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Abstract. Computational Mechanics (CM) concerns the use of computational methods to study phenomena under the
principles of mechanics. A representative CM application is parameter sweep experiments (PSEs), which involves the
execution of many CPU-intensive jobs and thus computing environments such as Clouds must be used. We focus on federated
Clouds, where PSEs are processed via virtual machines (VM) that are lauched in hosts belonging to different datacenters,
minimizing both the makespan and flowtime. Scheduling is performed at three levels: a) broker, where datacenters are selected
based on their network latencies via three policies, b) infrastructure, where two bio-inspired schedulers based on Ant Colony
Optimization (ACO) and Particle Swarm Optimization (PSO) for VM-host mapping in a datacenter are implemented, and
c)VM, where jobs are assigned into the preallocated VMs based on job priorities. Simulated experiments performed with
job data from two real PSEs show that our scheduling approach allows for a more agile job handling while reducing PSE
makespan and flowtime.
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1. Introduction

CM involves the use of computational approaches
to characterize and simulate physical events and engi-
neering systems governed by the laws of mechanics.
PSEs are CM simulations that require performing
repeated analyses, where certain input parameters are
varied among those defining the problem of inter-
est. PSE users need a computing environment that
delivers large amounts of computational power over

∗Corresponding author. Elina Pacini. Tel./Fax: +54 (261)
4291000; E-mail: epacini@uncu.edu.ar.

a long period of time, such as Clouds [4]. However,
since in single-datacenter Clouds resource availabil-
ity might be limited, the option of obtaining extra
resources from an arrangement of Cloud providers
–or federating Clouds– is an appealing solution [4].

For efficiently executing PSEs in federated Clouds
it is necessary to properly manage physical resources
from geographically distributed datacenters. There-
fore, job scheduling should be performed at three
levels [24]. At the broker level, scheduling strategies
are used for selecting datacenters considering fac-
tors such as network interconnections or monetary
cost of allocating VMs on hosts. At the infrastructure
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level, the VMs are allocated on the available hosts
of the previously selected datacenters. Lastly, at the
VM level, jobs are assigned for execution into the
allocated VMs. However, scheduling is NP-complete,
and the fact that federated Cloud scheduling spans
these three levels makes the problem even more
challenging.

Swarm Intelligence (SI) metaheuristics have been
proposed to solve combinatorial optimization prob-
lems –such as job/VM scheduling– by simulating
the collective behavior of social insects swarms [14].
The most popular SI-based strategies are ACO and
PSO. Even when job scheduling in Clouds has been
approached using SI [22], very few efforts applying SI
have been proposed for federated Clouds [22] though.

We propose a three-level scheduler for federated
Clouds that exploits SI and the concept of job pri-
orities. At the broker level, datacenters are selected
according to their network latencies. To this end,
we consider three policies, Lowest-Latency-Time-
First (LLTF), First-Latency-Time-First (FLTF), and
Latency-Time-In-Round (LTIR). Then, at the infras-
tructure level, we explore ACO and PSO for
allocating the VMs in a datacenter. Finally, at the
VM level, PSE jobs are assigned to the preallocated
VMs by using a priority-based policy, as in [20].

We aim to minimize makespan, i.e., the total exe-
cution time of all jobs, and weighted flowtime, i.e.,
the weighted sum of job finish times minus job start
times. As in [29], where it is shown that the applica-
tion of scheduling strategies both at the infrastructure
level and VM level within a single-datacenter Cloud
improves resource usage, here we show how the use
of scheduling strategies at the three levels improve
the overall system performance in federated Clouds.

Unlike previous works [23, 25], where schedulers
take advantage of a single datacenter, here we extend
our scheduler for operating in federated Clouds with
heterogeneous hosts, which is a common scenario.
In addition, we deepen the experimental analysis by
incorporating a new PSE from CM [3] and we eval-
uate the performance of our approach using the PSE
studied in [10]. This has enabled more realistic exper-
imental conditions given by jobs that are much more
CPU-intensive, and variable job execution times [10].
Unlike [23, 25], where we used a simple FIFO pol-
icy at the VM level, we incorporate the priority-based
policy.

Experiments performed with job execution data
extracted from these two real-world PSEs suggest that
the SI schedulers at the infrastructure level, in com-
bination with broker-level policies and the VM-level

priority-based policy, deliver competitive makespan
and weighted flowtime. Since VM scheduling is
highly challenging and heavily contributes to the
overall performance in Cloud scheduling [30], for
comparison purposes, we used the same three policies
at the broker level and the priority-based policy at the
VM level in combination with two alternative sched-
ulers based on Genetic Algorithms (GA) [1] and Best
Effort (BE).

Section 2 surveys and analyses relevant related
works. Section 3 presents our proposal and the
involved techniques at each level. Then, in Sec-
tion 4 we present the performed experiments. Finally,
Section 5 concludes the paper and discusses future
extensions.

2. Related work

SI techniques, specially ACO and PSO, have
been the focus of many research studies for solv-
ing combinatorial optimization problems [6, 17, 28].
Specifically, these techniques have been increasingly
applied to distributed job scheduling [28, 31]. How-
ever, no efforts aimed to the three scheduling levels
in federated Clouds where the authors also consider
SI exist.

