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a b s t r a c t

One of the fundamental properties of the impulsive systems is analyzed: observability. Algebraic criteria
for testing this property are obtained for the nonlinear case, considering continuous and discrete outputs.
For this class of systems, observability is explored not only through time derivatives of the output, but
also considering few discrete measurements at different time-instants. In this context, it is shown that
nonlinear impulsive control systems can be strongly observable or observable over a finite time interval.
A new rank condition based on the structure of the impulses is found to characterize observability of
linear impulsive systems. It generalizes the celebrated Kalman criterion, for both kind of outputs, discrete
and continuous. Finally, these results are tested and illustrated both on academic examples and on two
impulsive dynamical models from biomedical engineering science.
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1. Introduction

Impulsive control systems (ICS) are encountered in various ar-
eas as biology, health, robotics and others. For instance, a dia-
betic type I patient model will be shortly considered herein, for
which new specific mathematical tools are needed for analysis,
observation and control. Glycemia regulation is performed in real
life by appropriate insulin injections and eventually compensatory
snacks, to maintain glucose levels within the predefined target
range. These inputs can be approximated as impulseswhenever in-
sulin bolus is injected, and are adjusted based on discrete glycemia
measurements from blood samples taken at various times during
the day (Huang, Li, Song, & Guo, 2012). The intake of ‘meals’ will af-
fect the level of glucose of the patient, and therefore is considered
as an impulse disturbance. In this context, ICS seems the appropri-
ate tool to analyze its dynamics.

Another interesting example of ICS is themodel of the dynamics
of the human immunodeficiency virus (HIV), initially described in
Perelson, Kirschner, and Boer (1993). The intake of drugs once or
twice a day can be interpreted as an impulse input (Bellman, 1971),
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with a fixed time interval. Besides, the measurement of its outputs
are far from being continuous since blood samples are taken at
most every three or six months. In this framework, ICS is a more
pragmatic point of view. The accessibility of this ICS was explored
in Rivadeneira and Moog (2012).

More generally, impulsive control systems define a class of
systems whose state trajectories are piecewise continuous, with
discontinuities of the first kind or ‘jumps’ at some discrete time in-
stants. The dynamics is modeled by algebraic discrete equations or
by introducing impulses into the differential equations.

Observability in linear ICS has been investigated in Guan, Qian,
and Yu (2002), Medina and Lawrence (2008), Shi and Xie (2012)
and Xie and Wang (2005). The definition used therein establishes
that observability depends on measurements of the output on a
finite-time interval [0, tf ]. When a continuous output is consid-
ered, the most popular tool remains a Kalman type observability
matrix O (Guan et al., 2002; Xie &Wang, 2005; Zhao & Sun, 2009),
but with a very restrictive assumption over the class of consid-
ered impulsive systems. Discontinuities in the state of the form
x(τ+

k ) = AIx(τk) are allowed, where AI defines a diagonal matrix. A
different class of impulsive control systems is considered in Med-
ina and Lawrence (2009), for which the states evolve in continuous
form but the output is available for measurement at discrete times
only. Suitable criteria based on geometric properties of the invari-
ant observable space and the observability Gramian were worked
out for this case.

http://dx.doi.org/10.1016/j.automatica.2015.02.042
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.02.042&domain=pdf
mailto:psrivade@santafe-conicet.gov.ar
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http://dx.doi.org/10.1016/j.automatica.2015.02.042
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In this paper and for the first-time ever, observability is inves-
tigated in nonlinear ICS. The dual property of accessibility of non-
linear ICS was characterized in Rivadeneira and Moog (2012) and
the basis of the impulsive exact linearization was stated.

The results of the paper are in threefold: (i) The sufficient and
necessary conditions are provided to test observability for lin-
ear systems with discrete time outputs. This condition has to be
viewed as an extended Kalman criterion for observability. Also, the
equivalence between the algebraic condition and the observability
Gramian is detailed. (ii) The nonlinear casewith continuous output
and discrete measurements is tackled. Two definitions of observ-
ability are introduced with their respective criterion. Strong ob-
servability and observability over a finite time interval, are more
natural for the latter nonlinear ICS. (iii) Observability is tested on
two important models borrowed from biomedical engineering sci-
ence: HIV and diabetic type I patient models. A brief description of
the glycemia dynamical model is given for diabetic patients in the
framework of ICS.

