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Abstract – We present a model for the time evolution of network architectures based on dynam-
ical systems. We show that the evolution of the existence of a connection in a network can be
described as a stochastic non-Markovian telegraphic signal (NMTS). Such signal is formulated in
two ways: as an algorithm and as the result of a system of differential equations. The autonomous
learning conjecture (Kaluza P. and Mikhailov A. S., Phys. Rev. E, 90 (2014) 030901(R))
is implemented in the proposed dynamics. As a result, we construct self-organizing dynamical
systems (networks) able to modify their structures in order to learn prescribed target functional-
ities. This theory is applied to two systems: the flow processing networks with time-programmed
responses, and a system of first-order chemical reactions. In both cases, we show examples of the
evolution and a statistical analysis of the obtained functional networks with respect to the model
parameters.

Copyright c© EPLA, 2018

Introduction. – Dynamical systems that model com-
plex networks are characterized by dynamics that can op-
erate on fixed network architectures [1] or on dynamical
networks [2–4] where the evolution of the network archi-
tectures is part of the dynamical system. The second ap-
proach can be seen as the general case and it is one of the
main research topics in the field of complex networks [5,6].
The close relationship between the dynamics on the net-
work and the network architecture indicates that these two
entities cannot be studied separately [7].

Our goal is to construct dynamical systems that evolve
on networks that also feature dynamics. These systems
must be functional, i.e., they must have operational func-
tionalities that can be quantitatively measured. In addi-
tion, we require them to learn how to set their parameters
autonomously in order to reach the prescribed functional-
ity. Particularly in this work, the parameters that must
be learned concern the existence of connections between
nodes.

The problem of constructing dynamical networks with
prescribed functionalities has been developed extensively
by applying a supervised learning formalism [8]. Genetic
networks with adaptive responses have been constructed
by a genetic algorithm [9] and by annealing optimiza-
tion [10]. Functional and robust flow processing networks

have been established [11–17]. Genetic networks with
prescribed oscillatory properties have been also consid-
ered [18,19]. Finally, we can mention systems of phase
oscillators that are constructed to perform required levels
of synchronization [20–22].

Control theory has also been employed to obtain target
dynamics of complex systems [23]. Much work has been
done in delayed feedback schemes of control [24]. An im-
portant study in this field was conducted by Pyragas [25].
In this case, a dynamical system is controlled by a feed-
back loop that helps stabilizing unstable orbits. Note that
this feedback does not change the parameters of the sys-
tem, but adds a new control term to the dynamics.

Our approach is different from previous ones in that we
expect the dynamical system to incorporate the learning
capacity in their own dynamics. Thus, this system can
learn autonomously, in a self-organized way, to reach a
desired functionality. The main goal of this scheme is for
the dynamical system to learn without the intervention
of an external tutor. Already we have shown in previous
works that this concept can be applied to different dynam-
ical systems such as phase oscillators [26], feed-forward
neural networks [27], and for gradient dynamics and con-
trol of oscillation death in Kuramoto-Tsuzuki systems of
oscillators [28].
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In this work, we design link dynamics based on our pre-
vious conjecture of autonomous learning. As a result, the
designed dynamics operate analogously to a telegraphic
random signal. The transitions between the existence and
absence of a link is controlled by the previous state and a
delayed state of the system (memory). In addition to pre-
senting the algorithmic scheme of this kind of telegraphic
signal, we show how to generate it from basic quantities of
the system. Finally, we apply these concepts to two kinds
of networks of different nature: flow-processing networks
with discrete time dynamics, and chemical systems of first-
order reactions with continuous time dynamics. For these
two examples, we present statistical results of autonomous
learning performance as well.

This work is organized as follows. In the next section,
we present the main concepts of autonomous learning, the
definition of the link dynamics as a telegraphic variable,
and how to generate this random variable by hybrid dy-
namics. In the third section, we show two examples of
networks. Finally, we present the discussion and the con-
clusion in the last section.

Model. – We consider a dynamical system G consti-
tuted by N nodes which are connected according to an
adjacency matrix A. If there exists a link from node i to
node j, Aji = 1; otherwise Aji = 0. Each node i is charac-
terized by a dynamical variable xi. The dynamics of the
system G are expressed as

ẋ = f(x, A). (1)

The task performed by the dynamical system G is de-
fined by a functional F (x). The error ǫ(G) of this system
with respect to a target task R is

ǫ(G) = ||F (x) − R||. (2)

A functional system must be able to find an adjacency
matrix AR that minimizes the error ǫ(G). We propose to
extend the system (1) to a new one where the links Aij

have their dynamics based on our autonomous learning
conjecture.

In essence, the problem we present here is not different
from the one that we have considered in our previous work
about autonomous learning [26]. In effect, the links of the
adjacency matrix play the role of the parameters w in our
previous formulation. However, a fundamental difference
arises here. The parameters w are continuous variables
with continuous time dynamics. Now, the links are dis-
crete variables with continuous or discrete time dynamics.
This mayor difference does not allow the direct applica-
tion of the previous method of autonomous learning, so a
new one is developed here.

Link dynamics as a non-Markovian telegraphic signal
(NMTS). The dynamics of a link in a network can be
seen as a sequence of ones and zeros that represent the
existence of that connection between two nodes. This dis-
crete sequence of states can be continuous or discrete on

Table 1: Algorithmic description of the stochastic non-
Markovian telegraphic signal (NMTS). It shows all possible
cases of δAij and δǫ.

