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An algorithm that simplifies the evaluation of the reverse dark
current–voltage (J–V) characteristic of semiconductor thin film
devices is presented. This algorithm, recognized with the
symbols “0KRDA”, is an approximation of the SRH formalism
that can be usedwhen the dangling bond density ismodeledwith
either theUniformDensityModelorwith theDefectPoolModel.
The 0KRDA is designed to replace the 0K-Simmons–Taylor
approximation (0KSTA) in reversed biased junctions operating

under dark conditions. The dependence of the current density J
with respect to the applied voltage V predicted with SRH
formalism is well replicated by the 0KRDA. The small
differences obtained in the calculated reverse dark currents
can be removed by neglecting the contribution of gap states with
energies closer than kT/5 to the intrinsic trap level. The transport
physic controlling the shape of reverse dark J–V curves of thin
film devices can be more easily visualized with the 0KRDA.
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1 Introduction Research on non-crystalline materi-
als has grown in the last years to become one of the most
active areas in solid state physics. Silicon can be modified
from the single crystalline state via a two-phase micro- or
nano-crystalline state to an almost perfectly disordered
amorphous state. The electronic properties that are suitable
for electronic devices can be preserved by incorporating
hydrogen into the network with an appropriate concen-
tration and bonding structure.

Hydrogenated amorphous (a-Si:H) and microcrystalline
(mc-Si:H) silicon thin films are currently applied to solar
cells and numerous other electronic devices like radiation
detectors, thin film transistors, image sensor, printing arrays,
etc. The performance of these devices is highly dependent
on the density of states (DOS). The a-Si:H andmc-Si:HDOS
contains two different types of localized states: tail and
defect states. The distributions of tail states are decreasing
exponentials, one with acceptor-like states connected to the
conduction band, and another with donor-like states,
connected to the valence band. Defect states, originated
by dangling bonds (DB), show an amphoteric character; i.e.,
they can have three charge states: positively, neutral, and
negatively charged when unoccupied, occupied, and doubly
occupied, respectively. Defect states are normally

represented by three Gaussian distributions of amphoteric
states recognized as D�, D0, and Dþ when the density is
assumed uniform in each device layer (Uniform Density
Model or UDM) or by the Defect Pool Model (DPM) but
only in a-Si:H layers and its alloys. The DPM is based in an
elaborated thermodynamic method where the creation of
defects is described through specific microscopic reactions
[1, 2]. No experimental evidences about its validity in the
two-phase material mc-Si:H were found.

In disordered semiconductors the trapped charge density
and recombination rate are usually computed by integrating
the contributions of all the gap states between the valence
and conduction band edges using the theory of Schockley–
Read–Hall (SRH) [3, 4]. The SRH formalism describes
charge trapping and recombination processes assuming that
traps behave as single electron donor-like and acceptor like
states; i.e, they can have only two charge states: positively
charged or neutral in donor states and neutral or negatively
charged in acceptor states. Simmons and Taylor derived an
elegant approximation of the SRH formalism, recognized as
the Simmons–Taylor Approximation (STA) [5]. The STA,
valid for a continuous distribution of states, reduces the
complete SRH equations to simpler expressions. This
simplicity makes the physical interpretation of results easier.

Phys. Status Solidi B 252, No. 9, 2129–2141 (2015) / DOI 10.1002/pssb.201552141

basic solid state physics

st
a
tu

s

so
li

d
i

www.pss-b.comp
h

y
si

ca

� 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



In the so called “0K” Simmons–Taylor Approximation
(0KSTA) the occupation functions and the recombination
rate are represented by step functions. The 0KSTA was
widely used in solar cell modeling because the analysis of
the characteristic curves could be notably simplified [6–9].

In the DPMdefect states associated with Si–Si bonds are
modeled as amphoteric [1, 2] while in the UDM they are
assumed either amphoteric or single states depending of the
author. In this paper, they will be described as single states.
A defect state is described by two correlated energy levels:
one level Eþ/0 related to theþ/0 transition and another level
E0/� related to the 0/� transition. The energy difference
between these two levels is the correlation energy U. In
either a-Si:H or mc-Si:H, amphoteric states can be described
with the Decoupled State Approximation (DSA) as pairs of
uncorrelated single-electron states: a donor-like level
positioned at Eþ/0

– kTln(2) and an acceptor-like level
positioned at E0/�þ kTln(2) [10, 11]. In these materials, the
correlation energy U is much larger than the thermal energy
and capture cross sections of charged states are higher than
capture cross sections of neutral states. Hence, the two
needed conditions to apply the DSA are fulfilled [3]. The
non-equilibrium occupation functions fþ, f0, and f� of
amphoteric states [13–15] are replaced by the SRH
occupation functions f and 1� f for electrons and holes,
respectively [16]. Trapped charge concentrations and the
recombination rate obtained with the DPM can also be
written in terms of decoupled states and the SRH formalism
can be applied to describe the kinetics of all gap localized
states. Hence, the STA and 0KSTA approximations can be
applied to both tail and defect states.

In two previous papers, the current–voltage (J–V)
characteristic curves of a-Si:H and mc-Si:H devices were
first matched with the SRH formalism and afterwards re-
evaluated modeling charge trapping and recombination with
the STA and the 0KSTA [16, 17]. The J–V curves obtained
with the three formalisms were compared under dark and
illuminated conditions, for reverse and forward bias
voltages, under different temperatures, in p–i–n devices
with thinner and thicker intrinsic layers, and for different
values of some key electrical parameters. Our results
indicated that the STA is an acceptable approximation in p–
i–n devices working under illuminated conditions for any
applied voltage. Under dark conditions, the STA is valid for
forward voltages and slightly overestimates the dark current
of p–i–n devices subjected to reverse voltages but correctly
replicating the J(V) dependence. The 0KSTA is also a good
approximation under illumination and dark conditions but
only when forward voltages are applied. The 0KSTA cannot
be used when the p–i–n device is reversed biased and
operates under dark conditions [16, 17]. The errors
introduced by the STA and the 0KSTA were discussed in
previous contributions when the density of DBs was
modeled with the UDM and the DPM [16, 17].

In this contribution, a new and simplified method is
presented to evaluate the reverse dark J–V characteristics of
a-Si:H and mc-Si:H based devices. This method that will be

recognized as the “0KRDA” was conceived to replace the
0KSTA. The paper is organized as follows: in Section 2, the
equations of the 0KRDA are derived; in Section 3, a detailed
examination of the 0KRDA is undertaken, in Section 4,
results obtained with our method and with the SRH
formalism are compared for different scenarios modeling
the density of states with the UDM and the DPM; in Section
5, refinements of the 0KRDA are explored to precisely
reproduce the J–V curves obtained with the SRH and finally
in our conclusions the main results are summarized.