2. Preliminaries

A plant is an impulsive control system when there is a set of
time instants T = {τk} , τk ∈ R, τk < τk+1 < ∞, and a set of inputs
Uk ∈ Rn, k = 1, 2, . . . , such that the state x ∈ Rn is discontinuous
at each τk according to x(τ+

k ) = fI(x(τk)) + U(k, x). Note that the
control instants are not necessarily equidistant, the control U(k, x)
yields a discontinuity of x at instant τk, the function fI(x) defines
discontinuities of the first kind (or ‘natural jumps’) in the state
variable, and the system is left-continuous, i.e. x(τ−

k ) = x(τk).
The class of dynamic systems of interest basically consists

of objects defined by a set of impulsive first-order differential
equations of the form (Rivadeneira & Moog, 2012; Yang, 2001)

ẋ(t) = f (x), x(t0) = x(t+0 ) = x0, t ≠ τk,

x(τ+

k ) = fI(x(τk)) + g(x(τk))u(τk), t = τk, k ∈ N,
yc(t) = hc(x(t)), or
yd[k] = hd(x(τk)), k ∈ N

(1)

where the state x ∈ X ∈ Rn, the input u ∈ Rm, yc ∈ Q ∈ Rq is a
continuous output, yd ∈ Rq is a set of discrete measurements, and
the independent variable t ∈ R denotes the time. The functions
f (x), fI(x) ∈ Rn and g(x) ∈ Rn×m are analytical vector fields, and
the spaces X and Q are analytic manifolds.

Note that the first two equations of system (1) can be written
alternatively as (Rivadeneira & Moog, 2012)

ẋ(t) = f (x(t)) + (f1(x(t)) + g(x(t))u(t))δ(t − τk),

x(t0) = x0, (2)

where f1 = fI(x)−x, and δ is the impulse applied at times τk, k ∈ N.
For the special case where fI(x) = x, then (2) reduces to

ẋ(t) = f (x(t)) + g(x(t))u(t)δ(t − τk), (3)
x(t0) = x0. (4)

Actually, the nonlinear ICS (1) is an autonomous system in
the intervals ]τk−1, τk[, k = {1, 2, . . .}. For simplicity, assume
that t0 = 0, there is no impulse applied to the system in the
interval [0, τ1[, and u(τi) = ui. Let Ψ (t, 0, x0) be a solution of the
autonomous system1 of the first equation in (1) for t ∈ [0, τ1[, i.e.
x(t) = Ψ (t, 0, x0), t ∈ [0, τ1[. At t = τ1,

x(τ+

1 ) = fI(x(τ1)) + g(x(τ1))u1 (5)

= fI (Ψ (τ1, 0, x0)) + g (Ψ (τ1, 0, x0)) u1. (6)

1 The existence and uniqueness of the solution Ψ (·) is assumed. However, this
is still an active field of research. See Ref. Lakshmikantham, Bainov, and Simeonov
(1989) for an introduction.
Now, for t ∈ [τ1, τ2[, where the first impulse has been already
applied to the system, the state trajectory x(t) is

x(t) = Ψ (t, τ1, x(τ+

1 ))

= Ψ (t, τ1, fI (Ψ (τ1, 0, x0)) + g (Ψ (t, 0, x0)) u1) .

In general, the state x(t) in the interval [τk−1, τk[ follows the
recursive equation

x(t) = Ψ (t, τk−1, x(τ+

k−1)), t ∈ [τk−1, τk[, (7)

x(τ+

k ) = fI (x(τk)) + g(x(τk))uk, t = τk, k ∈ N

where τ0 = 0, x(τ+

0 ) = x0, and k − 1 impulses have been applied
to the system. Note that x(·), and g(·) depend on x0 and ui.

