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1 Introduction

Understanding the dynamics and cross section of bond yields is important for issues as disparate as

macroeconomic forecasting, monetary policy, debt policy, portfolio risk management, among others.

Current research on the yield curve assumes that a handful of unobserved factors, often given labels

such as �level,��slope,�and �curvature,�describe the entire term structure of interest rates (Knez,

Litterman, and Scheinkman, 1994; Du¢ e and Kan, 1996; Dai and Singleton, 2000; Diebold and Li,

2006). Broadly speaking, the literature evolved into two related but not identical branches: the class

of arbitrage-free a¢ ne term structure models (Piazzesi, 2010) and the class of dynamic Nelson and

Siegel (1987) models as proposed by Diebold and Li (2006). For the most part, the literature has

assumed that latent factors follow a stochastic linear evolution equation. This paper contributes to

the literature on yield modeling by extending the three factor model of Diebold and Li (2006) with

a fourth latent variable that evolves according to a two state Markov chain. We call this model the

Markov switching dynamic Nelson and Siegel (MSDNS) model. This extension makes the model

nonlinear and is intended to capture the economic conditions, such as the phases of the business

cycle, that typically a¤ect the shape and other characteristics of the yield curve.

Diebold and Li (2006) argue that a good model of the yield curve dynamics should be able to

reproduce the historical stylized facts concerning the average shape of the yield curve, the variety

of shapes assumed at di¤erent times, the strong persistence of yields, and the weak persistence of

spreads. In this paper, we argue that the behavior of the yield curve di¤ers in the di¤erent stages

of the business cycle and, therefore, that this has to be taken into account when considering what

can be thought of as the stylized facts. Moreover, once it is accepted that the yield curve changes

over the business cycle, it is then natural to use the MSDNS framework to model the evolution

of the yield curve. This extension is important because the estimated model can then be used for

forecasting interest rates, portfolio risk management, and so forth.

Diebold and Li (2006) model the yield curve using a linear state-space model where bond yields

are linear functions of three latent variables that are interpreted as level, slope, and curvature

factors. Latent variables evolve as a vector autoregression of order one and observed yields are a

linear function of them. Koopman, Mallee, and Van der Wel (2010) extend Diebold and Li (2006)

and allow time variation not only in the level, slope, and curvature factors but also in the loading
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on these factors. Their model includes a fourth unobserved component that a¤ects the loading

on the other three factors. Moreover, they also account for possible changes in the volatility of

the yield curve by including a GARCH term multiplying the covariance matrix of the state-space

representation of their model. The model we propose in this paper also allows for possible changes

in factor loadings and in the volatility of the yield curve, although through a di¤erent channel:

the realized value of the unobserved Markov chain determines the parameters of the state equation

describing the evolution of the latent variables and the parameters of the observation equation

relating latent variables to observed yields.

The interaction between the yield curve and macroeconomic factors has also received attention

in recent years. Ang and Piazzesi (2003) and Diebold, Rudebusch, and Aruoba (2006) developed

factor models of the yield curve that explicitly incorporate macroeconomic factors into the equations

that describe the evolution of the latent variables. They show that this extended framework is useful

to explain the main characteristics of the yield curve for U.S. government bonds. Our modeling

strategy is �exible enough to account for (at least some of) the macroeconomic conditions that

a¤ect the yield curve without the need of directly including those variables.

One possible criticism of the Nelson and Siegel approach is that, in general, it does not rule out

arbitrage opportunities. To address this issue, Christensen, Diebold, and Rudebusch (2011) derive

arbitrage free conditions for the Nelson and Siegel model and evaluate their potential improvement

in the forecasting of the yield curve. In our empirical work, however, we follow the vast majority of

the literature and do not impose the no-arbitrage representation of the Nelson and Siegel model.1 In

this respect, it is important to note that if actual bond yields do not admit arbitrage opportunities

(as one would expect given the highly developed and liquid market for U.S. government bonds),

�tting a Nelson and Siegel model to that arbitrage-free data will presumably generate a �tted yield

curve that is approximately arbitrage-free. As Diebold and Rudebusch (2012) put it,

�...a model may admit arbitrage yet provide a good approximation to a much more

complicated (perhaps arbitrage-free) reality and hence forecast well. Moreover, if reality

is arbitrage free, and if a model provides a very good description of reality, then impo-

sition of no-arbitrage would presumably have little e¤ect. An accurate model would be

1This is, for example, the approach followed by Diebold and Li (2006), Diebold, Rudebusch, and Aruoba (2006),
and Koopman, Mallee, and Van der Wel (2010).
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at least approximately arbitrage-free, even if freedom from arbitrage were not explicitly

imposed.�

This statement is supported by the empirical �ndings of Coroneo, Nyholm, and Vidova-Koleva

(2011). Using U.S. Treasury zero-coupon yield data, the authors argue that the Nelson and Siegel

model is compatible with the no-arbitrage constraints by showing that: i) the hypothesis that the

Nelson and Siegel factor loadings ful�ll the no-arbitrage constraints cannot be rejected (i.e. the

factor loadings from the model are not statistically di¤erent from those derived from an arbitrage-

free model), and ii) the Nelson and Siegel model performs as well as its no-arbitrage counterpart in

out-of-sample forecasting. On the basis of these results, the authors argue that it is not necessary

to impose explicit no-arbitrage constraints on the Nelson�Siegel factor loadings when such a model

is estimated on arbitrage-free data, as it is likely to be the case for U.S. bond yields (at least for

the sample period used). To corroborate these �ndings, their Monte Carlo results show that, if the

no-arbitrage restrictions do not hold in the data, then the tested hypothesis is rejected. Of course,

extending our modeling framework to include the no-arbitrage restriction is not only possible but

also desirable. Given the arguments outlined before, however, we leave this extension for future

research as it would be outside the scope of the present paper.

Based on US zero-coupon data, all our estimated switching models present signi�cant evidence

of regime shifts, with the estimated transition probabilities implying that the regimes are highly

persistent. Most importantly, our empirical results show that the conventional stylized facts of the

yield curve are typically associated with the boom periods. Furthermore, our proposed models seems

to not only successfully characterize the data under scrutiny but also, and perhaps more impor-

tantly, to have a good forecasting performance. The forecasting results are particularly noteworthy

because one of the perceived weaknesses of nonlinear models is their relatively poor out-of-sample

performance. We also discuss the economic relevance of our model for portfolio risk management

by showing that ignoring the regime speci�c nature of the model gives an incorrect coverage of the

risk associated with changes in interest rates.

The paper is organized as follows. In Section 2, we present some stylized facts that motivate

the use of our model. Section 3 presents the basic Markov switching framework for modeling the

yield curve and its economic relevance using an example of portfolio risk management. Section
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4 describes the econometric model and an approximate �ltering algorithm used to evaluate the

likelihood function of the nonlinear model. In Section 5 we apply the model using U.S. data on

government bond yields and in Section 6 we assess the out-of-sample performance of the model.

Section 7 concludes.

2 Stylized facts of the yield curve: Are booms and recessions im-

portant?

We examine U.S. Treasury yields of �xed maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60,

72, 84, 96, 108 and 120 months. The yields are derived from bid-ask average price quotes, from

January 1972 through December 2000, using the un-smoothed Fama and Bliss (1987) approach, as

described in Diebold and Li (2006).2 We also use NBER dates to separate booms from recessions.

A recession is de�ned as starting the month after the economy reaches a peak of economic activity

and ending the month when activity reaches its trough. During the remaining periods, the economy

is said to be in a boom. With these de�nitions, our sample period contains four recessions that last

about one year on average, and �ve booms that last about �ve years on average.

Figure 1 displays a number of statistics over the entire sample and separating recession from

boom episodes. The top panel displays average yields across maturities. Three things follow from

this plot. First, while the yield curve is on average about 35 percent greater in recessions than in

booms, the di¤erence decreases as yield maturity increases. Second, except at short maturities, the

average yield curve is �atter in recessions than in booms. And third, the average yield curve over

the entire sample has a similar shape to that during booms. The bottom left panel of the �gure

shows the standard deviation of yields across maturities. We compute the standard deviation of

yields in each boom (recession) episode and then average over all boom (recession) episodes. (We

do the same below with the autocorrelation.) Yields are more volatile in recessions than in booms

at short maturities but the converse holds at long maturities. In both cases, however, long rates

are less volatile than short rates. Also, the volatility of yields ignoring the state of the economy is

substantially greater than that during both booms and recessions.3 Finally, the lower right panel of

2We obtained the data from Professor Diebold�s website.
3The reason for this di¤erence is that taking the standard deviation over the entire sample ignores the discrete

changes in the level of yields that occur when the economy moves back and forth between booms and recessions.
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Figure 1 displays the persistence of yields, de�ned as their �rst order sample autocorrelation. It is

apparent that yields are substantially more persistent in booms than in recessions and that, within

regimes, persistence is similar across maturities. In addition, persistence in booms and recessions

is substantially smaller than the estimated persistence ignoring changes in economic activity: while

the latter is about 0.98 for all maturities, the cross sectional average persistence is 0.81 in booms

and 0.64 in recessions. This �nding suggests that the high persistence of yields documented in the

literature (e.g. Diebold and Li, 2006) is, to a large extent, driven by discrete changes in the level

of interest rates as the economy transits between booms and recessions. Because booms and (to a

lesser extent) recessions last several months, these persistent discrete changes in bond yields increase

their unconditional autocorrelation.