2 0KRDA: A simplified method to evaluate the
reverse dark J–V curves In the SRH formalism, the
occupation functions of electrons and holes, fn and fp and the
recombination efficiency hR are given by

f n Eð Þ ¼ nvTHsN þ ep
nvTHsN þ pvTHsP þ en þ ep

; ð1aÞ

f p Eð Þ ¼ pvTHsP þ en
nvTHsN þ pvTHsP þ en þ ep

; ð1bÞ

hR Eð Þ ¼ v2THsNsP
np� n2i

nvTHsN þ pvTHsP þ en þ ep
; ð1cÞ

where E is the gap state energy, n and p are the free electron
and hole concentrations, sN and sP are the capture cross
sections for electrons and holes, vTH is the thermal velocity,
en and ep are emission coefficients for electrons and holes,
respectively, and ni is the intrinsic concentration [4, 17]. The
trap charge status of each state was not included for the sake
of brevity. The emission and capture coefficients for
electrons and holes can be recognized as

en ¼ vTHsNNC exp
E � EC

kT

� �
;

ep ¼ vTHsPNV exp
EV � E
kT

� �
;

cn ¼ nvTHsN ; cp ¼ pvTHsp;

cS ¼ cn þ cp;

ð1dÞ

where EC and EV are the conduction and valence band
edges, respectively, and NC and NV are the conduction and
valence effective density of states. The capture coefficients
cn and cp are part of Eqs. (1a)–(1c) and cS is their sum.

In the 0KSTA, the electron occupation functions fn(E)
and fp(E) and the recombination efficiency are approximated
by the following step functions [16, 17]:

f n Eð Þ ¼
1 EV < E < Efpt

nsN

nsN þ psP
Efpt < E < Efnt

0 Efnt < E < EC

8>><
>>: ð2aÞ
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f p Eð Þ ¼
0 EV < E < Efpt

psP

nsN þ psP
Efpt < E < Efnt

1 Efnt < E < EC

8>><
>>: ð2bÞ

hR Eð Þ ¼

0 EV < E < Efpt

vTH
np� n2i
� �

sNsP

nsN þ psP
Efpt < E < Efnt

0 Efnt < E < EC

8>>><
>>>:

ð2cÞ

where Efnt and Efpt are the quasi-Fermi levels for trapped
electrons and trapped holes (QFLTC) defined as the energies
where the following conditions are satisfied:

en Efntð Þ ¼ nvTHsN þ pvTHsP ! Efnt;

ep Efpt
� � ¼ nvTHsN þ pvTHsP ! Efpt;

(3a)

Equation (3a) can be rewritten by dividing the emission and
capture coefficients with the thermal velocity and the
capture cross sections as

en�NOR Efntð Þ ¼ en Efntð Þ
vTHsN

¼ nþ p
sP

sN

� �
¼ cS�NOR�n;

ep�NOR Efpt
� � ¼ ep Efpt

� �
vTHsP

¼ n
sN

sP

� �
þ p ¼ cS�NOR�p:

ð3bÞ
The terms en(p)-NOR and cS-NOR-n(p) will be recognized as

the normalized emission and sum of capture coefficients c,
respectively. The sub-indexes n and p indicate that capture
coefficients were normalized by the product between the
thermal velocity and the capture cross sections for electrons
and holes, respectively. QFLTC are the energies where these
normalized coefficients intersect to each other and they are
given by [4]

Efnt ¼ EC þ kT ln
nsN þ psP

NCsN

� �
;

Efpt ¼ EV � kT ln
nsN þ psP

NVsP

� �
:

ð3cÞ

The term n2i of Eq. (2c) was not present in the original
derivation of Simmons–Taylor [4]. It was added by Hack
and Shur in order to obtain hR¼ 0 under thermodynamic
equilibrium conditions [9]. Their objective was also to
improve the functioning of the STA at very low forward
voltages. The total recombination rate R and the space
charge density r can be evaluated as

R ¼
Z Ec

Ev

N Eð ÞhR Eð ÞdE; ð4aÞ

r ¼
Z Ec

Ev

N Eð ÞQ Eð ÞdE; ð4bÞ

where N(E) is the continuous density of gap states. As
already stated, the 0KSTA was derived for decoupled states
[5–9] where traps have either a donor or an acceptor
character (DSA). The average charge Q(E) and the
recombination efficiency hR(E) in the DSA can be expressed
as

hRd Eð Þ ¼ v2THs
þ
Ns

0
P

np� n2i
nvTHsþ

N þ pvTHs0
P þ e0n þ eþp

;

ð5aÞ

hRa Eð Þ ¼ v2THs
0
Ns

�
P

np� n2i
nvTHs0

N þ pvTHs�
P þ e�n þ e0p

;

ð5bÞ

Qa Eð Þ ¼ qf na; ð5cÞ

Qd Eð Þ ¼ qf pd; ð5dÞ

Q Eð Þ ¼ Qd Eð Þ � Qa Eð Þ: ð5eÞ
Hence Eq. (4) can be rewritten as

R ¼
Z Ec

Ev

Nd Eð ÞhRd Eð Þ þ Na Eð ÞhRa Eð Þ½ �dE; ð6aÞ

r ¼
Z Ec

Ev

Nd Eð ÞQd Eð Þ � Na Eð ÞQa Eð Þ½ �dE: ð6bÞ

Sub-indexes “d” and “a” refer to donor-like and
acceptor-like states, respectively. The occupation functions
fna and fpd are the expressions (1a) and (1b) with the
corresponding capture cross sections for acceptor-like states
and donor-like states, respectively. In Fig. 1, the dependence
of the normalized emission and capture coefficients as
function of the gap state energy [see Eqs. (1d) and (3b)] are
shown at the center of the intrinsic layer of a p–i–n a-Si:H
diode subjected to either forward or reverse voltages.
Details of the device structure and the methodology used to
calibrate our input parameters will be given in Section 3 [16,
17]. The intrinsic layer is 600 nm thick and the device is
operating under dark conditions. In this contribution, only
the parameters of the a-Si:H p–i–n intrinsic layer are shown
in Table 1 for the sake of brevity. The full list of electrical
parameters can be found elsewhere [16, 17].

Figure 1 shows that when the p–i–n device operates
under dark conditions and subjected to a reversed voltage
the QFLTC become inverted: i.e., Efnt<Efpt. This inversion
makes no possible use of Eq. (2c). Hence, the conclusion
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that the 0KSTA is not valid when the device is biased with a
reverse voltage and operates under dark conditions could be
inferred. However, this point requires more discussions that
can be found in Section 3, where the physics of p–i–n
devices operating under these conditions are further
explored.