If f (x) = Ax, g(x) = B, and fI(x) = AIx, this system is a linear
ICS and can be expressed as (Medina & Lawrence, 2008)

ẋ(t) = Ax(t), x(0+) = x0, t ≠ τk,

x(τ+

k ) = AIx(τk) + Bu(τk), k ∈ N,
yc(t) = Ccx(t), or
yd(t) = Cdx(t),

(8)

where A, B, AI , and Cc (or Cd) have appropriate dimensions.
The state response for this class of systems can be generated

explicitly as follows. Let us denote the final time as tf = τk+1,
the set of time instants as T = {τ1, . . . τk} such that ∆i is equal
to ∆i = τi+1 − τi, and verifies that ∆0 = τ1, and ∆k = tf − τk. The
state transition matrix of (8) is calculated recursively using (7) and
results in Φ(tf , 0) = eA∆kAIeA∆k−1 · · · AIeA∆1AIeA∆0 .

The state transition matrix is invertible for all t ∈ [0, tf ] if only
if thematrix AI is invertible, and in this case,Φ(0, tf ) = Φ−1(tf , 0)
(seeMedina& Lawrence, 2008 formore details). The state response
of system (8) on [0, t] with k impulses applied to the system is
x(t) = Φ(t, 0)x0 +

k
j=1 Φ(t, τj)Buj. Note that if B = 0 and

AI = I , the state transition matrix for LTI systems is recovered,
that is, Φ(t, t0) = eAt and the state response is just x(t) = eAtx0.
Now, if B ≠ 0 but AI = I , the state response equation becomes
x(t) = eAt


x0 +

k
j=1 e

−AτjBuj


, which agreeswith results in Yang

(2001).

3. Observability for nonlinear impulsive systems

3.1. Strong observability

In standard nonlinear control systems (where the impulses
are not involved), this property has been extensively developed,
not only considering continuous outputs (Conte, Moog, & Perdon,
2007), but also discrete ones (Califano, Monaco, & Normand-Cyrot,
2003; Moral & Grizzle, 1995). A standard nonlinear control system
with continuous output is called strongly observable, if the state
can be deduced from the knowledge of the output and its time
derivatives. For nonlinear ICS, the same notion will be maintained
even if impulses are taken into account in the dynamics.

Definition 1. System (1) is said to be strongly observable at point
t = 0, if there exist an integer n, and locally a function ϕ such that
x(0) = ϕ


yc(0), ẏc(0), . . . , y

(n−1)
c (0)


.

Theorem 1. System (1) is strongly observable at point t = 0, if and
only if
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Rank


dhc(x(0))
dLf hc(x(0))

...

dLn−1
f hc(x(0))

 = n. (9)

Proof. It is straightforward from Theorem 4.10 in Conte et al.
(2007, pp. 57–59) and the Inverse Function Theorem.

Remark 1. The rank condition of Theorem 1 proves that it is possi-
ble to observe the state x(t) at any t ≠ τk. But at t = τk, a necessary
and sufficient condition forwhich system (1) is strongly observable
is

Rank

∂

yc1, . . . , yc

(ρ1−1)
1 , . . . , yc q, . . . , yc

(ρq−1)
q


∂x

 = n,

where ρi is the impulsive relative degree d0i of the ith output yc i,
and q is the dimension of the output space.

Note that for t = τk, it is necessary that the impulsive input
does not affect any component of the output of the system. The
definition of impulsive relative degree can be found in Rivadeneira
and Moog (2012).

If system (1) is a linear ICS then the criterion in Theorem 1
reduces to Rank[O] = Rank


CT
c ATCT

c · · · (An−1)TCT
c


= n.

Note that the latter works out properly in the first interval of time,
t ∈ [0, τ1[, where the first impulse is not applied yet. For the linear
case, this criterion is a sufficient (but not necessary) condition
of observability for linear ICS, in contrast with the standard case
without impulses. A hint for necessity is provided by the following
example.

Example 1. A linear ICS (8) with yc(t) = Ccx(t) is described by

A = 0, B = 0, Cc =

1 0 0


, and AI =


0 1 0
0 0 1
0 0 0


. This

system is not strongly observable as Rank[O] = 1, and Theorem
4.2 in Guan et al. (2002) cannot be used since AI is not diagonal.
To test observability let us compute the output at different times
τk: yc(0) = x1(0), yc(τ1) = x1(0), yc(τ2) = x2(0), yc(τ3) = x3(0).
Note that these algebraic equations allow to derive the initial state
from the knowledge of the output, over a sufficient number of
impulses in [0, tf ], and the systemhas to be considered observable.
Note also that the time derivatives of the output at several time
instants τk can be added to the criterion to decide observability.