Figure 1 about here

In panel A of Table 1 we report some statistics on measures of level, slope, and curvature for

booms, recessions, and the entire sample. As in Diebold and Li (2006), we de�ne the level as the 10

year yield, the slope as the spread between the 10 year and the 3 month yields, and the curvature as

the spread between the 2 year and 3 month yields minus the spread between the 10 year and 2 year

yields. The slope in booms is over 100 percent greater than in recessions (1.39 versus 0.66) and is

somewhat larger than the average slope in all sample (1.29). In addition, while the volatility of the

slope is similar in booms and recessions, the persistence of the slope is also substantially larger in

booms than in recessions. As in the case of yields, the discrete changes in the slope between booms

and recessions induce more persistence to the slope over the entire sample. Finally, the curvature

of the yield curve is over four times greater in recessions than in booms, but is twice as persistent

in booms than in recessions. Note, as Figure 1 suggests, that the much greater curvature of the

yield curve in recessions vis-a-vis booms is driven by the large spread between the 15 month and 3

month yields. For yields greater than 15 months, the yield curve during recessions is virtually �at.

Table 1 about here

In sum, the above �ndings suggest that the dynamic properties of the yield curve di¤er markedly

between booms and recessions. A model that does not allow for discrete changes in some variable

These breaks in the level of interest rates show up as a higher overall yield volatility.
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(like our Markov regime indicator variable) is likely to run into di¢ culties when trying to match the

di¤erent shapes of the yield curve over the business cycle. The model we propose below is �exible

enough to be able to account, at least in principle, for the discrete changing patterns of the yield

curve.

3 Modeling the yield curve

Practitioners use various functional forms to model the yield curve. One of the most popular models

is that of Nelson and Siegel (1987) and its dynamic version proposed by Diebold and Li (2006).

Diebold and Li consider a parametric model of the yield curve at some time t of the form

Rt(�) = �1t + �2t
1� e���
��

+ �3t

�
1� e���
��

� e���
�
; (1)

where Rt (�) represents the zero-coupon yield on a bond that matures in � months, f�1t; �2t; �3tg

are time-varying factors, and � is a constant associated with the exponential decay rate of the

factor loadings at di¤erent bond maturities.4 Even though the four parameters of model (1) could

be estimated using non-linear least squares, the usual approach is to �x � at some value and to

estimate the factors f�1t; �2t; �3tg using ordinary least squares at each time t.

One of the main insights obtained from Diebold and Li (2006) is that �1t is a long term factor

associated with the level of interest rates, �2t is a short term factor associated with the slope of

the yield curve, and �3t is a medium term factor associated with the curvature of the yield curve.

In particular, using Diebold and Li�s preferred value of � = 0:0609, it follows that Rt (1) = �1t,

Rt (120) � Rt (3) = �0:78�2t + 0:06�3t, and 2Rt (24) � Rt (3) � Rt (120) = �0:0004�2t + 0:37�3t.

That is, the level of the yield curve is determined by �1t, the slope is closely related to �2t, and

the curvature is almost completely determined by �3t. However, this interpretation of the latent

factors, in particular that of �3t, depends on the value of �. The relation between the level of

interest rates and �1t holds for any value of �. The relation between the slope of the yield curve

and �2t is also robust: the equality Rt (1) � Rt (0) = ��2t holds for any value of �, and we can

think of Rt (1) � Rt (0) as an alternative de�nition of slope of the yield curve (Diebold and Li,

2006). The relation between the curvature of the yield curve and �3t, however, is less robust and

4Koopman, Mallee, and Van der Wel (2010) also allow the parameter � to be time-varying.
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depends on the value of �; for some values of �, like those we estimate below, the curvature factor

is a non-trivial linear combination of �2t and �3t.

Independently of the actual interpretation of the latent factors, in this paper we propose to

model the yield curve according to

Rt (�) = (1� xt)R0t (�) + xtR1t (�) ;

where xt is a regime-indicator variable taking the values 0 or 1,

Rjt(�) = �1t + �2t
1� e��j�
�j�

+ �3t

�
1� e��j�
�j�

� e��j�
�

(2)

is the yield curve conditional on regime j = 0; 1, and f�1t; �2t; �3tg are dynamic latent factors whose

probability distribution may also depend on the regime-indicator variable xt. We also assume that

nature selects regime at time t with a probability that depends on what regime nature was in at

time t� 1, so that fxtg form a time-homogeneous, �rst-order Markov chain with state space f0; 1g

and transition probabilities

p00 = Pr (xt+1 = 0jxt = 0) and p11 = Pr (xt+1 = 1jxt = 1) : (3)

The key feature of the model is that the yield curve changes by a variable that can be interpret

as capturing business cycle conditions. For example, as it is explained above, it is a fact that the

slope of the yield curve is di¤erent over the cycle. This parameterization is intended to capture

those e¤ects.5

3.1 Economic relevance of the proposed model: portfolio risk management

The Nelson and Siegel model is popular for portfolio risk management because it collapses the

risk associated with any change in the yield curve into the risk associated with only three factors.

Therefore, a portfolio of coupon paying bonds can be immunized of the capital loss and reinvesting

risks associated with changes in the yield curve by using only three bonds/portfolios. In partic-

5Svennson (1994) extends the Nelson and Siegel model by adding to (1) a term of the form

�4t

�
1� e��̂�=�̂� � e��̂�

�
that is intended to give more �exibility to the model. The idea of model (2) is to give

more �exibility to the Nelson and Siegel model in the same spirit of the extended Svensson�s model.
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ular, an arbitrary bond (or portfolio of bonds) can be hedged for capital and reinvesting risk by

constructing a new portfolio containing the original portfolio and three additional bonds. For each

dollar invested in the original portfolio, the extended portfolio invest �zt dollars in bond z = 1; 2; 3.

Because the yield curve is assumed to be generated by model (1), the change in the price of any

bond due to arbitrary changes in the entire yield curve are a consequence of movements in just three

latent factors. In Appendix A we show that hedging the extended portfolio amounts to choose a

vector,
�
�1t ; �

2
t ; �

3
t

�0
that makes the change in the value of the extended portfolio equal to zero for

any possible (small) change in the three latent factors.

In contrast, the dynamic Nelson and Siegel model with Markov switching has four sources of

risk: the risk associated with changes in the latent factors f�1t; �2t; �3tg conditional on the Markov

regime xt, and the risk associated with regime switches. It is then natural to conjecture that to hedge

the four sources of risks, it is now necessary to construct an extended portfolio with four additional

bonds. In Appendix A we show that, indeed, one can construct a portfolio that hedges all (small)

changes associated with the three risk factors f�1t; �2t; �3tg and the discrete risk associated with

changes in regime. It then follows that ignoring the regime speci�c nature of the model and using

only three additional bonds for hedging purposes gives an incorrect coverage of the risk associated

with changes in interest rates.

4 The econometric model

In this section we present an econometric model which accounts for the existence of di¤erent regimes

when estimating the yield curve.6 The model postulates the existence of an unobserved discrete

variable, xt 2 f0; 1; ::;Kg. This variable indexes the current regime and follows a Markov chain

with transition probabilities pij = Pr (xt = jjxt�1 = i) for i; j = 0; 1; :::;K, where pij � 0 andPK
j=0 pij = 1 for all i. At time t = 1, the probability of x1 is given by Pr (x1). We consider the

following conditional linear Gaussian model where, for any t � 1 and regime xt, the observation

6This model has di¤erent names in the literature: Multi-process model (Harrison and Stevens, 1976; West and
Harrison, 1997), Dynamic linear model with Markov-switching (Kim, 1994), Switching Kalman �lters (Murphy, 1998),
State-space models with Markov-switching (Kim and Nelson, 1999), and Discrete time Markov jump linear system
(Costa, Fragoso, and Marques, 2005),
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and state equations are given by

yt = �xtft + "xtt (4)

ft = �xt +Axtft�1 + �xtt: (5)

Here, yt 2 <m is a vector of observed variables, ft 2 <n is a vector of unobserved continuous state

variables, "xtt 2 <m is normally distributed with mean zero and m � m covariance matrix Qxt ;

�xt 2 <n; Axt is an n� n matrix; and �xtt 2 <n is normally distributed with mean zero and n� n

covariance matrix Hxt . Moreover, �xtt and "xtt are independent of each other at all leads, lags,

contemporaneously for di¤erent xt, and independent of f0, where f0 is Gaussian with mean bf0 and
n� n covariance matrix V0.

Our model of the yield curve is a special case of the model presented above withK = 1 and n = 3.

In particular, given a regime xt = j, let � = �1; �2; :::; �m denote m di¤erent observed maturities

of zero-coupon yields, Rt = (Rt (�1) ; Rt (�2) ; :::; Rt (�m))
0 the vector of observed variables, and

ft = (�1t; �2t; �3t)
0 the vector of unobserved continuous state variables. The observation equation

(4) is given by

0BBBBBBB@

Rt (�1)

Rt (�2)

...

Rt (�m)

1CCCCCCCA
=

0BBBBBBB@

1 1�e��j�1
�j�1

1�e��j�1
�j�1

� e��j�1

1 1�e��j�2
�j�2

1�e��j�2
�j�2

� e��j�2
...

...
...

1 1�e��j�m
�j�m

1�e��j�m
�j�m

� e��j�m

1CCCCCCCA

0BBBB@
�1t

�2t

�3t

1CCCCA+
0BBBBBBB@

"1jt

"2jt
...

"mjt

1CCCCCCCA
(6)

and the state equation (5), by

0BBBB@
�1t

�2t

�3t

1CCCCA =

0BBBB@
�1j

�2j

�3j

1CCCCA+
0BBBB@
Aj (1; 1) Aj (1; 2) Aj (1; 3)

Aj (2; 1) Aj (2; 2) Aj (2; 3)

Aj (3; 1) Aj (3; 2) Aj (3; 3)

1CCCCA
0BBBB@
�1t�1

�2t�1

�3t�1

1CCCCA+
0BBBB@
�1jt

�2jt

�3jt

1CCCCA : (7)

We parameterize �j = �0(1 � xt) + �1xt; Aj (w; z) = A0 (w; z) (1� xt) + A1 (w; z)xt for fw; zg =

1; 2; 3, and �ij = �
i
0 (1� xt) + �i1xt for i = 1; 2; 3.
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4.1 Approximate �ltering and likelihood evaluation

This section summarizes the issues involved in estimating a state space model with Markov switching

and explains the approach followed in this paper.