The dark current of a p–i–n diode is controlled by
recombination of e–h pairs at low forward voltages and by
thermal generation of e–h pairs from localized to extended
states at reverse voltages. Figure 1 shows that at forward
voltages emission prevail over capture at energies between
the mobility edges and quasi-Fermi levels for trapped
carriers,while at reverse voltages theydo at energies between
the quasi-Fermi levels for trapped carriers. The energy ET0

where the emission rates of electrons and holes en(E) and
ep(E) are equal is recognized as the intrinsic trap level. The
expression of ET0 can be obtained from Eq. (1d) as

ET0 ¼ EC þ EV

2
� kT

2
ln

sNNC

sPNV

� �
: ð7Þ

In a reverse biased, p–i–n device thermally generated
electrons and holes drifted by the electric field exit the
device through the back and front contact, respectively. Our
simulations indicate that the dark current is originated by
thermal generation of e–h pairs in the intrinsic layer and not
in doped layers [18]. The e–h thermal generation rateG(x) is
only significant inside of some spatial region (x1, x2) and this
region is essentially the source of the dark reverse current.
The spatial co-ordinates x1 and x2 move toward the p/i front
and i/n interfaces, respectively, at larger voltages [18]. Our
simulations indicate that this region can reach doped layers

only at voltages higher than �10V in p–i–n devices with
thin intrinsic layers (200 nm or less).

In p–i–n devices, subjected to reverse voltages and
operating under dark conditions the capture coefficients of
Eq. (1c) can be neglected at gap state energies E between the
QFLTC Efnt and Efpt as shown in Fig. 1. Free carrier
concentrations are below their equilibrium counterparts.
The electric field reinforced by the external battery pushes
electrons and holes more efficiently toward contacts.
Equation (1c) between the QFLTC can be expressed as

hG Eð Þ ¼ �v2THsNsP
n2i

en þ ep
: ð8Þ

Emission coefficients can be written in a closer form by
adopting the following convention: the trap energy E is
measured positively up from EV in the expression of the hole
emission coefficient and the trap energy E� is measured
positively down from EC in the expression of the electron
emission coefficient [see Eq. (1c)]. Hence,

en ¼ vTHsNNC exp � E
�

kT

� �
;

eP ¼ vTHsPNV exp � E
kT

� �
:

ð9Þ

Since the emission rates en(E) and ep(E) exponentially
decrease with the trap energy E� or E, either en(E) or ep(E)

Figure 1 Normalized capture and emission coefficients of donor-
like and acceptor-like defect states at half way across the intrinsic
layer of an a-Si:H p–i–n device biased with voltages of �0.5 and
�1V. The device is operating under dark conditions and the
intrinsic layer is 600 nm thick. (d) and (a) means donor and
acceptor, respectively. The normalization is performed as
explained in Eq. (3b). The quasi-Fermi levels for trapped carriers
are indicated at 1 and �1V for donor-like gap states only.

Table 1 List of electrical input parameters of intrinsic a-Si:H
obtained by fitting J–V curves of p–i–n devices when the density of
DBs is modeled with either UDM or DPM.

parameters� parameters
�

W (nm) 600 D+ (cm�3) 2� 1015

EG (eV) 1.72 ED
� (eV) 0.55

Nc, Nv (cm�3) 2.5� 1020 ED
0 (eV) 0.85

mN (cm2V�1 s�1) 30 ED
þ (eV) 1.15

mP (cm2V�1 s�1) 3.5 sD (eV) 0.13
ED (meV) 45 sþ

ngU, s
�
pgU (cm2) 1.2� 10�14

EA (meV) 25 s0
ngU, s

0
pgU (cm2) 1.2� 10�15

sþ
nt, s

�
pt (cm

2) 1� 10�15
sþ
ngD, s

�
pgD (cm2) 1� 10�14

s0
nt, s

0
pt (cm

2) 1� 10�17
s0
ngD, s

0
pgD (cm2) 1� 10�16

D� (cm�3) 2� 1015 EDP (eV) 1.1
D0 (cm�3) 1� 1015 DDP 0.295

�
The meaning of the symbols is as follows:W is the layer thickness, EG is the
mobilitygap,Nc andNv are theeffectivedensityof states in theconductionand
valence band, respectively,mN andmP are the electron and holemobilities,ED

and EA are the valence and conduction tail slopes, snt and spt are the capture
cross section for electrons and holes at tail states, D�, D0, and D+ are the
densities of states enclosed by the three Gaussians (UDM), E�

D, E
0
D, and E

þ
D

are their peak positions, and sD is the standard deviations (UDM), sngU and
spgU and sngD and spgD are the capture cross sections for electrons an holes
in defect states when the UDM or the DPM, respectively, are implemented.
The superscript þ, 0, and � indicates the charge status. EDP is the peak
energy of the defect-pool, DDP is the separation between the positive and
negative charge in a-Si:H n- and p-layers. The thermal velocity vTH was
assumed 107cm/s for both electrons and holes.

2132 F. A. Rubinelli and M. De Greef: Simplified evaluation of the reverse dark J–V characteristic

� 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com

p
h

ys
ic

a ssp st
at

u
s

so
lid

i b



can be neglected few kTs away from ET0 as in the STA [11].
The generation rate efficiency can be re-written as:

hG E > ET0ð Þ ¼ �v2THsNsP
n2i
en

;

hG E < ET0ð Þ ¼ �v2THsNsP
n2i
ep

:

ð10Þ

By combining Eqs. (9) and (10) the two generation
efficiencies hE<ET0

and hE>ET0
can be expressed as:

h
E<ET0

¼ �vTHn
2
i

sN

NV

� �
exp

E
kT

� �
;

h
E>ET0

¼ �vTHn
2
i

sP

NC

� �
exp

E
�

kT

� �
:

ð11Þ

The total generation rateG of e–h pairs can be obtained from
Eq. (4a) as

G ¼ �R � GE<ET0 þ GE>ET0 ;

GE<ET0 ¼
R ET0

Efnt
hE<ET0

ðEÞNðEÞdE;

GE>ET0 ¼
R E�

T0

E
�
fpt
hE>ET0

ðE� ÞNðE� ÞdE�
:

ð12aÞ

The energies with superscripts (�) are defined as

E
�
fpt ¼ EG � Efpt;

E
�
T0 ¼ EG � ET0:

ð12bÞ

The integration has been restrained to trap energies
between the intrinsic trap level ET0 and the inverted QFLTC
Efnt and Efpt using the same logic adopted in the 0KSTA. In
Fig. 2(a) and (b), the dependence of the generation
efficiency with respect to the gap state energy obtained
with the SRH formalism (empty circles) and Eq. (11)
(thicker solid line) are compared at the middle of the
intrinsic layer of the a-Si:H p–i–n device shown in Fig. 1
(600 nm thick intrinsic layer). The other curves of Fig. 2 will
be explained and discussed in Section 5. The device is
biased with a reversed voltage of �1V. The generation
efficiencies were calculated with the parameters of Table 1.
Figure 2(a) and (b) shows that the most significant
contribution to the generation rate in the SRH formalism
comes from gap states with energies between Efnt and Efpt,
which justifies the limits of integration adopted in Eqs. (12).

