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Fisher’s information measure, we also establish a connection between such classically forbidden
operations and statistical estimation theory.
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The physics of information has attracted attention for
more than half a century, though the number of studies in
this field has been growing only in the last two decades or
so [1–14]. Information-related concepts are considered
important for various physical problems ranging from
quantum mechanical aspects of the second law of ther-
modynamics [11] to the evolution of inhomogeneous cos-
mological models [12]. Recent investigations on novel
and counter-intuitive ways of processing and transmitting
(quantum) information [13,14] boosted interest in the
physics of information across scientific communities.

Some fundamental aspects of quantum physics that are
relevant for the processing of information admit to clas-
sical counterparts. Classical analogues of entanglement
[15] and quantum search algorithms [16] as well as
classical dynamical settings leading to non-Boolean log-
ics [17,18] have been identified. Lately, it has been shown
[19] that Liouville dynamics complies with a classical
counterpart of the celebrated quantum noncloning theo-
rem [20,21]. Besides quantum cloning, however, there are
other important examples of information-related pro-
cesses forbidden by the laws of quantum mechanics,
e.g., quantum deleting [22] and quantum disentangling
[23]. The physical impossibility of those quantum opera-
tions has profound implications for both quantum infor-
mation theory and quantum physics in general, being
nowadays the focus of intensive research [24–27].

The aim of this Letter is to advance a general frame-
work for the discussion of classical counterparts of some
of the aforementioned quantum impossible processes. We
focus on classical analogues of the noncloning and the no-
deleting theorems, which we derive from the Liouville
dynamics that governs the evolution of statistical ensem-
bles. We will prove that the concomitant classically for-
bidden operations are not compatible with a profound

property of Liouville dynamics: the conservation of the
(Kullback-Leibler [28] and related) information dis-
tances. Exploring classical analogues of the alluded to
theorems can help to distinguish between their essentially
quantum mechanical features and aspects that may arise
within purely classical probabilistic settings. This line of
inquiry may contribute to a deeper understanding of the
relationship between classical and quantum mechanics.

We study general classical deterministic dynamical
systems, whose evolutions are governed by the equations
of motion

dx
dt

! v"x#; with x;v 2 RN (1)

where x denotes a point in the concomitant
N-dimensional phase space [29]. The dynamics of a sta-
tistical ensemble of such systems can be described by a
time-dependent probability distribution P "x; t#. Its dy-
namics is given by the Liouville equation,

@
@t

P $r"vP # ! 0: (2)

Considering two probability distributions, P 1 and P 2,
we can define the integral

G"P 1;P 2# !
Z

dxP 1g
!P 1

P 2

"

; (3)

in which g%& & &' denotes an arbitrary function. Dependent
on the explicit choice of the function g%& & &' this general
integral provides a convenient way to measure time-
invariant relations (distances) between P 1 and P 2.
Substituting (2) in the temporal derivative of (3) one finds
through integration by parts
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here we assume that eventual surface terms vanish; !v
denotes the sum of the components of v. In order to
illustrate this form, notice that the special case

g
!P 1

P 2

"

! ln
P 1

P 2

G ! K
'''! K"P 1;P 2# !

Z

dxP 1 ln
P 1

P 2
(5)

describes the Kullback-Leibler distance and that

g
!P 1

P 2

"
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(((((((

P 2
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s

G ! O
'''! O"P 1;P 2# !

Z

dx
(((((((((((((

P 1P 2

p

(6)

defines the overlap between P 1 and P 2. This overlap is
closely related to a frequently used statistical distance
between probability distributions [30] given by
cos(1fO"P 1;P 2#g. Suppose we have a composite system
constituted by two statistically independent subsystems a
and b described by a factorized joint probability distri-
bution P ! P "a#P "b#. It follows from (5) that the
Kullback distance between two such distributions verifies

K"P 1;P 2# ! K"P "a#
1 ;P "a#

2 # $ K"P "b#
1 ;P "b#

2 #: (7)

That is, for factorized probability distributions the total
distance becomes the sum of the individual Kullback
distances between the two subsystems. In contrast, from
(6) one obtains

O"P 1;P 2# ! O"P "a#
1 ;P "a#

2 #O"P "b#
1 ;P "b#

2 #: (8)

Utilizing the forms (5) and (6), we first turn our atten-
tion to the cloning process. For this sake, we assume two
states j ! 1, 2 of a tripartite system composed of a
machine (m), a source system (s), and a target system
(t). In consequence, the initial states read

P j ! P "m#
start"x"m##P "s#

j "x"s##P "t#
blank"x"t##: (9)