Strong observability is not developed for the case of discrete
output yd[k] because impulses are taken at the same time that the
output is measured. Then, in the interval 0 ≤ t < τ1, there is
enough information of the output to determine observability.

3.2. Observability on some time interval

A discrete output yd[k] is considered first.

Definition 2. System (1) is said to be observable on some finite
time interval [0, tf ], if there exist an integer l, at least l impulses,
and locally a function ξ such that x(0) = ξ (yd[0], yd[1], . . . , yd[l]).

Theorem 2. System (1) is observable on some finite time interval
[0, tf ], if and only if

Rank


∂ (yd[0], . . . , yd[l])
∂x


= n. (10)
Proof. Consider system (1)with discrete output yd[k] = hd(x(τk)).
At times {τ0, τ1, . . . , τl} the output is yd[0] = hd(x(0)), yd[1] =

hd(x(τ1)) = hd(Ψ (τ1, 0, x0)), . . . , yd[l] = hd(x(τl)) =

hd(Ψ (τl, τl−1, Ψ (τl−1, τl−2, x(τ+

l−1)))) where x(τ+

j ) is function of
x(0) according to (7). If the rank condition (10) is fulfilled, then by
the Inverse Function Theorem there exists a function ξ such that
x(0) = ξ (yd[0], . . . , yd[l]).

In the special case where fI(x) = x, the rank condition becomes

Rank


LM0hd(x(0))
LM1hd(x(0))

...
LMlhd(x(0))

 = n, (11)

where LMihd(x(0)) =
∂hd
∂x Mi, andMi =

∂Ψ (τi,0,x0)
∂x0

. Note that a lower
bound for l is ⌈n/q⌉ since that matrix has ql rows and Rank[·] = n.
The linear case: A comparable definition of observability over a
finite interval along the lines of the observability Gramian can be
found in Medina and Lawrence (2009), in which it is adapted to
linear ICS with discrete measurements of the output. It reads as:
given the impulsive system (8) on [0, tf ], and the time instants
T = {τk} , k = 0, 1, 2, . . . , l, t0 = 0, and tf ∈ [τl−1, τl[,
the observability Gramian MOI(0, tf ) is defined by MOI(0, tf ) =l−1

j=0 ΦT (τj, 0)CT
d CdΦ(τj, 0). For the zero input and x(0) = x0,

xT0MOI(0, tf )x0 =
l−1

j=0 ∥yd[j]∥2, from which it follows that
for an observable system on [0, tf ], the observability Gramian is
positive definite for any impulse time set T , and any finite interval
containing at least l impulse times. Conversely, if there exists an
integer l such that the observability Gramian is positive definite
for any impulse time set and any finite interval containing at least l
impulse times, then the system is observable (Medina & Lawrence,
2009). Note that this criterion meets Definition 2.

The next theorem asserts the equivalence between the observ-
ability Gramian criterion and a new algebraic rank condition for
the linear case.

Theorem 3. The following statements are equivalent

1. System (8) is observable on some finite time interval [0, tf ],

2. Rank


Cd

Cde
A∆0

.

.

.

Cde
A∆l−1 · · · AI e

A∆0

 = n,

3. MOI(0, tf ) > 0.

Proof. The input u(τk) = 0, ∀k is considered without loss of
generality. Proof of (1) ⇒ (2) is obtained from Theorem 2, but
considering linear ICS and the proof of (1) ⇔ (3) can be found in
Medina and Lawrence (2009), so it will be omitted here.

(2) ⇒ (3). System (8) is assumed to be observable. Suppose
that there is a vector w ≠ 0 such that wTMOI(0, tf )w is singular,
i.e.

wTMOI(0, tf )w = wT


l−1
j=0

ΦT (τj, 0)CT
d CdΦ(τj, 0)


w = 0,

which leads to

wTMOI(0, tf )w =


l−1
j=0

wTΦT (τj, 0)CT
d CdΦ(τj, 0)w


= 0,

and

wTMOI(0, tf )w =

l−1
j=0

CdΦ(τj, 0)w
2 = 0.
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From the last equation,

CdΦ(τj, 0)w = 0 ∀τj j = 0, 1, 2, . . . . (12)

The latter is evaluated at l impulses applied to system (8) at time
instant τj, and yields

Cd
CdΦ(τ1, 0)

...
CdΦ(τl−1, 0)

w = (13)


Cd

CdeA∆0

...