As the density of states N(E) is a smoother function of
the gap state energy E than the emission rates en(E) and
eP(E), it can be approximated by its value at ET0, i.e., N
(E)�N(E¼ET0) and taken outside the integrals in order to
simplify our expressions. The sum en(E)þ eP(E) in Eq. (8)
reaches its minimum at ET0. Hence, the generation
efficiency hR(E) reaches its maximum at ET0. When the
density of DBs is evaluated with the DPM, this assumption
is quite accurate in the bulk of the intrinsic layer and a bit

more questionable near p/i and i/n interfaces where N(E)
changes more rapidly with the gap energy E. However, in p–
i–n junctions operating under dark conditions and subjected
to reverse voltages the main contribution to the dark current
comes from traps located in the bulk of the intrinsic layer
and with energies near mid-gap. When the reverse voltage is
increased, the region of thermal generation of e–h pairs
expands toward the interfaces, but the highest contribution
still comes from the intrinsic layer bulk. When the UDM is
instead adopted, our approximation is valid for any applied
reverse voltage. Combining Eqs. (11) and (12), the
generation rates can be expressed as

GE<ET0 ¼ NðET0Þ sN

NV

� �
n2i kT exp

ET0

kT

� �
� exp

Efnt

kT

� �� �
;

Figure 2 Generation rates as functions of the gap state energy at
the middle of the 600 nm thick intrinsic layer of an a-Si:H p–i–n
device reversed biased at �1V and operating under dark
conditions. Solid lines and empty circles correspond to the
0KRDA and the SRH formalisms, respectively: (a) semi-
logarithmic scale and (b) linear scale. The 0KRDA is also shown
when correction coefficients of cT0¼ 0.2 and cQFLTC¼ 0.75 at the
trap intrinsic level EG

T0D and quasi-Fermi levels for trapped carriers
(thinner solid line) are implemented. Butterworth filters were
excluded at ET0 in the dotted line of (b). (c) Occupation functions
of electrons and holes fn and fp obtained with Eq. (1) (empty
circles) and (16) (solid lines). All functions are shown for donor-
like states.
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GE>ET0 ¼ NðE�
T0Þ

sP

NC

� �
n2i kT exp

E
�
T0

kT

� �
� exp

E
�
fpt

kT

 !" #
:

ð13Þ
Replacing Eqs. (3), (7), and (12) in Eq. (13) after some
algebra, the following formulas can be derived:

GE<ET0 ¼ vTHsNkTniNðET0Þ sP

sN

� �1=2

� nsN þ psP

nisN

� �" #
;

GE>ET0 ¼ vTHsPkTniNðET0Þ sP

sN

� �1=2

� nsN þ psP

nisN

� �" #
:

ð14Þ

The derivation was made for a generic density of states N
(E). The reverse dark current can be expressed as:

J Vð Þ ¼ � qG E<ET0
þ qG E>ET0

þ Je�bd þ Jh�bd

� �
� �q G E<ET0

þ G E>ET0

� �
:

ð15Þ

Je-bd is the electron back diffusion current at the front
contact and Jh-bd is hole back diffusion current at the back
contact. Both terms are negligible in comparison to the first
two terms GE<ET0 and GE>ET0 (q is the electron charge).

The evaluation of the trapped electron concentration
requires the knowledge of the occupation function fn(E) that
can be obtained by replacing the emission coefficients of Eq.
(1d) in (1a) and taking into account Eq. (7). The final
expression is

f n Eð Þ ¼ 1

1þ exp 2 E�ET0
kT

� � : ð16aÞ

This equation is quite similar, except for the factor 2, to
the occupation function of the Fermi–Dirac statistics at
thermodynamic equilibrium conditions. The factor 2 makes
the transition from one to zero more abrupt. The function
fn(E) can be approximated by a step function that changes
from one to zero at the energy level E¼ET0.

The occupation function for holes can similarly be
derived as:

f p Eð Þ ¼ 1

1þ exp 2 ET0�E
kT

� � : ð16bÞ

This equation can also be approximated by a step
function that changes from zero to one at the energy
level E¼ET0. Figure 2c shows fn(E) and fp(E) for the
same electrical parameters and scenario of Fig. 2(a).
When Eqs. (16) are approximated by step functions the

expressions for the trapped charge densities become quite
simple

pT ¼ R EG

ET0
ND Eð ÞdE;

nT ¼ R ET0

0 NA Eð ÞdE:
ð17Þ

The use of Eqs. (14)–(17) that allows the evaluation of
the current–voltage characteristic will be recognized as the
method 0KRDA: 0K stands for the step functions used in the
calculation of the generation efficiency G(x) and trapped
carrier concentrations pT(x) and nT(x) and RD are the initials
of the author’s last names. Equations (14)–(17) were
implemented in our code D-AMPS, described elsewhere
[19]. The different formalisms SRH, STA, 0KSTA, or
0KRDA can be selected by changing the integer value of a
new input. The code D-AMPS employs the Newton–
Raphson technique (NRT) to achieve convergence. The
NRT iteratively finds the root of the non-linear system of
three differential equations: Poisson and Continuity when an
adequate initial guess is given. The NRT uses the derivates
of the currents, recombination rate, and charge densities
with respect to the electron potential and quasi-Fermi levels.
Let’s note that in the 0KRDA method, these derivatives are
non zero only for the generation rate.

3 Detailed examination of the 0KRDA
method The device used to test the accuracy of our
approximation is the a-Si:H based p–i–n junction [16, 17].
The structure is as follows: TCO/p-a-SiC:H/i-a-Si:H/n-a-Si:
H/Al with a 5 nm thick buffer layer in between the p- and i-
layers. The front contact is an Asahi U-type (employing
textured SnO2:F. The p- and n-layer thicknesses are 10 and
20 nm thick, respectively. Experimental data correspond to
as-deposited a-Si:H based p–i–n junctions with 200 and
600 nm thick intrinsic layers that were annealed for 30min
at 130 8C [16, 17]. These devices were grown and
characterized at Delft University of Technology.

As already stated, the experimental dark and light J–V
characteristics of a-Si:H p–i–n devices were first fitted with
the SRH formalism. The absorption coefficient and the
refractive index and some of the electrical parameters were
obtained from thin film measurements or literature and the
more difficult to measure (like capture cross sections,
effective density of states, mobilities) by matching dark and
illuminated J–V curves of a-Si:H p–i–n solar cells with
different intrinsic layer thicknesses [16, 17]. For simplicity,
the density of DBs was initially simulated with the Uniform
DensityModeling (UDM) that assumes a constant density of
DB inside of each device layer.