Given a vector of parameters � and a sample Y T = fy1; y2; :::; yT g, we evaluate the log-likelihood

function using the prediction-error decomposition formula

`
�
�;Y T

�
=

TX
t=1

log Pr
�
ytjY t�1

�
;

where Y t�1 = fy1; y2; :::; yt�1g denotes the history of observations up to time t� 1. Hence, evaluat-

ing the log-likelihood function requires computing the prediction probabilities Pr
�
ytjY t�1

�
. These

probabilities are obtained as a by-product of a recursive Bayesian �ltering algorithm used to esti-

mate the distribution of the latent variables ft and xt conditional on Y t�1. As it is well known,

however, Bayesian �ltering with Markov switching implies that posterior distributions are mixtures

of prior distributions that grow exponentially with time. This makes exact �ltering intractable. To

operationalize the likelihood evaluation, we use an approximate Bayesian �lter that collapses the

growing mixture distributions to a single distribution at each time t.

Consider the recursive evaluation of the �lter at time t. Given �ltered probabilities Pr
�
ft�1jY t�1

�
and Pr

�
xt�1jY t�1

�
, our objective is to compute the posterior densities Pr

�
ftjY t

�
and Pr

�
xtjY t

�
,

and the contribution to the likelihood function Pr
�
ytjY t�1

�
. To that end, suppose that the �ltered

probability Pr
�
ft�1jY t�1

�
is Gaussian,

Pr
�
ft�1jY t�1

�
= N

� bft�1jt�1; Vt�1jt�1� , (8)

where, here and throughout the paper, N (�;
) denotes a Gaussian distribution with mean � and

covariance matrix 
. The vector
�
ft�1jY t�1

	
is Gaussian by assumption at t = 1 and by our

approximating formula at any other t > 1.

4.1.1 The prediction step

The conditional Gaussian model (5) implies that the prediction probability Pr
�
ftjY t�1; xt = j

�
is

also Gaussian, as it is an a¢ ne function of two Gaussian variables,
�
ft�1jY t�1

	
and �jt. Thus,
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Pr
�
ftjY t�1; xt = j

�
= N

� bf jtjt�1; V jtjt�1�, where
bf jtjt�1 = �j +Aj

bft�1jt�1 and
V jtjt�1 = AjVt�1jt�1A

0
j +Hj :

Likewise, equation (4) implies that Pr
�
ytjY t�1; xt = j

�
= N

�byjtjt�1;
jtjt�1�, where
byjtjt�1 = �j bf jtjt�1 and

jtjt�1 = �jV

j
tjt�1�

0
j +Qj :

It then follows that the contribution to the likelihood function at time t, Pr
�
ytjY t�1

�
, is a

mixture of K Gaussian variables,

Pr
�
ytjY t�1

�
=

KX
j=0

Pr
�
xt = jjY t�1

�
Pr
�
ytjY t�1; xt = j

�
=

KX
j=0

 
KX
i=0

pij Pr
�
xt�1 = ijY t�1

�!
Pr
�
ytjY t�1; xt = j

�
; (9)

where in the second equality we used Bayes�s law and Pr
�
xt = jjxt�1 = i; Y t�1

�
= pij .

4.1.2 The updating step

We use Bayes�s law to update the probabilities Pr
�
xtjY t

�
and Pr

�
ftjY t

�
given the observation of

yt. In particular,

Pr
�
xt = jjY t

�
=
Pr
�
ytjY t�1; xt = j

�PK
i=0 pij Pr

�
xt�1 = ijY t�1

�
Pr (ytjY t�1)

and

Pr
�
ftjY t; xt = j

�
=
Pr
�
ytjft; Y t�1; xt = j

�
Pr
�
ftjY t�1; xt = j

�
Pr (ytjY t�1; xt = j)

:

The next proposition, proved in Appendix B, shows that Pr
�
ftjY t; xt = j

�
is Gaussian.
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Proposition 1 : Pr
�
ftjY t; xt = j

�
is Gaussian with mean and covariance matrix given by

bf jtjt = bf jtjt�1 + V jtjt�1�0j �
jtjt�1��1 �yt � �j bf jtjt�1� ;
V jtjt = V jtjt�1 � V

j
tjt�1�

0
j

�

jtjt�1

��1
�jV

j
tjt�1:

A direct corollary of Proposition 1 is that Pr
�
ftjY t

�
is a mixture of K + 1 Gaussian variables,

Pr
�
ftjY t

�
=

KX
j=0

Pr
�
xt = jjY t

�
Pr
�
ftjY t; xt = j

�
:

4.1.3 Collapsing the posterior probability Pr
�
ftjY t

�
So far we showed that, if the prior probability Pr

�
ft�1jY t�1

�
is Gaussian, the posterior probability

Pr
�
ftjY t

�
is a mixture ofK+1 Gaussians. We make the recursive evaluation of the �lter operational

by collapsing Pr
�
ftjY t

�
to a single Gaussian distribution. In particular, the best approximating

Gaussian distribution under the Kullback-Leibler pseudo-distance has the mean and covariance

matrix of the Gaussian mixture (West and Harrison 1997, page 453). Simple algebra shows that

these means and covariances are given by

bftjt = KX
j=0

Pr
�
xt = jjY t

� bf jtjt (10)

and

Vtjt =
KX
j=0

Pr
�
xt = jjY t

��
V jtjt +

� bftjt � bf jtjt�� bftjt � bf jtjt�0� : (11)

This assumption closes the approximate recursive Bayesian �lter. Note, however, that even

though the �ltered probability of the state ft is collapsed to a single Gaussian, the contribution to

the likelihood function Pr
�
ytjY t�1

�
is always a Gaussian mixture with K + 1 components for all t.

Before moving to the next section, we mention that there are other ways of approximating the

�ltering problem. For example, Harrison and Stevens (1976) and Kim (1994) start by assuming that

the �ltered probability Pr
�
ft�1jY t�1

�
is a Gaussian mixture with K + 1 components. With this

assumption, the updated probabilities and the contribution to the likelihood function are Gaussian

mixtures with (K + 1)2 components. The algorithm is closed by collapsing the (K + 1)2-component
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Gaussian mixture Pr
�
ftjY t

�
to a mixture with K + 1 components. We experimented with this

approach but found numerical instabilities when estimating the model of the yield curve. West and

Harrison (1997) and Murphy (1998) discuss alternative collapsing schemes.

4.2 Forecasting

In this section we discuss an algorithm to compute optimal forecasts using the Markov switching

model (4)-(5). As in the �ltering step, forecast distributions are Gaussian mixtures that grow

exponentially with the forecast horizon. However, because our longest forecast horizon is only 12

periods ahead, we are able to keep track of the growing Gaussian mixture.

We start forecasting at time t imposing the assumption that the �ltered probability Pr
�
ftjY t

�
is

Gaussian with mean bftjt and covariance Vtjt. Consider �rst forecasting future regime probabilities
xt+h. Given the Markovian structure,

Pr
�
xt+h = jjY t

�
=

KX
i=0

p
(h)
ij Pr

�
xt = ijY t

�
: (12)

where p(h)ij , the probability of moving from state i to state j in h periods, is equal to the (i; j)

element of the matrix P h.

Consider now the one-step ahead density Pr
�
ft+1jY t; xt+1 = i1

�
. Equation (5) implies that

Pr
�
ft+1jY t; xt+1 = i1

�
= N

� bf i1t+1jt; V i1t+1jt�

where

bf i1t+1jt = �i1 +Ai1
bftjt; and (13)

V i1t+1jt = Ai1VtjtA
0
i1 +Hi1 :

Integrating out the regimes gives the marginal probability

Pr
�
ft+1jY t

�
=

KX
i1=0

Pr
�
ft+1jY t; xt+1 = i1

�
Pr
�
xt+1 = i1jY t

�
: (14)
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Similarly, equation (4) implies

Pr
�
yt+1jY t; xt+1 = i1

�
= N

�byi1t+1jt;
i1t+1jt�

where

byi1t+1jt = �i1
bf i1t+1jt; and (15)


i1t+1jt = �i1V
i1
t+1jt�

0
i1 +Qi1 :

Integrating over future regimes gives the forecast density

Pr
�
yt+1jY t

�
=

KX
i1=0

Pr
�
yt+1jY t; xt+1 = i1

�
Pr
�
xt+1 = i1jY t

�
: (16)

Iterating forward, equations (4) and (5) imply that the conditional h-period ahead forecast

densities satisfy

Pr
�
ft+hjY t; xt+1 = i1; xt+2 = i2; :::; xt+h = ih

�
= N

� bf i1;i2:::;iht+hjt ; V i1;i2:::;iht+hjt

�

Pr
�
yt+hjY t; xt+1 = i1; xt+2 = i2; :::; xt+h = ih

�
= N

�byi1;i2:::;iht+hjt ;
i1;i2:::;iht+hjt

�
where

bf i1;i2:::;iht+hjt = �ih +Aih
bf i1;i2:::;ih�1t+h�1jt ; (17)

V i1;i2:::;iht+hjt = AihV
i1;i2:::;ih�1
t+h�1jt A0ih +Hih ;

byi1;i2:::;iht+� jt = �ih
bf i1;i2:::;iht+hjt ; and (18)


i1;i2:::;iht+� jt = �ihV
i1;i2:::;ih
t+hjt �0ih +Qih :

Finally, integrating over future regimes gives the forecast densities

Pr
�
ft+hjY t

�
=

KX
i1;:::;ih=0

Pr
�
ft+hjY t; xt+1 = i1; :::; xt+h = ih

�
Pr
�
xt+h = ihjY t

�
(19)
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Pr
�
yt+hjY t

�
=

KX
i1;:::;ih=0

Pr
�
yt+hjY t; xt+1 = i1; :::; xt+h = ih

�
Pr
�
xt+h = ihjY t

�
: (20)

Note that both h-period ahead forecast densities are a mixture of (K + 1)h Gaussian variables.