First, our approach differs from those in the litera-
ture since we have considered SI-based strategies at
the infrastructure level. In other works of our own [21,
23] we have presented SI-based schedulers focused
on the infrastructure level, but they target single--
datacenter Clouds. Then, in [24] we extended the
scheduler to operate in federated Clouds composed
of homogeneous datacenters. Another important dis-
tinction of this work with respect to [24] is that we
have considered a priority-based policy at the VM
level.

Second, works found in the literature are focused
on one Cloud level and do not consider the three lev-
els as we propose in this work. Most current Cloud
brokers do not provide advanced capabilities to make
automatic decisions, about how to efficiently dis-
tribute the different VMs and jobs of an application
among providers [30]. Discusses a Cloud broker-
ing approach based on integer programming that
restricts the deployment of VMs across multiple het-
erogeneous datacenters according to some placement
constraints (e.g., Clouds to deploy the VMs) defined
by the user. Users can also steer the VM allocation
by specifying maximum budget and minimum perfor-
mance, or other constraints (load balance, hardware
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configuration of VMs, etc.). In [15, 16] different
strategies at the broker level to optimize the schedul-
ing of jobs across multiple providers are proposed.
[15] introduces a multi-objective genetic algorithm
(MO-GA) for job scheduling to optimize three objec-
tives namely, energy consumption, CO2 emission,
and the generated profit of distributed datacenters.
In [16] the scheduler performs a deployment of the
jobs among datacenters by optimizing a particular
cost function based on optimization criteria (e.g.,
monetary cost or performance) and user constraints
(e.g., budget, performance, VMs types).

Agostinho et al. [1] uses at the broker level the
Dijkstra algorithm [26] to select the datacenter with
the lowest monetary cost, and a GA for allocating
VMs to hosts. Although [1] targets the broker and
the infrastructure levels, the goal was not to reduce
makespan, which for scientific applications allows
users to accelerate result processing [23]. In [5] an
ACO scheduler to distribute jobs in VMs is proposed,
minimizing the makespan and improve load balanc-
ing in the VMs. However, the work focus on assigning
jobs assuming the existence of pre-allocated VMs. So
far [5] is the only work using SI for federated Clouds,
but SI was applied at the VM level and not at the
infrastructure level.

With respect to works which address the schedul-
ing problem at the infrastructure level using SI as
we propose in this work, we can mention [7, 8].
In [7] the authors proposed a VM scheduler based on
ACO to perform the dynamical placement of VMs
according to the current load on physical machines,
minimizing energy consumption. The work targets
single-datacenter Clouds. In [8] the authors proposed
a multi-objective ACO for the VM allocation problem
to simultaneously maximize total resource utilization
and minimize power consumption. Moreover, in [12]
the authors proposed a PSO algorithm to efficiently
map VM instances into physical machines while
reducing energy consumption. This algorithm makes
the best possible use of the power saving states of idle
physical machines and instantaneous workload on the
operational physical machines. However, although in
these works SI-based algorithms at the infrastructure
level have been used, the schedulers do not target fed-
erated Clouds. Besides, these works do not consider
flowtime, and only in [12] makespan is considered.

From the works discussed, most of them take into
account only one of the Cloud scheduling levels,
without considering metrics such as makespan and
weighted flowtime, which difficult their applicability
to execute PSEs in federated Clouds.

3. Approach overview

The goal of our scheduler is to minimize the
makespan and weighted flowtime of a set of PSE jobs,
when the jobs are executed in a federated Cloud with
heterogeneous hosts. Makespan is the period of time
in which a user requests VMs to execute its PSE, until
all the PSE jobs finish their execution. Flowtime is the
total time that a job spends in the system, i.e., wait-
ing time plus effective processing time. Moreover, we
have considered weighted flowtime, where the sum
of times for a job are weighted according to the job
priority.

The proposed scheduler associates a qualitative
priority represented as an integer value for each one
of the jobs of a PSE. When designing a PSE, each
job is fed with a particular value for the ith vari-
able of the model being studied. Hence, job execution
times can be very different, since running the same
solver against many input values might yield dissim-
ilar execution times as well. This is very undesirable
since, unless the scheduler knows some job informa-
tion, the user can not process/visualize the outputs
of the whole PSE until all jobs finish. Thus, giving
higher (or lower) priority to jobs that are supposed
to take longer to finish may help in improving output
processing [11, 20].

In this work, priorities are provided by a disci-
plinary user, who has knowledge about the problem
to be solved from a modeling perspective, and there-
fore can estimate the time requirements of each job
relative to the rest of the jobs in a PSE. Once the disci-
plinary user has identified the experiments that might
require more execution time, a simple tagging strat-
egy is applied to assign a “category” (number) to each
job. These categories represent the priority degree of
a job with respect to the others in the same PSE.
For usability reasons, the number of categories are
reduced to three, i.e., high priority, medium priority
or low priority.