CdeA∆l−1 · · · AIeA∆0

w = OIw = 0. (14)

As system (8) is observable, rank[OI] = n. In consequence, w = 0,
which stands in contradiction and proofs that MOI(0, tf ) is a
positive definite matrix. That completes the proof.

Remark 2. Assuming that AI is the identity matrix, the following
statements are equivalent
1. System (8) is observable on some finite time interval [0, tf ],
2. Rank


CT
d (CdeAτ1)T · · · (CdeAτl−1)T


= n,

3. Rank

CT
d ATCT

d · · · (An−1)TCT
d


= n.

Proof. The only implication one has to prove is (2) ⇒ (3).
Before going onwith statement 3, Lemma2.3.1, and Lemma2.3.2

from Yang (2001, pp. 30–31) yield

eAλ
=

n−1
i=0

fi(λ)Ai, f0(λ) = 1, fi+1(0) = 0, (15)

where fi(λ) is a scalar function, and such functions fi(λ) are
linearly independent in any open interval ]t1, t2[. The observability
condition is given by statements 1–2. From the second statement,
and applying the last equation, it is obtained

Ψ Od =


Cd

Cd(I + f1(τ1)A + · · · + fn−1(τ1)An−1)

Cd(I + f1(τ2)A + · · · + fn−1(τ2)An−1)
...

Cd(I + f1(τl−1)A + · · · + fl−1(τl−1)An−1)

 , (16)

where

Ψ =


Iq 0 · · · 0
Iq f1(τ1)Iq · · · fn−1(τ1)Iq
...

...
. . .

...
Iq f1(τl−1)Iq · · · fn−1(τl−1)Iq

 , (17)

Iq is the q × q identity matrix, and

Od =


Cd
CdA
...

CdAn−1

 . (18)

It is necessary to show that the matrix Ψ has full rank that is no
less than n for some time moments τk, k = 0, . . . , l. By using the
Kronecker index with

Q ,


1 0 · · · 0
1 f1(τ1) · · · fn−1(τ1)
...

...
. . .

...
1 f1(τl−1) · · · fn−1(τl−1)

 , (19)
Ψ = Q ⊕Iq has full rank if and only ifQ has full rank.Ψ has lq rows,
hence Rank(Ψ ) ≥ n implies l ≥ n/q, this provides a lower bound
for l. Let l = ⌈n/q⌉, then since q ≥ 1, l ≤ n and by Lemma 2.3.2 we
can apply Lemma 2.3.32 in Yang (2001, pp. 33) so that there exist
τ1, τ2, . . . , τl such that Q has full rank.

Now, a continuous output is taken into account and assume that
the rank condition of Theorem 1 is not fulfilled, i.e. the nonlinear
ICS is not strongly observable.

Example 2. Consider the nonlinear ICS

ẋ1(t) = x2(t)x4(t),
ẋ2(t) = 0,
ẋ3(t) = x1(t), (20)
ẋ4(t) = 0,
x1(τ+

k ) = x1(τk) + x2(τk)u1(τk),

yc(t) = hc(x(t)) = x3(t).

At time t = 0, we have

yc(0) = hc(x(0)) = x3(0), (21)
ẏc(0) = Lf hc(x(0)) = x1(0), (22)

y(2)
c (0) = L2f hc(x(0)) = x2(0)x4(0), (23)

y(3)
c (0) = 0. (24)

It is not possible to get the state x(0) from (yc(0), ẏc(0), y
(2)
c (0),

y(3)
c (0)), and the system is not strongly observable at any time t .