The distributions of the final states are denoted by Qj.
Creating an exact copy of the source into the target
implies that, for instance, the marginal distributions (of
the final states) become

Z

dx"m#Qj ! P "s#
j "x"s##P "s#

j "x"t##: (10)

It follows from (7) and (10), however, that the distance
between the final states Qj complies with the inequality

K"Q1;Q2# ) 2K"P "s#
1 ;P "s#

2 # ! 2K"P 1;P 2#: (11)

If K"P "s#
1 ;P "s#

2 # ! 0, this inequality clearly conflicts with
the conservation of the Kullback measure —see [19] for

more details. Because the Kullback-Leibler distance re-
quires that both of the distributions to be compared do not
vanish everywhere as otherwise their logarithm tends to
infinity, i.e., as the integral diverges, we further compare
the distributions via the overlap function introduced ear-
lier. Because of (8) and assuming that P "m#

start and P "t#
blank are

normalized, the Kullback distance between the initial
states (9) results in

O"P 1;P 2# ! O"P "s#
1 ;P "s#

2 # (12)

Using the inequality of Schwarz we find

O"Q1;Q2#!
Z

dx"s#dx"t#dx"m#
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*
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In (13) the equality requires that Q1 / Q2 and, conse-
quently, Q1 , Q2, because Qj are normalized. In sum,
(11) and (13) form contradictions to the conservation of
(5) and (6), respectively, provided that dynamical
changes are given by the Liouville Eq. (2).
Alternatively, we now consider initial states of the source
system belonging to a family of probability distributions
functions P "x;!# characterized by a single parameter !.
The distance (3) between two close distributions belong-
ing to this family is given as [31]

G%P "x;!#;P "x;!$"#'!g"1#$C"2I%P "x;!#'$O""3#;
(14)

where C is a constant depending on the form of the
function g"& & &#. The form I%& & &' is Fisher’s information
measure, which reads

I%P "x;!#' !
Z 1

P

#
@P
@!

$
2
dx: (15)

Fisher’s information is a non-negative quantity that plays
a key role in statistical estimation theory. Indeed, if one
tries to infer the parameter ! from one sample x chosen
from the distribution P , then estimation theory asserts
that the mean squared error E2 for the (unbiased) esti-
mation of ! obeys the Cramer-Rao bound [4]
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E2 ) 1=I%P "x;!#'; (16)

in which equality is achieved for the ‘‘best’’ possible or
efficient estimator. Coming back to the cloning problem,
we assume that the initial states of the composite system
involved in the process obey the form

P ! ! P "m#
start"x"m##P "s#"x"s#;!#P "t#

blank"x"t##: (17)

A successful cloning operation should yield final states

Q ! ! P "m#"x"m#;!#P "s#"x"s#;!#P "s#"x"t#;!#: (18)

Because Fisher’s information is preserved under Liouville
evolution, we have

I%P "s#"!#' ! 2I%P "s#"!#' $ I%P "m#"!#'; (19)

which is clearly impossible provided I%P "s#"!#' ! 0.
Interestingly, this result can be reinterpreted in terms of
statistical estimation theory: we compare the Fisher mea-
sures associated with the initial state (17) and the final
state (18), respectively, and obtain

I%Q!' ) 2I%P !'; (20)

if the transformation from (17) to (18) were possible, then
we would be able to use the final state Q! to estimate the
parameter ! with an optimum mean squared error (as-
suming an efficient estimator)

E2%Q!' !
1

2I%P !' $ I%P "m#"!#'
<

1

I%P !'
: (21)

This form contradicts the Cramer-Rao inequality associ-
ated with the initial states P !, because (16) provides a
bound for the mean squared error associated with every
(unbiased) estimation procedure. Note that the conserva-
tion of Fisher’s information implies that the ‘‘distinguish-
ability’’ of phase space ensembles does not change under
Liouvillian evolution. On the contrary, final states gen-
erated by a universal cloning machine would be more
‘‘distinguishable’’ than the concomitant initial states.

Next to the no-cloning theorem, the so-called non-
deleting theorem has a classical counterpart. To show
this, we assume that the initial states of both the source
and the target systems are described by the same proba-
bility distribution. Hence, the corresponding initial joint
distribution of the tripartite system reads

P j ! P "m#
start"x"m##P "s#

j "x"s##P "s#
j "x"t##: (22)

The aim of the process is to delete information of the
target system against that of the source system, bringing
the probability distribution of the former to a blank state
so that final joint distribution becomes

Q j ! P "m#
j "x"m##P "s#

j "x"s##P blank"x"t##: (23)

The conservation of the Kullback distance provides

K"P "s#
1 ;P "s#

2 # ! K"P "m#
1 ;P "m#

2 #; (24)

implying that the information deleted from the target

system is entirely transferred into the final state of the
deleting machine. Similarly, by assuming O"P "s#

1 ;P "s#
2 # !