Formally, a PSE is a set of N = 1, 2, ..., n indepen-
dent jobs, which are executed on m Cloud machines.
Each job j has an associated priority value, which
is represented by a weight wj . This priority value is
taken into account by the scheduler to determine the
order in which jobs will be executed at the VM level.
The scheduler processes the jobs with higher priority
(or heavier) first. The larger the estimated size of a job
in terms of execution time, the higher priority weight
the user should associate to the job. The makespan
of a job j in schedule S can be denoted by Cj(S)
and hence the makespan is Cmax(S) = maxjCj(S).
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Furthermore, the total weighted flowtime is calcu-
lated as

∑n
j (Cj(S) − Aj(S)).wj , where Cj is the

completion time of job j, Aj is the starting execu-
tion time of job j and wj is the weight associated to
job j.

The proposed scheduler proceeds as follows.
Firstly, at the broker level, a datacenter is selected
based on a policy that considers the datacenter which
provides the lowest communication latency to a bro-
ker when this latter asks about the availability of
physical resources. Latency is due to delays by pack-
ets moving over the various networks between the
end user computer and the distributed datacenters.
One way to mitigate the effects of such latencies is
to choose a datacenter with a fast internal network
and plenty of capacity. In this work, each broker
has three available policies to select datacenters, i.e.,
LFTF, FLTR and LTIR. Secondly, at the infrastructure
level, by means of a SI-based VM scheduler which
implements ACO and PSO, user VMs are allocated
in the physical resources (i.e., hosts) belonging to the
selected datacenter at the broker level. When there
are no available hosts in the datacenter to allocate
the VMs, a new datacenter is selected at the broker
level. Finally, at the VM level, jobs are assigned to
the preallocated VMs through a Job Priority Policy.

3.1. Scheduler at the Broker level

For executing jobs in federated Clouds, a broker
is created for each user that connects to the Cloud,
which knows the datacenters of the federation. The
scheduler at the broker level is executed to select
the first datacenter to allocate the VMs, which are
managed by the scheduler implemented at the infras-
tructure level. Furthermore, the scheduler at this level
can decide to deploy the VMs in a remote datacen-
ter when there are insufficient physical resources in
the datacenter where the VM creation was issued. As
mentioned, the policies studied at this level are LLTF,
FLTF and LTIR.

LLTF maintains a list of all network intercon-
nected datacenters sorted by their latencies. This
policy selects the datacenter with the lowest latency.
Then, whenever a datacenter has no more physical
resources to allocate VMs, the algorithm selects the
next datacenter in the list with low latency.

FLTF selects the first datacenter from a list sorted
randomly, containing all network interconnected dat-
acenters to which a user can access and allocate
his/her VMs. When the selected datacenter has no
more available physical resources to allocate VMs,

the algorithm selects the next datacenter in the
list.

Lastly, LTIR maintains a list of all network inter-
connected datacenters that make up the Cloud, sorted
by increasing latency, and assigns each VM required
by the user to a datacenter from the list in a circular
order.

3.2. Scheduler at the infrastructure level

3.2.1. Variant based on ACO
In this algorithm, each ant works independently

and represents a VM “looking” for the best host to
which it can be allocated. When a VM is issued in
a datacenter, an ant is initialized. Figure 1 shows
the activity diagram of the algorithm. In the first
activity, the step parameter keeps track of the num-
ber of steps carried out by an ant, and maxStep is a
predefined number of steps, i.e., the completion cri-
terion. Since datacenters have different numbers of
hosts, maxSteps varies depending on the datacenter
being explored according to a user-defined percent-
age value. Then, a list of all suitable hosts belonging
to the selected datacenter in which the VM can be
allocated is obtained (Get suitable hosts). A host is
suitable if it has an amount of processing power, stor-
age, memory and bandwidth greater than or equal to
that of required by the unallocated VM. The ant is ini-
tialized in one of the obtained hosts, randomly. Then,
a local table containing information on the load of
each host is initialized (Initialize LoadTable). Each
host has associated a single LoadTable.

In each iteration, the ant collects the load informa-
tion of the host that is visiting (Get load information)
and adds this information to its private load table (Add
load to LoadTable). Here, load refers to the total CPU
utilization within a host and is calculated taking into
account the CPU utilization made by all the VMs that
are executing on each host. This metric is useful for
an ant to choose the least loaded host to allocate its
VM.

Since each ant step involves moving through the
intra-datacenter network to get the availability of the
hosts from the selected datacenter, it incurs in laten-
cies. We have added a control to minimize the number
of steps performed by an ant: every time an ant visits
a host that has not allocated VMs yet, the ant allocates
its associated VM to it directly without performing
further steps (Deliver VM to host). The smaller the
number messages sent to the hosts through the net-
work, the smaller the impact of the latencies in the
makespan and flowtime given to the user.
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Fig. 1. ACO-based allocation algorithm for individual VMs.