However, the initial state may be observed through another way.
Since the relative degree is 2, the information of the output and its
first derivative at time instants τ+

k could be added to retrieve the
initial states. The second derivative of the output cannot be used
because it involves impulses at times t = τk. So, the first derivative
displays a discontinuity of the form

ẏc(τ+

k ) = Lf hc(x(τk)) + LgLf hc(x(τk))u(τk),

ẏc(τ+

k ) = x1(τk) + x2(τk)u1(τk). (25)

In particular, at time τ+

1 and by Eq. (7)

ẏc(τ+

1 ) = x1(τ1) + x2(τ1)u1(τ1)

= x1(0) + x2(0)x4(0)τ1 + x2(0)u1(τ1). (26)

Now, 4 Eqs. (21)–(26) are obtained which can be solved in the 4
unknowns. The determinant of the Jacobian matrix of the system
of algebraic equations in x(0) is computed as

Det


0 0 1 0
1 0 0 0
0 1 0 0
1 τ1 0 u(τ1)


 = u1(τ1) ≠ 0. (27)

Since the determinant is always different from 0, by the Inverse
Function Theorem, there (locally) exists a function ζ such that
x(0) = ζ


yc(0), ẏc(0), y

(2)
c (0), yc(τ+

1 ), ẏc(τ+

1 )

, then the state x0

still can be deduced from the output.

Definition 3. System (1) is said to be observable on some finite
time interval [0, tf ], if there exist a finite tf , integers s, l, ρ, at
least l impulses, and locally a function ζ , such that x(0) =

ζ

yc(0), ẏc(0), . . . , y

(s)
c (0), yc (ρ−1)(τ+

1 ), . . . , yc (ρ−1)(τ+

l )

.

2 Lemma: if fi(τi) i = 1, . . . , p are linearly independent functions in every open
interval, then for a given p ≤ n, and ]ts, ts+1[ there exist real numbers τi such that
Q has rank p.
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Note that this definition of observability is weaker than Defi-
nition 1 since not only the knowledge of the output is required,
but also the information about impulses. The input u(τk) does not
change this notion because if controls are present, they are part of
the impulses which are applied. Note also that the integer ρ could
be different for each component of the output, depending on its
impulsive relative degree (see Rivadeneira & Moog, 2012).

Let us define Φ = (yc(0), . . . , y
(s)
c (0), yc (ρ−1)(τ+

1 ), . . . , yc (ρ−1)

(τ+

l )) then

Theorem 4. System (1) is said to be observable on some finite time
interval [0, tf ], if and only if

Rank


∂Φ

∂x


= n. (28)

Proof. Consider the system (1) in the form (2). Assume that Theo-
rem 1 is not fulfilled, there is no impulse applied to the system at
t = 0, and for simplicity fI = x. The output and its time derivatives
at t = 0 are

yc(0) = hc(x(0)),
... =

...

y(s)
c (0) = Lsf hc(x(0)).

(29)

System (1) is not strongly observable because Rank


∂

yc ,...,y

(s)
c


∂x


< n. Let ρ be the impulsive relative degree d0 of the each com-
ponent of the output. Note that ρ could have different value for
each component of the output. Precisely, the expression contain-
ing the most information about the system is the time derivative
of the output yc around τk of order ρ − 1, that is yc (ρ−1)(τ+

k ) =

Lρ−1
f hc(x(τk)) + LgL

ρ−1
f hc(x(τk))u(τk).

At time instants {τ1, . . . , τl}, {yc (ρ−1)(τ+

1 ), . . . , yc (ρ−1)(τ+

l )}

are functions of x0 by means of (7) and yc (ρ−1)(τ+

k ), more precisely

yc (ρ−1)(τ+

1 ) = Lρ−1
f hc(x(τ1)) + LgL

ρ−1
f hc(x(τ1))u(τ1),

x(τ1) = Ψ (τ1, 0, x0),
... =

...

yc (ρi−1)(τ+

l ) = Lρ−1
f hc(x(τl)) + LgL

ρ−1
f hc(x(τl))u(τl),

x(τl) = Ψ (τl, τl−1, x(τ+

l−1)).

(30)

From (29), (30) and if the rank condition (28) is fulfilled, by the
Inverse Function Theorem we can state that there locally exists
a function ζ such that x(0) = ζ (yc(0), . . . , y

(s)
c (0), yc (ρ−1)+(τ+

1 ),

. . . , yc (ρ−1)(τ+

l )). Then by Definition 3, the system (1) is observ-
able on some time interval [0, tf ].