The density of defect states in the UDM is described
with three Gaussian distributionsD�,D0, andDþ containing
amphoteric states. They are separated in energy by 0.3 eV
[1]. Amphoteric states can be approximated by donor-like
and acceptor-like pairs of states as explained above. The
validity of this approximation was discussed in a previous
contribution [12]. In a-Si:H and mc-Si:H, three Gaussian
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distributions with donor-like states and three Gaussian
distributions with acceptor-like states are used to model the
density of DBs. Donor-like and acceptor-like Gaussians are
separated by the correlation energy U adopted equal to
0.2 eV [1, 2, 20] (see Table 1). Information about our
modeling of doped layers, contacts, and device optics can be
found elsewhere [16, 17].

Using the UDM in the 0KRDA, each Gaussian
distributionDþ,D0, andD�will contribute to the generation
rate with four pairs of terms [two for energies greater or
lower than ET0 and two for donor- and acceptor-like states;
see Eq. (14)] that makes a total of 12 terms. The levels ET0

are different for donor-like (ET0D) and acceptor-like (ET0A)
defect states because capture cross sections sn and sp are
different [Eq. (9)]. Usually ET0D and ET0A are the same for
the three donor-like and acceptor-like Gaussians, respec-
tively. Using the parameters of Table 1, the intrinsic trap
levels at defect states can be evaluated as EG

T0D � 0.8 eV and
EG
T0A � 0.92 eV where the supra-index was added to

distinguish defect or Gaussians (G) from tail (T) states.
The most significant contributions to the thermal generation
rate of e–h pairs come from the acceptor-like Gaussian D�

(�39%) (peak energy¼ 0.75 eV) and the donor-like
Gaussian D0 (�33%) (peak energy¼ 0.85 eV). The second
most significant contributions come from the acceptor-like
Gaussian D0 (�17%, 1.05 eV) and the donor-like Gaussian
D� (�8%, 0.55 eV). The remaining contributions originate
from states of the donor-like Gaussian Dþ (�3%, 1.15 eV)
and the acceptor-like Gaussian D� (�0.02%, 1.35 eV).
Percentages were evaluated at V¼�2V, but the proportions
do not significantly change with the applied reverse voltage.
These contributions are mostly determined by the proximity
of the Gaussian peak energies to the energy levels EG

T0D and
EG
T0A and in less extent by the number of states enclosed by

each Gaussian. The generation efficiency changes more
rapidly than the Gaussians distributions with the gap–state
energy. Tail states add two more pairs of terms to the
generation rate, but their contributions are negligible. Using
the parameters of Table 1, the intrinsic trap levels at tail
states can be evaluated as ET

T0A � 0.98 eV and ET
T0D � 0.74

eV. At these energies, the density of tail states is well below
the density of defect (Gaussians) states, as seen in Fig. 3
where the density of defects and tail states at the energies
ET0D and ET0A are indicated with circles.

Figure 2(a) and (b) shows that the generation efficiency
of Eqs. (12) (thicker solid lines) can replicate quite well the
generation efficiency obtained with the SRH formalism
(empty circles) for most of the gap state energies. The decay
at the QFLTC, the valley of the thinner solid line as well as
the diverging dotted lines around EG

T0D obtained for the
generation efficiencies will be explained in Section 5.
Results are illustrated for a reverse voltage of �1V at half
way of the intrinsic layer for donor-like defect states. The
occupation functions fn and fp given by Eqs. (16) can be
derived from the SRH formalism without approximations.
Figure 2(c) shows, as expected, that Eqs. (16a) and (16b)
give rise to identical results than Eqs. (1a) and (1b). Hence,

Fig. 2 indicate that the integration of Eqs. (11) and (16) is
expected to give rise to reverse dark J–V similar to the ones
obtained with the SRH formalism. However our results
show that the implementation of the 0KRDA is not that
straightforward and more discussions are needed.

In this paper, the applied reverse voltages will be
considered higher or lower with respect to their absolute
values. For example, applied voltages of �0.5 and �1.0V
will be considered higher and lower than �0.7V,
respectively.

Figure 4 shows that the 0KSTA follows the dark J–V
obtained with the SRH formalism at very low reverse
voltages (V��0.06V). On the other hand, significant
differences between the predicted dark J–V curves obtained
with the SRH and 0KSTA that steadily increase with the
applied reverse voltages can be observed. The derivation of
Simmons and Taylor precludes the 0KSTA of reproducing
the dark J–V curves of p–i–n junctions when they are
reversed biased [5, 16]. However, subtle details that will be
now discussed open the possibility of combining the 0KSTA
with the 0KRDA to properly reproducing the shape of the
dark J–V at low reverse voltages.

When the recombination efficiencies of the 0KSTA
[second line of Eq. (2c)] and the SRH formalism [Eq. (1c)]
are compared, all the emission processes seem to have being
neglected. However, the emission of electrons from gap
states between the intrinsic trap level ET0 and Efnt and the
emission of holes from gap states between the intrinsic trap
level ET0 and Efpt are still taken into account in the 0KSTA.
These emission processes are hidden in the definition of
the quasi-Fermi levels for trapped carriers Efnt and Efpt

(QFLTC).
Other inaccurate conclusion could be that the 0KSTA

cannot be applied at all in reversed biased p–i–n operating

Figure 3 DOS in the intrinsic layer of the a-Si:H p–i–n device.
Tail and defect states have exponential and Gaussian distributions,
respectively. The total density of defect states is shown only for the
sake of clarity. The intrinsic trap level ET0 is indicated at tail
(supra-index T) and defect (supra-index G) states for donor-like
(sub-index D) and acceptor-like states (sub-index A).
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under dark conditions because the QFLTC become inverted.
Under dark conditions the quasi-Fermi levels of free carriers
are inverted for any reverse voltage, no matter how small is.
On the other hand, the QFLTC do not become inverted at
very low reverse voltages. For instances, for the parameters
of Table 1 the relationship Efnt>Efpt holds over the whole
intrinsic layer and Eq. (2c) can still be used for a reverse
voltage of V��0.02V. Inversion of QFLTC in the p–i–n
device under analysis begins to be observed for a reverse
voltage of�0.04V in both donor and acceptor defect states.
Inverted QFLTC are found in small regions of the intrinsic
region not exactly at the same spatial location and where the
generation efficiency shows its maximum. At V¼�0.04V,
the QFLTC are inverted at the left (right) hand side of the
maximum of the generation rate for donor (acceptor)
defects. When the reverse voltage is increased, the two
regions, where QFLTC are inverted at donor-like and
acceptor-like states grow and merge into only one that
will be recognized with the spatial coordinates (x3, x4).
The more the reverse voltage is increased the more similar
the coordinates (x3, x4) are to the coordinates (x1, x2) where
the generation rate is different from zero. Both spatial
regions (x3, x4) and (x1, x2) jointly expand toward the
interfaces inside the i-layer at higher reverse voltages and
the relationship x1� x3< x4� x2 holds.