Later, if the host has allocated VMs, the ant looks
for the least loaded host. The ant might move either
selecting a random host using a constant probability
or mutation rate, or using the load table of the cur-
rent host. The mutation rate decreases with a decay
rate factor as time passes, thus, the ant will be less
dependent on random choice. Upon visiting a host,
the ant updates the host load table with the infor-
mation of other hosts in the datacenter, and collects
the information provided by the table of that host, if
any. The load table acts as a pheromone trail that an
ant leaves to guide other ants to choose better paths
rather than wandering randomly. Entries of each load
table are the hosts that ants have visited on their way
to deliver their VMs together with their load infor-
mation. When an ant reads the information from a
load table in a host, the ant chooses the least loaded
host in the table. If the load of the visited host is
smaller than any other host in the load information
table, the ant chooses the host with the smallest load.

This process is repeated until step=maxStep. Finally,
the ant delivers its VM to the current host.

3.2.2. Variant based on PSO
Here, each particle represents a VM looking for

the best host to execute. An example based on nature
to illustrate PSO is as follows: some bees fly over the
countryside looking for as many flowers as possible.
Initially, bees do not have knowledge of the field and
fly to random locations and velocities. Each bee can
remember the places where it saw the most flowers,
and somehow knows the places where other bees have
found a high density of flowers. These two pieces
of information are used by the bees to continually
modify their trajectory to find a greater density of
flowers.

Each VM is considered a bee and each host rep-
resent locations in the field with different density
of flowers. shows the activity diagram of the algo-
rithm. Like the maxSteps parameter of ACO, the size
of the particle neighborhood –neighborhoodSize–
varies depending on the datacenter which is being
explored according to a predefined percentage value.
Every time a user requires a VM, a particle is ini-
tialized in a random host of the selected datacenter.
The density of flowers of each host is its load as in
ACO, i.e., the Calculate host load activity. This defi-
nition helps to search in the load search space –in the
field of flowers– and try to minimize the load. The
smaller the load on a host, the better the flower con-
centration. Subsequently, the neighborhood of each
particle is obtained and it is composed by the remain-
ing hosts in a datacenter excluding the one in which
the particle is initialized. Each one of the neighbors
–hosts– that compose the neighborhood are selected
randomly.

In each iteration of the algorithm (see Fig. 2), the
particle moves to the neighbors of its current host in
search of a host with a lower load. Similarly to ACO,
since each move a particle performs involves travel-
ing through the intra-datacenter network, a control to
minimize the number of moves that a particle per-
forms have been added: every time a particle moves
from the associated host to a neighbor host that has
not allocated VMs yet, the particle allocates its asso-
ciated VM to it immediately (Deliver VM to host).
If the host load is not equal to zero, then the particle
moves to the host with a greater velocity. The veloc-
ity is defined by the load difference between the host
to which the particle has been previously assigned
with respect to its other neighboring hosts. If any of
the hosts in the neighborhood is less loaded than the
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Fig. 2. PSO-based allocation algorithm for individual VMs.

original host, then the particle is moved to the neigh-
bor host with a greater velocity. Due to particles move
through hosts of their neighborhood into a datacenter
in search of a host with the lower load, the algorithm
reaches a local optimum quickly. Thus, each particle
makes a move from their associated host to one of its
neighbors, which has the minimum load among all.
If all its neighbors are busier than the associated host
itself, the particle is not moved from the current host.
Finally, the particle delivers its associated VM to the
host with the lower load among their neighbors.

3.3. Scheduler at the VM level

This scheduler uses two lists, one with the jobs that
have been sent by the user, i.e., a PSE, and the other
list contains all user VMs that are already allocated
to a physical machine and hence are ready to exe-
cute jobs. The scheduler iterates the list of all jobs
–jobList– and then, through Get job by priority from
jobList activity retrieves jobs according to their pri-
ority value, this means, jobs with the highest priority
first, then jobs with medium priority value, and finally
jobs with low priority. Each time a job is obtained

from jobList, it is submitted to be executed in a VM
in a round robin fashion. The VM where the job is
executed is obtained through the Get VM form VMList
activity. Internally, the scheduler maintains a queue
for each VM that contains its list of jobs to execute.
Every time a job is obtained from the jobList to be
executed, it is also deleted from the list. The proce-
dure is repeated until all jobs have been submitted for
execution.

4. Evaluation

We processed two PSEs by using a finite ele-
ment software to gather real job processing times
(subsection 4.1). Based on these, we instantiated the
CloudSim simulator [2] (subsection 4.2). Lastly, we
compared our proposal with some alternatives for
assigning VMs to hosts (subsection 4.3).

4.1. Case studies

A classical benchmark problem [10] involves
studying a plane strain plate with a central circular
hole (PSE-1). The geometry of the plate is shown in
Fig. 3a. The 3D finite element mesh employed had
1,152 elements. To generate the PSE jobs, a material
parameter –viscosity η– was selected as the varia-
tion parameter. Then, 25 different values for η were
considered: x.10y Mpa, with x = 1, 2, 3, 4, 5, 7 and
y = 4, 5, 6, 7, plus 1.108 Mpa.