With K = 1 and h = 12 months, this is a mixture with 4096 components. While large, this mixture

is still manageable using a standard laptop computer.

We summarize the forecast algorithm:

1. Initialize the algorithm using the �ltered probabilities Pr
�
xtjY t

�
and the collapsed distribution

Pr
�
ftjY t

�
� N

� bftjt; Vtjt�, both obtained from the approximate �lter.

2. Compute the forecast probabilities using (12).

3. Forecasting at t+ 1 :

(a) For each possible realization of the regime xt+1 = i1, compute the K + 1 arrays bf i1t+1jt,
V i1t+1jt using (13). Next, marginalize the regimes and compute Pr

�
ft+1jY t

�
using (14).

(b) For each possible realization of the regime xt+1 = i1, compute the K + 1 arrays byi1t+1jt

i1t+1jt using (15). Next, marginalize the regimes and compute Pr

�
yt+1jY t

�
using (16).

(c) Compute the forecast E
�
yt+1jY t

�
using the prediction density Pr

�
yt+1jY t

�
.

4. Forecasting at t+ h :

(a) For each xt+1 = i1; xt+2 = i2; :::; xt+h = ih compute iteratively the (K + 1)h arraysbf i1;i2:::;iht+hjt , V i1;i2:::;iht+hjt using (17) and the results of the h � 1 forecast horizon. Next, mar-

ginalize the regimes and compute Pr
�
ft+� jY t

�
using (19).

(b) For each xt+1 = i1; xt+2 = i2; :::; xt+h = ih compute the (K + 1)h arrays byi1;i2:::;iht+� jt and


i1;i2:::;iht+� jt using (18). Next, marginalize the regimes and compute Pr
�
yt+� jY t

�
using (20).

(c) Compute the forecast E
�
yt+hjY t

�
using the prediction density Pr

�
yt+hjY t

�
.
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5 Estimating the yield curve using a Markov switching latent vari-

able model

We estimate a regime switching model that explicitly takes into account the changing patterns of

the yield curve over the cycle. The model forms a state-space system with a Markov switching

�rst order vector autoregression equation summarizing the dynamics of the latent state variables,

and a switching linear measurement equation relating the observed yields with the state vector.

For a given parameter con�guration, we use the approximate �ltering procedure described above to

evaluate the prediction-error decomposition of the likelihood function. To initialize the �lter, we set

the mean and covariance matrix of the latent variables using their regime-speci�c long-run mean

and covariance matrix, and set the initial regime probabilities using the associated steady state

probabilities. The model speci�ed in equations (6) and (7) allow for switching in all the parameters

of interest. We estimate special cases of the general model that constrain some parameters to be

the same between regimes and evaluate their �tting and forecasting performance. For comparison

purposes, we also estimate the single regime model and recover the estimates in Diebold, Rudebusch,

and Aruoba (2006).

Christensen, Diebold, and Rudebusch (2011) note that it is common to �nd that a parametriza-

tion of a yield curve model that is not rejected in sample has a very poor out of sample forecasting

performance. This problem of over�tting is particularly important in non-linear models (e.g. Dri¢ ll

et al. 2009). Given the high number of possible parametrizations that are special cases of the gen-

eral model, we only report a subset of all possible restricted models. We do not report models that

are outperformed in terms of in sample �tting or out of sample forecasting performance using the

measures described below.7 Given that the results for the most general model are not presented (for

the reasons discussed above) we chose to compare the models using information criteria instead of

likelihood ratio tests. Information criteria have been found to be useful in selecting among di¤erent

regime dependent models in sample Psaradakis and Spagnolo (2003 and 2006)� note, however, that

comparing the switching models with their single regime alternative is problematic due to the usual

nuisance parameter problem described in Davies (1977 and 1987).

Maximizing the approximate likelihood function is a non-trivial task: standard quasi-Newton

7Results on the omitted models are available on request.
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methods often fails because the algorithm tries to evaluate the likelihood function at points where it

is not well de�ned. To solve this problem, we maximize the likelihood using a series of optimization

algorithms. We start with a robust but slow algorithm and progressively move toward faster but

less robust algorithms. In particular, we �rst maximize the likelihood function using a simulated

annealing algorithm (Kirkpatrick, Gelatt, and Vech, 1983) with initial temperature set to 1 and

�nal temperature set to 10�5.8 Once the simulated annealing algorithm has converged, we use

the estimated parameters to initialize a Nelder-Mead derivative-free direct search algorithm. The

algorithm is stopped when the norm of estimated parameters from one iteration to the next is less

than 10�4 or when the function changes by less than 10�4. Next, we use quasi-Newton methods with

the BFGS algorithm to update the Hessian and a cubic spline line search procedure. The convergence

criterion for the change in the norm of the parameters is 10�6.9 We compute asymptotic standard

errors using the delta method and the inverse of the empirical Hessian.

5.1 Empirical results

We now consider the results from estimating the switching state-space model of the type speci�ed

in equations (6) and (7). Tables 2 and 3 show the results. In all switching estimations, regimes 0

and 1 are shown in the �rst and second columns, respectively. Model 1 in Table 2 corresponds to

the baseline estimation without switching. Models 2 and 3 in Table 2 show the estimation of the

model switching the parameter � with the full parameter matrices A and H in model 2 and with

diagonal A and H in model 3. Model 4 in Table 3 shows the estimation of the model switching not

only � but also �, with full parameter matrices A and H. Lastly, model 5 reports results switching

the parameters �, �, and A, with A diagonal and (common) covariance matrix H diagonal.

Tables 2 and 3 about here

All the switching models show signi�cant evidence of regime shifts for some of the parameters.

We select models 4 and 5 as our preferred speci�cations based on the Akaike and Bayesian infor-

mation criteria. Our estimates suggest that the parameters �i (i = 0; 1) are very di¤erent between

8Simulated annealing is a random search optimization method with many appealing properties: it is robust to
di¤erent starting values; it is known to avoid local optima; it does not require derivative information; and is able to
optimize functions where other local optimization methods fail. While robust, the algorithm tends to be very slow
near the optimum (Go¤e, Ferrier, and Rogers 1994).

9Both local search algorithms are those of the MATLAB optimization package.
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regimes. We plot the regime speci�c loadings on factors �2t and �3t corresponding to model 5 in

the top panel of Figure 2. At short maturities, the loadings in regime 0 give comparatively more

weight to factor �3t and less weight to factor �2t relative to those in regime 1. The estimate of �

in regime 0 (about 0.13) implies that the loading on factor �3t is maximized at a maturity of 13

months while the estimate of � in regime 1 (about 0.05) implies that the aforementioned loading

is maximized around a maturity of 30 months. In other words, (equal) changes in the factor �3t

a¤ect mostly short term yields in regime 0 but longer term yields in regime 1. On the other hand,

the loadings in regime 1 always give more weight to changes in the �2t factor than those in regime

0. Note, also, that the estimate of � in the linear model 1� which replicates the results in Diebold,

Rudebusch, and Aruoba (2006)� is always between the estimates of �0 and �1 of the models with

regime shifts. (We plot the factor loadings of the linear model 1 in the lower panel of Figure 2.)

Figure 2 about here

Model 4 suggests highly persistent dynamics of �1t, �2t, and �3t, with estimated eigenvalues

of 0.98, 0.92, and 0.75. When allowing the transition matrix to switch, in model 5, we observe

somewhat di¤erent dynamics in each regime as factor �2t is more persistent in regime 0 than in

regime 1. In model 4, the drift for the factors �1t and �2t is positive in both regimes, and the drift

for the factor �3t is negative and statistically signi�cant in both regimes, but it is twice as large,

in absolute value, in regime 1. In model 5, the drifts are very di¤erent across regimes, although

they are not statistically signi�cant. Finally, in both models (and in linear model 1) we �nd the

same pattern for the estimates of the covariance matrix H: the volatility of the transition shocks,

measured by the estimated diagonal elements of H, increases as we move from factors �1t to �2t to

�3t.

Diebold and Li (2006) interpret the latent variables �2t and �3t as directly associated with the

slope and curvature of the yield curve, respectively. For values of � di¤erent from those proposed

by Diebold and Li, this interpretation is less obvious. In particular, in regime 0 (�0 = 0:13), the

slope and curvature of the yield curve satisfy

Rt (120)�Rt (3) = �0:77�2t � 0:08�3t

2Rt (24)�Rt (3)�Rt (120) = �0:27�2t + 0:32�3t:
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While the slope of the yield curve is still mostly a¤ected by the factor �2t, the curvature is almost

equally sensitive to �uctuations in �2t and �3t.
10

Figure 3 shows the estimated evolution of the three latent factors and the actual level, slope, and

curvature of the yield curve.11 Following Diebold and Li (2006), we plot �1t, ��2t, and 0:3�3t and

compare these factors with the actual level, slope, and curvature of the yield curve. The correlation

between the factor �1t and the level of yields, and between the factor �2t and the curvature is large,

of about 0:98 in both cases. On the other hand, and consistent with the observation made above,

the correlation between the factor �3t and the curvature is smaller, of about 0:8. In any case, the

three factors are still su¢ ciently correlated with the measures of level, slope, and curvature and,

therefore, we keep Diebold and Li�s interpretation of the latent factors and call �1t the level factor,

�2t the slope factor, and �3t the curvature factor.

