights uk supported in Qk satisfying the
statement (19) can be found. Finally, we define

u(x) =
∞∑

k=0

2−kpc
−p
k uk(x)χQk(x) ,

which complete the proof when 1 < p. For the case p = 1, using the weak-(1, 1) continuity
of the operator T α/2f (x) and proceeding as the corresponding bound of MFγ

, we have

(40)

|{x ∈ Qk; T α/2f ′(x) > λ}| ≤ C

λ
‖f ′‖L1 = C

λ

∫
2Qk

|f (x)|dx

≤ C

λ

( ∫
2Qk

|f (x)|v(x) dx

)∥∥v−1(·)χ2Qk(·)
∥∥

L∞(Rn,dx)

≤ C′
k,v

λ

∫
|f (x)|v(x)dx .

From(40) and (38), by taking

C′′
k,v

.= A(k+1)α/2‖e−c0yyα/2v−1/p(y)χ[1,∞)(y)‖L∞((0,∞),dy) and Ck,v = C′
k,v + C′′

k,v ,

we get

|{x ∈ Qk; T α/2f (x) > λ}| ≤ Ck,v

λ

∫
|f (x)| v(x)dx .(41)

Hence the weight u(x) = ∑
k 2−kpC−1

k,vχQk (x) gives the conclusion.
�

Now, pay attention to the Hardy operators. Since H
α/2
0 has weak type (1, 1) whenever

α ≥ 0 (see [1]), we can apply similar procedures as for T α/2. Again, for Qk = (Ak,Ak+1]
we take fj =: f ′

j + f ′′
j , with f ′

j supported in (0, Ak+1] and f ′′
j supported in (Ak+1,∞).

However, observe that H
α/2
0 f ′′

j (x) = 0 because f ′′
j (x) is zero in the domain of integration in

(31). For that reason, it is enough to look only through the term H
α/2
0 f ′

j (x). But, since H
α/2
0

has weak type (1, 1), we can follow the same lines as before, obtaining the next result.

PROPOSITION 3.3. Let 1 ≤ p < ∞ and α ≥ 0. Let v be a weight satisfying

(42) v−1/p ∈ L
p′
loc(0,∞) .

If 0 < q < 1 < p, then∥∥∥∥
( ∑

j

∣∣Hα/2
0 fj

∣∣p(·)
)1/p∥∥∥∥

Lq((0,∞),dx)

≤ C

( ∑
j

‖fj‖p

Lp((0,∞),v)

)1/p

.

Moreover, there exists a weight u such that H
α/2
0 f (x) is bounded from Lp((0,∞), v(x)dx)

to Lp((0,∞), u(x)dx) for p > 1, and from L1((0,∞), v(x)dx) to weak-L1((0,∞), u(x)dx)

for p = 1.



166 P. VIOLA AND B. VIVIANI

PROOF OF THEOREM 1.2. By taking α ≥ 0, applying (30), Theorem 2.4 and Proposi-
tions 3.2 and 3.3, we prove Theorem 1.2, as desired. �

PROOF OF COROLLARY 1.3. Since the family {e−tLα} is a symmetric diffusion semi-
group for α ≥ 0, we deduce (see [17])

Ttf (x) → f (x) , as t → 0 ,

for all f ∈ L2(0,∞), in particular for any f in the set C0 consisting of all continuous func-
tions on (0,∞) with compact support, which is dense in Lp(v) for all 1 ≤ p < ∞. Finally,
by using Theorem 1.2, we have that Ttf (x) → f (x) as t → 0, almost every x ∈ (0,∞), for
all f ∈ Lp((0,∞), v) with 1 ≤ p < ∞. �

4. Riesz-Laguerre operators. In this Section we study the weighted problem for the
Riesz-Laguerre operators Rα , α ≥ 0. Their properties are studied in [7] and [9]. For the
self-adjoint differential operator Lα , we shall consider the Riesz-potentials (see [20])

L−σ f (x) = 1

�(σ)

∫ ∞

0
Ttf (x)tσ−1dt, σ > 0 ,

where Tt = e−tLα is the heat diffusion semigroup. In order to define the corresponding Riesz
transforms, the following first order derivatives can be considered (see [9]).

δα = √
x

d

dx
+ 1

2

(√
x − α√

x

)
and ∂α+1 = −√

x
d

dx
+ 1

2

(√
x − α + 1√

x

)
,

which satisfies

(43) Lα −
(

α + 1

2

)
= (δα

y )∗ δα
y = ∂α+1

y δα
y , Lβ −

(
β − 1

2

)
= (∂β

y )∗ ∂β
y = δβ−1

y ∂β
y .

Hence the Riesz transforms for the Laguerre function expansions are defined by

(44) Rα+ = δα
y (Lα)−1/2 , α > −1 , and Rβ

− = ∂β
y (Lβ)−1/2 , β > 0 .