The second problem (PSE-2) was the elastoplastic
buckling behavior of cruciform columns [18]. The
geometry of the column is shown in Fig. 3b. The
total number of finite elements of the mesh was 2,176.
Moreover, 30 different angle values for the α parame-
ter were considered, namely αn = αn−1 + 0.25 , with
α0 = 0.5 and n = 1, 2, ..., 30.

Fig. 3. Studied PSEs: Geometry.
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Table 1
Simulated Cloud machines characteristics

Characteristic D1 D2 D3 D4 D5

Power (MIPS) 7,200 5,618 8,036 6,600 6,185
RAM (GB) 32 12 16 12 16
# of cores 8 6 8 8 6

4.2. CloudSim instantiation

After establishing the parameters for each PSE,
we used a single computer to run the experiments.
The execution of 25 PSE-jobs (plane strain plate) and
the 30 PSE-jobs (cruciform column) resulted, respec-
tively, in 25 and 30 input/output files with different
input configurations for each PSE. Both PSEs were
solved using the SOGDE finite element solver [9].
Once the execution times were obtained using this
computer, we approximated for each experiment the
number of executed CPU instructions via NIi =
mipsCPU ∗ Ti, where NIi is the number of Million
Instructions (MI) associated to a job i, mipsCPU is
the processing power of the CPU of our real computer
in MIPS, and Ti is the time that took to run the job i

on the real computer.
The experimental scenario consists of a Cloud

composed of 5 heterogeneous datacenters. The net-
work topology is defined in the BRITE [13] format.
A BRITE file is used by CloudSim to define the
different nodes that compose a commonly-found
federation (i.e., datacenters, brokers) and their net-
work connections. Each datacenter is composed of
20 physical machines and, as in other works in the
literature [19, 27], has an associated latency of 1.5,
0.8, 1, 0.15 and 2 seconds, respectively. The char-
acteristics of the machines that compose datacenters
D1, D2, D3, D4 and D5 are shown in Table 1. In
all cases, 1 Gbps networks were used. Moreover, an
user requests 100 VMs to execute its PSE. Each VM
has the same characteristics as a t2.small instance of
Amazon EC2 (1 core), since the SOGDE code is a
monolithic application, and therefore, jobs need only
one core to be executed.

Each job had between 1,333,293 and 2,712,789
MI for the plane strain plate and between 13,359,331
and 15,603,487 for the cruciform column. The exper-
iments of the plane strain plate had input files of 291.7
Kbytes, and 249.9 Kbytes for those of the cruciform
column. A similar distinction applies to the output
file sizes. Table 2 shows the priorities assigned to
jobs. Then, for each PSE, we evaluated their per-
formance as we increased the number of jobs to
be performed, i.e., 25 ∗ i jobs and 30 ∗ i jobs with

Table 2
Job priorities

Job priority Value in MI (from-to)
Plane strain plate Cruciform column

Low; wj = 1 1,300,291-1,379,496 13,359,331-14,798,231
Medium; wj = 2 1,405,898-1,570,909 15,055,649-15,398,873
High; wj = 3 1,689,718-2,712,789 15,405,474-15,603,487

i = 40, 80, ..., 400. This is, the base job set compris-
ing 25 jobs of the plane strain plate PSE obtained by
varying η, and the base job set comprising 30 jobs of
the cruciform column PSE by varying α, were cloned
to obtain larger sets.

4.3. Performed experiments

Due to their high CPU requirements, jobs within
a VM compete for CPU time with other jobs from
other VMs in the same hosts. In other words, a
time-shared CPU scheduling policy was used, which
ensures fairness. Particularly, we study/combine the
three policies for selecting datacenters at the broker
level, and at the infrastructure level we use ACO and
PSO while comparing them against Best Effort (BE)
and the scheduler based on Genetic Algorithm (GA)
from [1].

BE chooses the host with less cores in use upon
allocating a VM. To do this, the broker sends a mes-
sage to all hosts in the selected datacenter to know
their state. In the GA, the population is the set of
physical resources in a datacenter. Each chromosome
(individual) represents a part of the search space.
Each gene is a host in a datacenter, and the fitness
field indicates the suitability of the hosts in each chro-
mosome. Fitness is calculated as the inverse of the
accumulated load of all hosts composing the chromo-
some. Load is calculated considering the number of
VMs executing in a host. A chromosome with higher
fitness is always desirable.

The specific-parameter of each algorithm (e.g.,
neighborhood size in PSO, maximum steps in ACO
and chromosome size in GA), has been configured
so as to explore up to 60% of the number of hosts
of each datacenter. Furthermore, in the ACO algo-
rithm we have set the mutation rate and decay rate
parameters to 0.6 and 0.1, respectively, and the GA
population size is 100. For simplicity, we will refer
to “weighted flowtime” as “flowtime”. In all cases,
the competing policies both a the broker level and
the infrastructure level were also complemented with
the VM-level priority-based policy for handling jobs
within VMs.
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4.3.1. Effects of number of jobs
Figures 4 and 5 compare the makespan and

flowtime for each one the policies at the broker

level (LLTF, FLTF, LTIR) and all the considered
scheduling algorithms (PSO, ACO, BE, GA) at
the infrastructure level. Irrespective of the PSE,