The estimated transition probabilities imply that the two regimes are persistent. For example,

in model 5, the economy spends on average 56 percent of the time in regime 0 and 44 percent of the

time in regime 1. Moreover, the expected number of months that the economy stays in regime 0

(regime 1) conditional on being in regime 0 (regime 1) is 14.5 months (11.6 months).12 The bottom

right panel of Figure 3 displays the �ltered probability of regime 0, given by Pr
�
xt = 0jY t; b�� whereb� is an estimator of the unknown parameters in (6) and (7). Even though these probabilities do not

coincide with the NBER dates of the business cycles peaks and troughs, we still �nd some robust

similarities between NBER recessions and regime 0, and between NBER booms and regime 1.13

We reproduce in Figure 4 and panel B of Table 1 the statistics computed in Figure 1 and panel

A of Table 1, but separating regimes using a dummy variable that equals 1 if Pr
�
xt = 0jY t; b�� >

0:5 and zero otherwise. In computing these statistics, we only use subperiods with six or more

consecutive observations in a given regime. Consider �rst the average yield curves. As in the

10Factors in regime 1 (� = 0:05) are consistent with Diebold and Li�s interpretation in that the slope is mostly
associated with �2t and the curvature, with �3t. Indeed,

Rt (120)�Rt (3) = �0:77�2t + 0:08�3t
2Rt (24)�Rt (3)�Rt (120) = 0:05�2t + 0:34�3t:

11We report the mean of the collapsed posterior density of �1t, �2t, and �3t computed using equation (10).
12The �rst statistic is computed using the invariant distribution of regimes. The second statistic is computed as

1= (1� pii) where i = 0; 1 denotes the current regime.
13 Interestingly, regime 1 seems to be capturing, at least in part, deviations of the yield curvature from the factor

�3t: the correlation between the �ltered probability of regime 1 and the absolute value of the di¤erence between the
curvature and 0:3�3t is 0:26.
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comparison between recessions and booms, we observe the following similarities: (1) average yields

are greater in regime 0 than in regime 1 and the di¤erence between yields decreases as maturity

increases; (2) except at short maturities, the average yield curve is �atter in regime 0 than in regime

1; and (3) the yield curve in regime 1 has a similar shape to the average yield curve over the entire

sample. Second, the volatility of yields decreases sharply as maturity increases in regime 0 but is

substantially �atter in regime 1. And third, we still observe, as in the comparison between booms

and recessions, that yields are more persistent in regime 1 than in regime 0. This di¤erence in

persistence, however, is more clear at short maturities.

Some of the statistics in panel B of Table 1 are also consistent the view that regime 0 resembles

recessions and regime 1 resembles booms. For example, the average level, slope, and curvature

of the yield curve are greater in regime 0 than in regime 1, and the curvature is substantially

more volatile in regime 0 than in regime 1. Of course, the proposed analogy between regimes and

recessions/booms is far from perfect. This is to be expected as, during the sample period, the

economy spent roughly the same time in regimes 0 and 1, but only 46 months out of 348 months

in recession according to the NBER dates. In any case, however, many of the characteristics of the

yield curve in recessions are captured by regime 0 and those in booms, by regime 1.

Figure 4 about here

In Figure 5 we compare actual and �tted yield curves for selected dates using the linear model

and switching models 4 and 5. There are two things to note. First, on the proposed dates, the

models with switching matches the yield curve better than the linear model. We also computed the

in-sample mean absolute errors and root-mean squared errors of �tted yields for each maturity across

all periods and found that model 5 tends to produce larger errors than the other two models; on the

other hand, model 4 produces smaller errors than the linear model for all maturities smaller than 72

months and similar errors (or slightly larger) for longer maturities. In any case, we show in the next

section that, in many cases, model 5 tends to have better out-of-sample forecasting performance

than the other two models. And second, on a given date, the average di¤erence between actual

and �tted yields is not zero, as can be seen in the March 1989 yield curve. In contrast, �tted yield

curves in Diebold and Li (2006) have, on average, zero errors across maturities. The reason for this

di¤erence is that Diebold and Li, by running independent OLS regressions, minimize the in-sample
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di¤erence between actual and �tted yield curves period by period. In our model, by imposing ex-

ante an explicit dynamic structure on the latent factors, maximizing the likelihood function does not

necessarily imply minimizing the di¤erence between actual and �tted yield on a period-by-period

basis. Of course, the same is true in Diebold, Rudebusch, and Aruoba (2006), although they do not

report plots with the in-sample �t of their model.

As a reference for the out-of-sample forecasts presented in next section, Tables 4 and 5 show the

estimation of the same models 1 through 5 but over a short sample that goes from January 1972 to

December 1993. Overall the estimated parameter values in all models is very similar to those using

the full sample. The Akaike and Bayesian information criteria now select model 5 as the preferred

speci�cation.

5.2 Out-of-Sample forecasting

In this subsection we evaluate the accuracy of out-of-sample forecasts from the empirical models

discussed earlier. The comparisons are based on a series of recursive forecasts beginning in 1994:1

and extending through 2000:12 (84 sample points). We compare h-month-ahead out-of sample

forecasting results from each of the �ve competing models for maturities of 3, 6, 9, 12, 15, 18, 21,

24, 30, 36, 48, 60, 72, 84, 96, 108, 120 months, and forecast horizons of h = 1, 3, 6 and 12 months.

Several measures are used to compare forecast accuracy. These measures include: i) standard

mean squared errors (MSE), including the proportion of the times that each model achieves the

smallest MSE over the 84 sample points, ii) tests of equal predictive accuracy of Clark and West

(2007) (CW) and Harvey, Leybourne, and Newbold (1997) modi�ed tests of Diebold and Mariano

(1995) (DM), and iii) the confusion rate (CR).

Tables 6 to 13 reports the results of the forecast exercise. Let us start by considering Tables 6 to

9 (left part); it is clear that the smallest MSE is achieved by model 3 for all maturities and forecast

horizons (with the only exception for the long maturities of the 12 months forecast horizon). Note

also that, from a �rst inspection, the linear model (model 1) seems to be generally outperformed by

the nonlinear alternatives. More speci�cally, the gain of using nonlinear models over the alternative

linear model achieves the highest point for maturity 3 and forecast horizons 3 and 6 month, with a

gain of model 3 over model 1 of, respectively, 78% and 68%. Turning to the linear model, it is clear

that model 1 achieves more frequently the smallest MSE against models 2 and 4. In particular, the
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marginal gain of the linear model over the nonlinear alternatives on the 3 month maturity varies

from around 1% (using model 2 and a forecast horizon of 6 months) to 32% (using model 4 and a

forecast horizon of 12 months).

On the right part of Tables 6 to 9 we report the proportion of time that each model achieves the

smallest MSE over the 84 sample points (1994:1-2000:12), calculated for each individual maturities

and forecast horizons. Contrary to our previous �ndings, overall we �nd that model 5 outperforms

the alternative speci�cations (in particular for the medium horizons), achieving the smallest MSE

for 11 maturities (over the 17 presented) for the 1 month horizon, and 13 maturities for the 12

months. On the other hand, model 3 seems to do particularly well in the smallest and longest

horizons, achieving the smallest MSE for 9 maturities (over the 17) at the 3 months forecasts and

11 maturities at the 6 months. It is very informative to compare these results with those presented

in Tables 5 to 8 (left part), where we look at the average errors. The results show, for example,

that while for the 12 month ahead the smallest MSE is achieved by model 5 only for 2 maturities

(36 and 48), when we evaluate the performance in terms of the number of periods with the smallest

errors, we �nd that model 5 outperforms the competing models for 13 out of the 17 maturities.

Most importantly, we also �nd that the linear model 1 never clearly achieves the smallest MSE,

with the only exception of the 120 maturities for the 1 month ahead. Finally, on the basis of this

criterion model 4 never outperform the competing alternative models while model 2 only achieves

the smallest MSE for 5 points over the total 68 calculated.

Simply comparing the values of the MSE does not tell us how signi�cant the di¤erence is.

Therefore, we use tests of equal forecast accuracy which can be applied to examine whether the

MSE of two alternative models are signi�cantly di¤erent from each other. The comparison is made

between the linear model 1 and the nonlinear alternatives. Note that models 2 and 4 nest the

alternative linear model 1 while the former is not nested by models 3 and 5. This suggest the use

of two classes of tests which are speci�cally designed to test for equal forecast accuracy between

nested and non-nested models. For non-nested models (models 3 and 5), we use a test of equal

forecast accuracy due to Diebold and Mariano (1995) which is applied to examine whether the MSE

of two alternative models are signi�cantly di¤erent from each other. The comparison is based on the

modi�ed statistic proposed by Harvey, Leybourne, and Newbold (1997) to overcome the problem of

over-sized of the original test in small and moderate samples (particularly acute for longer forecast
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horizons).14 For nested models (models 2 and 4), a direct comparison of forecast errors from the

parsimonious model (linear model 1) with those from the more general models (within which they

are nested) are based on Clark and West (2007), who suggest the use of MSE-based statistics which

are adjusted for the noise that is introduced into the forecasting process by the more general model

when its additional parameters are not helpful for prediction.15

From Tables 6 to 9, a comparison of the nonlinear speci�cation with the parsimonious linear

model that it nests reveals that, on the basis of the MSE-adjusted di¤erences, model 2 has a

general advantage over the linear model for the 3 months ahead forecasts. For the 1 month ahead

(6 months ahead), however, the gain over the linear alternative is only evident for the shortest

(medium) maturities. On the other hand it is clear that the Clark�West adjustment seems not to

be large enough to give model 4 an advantage over the restricted model, with the only exception

for the �rst maturity of the 1 month ahead forecast. Turning to the modi�ed Diebold Mariano

tests, results show that the null hypothesis of equal forecast accuracy is clearly rejected for all the

maturities and forecast horizons (with the only exceptions of the long maturities for the 12 months

forecasts) in favor of model 3. Per contra, results for model 5 appear more mixed, showing that

the null hypotheses of equal forecast accuracy are more frequently rejected for the 6 months and 12

months ahead.