In linear ICSwith continuous output, this notion of observability
on some time interval can be stated as it is suggested by Theorem
4.2 in Guan et al. (2002, pp. 255–256) assuming diagonal matrices
or more general as in Shi and Xie (2012). The strong observability
can be seen as a sufficient condition of observability in ICS, and that
coincides with Theorem 4.2 in Guan et al. (2002).

Note that Definition 3 encompasses the similar ones described
in Guan et al. (2002), Shi and Xie (2012) and Zhao and Sun (2009,
2012) for linear ICS with continuous output. The following remark
comprises the different criteria for observability over some finite
interval for this case:

Theorem 5. System (8) is observable on some finite interval [0, tf ] if

and only if Rank


O
OI


= n.
Note that this theorem is equivalent to the criterion developed in
Shi and Xie (2012). If a linear ICS is not strongly observable then
Rank[O] < n. Therefore the information necessary to complete
the rank could be collected from the information of the output at
times τk, that is the part of the Rank[OI].

4. Application to biomedical engineering processes

4.1. Case-study: impulsive HIV dynamics

Several nonlinear models have been developed to describe the
dynamics of HIV-1 virus which take into account the kinetics of
HIV infection with different cells populations e.g. macrophages,
CTL cells, latently infected CD4+ T cells (cluster of differentiation
4, the cells commonly known as helper T cells or T4 cells) as
well the inclusion of the lymphoid compartments in their models
(Perelson et al., 1993). However, for the control and parameter
estimation based on clinical data, the dynamics of the infection can
bemodeled by relatively simple ordinary differential equations for
the interactions of healthy CD4+ cells (T ), infected CD4+ cells (y),
free viruses (z) (Rivadeneira & Moog, 2012).

In this paper, the used model takes into account the interaction
of the intake of drugs and its concentration in blood according
to the notions of pharmacokinetics and pharmacodynamics
described in Legrand et al. (2003). Consequently, the impulsive
model is:

Ṫ (t) = s − δT (t) − βT (t)z(t),
ẏ(t) = βT (t)z(t) − µy(t), t ≠ τk,

ż(t) =


1 −

w(t)
w(t) + w50


ky(t) − cz(t),

ẇ(t) = −Kw(t),
w(τ+

k ) = w(τk) + u(τk), k ∈ N,

(31)

where healthy CD4+ cells (T ) are produced from the thymus at a
constant rate s and die with a half life time equal to 1

δ
. The healthy

cells are infected by the virus at a rate that is proportional to the
product of their population and the amount of free virus particles.
The proportionality constant β is an indication of the effectiveness
of the infection process. The infected CD4+ cells (y) result from
the infection of healthy CD4+ cells and die at a rate µ. Free virus
particles (z) are produced from infected CD4+ cells at a rate k and
die with a half life time equal to 1

c . The parameter w50 represents
the concentration of drug that lowers the viral load by 50%, and the
parameter η is the efficacy of an anti-HIV treatment (in general a
cocktail drugs of RT and P inhibitors).

Only the physical output hc = T (t) is taken into account and
considered to be continuous. Applying Theorem 1, one computes

Rank [O] = Rank




dhc(0)
dLf hc(0)
dL2f hc(0)
dL3f hc(0)


 = 4, (32)

whose determinant

Det [O] =
β3k2w2

50(T0)
3(Kw50y0 − β(w0 + w50)z0)

(w0 + w50)4

is different from zero if Kw50y0 ≠ β(w0 +w50)z0. As a conclusion,
this nonlinear model of HIV is strongly observable.

4.2. Case-study: diabetic type I patient model

The following model is considered as a first approximation
dynamics for diabetic type I patients based on Bergman’s model
(Bergman, Phillips, & Cobelli, 1981)
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ẋ1(t) = −x1x2, x1(0) = x10,
ẋ2(t) = −a2x2 + a3x3, x2(0) = x20,
ẋ3(t) = −a4x3, x3(0) = x30, (33)
x1(τ+

k ) = x1(τk) + Jp(τk), k ∈ N,

x3(τ+

k ) = x3(τk) +
1
V
u(τk), k ∈ N,

yd[k] = x1(τk) k ∈ N,

where x1 is the deviation of the blood glucose concentration from
its basal value (assumed to be Gb = 1.0 g/l), x2 is proportional
to insulin in a remote compartment, and x3 is the plasma insulin
concentration in U/l, the control variable u represents a sudden
change in the insulin concentration due to an injection of insulin,
and y is a discrete measurement of the deviation of the blood
glucose concentration. The parameter a2 represents the decrease of
glucose under the action of insulin, and a4 is the natural absorption
rate of insulin in the body.