0, the conservation of the overlap yields

O"P "s#
1 ;P "s#

2 # ! O"P "m#
1 ;P "m#

2 #: (25)

Again, all the information distance between the states to
be deleted is transferred into the final states of the delet-
ing machine.

In line with [19], we extend the present discussion to
the case in which the initial state of the source-target
system cannot be factorized. For this sake, we consider an
initial state

P j ! P "m#
start"x"m##P "s;t#

j "x"s#; x"t##
! P "m#

start"x"m##P "s#
j "x"s##h"x"s#; x"t##; (26)

where P "s;t#
j "x"s#; x"t## and h"x"s#; x"t## are symmetrical

functions of their respective arguments. P "s#
j "x"s## !

RP "s;t#
j "x"s#; x"t##dx"t# is the marginal probability distribu-

tion for x"s# and h"x"s#; x"t## denotes the conditional proba-
bility distribution of x"t# for a given value of x"s#
(irrespective of j). Given these specific assumptions, the
transformation from the initial state (26) into a final state
P "m#

final"x"m##P "s#
j "x"s##P blank"x"t## is not in conflict with the

conservation of the Kullback distance. This result is con-
sistent with Landauer’s assertion that, in classical sys-
tems, it is possible to erase a bit against its copy. A
physical scenario corresponding to the erasure of 1 bit
against its copy can be represented by an initial ensemble
of bipartite source-target systems, such that in each one
the source and the target are in the same state (represent-
ing a bit and its copy). This ensemble is described by a
distribution of the form (26) with h"x"s#;x"t##!
""x"s#(x"t##.

To briefly discuss the deleting process in terms of
Fisher’s measure, we consider initial states P ! !
P "m#

start"x"m##P "s#"x"s#;!#P "s#"x"t#;!# being defined in terms
of the mono parametric family of distributions
P "s#"x"s#;!#. A universal deleting process would lead
to final states of the form Q! ! P "m#"x"m#;!#+
P "s#"x"s#;!#P blank"x"t##. The conservation of Fisher’s in-
formation, however, implies I%P "s#"!#' ! I%P "m#"!#'.
That is, the Fisher information associated with the initial
states of the target systems is entirely transferred to the
final states of the machine. One may argue that the dis-
tinguishability of the initial target states (which is lost
during the deleting process) is completely transformed
into an equal amount of distinguishability of the final
state of the machine.

As indicated above, even if Liouville dynamics forbids
universal cloning or deleting of ensemble distributions,
the cloning or deleting of some particular distributions
are not necessarily forbidden. For instance, if the states to
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be cloned or deleted are ‘‘nonoverlapping,’’ the Kullback
distance is not defined and our present arguments do not
hold. Further, in this case the overlap distance between
two initial states of the cloning process is equal to the
distance between the corresponding final states: both
distances vanish. Hence, the conservation of distance is
not violated. Similarly, the overlap distances between
initial states and between final states of a successful
deleting process involving two nonoverlapping distribu-
tions also vanish. Consequently, the distance can be pre-
served without transferring any information into the final
states of the deleting machine. Entirely known classical
states described by " distributions are special instances of
this nonoverlapping situation.

Information distances between time-dependent solu-
tions of the Liouville equation constitute integrals of
motion of the concomitant dynamics. The invariance of
these measures imposes rather strong constraints on pos-
sible universal operations in classical ensemble dynamics.
These constraints allow for the identification of classical
analogues of information-related, quantum mechanical
impossible operations such as universal quantum cloning
and universal quantum deleting. The Fisher information
measure provides an interesting interpretation of these
classically forbidden operations in terms of statistical
inference theory. The physical impossibility of universal
cloning or deleting is a basic feature of classical probabi-
listic settings arising from an incomplete knowledge of
the system’s state. However, complete knowledge of clas-
sical states is possible, at least in principle, and cloning
and deleting are not forbidden in such cases (they are
possible even in the more general case of nonoverlapping
probability distributions). In this regard, the quantum
mechanical situation is more strict since universal cloning
or deleting are impossible even within the set of com-
pletely determined states, that is, for pure states [20–22].

The present formalism may be applied to investigate
classical counterparts of other quantum impossible pro-
cesses. Likewise, possible links between our results and
the classical analogue of entanglement analyzed in [15]
deserve in-depth study.
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