An alternative way of evaluating out-of-sample forecasts is to assess the ability of di¤erent models

to identify the direction of change in the variable of interest, regardless of the accuracy with which

the magnitude of the change is predicted. As Haefke and Helmenstein (1996) and Swanson and

White (1997) point out, this evaluation method is particularly useful in situations where directional

predictions are the focus of the analysis, as is the case, for instance, when we are trying to forecast

the next business-cycle turning point or the future price movements of asset prices. We therefore

complement our evaluation of the relative performance of the di¤erent models using traditional

accuracy measures by assessing their ability to correctly identify turning points (i.e. whether the

rates are rising or falling regardless of the accuracy with which the magnitude of the change is

14The modi�ed statistic is S� = f[n + 1 � 2h + n�1h(h � 1)]=ng1=2S, where n is the number of forecasts, h the
forecast horizon and S the original statistic of Diebold and Mariano (1995).

15Let �1 and �2 be respectivley the MSE of the parsimonious model (M1) and the corresponding larger model
(M2) that nests M1, the Clark�West adjustment term is computed as d = (1=N)

PN
j=1(by1;T�N+j� by2;T�N+j)2, whereby1;T�N+j and by2;T�N+j are the step-ahead forecasts from M1 and M2, respectively. A t-statistic for testing the null

hypothesis of equal predictive accuracy is then based on �1 � �2 + d (the alternative hypothesis is that M2 has a
smaller MSPE than M1).
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predicted) using the so-called confusion rate.16 From Tables 10 to 13, confusion rates results show

that models 3 and 5 do quite well in identifying turning points for the 1 month ahead and for the

3 months (model 3) and 6 month ahead (model 5). On the other hand, while linear model 1 does

particularly well for the 3 month maturity at all forecast horizons, model 2 appear to be the most

successful for the 12 months ahead.

In summary, the results presented in this section suggest that our proposed models seems to not

only successfully characterize the data under scrutiny but also, and perhaps more importantly, to

have a good forecasting performance (in particular for models 3 and 5). The forecasting results are

particularly noteworthy because one of the major weaknesses of many existing nonlinear models is

their relatively poor out-of-sample performance.

6 Conclusions

In this paper we have proposed an extension of the three-factor term structure models of Nelson

and Siegel (1987) and Diebold and Li (2006). We have shown that our model is parsimonious and

relatively easy to estimate. Furthermore, using US zero-coupon data, we have shown that: i) the

model has the substantial �exibility required to match the changing shape of the yield curve; ii)

the data present clear evidence of regime shifts that can be adequately captured by our proposed

model, iii) the estimated transition probabilities implies that the regimes are highly persistent; iv)

the typical stylized facts of the yield curve are associated with the boom periods, v) the model has

good forecasting performance. The forecasting results are particularly noteworthy as they contradict

a common empirical �ndings on the relatively poor out-of-sample performance of nonlinear models.

16Consider the following 2� 2 contingency table:

actual up actual down
predicted up a11 a12
predicted down a21 a22

The columns correspond to actual moves, up or down, while the rows correspond to predicted moves. Hence, a11
and a22 correspond to correct directional predictions, while a12 and a21 correspond to incorrect predictions. The
performance of the model can be assessed in terms of its so-called confusion rate, CR = (a12+a21)=(a11+a12+a21+a22),
i.e. the ratio of the sum of the o¤-diagonal elements to the sum of all elements.
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Appendix A

This appendix shows that, if the yield curve is represented by the Nelson and Siegel model (1), a
coupon paying bond (or portfolio of bonds) can be immunized of the capital loss and reinvesting
risks using only three additional bonds/portfolios. In contrast, if the yield curve is represented by
the MSDNS model (2), hedging the original portfolio needs four additional bonds/portfolios.

Suppose �rst that the yield curve is represented by the Nelson and Siegel model (1), where �1t,
�2t, and �3t are stochastic processes. Consider now a bond (or portfolio of bonds) Pt that pays
coupons Mi at time t+ � i, where � i = f�1; �2; :::; �Ng. The price of this bond is

Pt =

NX
i=1

MiBt (� i) ;

where Bt (� i) = e�Rt(� i)� i is the price of a zero coupon bond at time t maturing � i periods ahead.
The portfolio Pt can be hedged for capital and reinvesting risk by constructing a new portfolio,

P �t , containing the original portfolio and three additional coupon paying bonds, denoted by z =
1; 2; 3, with price P zt and coupons M

z
i paid at time t + � i. For each dollar invested in the original

portfolio, the extended portfolio invests ��zt dollars in bond z = 1; 2; 3. Thus, the price of the
extended portfolio is

P �t = Pt � �1tP 1t � �2tP 2t � �3tP 3t : (21)

Because the yield curve is assumed to be generated by model (1), the change in the prices of all
bonds are a consequence of changes in the three latent factors. Thus, for small changes in the three
factors, the change in the price of any bond ~Pt with associated coupons ~Mi is

d ~Pt =
@ ~Pt
@�1t

d�1t +
@ ~Pt
@�2t

d�2t +
@ ~Pt
@�3t

d�3t;

where

@ ~Pt
@�1t

= �� i
�X
i=1

~MiBt(� i);

@ ~Pt
@�2t

= �� i
�X
i=1

~Mi
1� e��� i
�� i

Bt(� i);

@ ~Pt
@�3t

= �� i
�X
i=1

~Mi(
1� e��� i
�� i

� e��� i)Bt(� i):

Given weights �zt , the change in the value of the hedging portfolio P
�
t is thus given by

dP �t = dPt � �1tdP 1t � �2tdP 2t � �3tdP 3t :

To hedge the extended portfolio amounts to choose a vector,
�
�1t ; �

2
t ; �

3
t

�0
that makes the change

in the value of the extended portfolio, dP �t , equal to zero for any possible values of d�1t, d�2t, and
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d�3t. This hedging vector is24 �1t�2t
�3t

35 =
24 @P 1t =@�1t @P 2t =@�1t @P 3t =@�1t
@P 1t =@�2t @P 2t =@�2t @P 3t =@�2t
@P 1t =@�3t @P 2t =@�3t @P 3t =@�3t

35�1 24 @Pt=@�1t@Pt=@�2t
@Pt=@�3t

35 :
Hedging with the Markov Switching Dynamic Nelson Siegel model

The dynamic Nelson and Siegel model with Markov switching has four sources of risk: the risk
associated with changes in the latent factors �1t (xt), �2t (xt), and �3t (xt) conditional on the Markov
regime xt, and the risk associated with regime switches. In this section we show that the additional
risk associated with the Markov switching structure changes the associated hedging portfolio: we
now need four bonds instead of three.

For mathematical convenience, in this section we model the Markov regimes xt as a continuous
time Markov chain. To do this we need to depart somewhat from the notation in the body of the
paper. The gain is that the continuous time structure delivers simpler expressions.17 We consider
a two state Markov chain, with the state space of the chain xt taken to be the two unit vectors
X = fe0; e1g, where e0 = (1; 0)0 and e1 = (0; 1)0. The transition rate matrix of the Markov chain
xt is denoted by H = (hij), for i; j = 1; 2, where H is a Q�matrix such that, for i 6= j, hij > 0 and
hii + hji = 0, so that the elements in the diagonal are negative and given by hii = �hji < 0. We
�nd it convenient to write H as

H =

�
�h0 h1
h0 �h1

�
:

The semi-martingale representation of the Markov chain is given by

xt = x0 +

Z t

0
Hxvdv +Nt;

where Nt is an <2-valued martingale process with respect to Ft, the right continuous �-algebra of
information available at time t. The evolution of xt can be written in di¤erential form as

dxt = Hxtdt+ dNt;

where dN0t + dN1t = 0 for all t (dN0t and dN1t are the two elements of the vector dNt).
We now consider the possibility that the yield curve depends on the state xt. Using the new

notation, the price of the coupon paying bond can be written as Pt (xt) = h�!Pt; xti, where h:; :i
denotes the inner product in <2, �!Pt = (P0t; P1t)

0, and Pjt = Pt (ej) is the price of the bond in
regime j = 0; 1. The bond price Pt can change because the level, slope, and curvature change, or
because there is a discrete regime change.