 0

 200

 400

 600

 800

 1000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ak

es
pa

n 
(m

in
ut

es
)

PSO
ACO

BE
GA

 0

 200

 400

 600

 800

 1000

 1200

 1400

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ak

es
pa

n 
(m

in
ut

es
)

PSO
ACO

BE
GA

 0

 200

 400

 600

 800

 1000

 1200

 1400

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ak

es
pa

n 
(m

in
ut

es
)

PSO
ACO

BE
GA

(a) Makespan. From left to right: LLTF, FLTF and LTIR

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
lo

w
ti

m
e 

(m
in

ut
es

)

PSO
ACO

BE
GA

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
lo

w
ti

m
e 

(m
in

ut
es

)

PSO
ACO

BE
GA

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
lo

w
ti

m
e 

(m
in

ut
es

)

PSO
ACO

BE
GA

(b) Flowtime. From left to right: LLTF, FLTF and LTIR

Fig. 4. PSE-1: Results as the number of jobs increases.
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Fig. 5. PSE-2: Results as the number of jobs increases.
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makespan and flowtime presented linear and expo-
nential tendencies, respectively.

At the broker level, when LLTF is used in combina-
tion with PSO, ACO, BE and GA, both the makespan
and flowtime decrease w.r.t. FLTF and LTIR policies.
This happens because most VMs are allocated in dat-
acenters with lower latencies, and therefore they have
less influence in the makespan when PSO, ACO, BE
and GA send network messages to the hosts to inquire
about their availability. For example, the makespan
for PSE-1, when the LLTF policy is used and the
number of jobs to execute increases to 10,000 (first
subfigure in 4a), the makespan is 664.75, 692.81,
727.51 and 952.65 minutes, for PSO, ACO, BE and
GA, respectively. Then, when FLTF is used (second
subfigure in 4a) the makespan for PSO, ACO, BE
and GA reaches 732.57, 759.23, 775.94 and 1,394.67
minutes, respectively, when 10,000 jobs are executed.
When LTIR is used, the makespan is 740.74, 777.60,
840.05 and 1,411.05 minutes (third subfigure in 4a),
when executing 10,000 jobs via PSO, ACO, BE and
GA, respectively. Like the makespan, the flowtime
is lower for all the algorithms when LLTF is used.
Briefly, the average gain obtained by LLTF with
regard to FLTF is 17.05% and about 19.41% com-
pared to LTIR.

Likewise, for the PSE-2, when LLTF is used and
the number of jobs to be executed is 12,000 (first
subfigure in 5a), the makespan is 5,620.53, 5,825.82,
6,140.81 and 6,364.92 minutes, for PSO, ACO, BE
and GA, respectively. Then, when FLTF is used (sec-
ond subfigure in 5a) the makespan for PSO, ACO,
BE and GA reaches 6,064.37, 6,205.22, 6,504.55
and 7,056.55 minutes, respectively, when 12,000 jobs
are executed. When LTIR is used, the makespan is
6,068.54, 6,251.19, 6,539.15 and 7,075.16 minutes
(third subfigure in 5a), when the number of jobs was
12,000, and for PSO, ACO, BE and GA, respectively.
The average gain from using LLTF with regard to
FLTF is 7.28% and about 7.64% compared to LTIR.

Secondly, among all the infrastructure-level algo-
rithms and regardless the broker-level policy used,
Figs. 4 and 5 show that our proposed PSO and ACO
performed well compared to its competitors, being
PSO the one achieving the best performance. Each
algorithm sends a different number of messages to
the hosts to query about their availability and allo-
cate the VMs. ACO and particularly PSO make less
use of network resources than BE and GA. The num-
ber of messages to send by PSO and ACO depends of
the neighborhood size and the maximum number of
ant steps, respectively, which is equals to the 60%
of a datacenter size.

Gain

=

[∑
j=PSEbaseSet∗i

(makespanj (BE,GA)−makespanj (PSO,ACO)
(makespanj (BE,GA))

]

10

(1)

In addition, when PSO and ACO find an idle host,
they allocate the current VM and does not make any
further move towards the hosts. For each VM alloca-
tion, contrarily, BE sends one message to each host in
the selected datacenter. Finally, GA is the one produc-
ing the greatest makespan and flowtime. Since GA
has a population size of 100 and chromosome sizes
of 12 –60% of a datacenter size–, to calculate the fit-
ness value, the algorithm sends one message for each
host of the chromosome to obtain the chromosome
containing the best fitness value. The number of mes-
sages sent by GA depends on both the number of host
within each chromosome and the population size.

The reason why, regardless of the broker-level pol-
icy used, PSO provides the shortest makespan and
flowtime, it is because PSO does not repeat the vis-
ited hosts in each allocation of a VM. Each particle
visits each host in its neighborhood, looking for the
host with the lowest load. This increases the chances
of PSO of finding an unloaded host, thereby reduc-
ing the total number of moves. Moreover, in the ACO
algorithm an ant might visit some hosts more than
once because ACO uses a random function in the
early steps to choose the host to which it performs
the movement.