The 0KSTA [Eqs. (2)] was implemented in D-AMPS by
relying in low-pass and high-pass Butterworth filters, that
will be recognized with the symbols BLP(E) and BHP(E),
respectively [21]. Our code could not converge when step
functions with abrupt discontinuities were directly imple-
mented. Butterworth filters contain two parameters: the
transition energy (QFLTC in our case) and the order “n” that
defines its sharpness. Higher values of “n” give rise to
steeper transitions. The filter order was increased until
our simulations became independent of “n”. In particular

Eq. (2c) were realized in D-AMPS as:

hR ¼

(
hFBLP Efpt

� �
Ev < Et < Efpt

hFHLP Efpt
� �

BLP Efntð Þ Efpt < Et < Efnt

hFHLP Efntð Þ Efnt < Et < Ec

hF ¼ vth
np� n2i
� �

sNsP

nsN þ psP
:

ð18aÞ

Butterworth filters with “n” larger than 30 behave nearly
ideal filters making the recombination or generation
efficiency zero at energies between the mobility edges
and the QFLTC when QFLTC are not inverted [see
inequalities (18b)]. On the other hand, when QFLTC
become inverted the generation efficiency becomes differ-
ent from zero in the energies indicated in inequalities (18c):

hR ¼
¼ 0 Et < Efpt

6¼ 0 Efpt < Et < Efnt

¼ 0 Et > Efnt

8><
>: ð18bÞ

hR ¼
6¼ 0 Et < Efpt

¼ 0 Efpt < Et < Efnt

6¼ 0 Et > Efnt

8><
>: ð18cÞ

Under dark conditions and biasing the p–i–n junction
with reverse voltages, two different scenarios are possible:
(i) at very low voltages the QFLTC are not inverted along
the whole intrinsic layer or (ii) at moderate and high
voltages the QFLTC become inverted inside a region (x3, x4)
of the intrinsic layer, but remaining not inverted outside of
the region (x3, x4). In both cases, there are regions where the
0KSTA can still be applied. Our code D-AMPS checks
where the QFLTC are inverted and uses the 0KRDA only
inside the spatial region with coordinates (x3, x4). The two
approximations were combined to properly describe the
transport physics over the whole device length and match
the dark J–V at any reverse voltages. When the reverse
voltage is increased, the region (x3, x4) widens and the
0KRDA is applied to a bigger segment of the intrinsic layer.
Inspection of Fig. 4 indicates that the contribution of the
0KSTA to the total current density J is �10% (20%) of the
current density obtained with the SRH formalism at reverse
voltages of�0.6V (�0.3V). These voltages slightly change
with temperature, being a bit lower at lower temperatures.

The idea of Hack and Shur of including the term n2i in
the numerator of Eq. (2c) [9] can be extended at low reverse
voltages in regions where the QFLTC are not inverted. The
0KSTA will add an extra contribution of e–h thermally
generated (instead of extra recombination of e–h pairs [9]) to
the dark current because in these regions the term n2i of Eq.

Figure 4 Comparison of the reverse dark current obtained at
different temperatures with the 0KSTA and SRH formalisms for an
a-Si:H p–i–n device with a 600 nm thick intrinsic layer at different
temperatures. Results are also shown for a mc-Si:H p–i–n sample
with a 3000 nm thick intrinsic layer at room temperature only.
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(2c) will prevail over the product np. On the top of that, the
use of Eq. (18a) in spatial locations where the QFLTC are
inverted would allow for the inclusion of emission processes
of electrons and holes from gap states with energies between
the mobility edges and the QFLTC to extended states. The
use of Eq. (18a) can be considered as a variation of the
traditional 0KSTA proposed by Simmons–Taylor in regions
where QFLTC are inverted. However the contribution of
these last gap states to the dark current was found to be quite
low and it can be considered negligible (see Section 5).

Figure 5 shows the QFLTC for the a-Si:H p–i–n with a
600 nm thick i-layer at reverse voltages of �0.5 and �1V.
Although, near p/i and i/n interfaces the QFLTC are not
inverted and more apart from each other enclosing more gap
states than in the bulk (where QFLTC are inverted), the
maximum contribution to the dark current comes from
the intrinsic layer bulk, where the concentrations of free
electrons and holes are more comparable to each other and
well below the concentration of majority carrier near the
interfaces (where n	 p or p	 n). Thermal emission of e–h
pairs is favored when two conditions are fulfilled: gap states
are near the energy ET0 (where emission probabilities of
electrons and holes are near equal; ET0 coincides with mid-
gap when electron and hole capture cross sections are equal)
and free carrier concentrations are below ni, so that carrier
emission is favored over carrier capture. This scenario is
present in the i-layer bulk and not near the p/i and i/n
interfaces where one type of free carrier dominates.

In Fig. 6, the dark J–V curves and relative errors
obtained for the 0KSTA and different variations of the
0KRDA are shown for the p–i–n device with a 600 nm thick
intrinsic layer and the electrical parameters of Table 1.
Hereafter the dark J–V curves obtained with the 0KRDA
will include the contribution of the 0KSTA at low voltages
when no clarifications are made.

4 Exploring the consistency of the 0KRDA
method The accuracy of the 0KRDA method is tested
by comparing the J–V curves obtained with the 0KRDA and
the SRH using the same electrical and optical parameters.
The closer the J–V curves are, the more accurate the method
will be considered. In other words, the dark J–V obtained
with the SRH formalism will be used as our reference.

Our approximation was tested modeling the density of
DBs with either the UDM or the DPM in a-Si:H based p–i–n
devices of different intrinsic layer thicknesses, density of
defects, temperatures, and mobility gaps. Similar results and
relative errors were obtained for the different scenarios. Our
results are shown in Fig. 7. The relative error is only shown
for the a-Si:H p–i–n with a 600 nm thick intrinsic layer at
room temperature. For other devices, the relative errors are
comparable. The 0KRDA was also applied to a mc-Si:H p–
i–n structure with a 2000 nm thick intrinsic layer (see
Fig. 7). In all cases, the approximation was found to be quite
satisfactory. The 0KRDA should not be applied below
200K because electrical transport by hopping could become
significant [22]. The temperature range 200–450K was
checked in our simulations.

Figure 5 Band diagrams of an a-Si:H p–i–n junction with a
600 nm thick intrinsic layer obtained under dark conditions for
reverse voltages of �0.5 and �1V. The diagrams contain the
conduction and valence band edges, the quasi-Fermi levels Efn and
Efp for free carriers (solid lines), the quasi-Fermi levels for trapped
carriers Efnt and Efpt (empty symbols), the demarcation energies
Edn and Edp (filled symbols), and the intrinsic trap energy ET0. The
last five energy levels are shown for donor-like defect states.