Thus, considering only �rst order changes in �1t, �2t, and �3t, the change in the price of any
bond ~Pt (xt) with associated coupons ~Mt can be written as

d ~Pt (xt) =
@ ~Pt (xt)

@�1t
d�1t +

@ ~Pt (xt)

@�2t
d�2t +

@ ~Pt (xt)

@�3t
d�3t + h

�!
~Pt; dxti;

17See Elliot, Abboun, and Moore (1995) for an exposition of Markov chains in continuous time and additional
results mentioned in this section.
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where the discrete impact term resulting from a regime shift is

h
�!
~Pt; dxti = h

�!
~Pt;Hxtdti+ h

�!
~Pt; dNti:

The components of the discrete impact term can be in turn expressed as follows: if xt = e0,

h
�!
~Pt;Hxtdti = h0

�
~P1t � ~P0t

�
dt and h

�!
~Pt; dNti =

�
~P0t � ~P1t

�
dN0t; and if xt = e1, h

�!
~Pt;Hxtdti =

h1

�
~P0t � ~P1t

�
dt and h

�!
~Pt; dNti =

�
~P1t � ~P0t

�
dN1t. In addition, the coupon paying bond in state

xt = ej , for j = 0; 1, is given by

~Pjt =
NX
i=1

MiBjt (� i) ;

where the price of the zero coupon bond is now Bjt(� i) = e�Rjt(� i)� i , Rj(� i) satis�es (2), and the
state-dependent derivatives in state j = 0; 1; are

@ ~Pjt
@�1t

= �� i
�X
i=1

~MiBj(� i);

@ ~Pjt
@�2t

= �� i
�X
i=1

~Mi
1� e��j� i
�j� i

Bj(� i);

@ ~Pjt
@�3t

= �� i
�X
i=1

~Mi(
1� e��j� i
�j� i

� e��0� i)Bj(� i):

Constructing the hedging portfolio To hedge the four sources of risk, it is necessary to con-
struct an extended portfolio with four additional bonds, denoted by z = 1; 2; 3; 4. Conditional on
state j = 0; 1, the extended portfolio invests ��zjt dollars in bond z = 1; 2; 3; 4 for each dollar
invested in the original portfolio. Given state j = 0; 1, we consider the portfolio

P �jt = Pjt � �1jtP 1jt � �2jtP 2jt � �3jtP 3jt � �4jtP 4jt:

Using similar arguments as those presented when using the single regime model, we can choose a
vector (�1jt; �

2
jt; �

3
jt; �

4
jt)
0 that makes the change in the value of the extended portfolio, dP �jt, equal

to zero given the four sources of risk. In state j = 0, this is accomplished with2664
�10t
�20t
�30t
�30t

3775 =
2664
@P 10t=@�1t @P 20t=@�1t @P 30t=@�1t @P 40t=@�1t
@P 10t=@�2t @P 20t=@�2t @P 30t=@�2t @P 40t=@�2t
@P 10t=@�3t @P 20t=@�3t @P 30t=@�3t @P 40t=@�3t
P 11t � P 10t P 21t � P 20t P 31t � P 30t P 41t � P 40t

3775
�1 2664

@P0t=@�1t
@P0t=@�2t
@P0t=@�3t
P1t � P0t

3775 ;
and, in state j = 1, with the portfolio2664

�11t
�21t
�31t
�31t

3775 =
2664
@P 11t=@�1t @P 21t=@�1t @P 31t=@�1t @P 41t=@�1t
@P 11t=@�2t @P 21t=@�2t @P 31t=@�2t @P 41t=@�2t
@P 11t=@�3t @P 21t=@�3t @P 31t=@�3t @P 41t=@�3t
P 10t � P 11t P 20t � P 21t P 30t � P 31t P 40t � P 41t

3775
�1 2664

@P1t=@�1t
@P1t=@�2t
@P1t=@�3t
P0t � P1t

3775 :
It is important to note that ignoring the regime speci�c nature of the model gives an incorrect

coverage of the risk associated with changes in interest rates.
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Appendix B

Proof of Proposition 1. Using Bayes�s law

Pr
�
ftjY t; xt = j

�
=
Pr
�
ytjft; Y t�1; xt = j

�
Pr
�
ftjY t�1; xt = j

�
Pr (ytjY t�1; xt = j)

Thus

Pr
�
ftjY t; xt = j

�
= (2�)�m=2 det (Qj)

�1=2 exp

�
�1
2
(yt � �jft)0Q�1j (yt � �jft)

�
�

(2�)�n=2 det
�
V jtjt�1

��1=2
exp

�
�1
2

�
ft � bf jtjt�1�0 �V jtjt�1��1 �ft � bf jtjt�1�� =

(2�)m=2 det
�

jtjt�1

�1=2
exp

�
�1
2

�
yt � �j bf jtjt�1�0 �
jtjt�1��1 �yt � �j bf jtjt�1�� :

Consider the terms inside the exponentials. Straightforward but tedious algebra shows that�
ft � ef�0 eV �1 �ft � ef� = (yt � �jft)0Q�1j (yt � �jft) +

�
ft � bf jtjt�1�0 �V jtjt�1��1 �ft � bf jtjt�1�

�
�
yt � �j bf jtjt�1�0 �
jtjt�1��1 �yt � �j bf jtjt�1�

where

ef = bf jtjt�1 + V jtjt�1�0j �
jtjt�1��1 �yt � �0j bf jtjt�1�eV = V jtjt�1 � V
j
tjt�1�

0
j

�

jtjt�1

��1
�jV

j
tjt�1:

Moreover,

det
�eV � = det (Qj) det

�
V jtjt�1

�
det
�

jtjt�1

� :

To see this, consider

�j eV = �jV
j
tjt�1 � �jV

j
tjt�1�

0
j

�

jtjt�1

��1
�jV

j
tjt�1

= �jV
j
tjt�1 �

�

jtjt�1 �Qj

��

jtjt�1

��1
�jV

j
tjt�1

= Qj

�

jtjt�1

��1
�jV

j
tjt�1:

Therefore

det
�
�j eV � = det�Qj �
jtjt�1��1 �jV jtjt�1� :

Using standard properties of the determinant gives the desired result. Therefore, Pr
�
ftjY t; xt = j

�
is a Gaussian distribution with the proposed mean and covariance matrix.
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Table 1: Descriptive statistics of level, slope, and curvature

A. Data All sample Recessions Booms
Mean Std. dev. �̂ (1) Mean Std. dev. �̂ (1) Mean Std. dev. �̂ (1)

Level 8.14 2.17 0.98 9.91 0.71 0.59 7.87 0.88 0.81
Slope 1.29 1.46 0.93 0.66 1.33 0.49 1.39 1.31 0.83
Curvature 0.12 0.72 0.79 0.42 0.76 0.33 0.08 0.60 0.62

B. Model 5 Regime 0 Regime 1
Mean Std. dev. �̂ (1) Mean Std. dev. �̂ (1)

Level 8.65 0.61 0.63 7.79 0.57 0.65
Slope 0.74 0.81 0.64 1.99 0.49 0.60
Curvature 0.33 0.51 0.49 -0.01 0.34 0.46
Note: �̂ (1) denotes the �rst order sample autocorrelation.
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Table 2: Yield Estimation Results with Full-Sample

Model (1) Model (2) Model (3)
� 0.0777 0.1307 0.0520 0.1185 0.0485

(0.0021) (0.0034) (0.0017) (0.0028) (0.0018)
�1 0.0675 0.0535 0.0799

(0.0691) (0.0735) (0.0706)
�2 0.1887 0.2442 -0.0759

(0.1386) (0.1477) (0.0432)
�3 -0.2220 -0.6969 -0.0972

(0.2015) (0.1858) (0.0480)
A(1; 1) 0.9957 1.0009 0.9904

(0.0177) (0.0086) (0.0081)
A(1; 2) 0.0285 0.0343

(0.0211) (0.0086)
A(1; 3) -0.0222 -0.0244

(0.0232) (0.0124)
A(2; 1) -0.0306 -0.0435

(0.0260) (0.0174)
A(2; 2) 0.9389 0.9303 0.9506

(0.0309) (0.0174) (0.0167)
A(2; 3) 0.0393 0.0497

(0.0084) (0.0250)
A(3; 1) 0.0242 0.0856

(0.0113) (0.0210)
A(3; 2) 0.0229 0.0111

(0.0305) (0.0211)
A(3; 3) 0.8438 0.7760 0.7533

(0.0186) (0.0348) (0.0338)
H(1; 1) 0.0947 0.0992 0.1024

(0.0084) (0.0090) (0.0087)
H(1; 2) -0.0140 -0.0287

(0.0113) (0.0122)
H(1; 3) 0.0438 0.0533

(0.0186) (0.0176)
H(2; 1) -0.0140 -0.0287

(0.0113) (0.0122)
H(2; 2) 0.3822 0.4041 0.3965

(0.0305) (0.0332) (0.0323)
H(2; 3) 0.0094 -0.0074

(0.0344) (0.0380)
H(3; 1) 0.0438 0.0533

(0.0186) (0.0176)
H(3; 2) 0.0094 -0.0074

(0.0344) (0.0380)
H(3; 3) 0.8007 0.8563 1.0854

(0.0813) (0.0922) (0.0964)
p00 0.8895 0.9753

(0.0237) (0.0068)
p11 0.9189 0.9167

(0.0202) (0.0256)
Log likelihood 8594.3195 8771.2319 8732.4813
AIC -17144.639 -17492.4638 -17438.9626
BIC -17059.89055 -17396.15874 -17388.88397



Table 3: Yield Estimation Results with Full-Sample (Continuation)

Model (4) Model (5)
� 0.1311 0.0527 0.1274 0.0530

(0.0035) (0.0016) (0.0035) (0.0019)
�1 0.0557 0.0604 0.0462 0.1225

(0.0733) (0.0813) (0.0839) (0.1416)
�2 0.2818 0.0789 0.1102 -0.6930

(0.1463) (0.1637) (0.0404) (0.0870)
�3 -0.5333 -1.0119 0.0165 -0.0895

(0.1941) (0.2081) (0.0745) (0.0817)
A(1; 1) 0.9998 0.9950 0.9840

(0.0087) (0.0097) (0.0161)
A(1; 2) 0.0339

(0.0092)
A(1; 3) -0.0195

(0.0127)
A(2; 1) -0.0380

(0.0175)
A(2; 2) 0.9130 0.9958 0.7776

(0.0188) (0.0067) (0.0276)
A(2; 3) 0.0381

(0.0251)
A(3; 1) 0.0898

(0.0228)
A(3; 2) -0.0201

(0.0235)
A(3; 3) 0.7338 0.8276 0.7500

(0.0370) (0.0513) (0.0519)
H(1; 1) 0.0968 0.1096

(0.0088) (0.0093)
H(1; 2) -0.0292

(0.0119)
H(1; 3) 0.0509

(0.0176)
H(2; 1) -0.0292

(0.0119)
H(2; 2) 0.4027 0.3390

(0.0329) (0.0260)
H(2; 3) -0.0020

(0.0372)
H(3; 1) 0.0509

(0.0176)
H(3; 2) -0.0020

(0.0372)
H(3; 3) 0.8726 0.9669

(0.0922) (0.0933)
p00 0.9057 0.9311

(0.0225) (0.0171)
p11 0.9156 0.9137

(0.0206) (0.0223)
Log likelihood 8779.3223 8764.6252
AIC -17502.6446 -17491.2504
BIC -17394.78293 -17418.05855