Table 3 shows the average gain of PSO and ACO
regarding BE and GA. The average gains have been
calculated for all algorithms in combination with
the LLTF policy at the broker level, i.e., the policy
through which the lowest makespan and flowtime
were obtained. The average makespan gains of PSO
and ACO are calculated through Equation (1), where
PSEbaseSet is 25 jobs (PSE-1) or PSEbaseSet is 30
jobs (PSE-2), and i = 40, 80, ..., 400. Average flow-
time gains are calculated similarly. As can be seen,
PSO is the algorithm which achieves the best average

Table 3
Using LLTF: Avg. Gains (%) of PSO and ACO w.r.t. to BE and

GA

Schedulers PSE-1 PSE-2
Makespan Flowtime Makespan Flowtime

PSO vs BE 10.62 9.32 7.58 6.69
PSO vs GA 46.45 11.24 27.09 9.52
ACO vs BE 7.55 8.86 5.34 6.59
ACO vs GA 44.07 10.79 25.54 9.21
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Table 4
VM-level priority-based policy and LLTF at the broker level

Scheduler Plane strain plate (PSE-1)
Makespan (mins.) Flowtime (mins.)

PSO 4,383.8 10,587,351.5
PSO (priority) 3,678.2 9,148,671.1
Gain (0-100%) 16.1 13.5
ACO 4,578.5 11,053,206.6
ACO (priority) 3,852.3 9,600,038.8
Gain (0-100%) 15.8 13.1
BE 4,810.4 12,053,184.3
BE (priority) 4,081.5 10,604,335.1
Gain (0-100%) 15.1 12.9
GA 7,423.1 12,175,173.9
GA (priority) 6,360.2 10,750,393.5
Gain (0-100%) 14.3 12.7

Scheduler Cruciform column (PSE-2)
Makespan (mins.) Flowtime (mins.)

PSO 31,425.1 178,976,228.8
PSO (priority) 30,973.2 171,488,815.9
Gain (0-100%) 1.4 4.2
ACO 32,568.6 184,956,815.2
ACO (priority) 32,107.1 177,668,477.9
Gain (0-100%) 1.4 3.9
BE 34,342.1 203,054,005.5
BE (priority) 33,875.5 196,188,548.2
Gain (0-100%) 1.3 3.4
GA 36,674.5 206,369,403.4
GA (priority) 36,172.7 199,477,078.2
Gain (0-100%) 1.3 3.3

gains with respect to BE and GA for both PSEs: the
average gains with respect to BE for the (makespan,
flowtime) are (10.62%, 9.32%) and (7.58%, 6.69%)
for the PSE-1 and PSE-2, respectively. The aver-
age gains of PSO for the (makespan, flowtime) with
respect to GA are (46.45%, 11.24%) and (27.09%,
9.52%) for PSE-1 and PSE-2, respectively. From
Table 3, it can also be noted that the average gains
of ACO with respect to BE and GA are lower than
those obtained by PSO, for both PSEs. Besides, all
the average gains obtained by PSO and ACO for the
PSE-1 are greater than the PSE-2 for both metrics
and two policy-aware scheduling alternatives. This is
since jobs of PSE-2 are more CPU-intensive than that
of PSE-1, and then the latencies produced upon cre-
ating the virtual infrastructure (which is composed of
equal number of VMs for both PSEs) affect less the
makespan and the flowtime.

Thirdly, the competing schedulers were also com-
plemented with the VM-level policy for handling jobs
within VMs. As shown in Table 4, regardless the
VM allocation policy used or the executed PSE, con-
sidering job priority information yielded important
gains with respect to the accumulated makespan and
flowtime: acumMk = ∑

j=PSEbaseSet∗i makespanj .

The makespan and flowtime from the exe-
cution of 25 ∗ i jobs (PSE-1) or 30 ∗ i jobs
(PSE-2), with i = 40, 80, ..., 400 of various prior-
ities. The gains for each scheduler were calcu-
lated via (aj−bj)

aj
∗ 100, where j = PSEbaseSet ∗

i, a = acumMk(withoutPriority) and b = acumMk

(withPriority).
Once again, the gains have been calculated for all

algorithms in combination with the LLTF policy at the
broker level, i.e., the policy through which the best
results were obtained. For example, for the PSE-1, the
obtained gains compared to not considering priorities
were in the range of 14.3-16.1% and 12.7-13.5% for
the makespan and flowtime, respectively. For PSE-
2, the obtained makespan and flowtime gains were
in the range of 1.3-1.4% and 3.3-4.2%, respectively.
This demonstrates that considering job priorities at
the VM level is beneficial. Moreover, for both PSEs
the greatest gains for both metrics were obtained by
PSO. However, a remark from Table 4 is that the
obtained gains by PSE-2 are considerably lower than
the obtained by PSE-1. When we executed the two
PSEs by varying for each case study the η and α

parameters, the jobs execution times –or lengths–
comprising each PSE had different variability among
them. For example, the average execution time of jobs
comprising PSE-1 is equal to 235.12 seconds, and
the standard deviation is 46.32 seconds. This means
that the PSE-1 jobs have a deviation of 19.70% with
respect to the average execution time. On the other
hand, the average execution time of jobs from PSE-
2 is equals to 2,275.76 seconds, and the standard
deviation is 95.08 seconds, or 4.17% of the aver-
age execution time. Hence, this characteristic among
the jobs lengths involves different effects when using
the priority-based policy, i.e., the greater variability
among the jobs lengths, the greater gains are obtained
(e.g., for PSE-1).