Figure 6 Comparison of the dark reverse dark J–V obtained at
room temperature in the a-Si:H p–i–n sample with a 600 nm thick
intrinsic layer for the formalisms: SRH (filled circles), 0KSTA and
0KRDA (solid lines). Dark J–V curves obtained with the numerical
integration of the generation efficiencies are also shown for
comparison: the NI0KRDA and the NIDE0KRDA where the
quasi-Fermi levels for trapped carriers or the demarcation energies
were adopted as integration limits, respectively (see Section 5).
Errors are shown in dotted lines for some approximations.
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The 0KRDA tends to overestimate the current density J
at reverse voltages higher than �0.25V and to slightly
underestimate J at low reverse voltages. However the
predicted dependence of the current density Jwith respect to
the reverse applied voltage V obtained with the SRH
formalism is properly replicated. This result is similar to the
one obtained for dark reversed J–V curves with the STA,
that does not contain the step functions of the 0KSTA [17].

In the DPM, defect states are directly assumed
amphoteric and represented by the energy levels Eþ/0 and
E0/� separated by correlation energy U. As the STA was
derived for decoupled states the DSAwas also applied to the
expression of the density of DB derived by Powell and
Deane [16]. Hence, the density of states N(E) obtained with
the DPM [1, 2] was replaced by two density of state
functions: Nd(E) for donor-like states, a copy of N(E)
located kTln(2) below in energy, andNa(E) for acceptor-like
states, another copy of N(E) placed above in energy by
Uþ kTln(2) [2, 16].

Using the captures cross sections of Table 1 [16],
obtained by matching the J–V characteristics with the DPM
the intrinsic trap levels are again EG

T0D � 0.74 eV and
EG
T0A � 0.98 eV. The freezing temperature was set to 460–K

and the hydrogen concentration equal to 1� 1021 cm�3.
Other electrical parameters can be found elsewhere [16].

Similar comments about the accuracy and the combined
use of both approximations (0KSTA incorporated in the
0KRDA) for the evaluation of dark reverse J–V curve,
already made with the UDM, can be made for the DPM.
However, the relative errors obtained in the evaluation of
reverse dark J–V curves are lower when the DPM is invoked
because the DSA introduces an error of opposite sign to the
one originated by the STA [16].

In Fig. 8, the trapped electron and hole concentrations
obtained with the SRH formalism and the 0KRDA are
compared at room temperature in the a-Si:H p–i–n with a
600 nm thick i-layer when a reverse voltage of �1V is
applied modeling DBs with the UDM. Only small differ-
ences can be observed in the trapped carrier concentrations.
Hence, the electric field is evaluated with a high degree of
accuracy with the 0KRDA.

5 Refining the 0KRDA method Figure 6 also
shows the dark J–V curves calculated with the option
NI0KRDA that evaluates the current density with Eq. (15),
but integrating the generation efficiencies of Eq. (11)
numerically, instead of analytically, as follows:

GE<ET0 ¼
ZET0

EV

NðEÞhE<ET0
ðEÞdE �

XiðET0Þ

iðEVÞ
NðEiÞhE<ET0

ðEiÞ ;

GE>ET0 ¼
ZEC

ET0

NðEÞhE>ET0
ðEÞdE �

XiðECÞ

iðET0Þ
NðEiÞhE>ET0

ðEiÞ :

ð19Þ

Trapped charge densities are also evaluated with
numerically integrations of the product between the density
of states N(E) and the occupation functions fn and fp. The
dark J–V obtained with the NI0KRDA is closer to our
reference (SRH) than its counterpart of the 0KRDA (see
Fig. 6). The relative error is very low especially at reverse
voltages higher than �0.8V indicating that the 0KRDA
could be improved further.

In order to realize the 0KRDA from the NI0KRDA, two
steps are needed: the numerical integration must be replaced

Figure 7 Comparison of the dark reverse dark J–V curves
obtained with the SRH and 0KRDA at different temperatures and
intrinsic layer thicknesses in several a-Si:H p–i–n devices where
the density of DB was modeled with the DPM. The comparison is
also shown for a mc-Si:H p–i–n sample with a 2000 nm thick
intrinsic layer at room temperature (UDM). The relative error is
shown for the a-Si:H p–i–n with a 600 nm thick intrinsic layer only.

Figure 8 Trapped electron and hole concentrations obtained with
the SRH and the 0KRDA formalisms for the a-Si:H p–i–n device
with a 600 nm thick intrinsic layer under dark conditions at room
temperature and biased with a reverse voltage of �1V.
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by the analytical integration of the generation efficiency
with respect to energy made in Eqs. (14) and the electron
and hole occupation functions of Eqs. (16) must be
approximated by step functions to evaluate trapped carrier
concentrations and the electric field. In the NI0KRDA, low-
pass and high-pass Butterworth filters were implemented at
Efnt and Efpt and ET0 to realize the sharp steps and achieve
convergence in D-AMPS, as it was done in the 0KSTA.
Being more specific in the NI0KRDA, the following filters
were defined: BHP(Efnt) and BLP(ET0) for energies
Efnt�E�ET0 and BHP(E

�
T0) and BLP(E

�
fpt) for energies

E
�
fpt �E� �E

�
T0, respectively. The approximations en(E)


ep(E) and en(E)	 ep(E) at energies E<ET0 and E<ET0

made in the 0KRDA and STA are quite accurate few kTs
away from ET0 (E

�
T0), but near ET0 (E

�
T0) they become

questionable as shown in Fig. 2b. The dotted line of Fig. 2b
indicates how the generation efficiency of our 0KRDA
increases significantly over the one of the SRH near ET0

(E
�
T0) reaching a maximum value of 0.031 (dotted line) that

can be visualized in the linear scale adopted in Fig. 2b (the
value 0.031 is not shown for scale reasons). The integration
of this excess of the generation efficiency gives rise to the
higher density currents predicted by the 0KRDA with
respect to the SRH formalism. In the NI0KRDA, the
Butterworth filters incorporated at ET0 (and E

�
T0) preclude

the generation efficiency of reaching these excessive values
as shown also in Fig. 2b (see solid thicker line). The
numerical integration was performed by sub-dividing the
mobility in equally spaced energy slabs and the generation
efficiency peaks up in the nearest slabs to ET0 (and E

�
T0).