For f, g ∈ C∞
c (0,∞) with disjoint supports, the following equality holds

(45) 〈Rα
(+,−)f, g〉 =

∫
(0,∞)

∫
(0,∞)

Rα
(+,−)(x, z)f (x)g(z)dxdz .

We shall only consider the weighted problem for the Riesz-Laguerre transform Rα+. To get
the kernel of Rα+, we write

Rα+(x, z) = C
(√

x
d

dx
+ 1

2

(√
x − α√

x

))
(Lα)−1/2(x, z)

= C

∫ 1

0

(
1

2

1 − s2

2s
z1/2Wα+1(s, x, z) − 1

2

(1 − s)2

2s
x1/2Wα(s, x, z)

)
(46)

×
(

log
1 + s

1 − s

)−1/2
ds

1 − s2

= C

∫ 1

0
Rα(x, z, s)

(
log

1 + s

1 − s

)−1/2
ds

1 − s2 ,
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where s = (1 − e−t/2)/(1 + e−t/2) and Wα(s, x, z) is the heat-diffusion kernel given by (29).

PROOF OF THEOREM 1.4. We will use the decomposition Rα+ =: Rα
+,loc + Rα

+,glob,
where

Rα+,globf (x) :=
∫ ∞

0
Rα+(x, z)χ{z≤x/4}∪{z≥4x}f (z)dz .

It is shown in [7] that Rα+,loc is a local Calderón-Zygmund operator for α > −1. Conse-
quently, as is proved in [14], Rα+,loc is strong type (p, p) for any 1 < p < ∞ and weak type
(1, 1). Now, for a function f in Lp((0,∞), v(x)dx), p > 1, we can write f =: f ′

k + f ′′
k , by

setting f ′
k = f χ[0,2k+3). First, in the case that f ∈ C∞

c (0,∞) and x ∈ Qk = (2k, 2k+1], we
have

(47) Rα
+,locf

′′
k (x) =

∫ 4x

x/4
Rα(x, z)f ′′

k (z)dz = 0 .

For Rα
+,locf

′
k we can proceed in the same way as in Proposition 3.2. Applying the Theorem

of Rubio de Francia and the weak type (1,1) of Rα
+,loc, we can conclude that

‖Rα+,locf ‖
Lp((0,∞),u(x)dx)

≤ C‖f ‖Lp((0,∞),v(x)dx)

for all weight v satisfying v−1/p ∈ L
p′
loc(0,∞). Now we turn to Rα

+,glob. By the estimate
obtained in [7, pp. 16–17], for f ≥ 0, we have

(48) Rα+,globf (x) ≤ Cx−1/2W̃∗
α+1,glob(z

1/2f )(x) + CW̃∗
α,globf (x) =: J1 + J2 .

Here, W̃∗
α,glob is defined by

W̃∗
α,globf (x) := sup

0<s≤1

∫
W̃α(s, x, z)f (z)dz ,

where W̃∗
α is a minor modification of W∗

α , the maximal operator. More precisely,

W̃∗
αf (x) = sup

0<s≤1

∫
W̃α(x, z, s)f (z)dy ,

where W̃α = M̃Iα with

M̃ = 1

2

1 − s2

2s
e−(s+1/s)|x1/2−z1/2|2/8e−(s+1/s)(xz)1/2/2 .

Therefore, the only difference with Wα is the 1/8 in the first exponential instead of 1/4.
We refer to [2] in order to check that such a change does not affect the estimate obtained there

J2 := sup
0<s<1

∫
W̃α(s, x, z)χG(z)f (z) dz ≤ C

(
H

α/2
0 f (x) + sup

0<s<1
|T α/2

s f (x)|
)

for all 0 < s < 1, where χG(z) = χ{z≤x/4}∪{z≥4x}(z) and sup0<s<1 |T α/2
s f (x)| is like in (32)

with c0 replaced by c0/2. For J1, we clearly have

J1 = Cx−1/2 sup
0<s≤1

∫
W̃α+1(s, x, z)χG(z)z1/2f (z) dz ≤ H

(α+2)/2
0 f (x) + T̃ α/2f (x)
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where

T̃ α/2f (x) := sup
0<s≤1

xα/2
∫ ∞

4x

z−α/2−1φ̃(s, z)f (z) dz

with

(49) φ̃(s, z) =
(

z

s

)α+2

e−(c0/2) z/s .

The function φ̃(s, y) satisfies the properties (3.1), (3.2) and (3.3) listed in [2, p. 336]. So the
operator T̃ α/2 is of weak type (1, 1) and strong type (p, p) for any 1 < p < ∞. Summing
up, the inequality

Rα
+,globf (x) ≤ C

(
H

(α+1)/2
0 + T̃ α/2 + H

α/2
0 + T α/2)f (x)

holds for f ≥ 0 and for all x > 0.
Now, by applying Proposition 3.2, but this time taking into account the particular

expression of the kernel φ̃(s, y), and Proposition 3.3, we get the conclusion of Theorem
1.4. �
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