Table 4: Yield Estimation Results with Short-Sample

Model (1) Model (2) Model (3)
� 0.0862 0.1409 0.0560 0.1193 0.0487

(0.0028) (0.0048) (0.0026) (0.0035) (0.0025)
�1 0.1303 0.1137 0.1821

(0.1041) (0.1080) (0.1020)
�2 0.3424 0.4694 -0.0955

(0.2227) (0.2320) (0.0556)
�3 -0.5310 -0.5115 -0.1129

(0.3293) (0.3510) (0.0663)
A(1; 1) 0.9904 0.9952 0.9812

(0.0221) (0.0119) (0.0109)
A(1; 2) 0.0337 0.0344

(0.0277) (0.0102)
A(1; 3) -0.0225 -0.0280

(0.0350) (0.0154)
A(2; 1) -0.0464 -0.0677

(0.0330) (0.0256)
A(2; 2) 0.9330 0.9269 0.9492

(0.0413) (0.0222) (0.0205)
A(2; 3) 0.0507 0.0856

(0.0113) (0.0333)
A(3; 1) 0.0547 0.0814

(0.0160) (0.0373)
A(3; 2) 0.0474 0.0624

(0.0462) (0.0347)
A(3; 3) 0.8052 0.6894 0.7350

(0.0267) (0.0502) (0.0432)
H(1; 1) 0.1083 0.1142 0.1177

(0.0113) (0.0122) (0.0119)
H(1; 2) 0.0035 -0.0140

(0.0160) (0.0178)
H(1; 3) 0.0562 0.0828

(0.0267) (0.0295)
H(2; 1) 0.0035 -0.0140

(0.0160) (0.0178)
H(2; 2) 0.4952 0.5269 0.5169

(0.0462) (0.0511) (0.0494)
H(2; 3) 0.0220 -0.0016

(0.0532) (0.0646)
H(3; 1) 0.0562 0.0828

(0.0267) (0.0295)
H(3; 2) 0.0220 -0.0016

(0.0532) (0.0646)
H(3; 3) 1.0738 1.2613 1.3969

(0.1276) (0.1472) (0.1504)
p11 0.8864 0.9699

(0.0309) (0.0099)
p22 0.9348 0.9232

(0.0236) (0.0290)
Log likelihood 5766.4026 5869.0481 5842.4822
AIC -11488.806 -11688.096 -11658.964
BIC -11411.071 -11599.761 -11613.030



Table 5: Yield Estimation Results with Short-Sample (Continuation)

Model (4) Model (5)
� 0.1409 0.0575 0.1364 0.0579

(0.0049) (0.0028) (0.0049) (0.0024)
�1 0.1452 0.1359 0.1658 0.2148

(0.1173) (0.1052) (0.1646) (0.1526)
�2 0.8964 0.4076 0.1618 -0.6901

(0.2305) (0.2198) (0.0668) (0.1481)
�3 0.0852 -0.3581 0.2731 -0.0625

(0.3594) (0.3117) (0.1268) (0.097)
A(1; 1) 0.9919 0.9877 0.9734

(0.0119) (0.0171) (0.0167)
A(1; 2) 0.0334

(0.0120)
A(1; 3) -0.0202

(0.0149)
A(2; 1) -0.0891

(0.0237)
A(2; 2) 0.8770 0.9925 0.7772

(0.0239) (0.0311) (0.0438)
A(2; 3) 0.0648

(0.0306)
A(3; 1) 0.0370

(0.0369)
A(3; 2) 0.0252

(0.0393)
A(3; 3) 0.6829 0.7452 0.7164

(0.0511) (0.0735) (0.0650)
H(1; 1) 0.1148 0.1245

(0.0123) (0.0126)
H(1; 2) -0.0132

(0.0167)
H(1; 3) 0.0647

(0.0287)
H(2; 1) -0.0132

(0.0167)
H(2; 2) 0.4902 0.4473

(0.0474) (0.0438)
H(2; 3) -0.0357

(0.0565)
H(3; 1) 0.0647

(0.0287)
H(3; 2) -0.0357

(0.0565)
H(3; 3) 1.2655 1.2474

(0.1472) (0.1448)
p11 0.8760 0.8620

(0.0326) (0.0323)
p22 0.9335 0.9240

(0.0211) (0.0233)
Log likelihood 5877.6828 5870.6989
AIC -11699.366 -11703.398
BIC -11600.431 -11636.264
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Table 10: Confusion Rates: 1 month ahead

Percentage of Confusion rate: 1 Month ahead
Maturity Model 1 Model 2 Model 3 Model 4 Model 5
3 41 % 45 % 45 % 44 % 42 %
6 40 % 42 % 45 % 46 % 46 %
9 41 % 41 % 44 % 42 % 41 %
12 46 % 47 % 47 % 44 % 44 %
15 42 % 41 % 41 % 40 % 38 %
18 36 % 39 % 38 % 36 % 36 %
21 35 % 36 % 35 % 35 % 35 %
24 35 % 36 % 35 % 36 % 35 %
30 36 % 38 % 34 % 36 % 36 %
36 36 % 36 % 35 % 36 % 38 %
48 38 % 38 % 36 % 36 % 39 %
60 38 % 39 % 36 % 36 % 39 %
72 36 % 38 % 34 % 36 % 36 %
84 38 % 36 % 35 % 35 % 35 %
96 38 % 36 % 35 % 35 % 35 %
108 36 % 35 % 34 % 34 % 34 %
120 39 % 39 % 38 % 39 % 38 %

Table 11: Confusion Rates: 3 months ahead

Percentage of Confusion rate: 3 Months ahead
Maturity Model 1 Model 2 Model 3 Model 4 Model 5
3 46 % 50 % 46 % 46 % 44 %
6 44 % 44 % 47 % 47 % 46 %
9 38 % 41 % 42 % 42 % 41 %
12 46 % 46 % 50 % 47 % 44 %
15 45 % 40 % 42 % 45 % 46 %
18 47 % 46 % 45 % 50 % 48 %
21 47 % 46 % 47 % 46 % 50 %
24 45 % 46 % 45 % 46 % 45 %
30 45 % 42 % 46 % 47 % 45 %
36 45 % 42 % 45 % 46 % 44 %
48 44 % 45 % 44 % 45 % 41 %
60 46 % 46 % 44 % 45 % 45 %
72 47 % 46 % 41 % 44 % 44 %
84 46 % 45 % 42 % 45 % 44 %
96 47 % 46 % 44 % 46 % 45 %
108 51 % 52 % 46 % 50 % 48 %
120 45 % 48 % 42 % 48 % 44 %
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Table 12: Confusion Rates: 6 months ahead

Percentage of Confusion rate: 6 Months ahead
Maturity Model 1 Model 2 Model 3 Model 4 Model 5
3 50 % 50 % 48 % 51 % 42 %
6 52 % 57 % 48 % 46 % 40 %
9 42 % 51 % 44 % 42 % 42 %
12 47 % 50 % 47 % 47 % 45 %
15 47 % 52 % 44 % 46 % 44 %
18 47 % 47 % 45 % 42 % 44 %
21 48 % 47 % 46 % 44 % 45 %
24 44 % 46 % 44 % 41 % 45%
30 44 % 41 % 45 % 41 % 41 %
36 42 % 39 % 44 % 40 % 40 %
48 46 % 44 % 45 % 45 % 42 %
60 48 % 48 % 46 % 47 % 45 %
72 47 % 47 % 46 % 46 % 45 %
84 47 % 47 % 47 % 46 % 47 %
96 47 % 48 % 48 % 47 % 48 %
108 42 % 42 % 44 % 44 % 45 %
120 39 % 40 % 42 % 42 % 44%

Table 13: Confusion Rates: 12 months ahead

Percentage of Confusion rate: 12 Months ahead
Maturity Model 1 Model 2 Model 3 Model 4 Model 5
3 47 % 57 % 57 % 58 % 53 %
6 54 % 52 % 54 % 54 % 54 %
9 65 % 61 % 57 % 60 % 53 %
12 57 % 57 % 54 % 57 % 48 %
15 57 % 59 % 53 % 53 % 51 %
18 50 % 55 % 54 % 53 % 51 %
21 53 % 55 % 57 % 57 % 54 %
24 53 % 55 % 58 % 57 % 55 %
30 51 % 52 % 55 % 53 % 52 %
36 51 % 51 % 54 % 54 % 51 %
48 54 % 48 % 57 % 58 % 53 %
60 58 % 53 % 57 % 60 % 54 %
72 55 % 51 % 58 % 57 % 54 %
84 61 % 57 % 61 % 60 % 58 %
96 55 % 54 % 58 % 57 % 54 %
108 57 % 53 % 57 % 55 % 53 %
120 55 % 53 % 58 % 54 % 54 %
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Figure 1: Stylized facts in booms and recessions
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Figure 2: Factor loadings
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Figure 3: Estimated latent factors and level, slope, and curvature
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Figure 4: Regime speci�c level, volatility, and persistence of yields
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Figure 5: Actual and �tted yield curve for selected dates
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