4.3.2. Effects of number of cloud machines
We varied the number of hosts while keeping the

number of jobs to execute fixed with the aim of assess-
ing the horizontal scalability of the algorithms. For
simplicity, we focus on the best performing combina-
tion from the previous round of experiments: LLTF
at the broker level, combined with the four schedul-
ing alternatives at the infrastructure level, plus the
priority-based policy for mapping jobs. The num-
ber of hosts of each datacenter was 10 ∗ i hosts
with i = 1, 2, ..., 10 and the number of VMs in each
case is increased accordingly as 100 ∗ i VMs with
i = 1, 2, ..., 10. The specific parameter value of each
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Fig. 6. PSE-1: Results as the number of hosts increases.

algorithm also increases properly to explore the 60%
of each datacenter as the Cloud size increases. The
number of jobs were set to 10,000 for PSE-1 and
12,000 for PSE-2.

The goal of this experiment is not to study the
number of hosts to which the makespan and flowtime
curves converge, which is in fact not generalizable,
but to quantify the influence of the network latencies
in the completion time.

Figures 6 and 7 show the results. With respect to
makespan, subfigures 6a and 7a show that the net-
work latencies have more influence in the completion
time of PSE-1 than PSE-2. For example, for PSE-1,
the makespan of PSO, ACO and BE decreases when
the number of hosts is increased from 10 to 40, and the
makespan of GA decreases only up to 20 hosts. These
decreases in the makespan lead to gains of 65.36%,
64.61%, 59.08% and 12.09% for PSO, ACO, BE and
GA, respectively. For PSE-2, the makespan of PSO,
ACO and BE decreases until each datacenter reaches
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Fig. 7. PSE-2: Results as the number of hosts increases.

80 hosts, and the makespan of GA decreases until
the number of hosts is increased from 10 to 30 hosts.
Gains in the makespan for PSO, ACO, BE and GA
are 82.55%, 82.35%, 79.54% and 53.88%, respec-
tively. As can be seen, the obtained gains for the
PSE-2 are greater than the gains for the PSE-1. This
is because the jobs included in PSE-2 are much more
CPU-intensive than the jobs in PSE-1, and therefore,
the latencies have comparatively less influence on the
makespan when the size of the Cloud is increased.

When the number of hosts of each datacenter is
greater than 40 (PSO, ACO and BE), and greater
than 20 (GA), the makespan is much higher (subfig-
ure 6a). The same applies to PSE-2 in subfigure 7a,
where the makespan decreases when the number of
hosts is greater than 80 (PSO, ACO, BE and BE),
and greater than 30 (GA). This is since the greater
the size of each datacenter, the greater the number of
network messages sent by the algorithms to manage
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VM allocations. With respect to flowtime, irrespec-
tive of the PSE and number of hosts, the flowtime in
all cases (subfigures 6b and 7b). The greater the num-
ber of hosts, the better the distribution of jobs among
these hosts.

5. Conclusions

PSEs involve running many CPU-intensive jobs,
which must be scheduled in environments such
as federated Clouds. However, job scheduling is
NP-complete. Particularly, SI-based schedulers have
received increasing attention in the Cloud research
community [22], but no effort minimizing both the
makespan and flowtime in federated Clouds exists.

We proposed a three level Cloud scheduler based
on SI for executing CM applications on federated
Clouds. We studied at the broker level three policies
that consider network information for selecting dat-
acenters. At the infrastructure level, we studied two
SI strategies for the allocation of VMs to hosts in
a selected datacenter. Finally, at the VM level, we
consider a priority-based job allocation policy. We
have shown how the scheduling decisions at each
level affects the overall performance. Our PSO and
ACO schedulers perform better than BE and GA.
Particularly, when PSO, ACO, BE and GA are com-
bined with LLTF, both the makespan and flowtime
are minimized w.r.t. FLTF and LTIR.

We will further improve the broker level. Currently,
datacenters are selected through simple policies, but
we will explore SI-based selection techniques. The
idea is not to scope the use of SI to intra-datacenter
scheduling, but to design algorithms operating at
the wider (broker) level. We will also extend our
scheduler to consider other optimization criteria (e.g.,
monetary cost). In Clouds, different providers might
offer VMs with different capacities/pricing. Thus,
trade-off situations between makespan/flowtime and
monetary costs arise. Lastly, due to multi-tenancy, it
is necessary to allocate resources to a number of inde-
pendent users’ VMs/jobs. Hence, we will instantiate
the levels of our scheduler with proper policies and
SI techniques.
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