An other factor that changes the concentration of the blood
glucose is the input of meals. As a first approximation, these inputs
can be seen, in a day of the patient, as an impulsive jump of the
glucose concentration in the body and after a digestion process as
a variation in the blood concentration, and it is represented by Jp.

Since thismodel is a nonlinear ICSwith discretemeasurements,
the observability is checked through Theorem 2. It is considered
that themeasurements are made before the intake of themeal and
are performed by the patient.

The impulsive control system (33),during an interval τ+

i ≤ t <
τi+1, is an autonomous and invariant system. The solution of this
dynamical system is:

x3(t) = e−a4(t−τ+

i )x3(τ+

i ),

x2(t) = e−a2(t−τ+

i )x2(τ+

i )

+
a3

a2 − a4
(e−a2(t−τ+

i )
+ e−a4(t−τ+

i ))x3(τ+

i ),

x1(t) = eξ(t)x1(τ+

i ), (34)

ξ(t) =
(−1 + e−a2(t−τ+

i ))

a2
x2(τ+

i )

−
a3
a2a4

x3(τ+

i )


1 +

a4e−a2(t−τ+

i )
+ a2e−a4(t−τ+

i )

(a2 − a4)


.

The necessary discrete measurements of the output are yd[0] =

x1(0), yd[1] = x1(τ1), and yd[2] = x1(τ2).
From Eq. (34), and taking 0 ≤ t < τ1,

x1(τ1) = eξ(τ1)x1(0), (35)

ξ(τ1) =
(−1 + e−a2τ1)

a2
x2(0)

−
a3
a2a4

x3(0)

1 +

(a4e−a2τ1 + a2e−a4τ1)

(a2 − a4)


,

and

x1(τ2) = eξ(τ2)x1(τ+

1 ), (36)

ξ(τ2) =
(−1 + e−a2τ2)

a2
x2(τ1) −

a3
a2a4

x3(τ+

1 )

×


1 +

1
(a2 − a4)

(a4e−a2τ2 + a2e−a4τ2)


x1(τ+

1 ) = x1(τ1) + Jp(τ1), (37)

x2(τ1) = e−a2τ1x2(0) +
a3

a2 − a4
(e−a2τ1), (38)

x3(τ+

1 ) = e−a4τ1x3(0) +
1
V
u(τ1). (39)

Note that the set of measurements (yd[0], yd[1], yd[2]) de-
pends on (x1(0), x2(0), x3(0)). So, now the rank of the ma-
trix


∂(yd[0],yd[1],yd[2])
∂x


must be calculated. For that, the software

MathematicaTM was used and yielded that the rank is 3. As a con-
clusion, the nonlinear ICS is observable over the interval [0, τ2[.

5. Conclusions and perspectives

The observability of linear impulsive control systems with dis-
crete outputs has been fully characterized. Criteria have been given
in terms of suitable rank conditions. Throughout the paper it was
shown that these criteria have to be stated in terms of thematrices
(Cd, A, AI). Obviously, the special case without impulses reduces to
the well-known Observability Kalman Criterion for linear control
systems.

This result generalizes and unifies criteria that can be found in
the current literature, using the observability Gramian and alge-
braic conditions.

Observability is analyzed in nonlinear ICS for the first time, con-
tinuous and discrete outputs are considered. Useful criteria were
developed to characterize this property, showing that an ICS can be
strongly observable or observable over a finite time interval. This
last definition is interesting andmore natural due to the use of both
time-shifts and time derivatives of the output. Thus, it may avoid
the computation of input time derivatives for observation of the
state. A good understanding of those notions of observability is ob-
viously mandatory for the design of effective observers for ICS.

Future research challenges include the design of effective non-
linear impulsive observers. Parameter identifiability and the ef-
fective identification are connected problems which are worth to
investigatewithin a similar approach. Its application to real life pa-
rameter identification of the glycemia dynamics e.g. is promising
for diagnosis for patients. The latter is open for further research as
well.
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