In order to test how sensitive is the 0KRDA to the limits
of integration of Eqs. (12), ET0 and E

�
T0 were replaced by

ET0 � cT0kT and E
�
T0 � cT0kT where “cT0” is an adjustable

constant. Figure 9(a) shows the obtained dependence of dark
J–V curves with the constant “cT0”. The dark J–V curves
predicted with the 0KRDA and the SRH are on the top of
each other at high reverse voltages and the relative errors are
considerably reduced when the constant cT0 is adopted equal
to cT0¼ 0.2; i.e, by restraining the analytical integration to
one fifth of kT at both sides of the energy ET0. The valley
observed in Fig. 2b (see thinner solid line) is created by the
filters BLP(ET0) and BHP(E

�
T0) when cT0 is 0.2. On the other

hand, the drops at the QFLTC showed in Fig. 2a (solid lines)
are caused by the filters BHP(Efnt) and BLP(E

�
fpt). Hence, at

low reverse voltages, the agreement with the J–V predicted
with the SRH can also be improved by introducing another
adjustable constant “cQFLTC” in order to extend the region of
integration a little beyond the inverted QFLTC. Introducing
this new adjustable constant, Efnt and Efpt are replaced by the
energies Efnt� cQFLTCkT and E

�
fpt � cQFLTCkT. The best fit

was achieved for cQFLTC� 0.75. Using this new correction
the predicted dark J–V curves with 0KRDA and SRH are
nearly on the top of each other at low reverse voltages also.

One more elegant approach to refine our approximation
was also investigated. The QFLTC Efnt and Efpt of Eqs. (12)
and (13) were replaced by the demarcation energies (DE)
defined by Rose [23]. DEs are the energies where an electron

or hole has the same probability of being emitted to the
conduction or valence band, respectively, than to recom-
bine; i.e., where the following conditions are fulfilled:

en ¼ pvTHsP;

ep ¼ nvTHsN:

The DE for electrons and holes are given by [23]

Edn ¼ EC þ kT ln
psP

NCsN

� �
;

Edp ¼ EV � kT ln
nsN

NVsP

� �
:

ð20Þ

When the QFLTC are replaced by Edn and Edp the
generation rate expressions change to [see Eq. (14)]:

GE<ET0 ¼ vTHsNkTniNðET0Þ sP

sN

� �1=2

� psP

nisN

� �" #
;

Figure 9 Changes in thepredicted reversedark J–V curves obtained
in the a-Si:H p–i–n sample with a 600nm thick intrinsic layer at
roomtemperaturewhen the integration limits arechangedas follows:
(a)ET0 is replaced byET0 � cT0kT andE

�
T0 � cT0kT; (b)Efnt andEfpt

are replaced byE
�
fnt � cQFLTCkT andE

�
fpt � cQFLTCkT, where cT0 and

cQFLTC are adjustable coefficients.

Phys. Status Solidi B 252, No. 9 (2015) 2139

www.pss-b.com � 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Original

Paper



GE>ET0 ¼ vTHsPkTniNðET0Þ sN

sP

� �1=2

� nsN

nisP

� �" #
:

ð21Þ

The dark J–V curves obtained by implementing these
generation rates in Eq. (15) will be recognized as the option
DE0KRDA. It is important to realize that Eq. (21) can be
used only inside the spatial region where the QFLTC are
inverted because outside this region both DE are either
below or above the energy ET0 (see Fig. 5). The electron
demarcation energies, like the quasi-Fermi levels, become
inverted at any reverse applied voltage V, no matter how
small is V. Figure 5 shows that near the crossover of QFLTC
the DE and the QFLTC of minority carriers depart from each
other adding more gap states to the integration performed in
Eqs. (12). The dark J–V curves obtained with the options
0KRDA and DE0KRDA are quite similar at high reverse
voltages. On the other hand at low reverse voltages the dark
J–V obtained with the DE0KRDA becomes closer to our
reference (SRH). The numerical integration using the
demarcation energies was also explored in the
NIDE0KRDA. Low-pass and high-pass Butterworth filters
were defined at Edn and Edp and ET0 following similar
procedure as in the NI0KRDA.

In either the 0KRDA or the DE0KRDA, the current
density Jwould be underestimated at low reverse voltages if
the 0KSTA is not implemented in parallel. Similar
comments apply when the integration with respect to the
gap energy [Eq. (12)] is performed numerically rather than
analytically (see in Fig. 6, results with the NI0KRDA and
NIDE0KRDA). In order to clearly show how important is
the contribution of the 0KSTA to the dark J–V curves they
were first reevaluated by excluding the contribution of gap
states situated between inverted Efnt and Efpt and mobility
edges and in second instances by neglecting the contribution
of the 0KSTA of states from regions where QFLTC are not
inverted. Figure 10 shows that in the first case differences
are very minor (J–V curves are practically on the top of each
other) but in the second case deviations at low reverse
voltages are significant.

6 Conclusions A new algorithm, recognized as
0KRDA, that simplifies the evaluation of the reverse dark
current voltage (J–V) characteristics of semiconductor thin
film devices was developed. It was designed to replace the
0K-Simmons–Taylor approximation (0KSTA) in regions
where quasi-Fermi levels for trapped carriers Efnt and Efpt

are inverted, a scenario found in reversed biased junctions
operating under dark conditions. The 0KRDA can be
applied when the dangling bond density is modeled either
with the Uniform Density of states Model (UDM) or the
Defect Pool Model (DPM). When a p–i–n junction is
subjected to low reverse voltages the 0KRDA should be
combined with the 0KSTA to properly reproduce the J–V
obtained with the SRH. Contributions to the generation of e–
h pairs of gap states between the non-inverted quasi Fermi

levels for trapped carriers in the intrinsic layer are not
negligible. At higher reverse voltages the 0KRDA can
reproduce the dependence of the current J with the applied
voltage V obtained with the SRH formalism without
necessity of including the contribution of the 0KSTA.
The departure between the reverse dark J–V curves obtained
with the SRH formalism and the 0KRDA for reverse
voltages higher than |0.1| V is not greater than |10|% (|25|%)
when the DPM (UDM) is adopted. At high reverse voltages
the error can be minimized by neglecting the contribution of
thermally e–h pairs from gap states located closer than 0.2kT
of the intrinsic trap level ET0 while at low reverse voltages
the error can be minimized by extending the region of gap
states contributing to the generation of thermal e–h pairs in
0.75kT beyond the inverted quasi-Fermi levels for trapped
carriers. The predicted dark J–V curve becomes closer to the
one obtained with the SRH formalism at low reverse
voltages also when gap states between the inverted
demarcation energies rather than the quasi-Fermi levels
for trapped carriers are included in the thermal generation of
e–h pairs. The 0KRDA can be applied to other disordered
semiconductor based detectors and solar cells devices than
p–i–n junctions, like Schottky barriers, tandems structures,
etc. operating under dark conditions or low light intensities.
Its simpler expressions facilitate the analysis of the transport
physic controlling the reverse dark current.
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