Case δAij δǫ δAijδǫ Aij(t
′)

1 1 + + 0

2 1 − − Aij(t)

3 −1 + − 1

4 −1 − + Aij(t)

5.a ±1 0 0 transition rate q = Sǫ
5.b 0 ± 1 if Aij(t) = 0
5.c 0 0 0 if Aij(t) = 1

time. It results natural to model these dynamics with a
random variable similar to a telegraphic signal [29]. Thus,
the main work is to relate the transitions between the two
possible states with the current state and performance of
the system, and, these values to a past instant of it.

We consider that during the evolution of the dynamical
system (1), the link states are updated synchronously at
fixed time intervals τ . Thus, the link states present a
discrete time evolution. We call these iterations epochs of
their dynamics. If the dynamical system (1) has a unity
time scale, we require that τ ≫ 1 to ensure that the system
can define the error function properly (2).

Consider a system G(t) with an adjacency matrix A(t)
and an error ǫ(t). In a past instant at time t − ∆, the
system G(t−∆) has an adjacency matrix A(t−∆) and an
error ǫ(t−∆). Here ∆ plays the role of a delay with an inte-
ger number η of τ intervals, i.e., ∆ = ητ . We compute the
difference for each possible link δAij = Aij(t)−Aij(t−∆),
and for the errors of the systems δǫ = ǫ(t) − ǫ(t − ∆).
Thus, if δAij = 1 a new link has been created, whereas if
δAij = −1, the link has been removed from the network.
In the case of δAij = 0, there is no change in this link con-
figuration. The difference δǫ < 0 indicates that the system
improves its performance, while δǫ > 0 signals its degra-
dation with respect to the past configuration. Similarly, if
δǫ = 0 there is not a change in the system performance.

By taking these variations into account, we can use
the autonomous learning conjecture to propose the needed
changes in the network for reducing the error at the next
epoch t′ = t + τ . If a link has been added (δAij = 1)
and the error increases (δǫ > 0), we must revert the ad-
dition of this link making Aij(t

′) = 0. This situation cor-
responds to the first case in table 1. The second case of
the table indicates that a link has been added, and the er-
ror decreases. Thus, we keep the link addition by making
Aij(t

′) = Aij(t). Cases three and four are analogous to
the first two but when a link has been removed.

The fifth case in table 1 presents the particular situ-
ation when δAijδǫ = 0. This instance can occur when
two different configurations have the same error (5.a), or
the same existence value for the link Aij(t) = Aij(t − ∆)
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(5.b), or both (5.c). Thus, we use this last case to intro-
duce a kind of mutation. We say that we can change the
configuration of the system with a probability q. That is,
if Aij(t) = 0, then Aij(t

′) = 1, and if Aij(t) = 1, then
Aij(t

′) = 0. Note that this probability of mutation must
decrease when the system is reaching the target function.
We define q = Sǫ, where S is the noise intensity param-
eter. This way, the changes become smaller when the er-
ror decreases. Note that this scheme tries to mimic an
annealing-like algorithm [30].

As a result of our choices, the dynamics of a link can
be written as a non-Markovian telegraphic signal (NMTS)
L in which the transitions between states are functions of
the current and past configuration (memory) of the system
and their performance:

Aij(l + 1) = L (Aij(l), Aij(l − η), ǫ(l), ǫ(l − η)) . (3)

This expression is formulated in epochs. Our conjecture is
that the new system consisting of eqs. (1) and (3) evolves
decreasing the error (2).

Generation of the non-Markovian telegraphic signal.
In the previous subsection we showed that a kind of tele-
graphic signal is able to produce dynamics for the connec-
tivity of a network. However, the previous formulation is
far from our goal of autonomous learning. In effect, such
formulation is given in an algorithmic way, i.e., we need
a tutor that applies an algorithm. We propose now to
show that it is possible to extend the original dynamical
system (1) defining new dynamical variables that incorpo-
rate the autonomous learning scheme.

We can apply a version of the autonomous learning for
each possible link in terms of epoch as follows:

Aij(l + 1) = Aij(l)

− K (Aij(l) − Aij(l − η)) (ǫ(l) − ǫ(l − η))

+ f(S, ǫ)ξij(l) (4)

and

Aij(l + 1) = Θ (Aij(l + 1) − h) . (5)

Here, Θ(x) is the Heaviside step function, with Θ(x) = 0
if x ≤ 0 and Θ(x) = 1 if x > 0. The parameter h is a
threshold that defines whether a link exists. The stochas-
tic variable ξij(t) is white noise, with 〈ξij(t)〉 = 0 and
〈ξij(t)ξkl(t

′)〉 = 2δikδjlδtt′ . The function f(S, ǫ) controls
noise intensity, with S acting as the intensity parameter.
The parameter K indicates the importance of the drift
term of the dynamics.

Equation (4) is a kind of discrete version of the one
that we have previously introduced for continuous param-
eters [26]. However, it presents an important new char-
acteristic. The right side of this equation uses the link
states Aij(t) and Aij(t − ∆) as discrete variables with
possible values zero and one. The left side of the equa-
tion, however, introduces a new variable Aij that has a
real domain. Formally, eq. (4) and eq. (5) define a hybrid

dynamical systems where the dynamics feature jumps for
certain conditions [31].

Equation (5) transforms the continuous variable Aij(t)
back into a discrete one. Note that the variable Aij is in-
troduced here only to help formulating the system. How-
ever, it is not a hidden weight for the interaction between
nodes i and j. The parameter S plays the same role as in
table 1.

In general, we take K ≫ 1. The effect of this choice is
simple to understand. The product δAijδǫ operates in the
same way as in table 1. As a result, in the next epoch we
add that correction to the previous instant Aij(l). Since
K is large, the correction is strong and the variable Aij(t)
takes very large positive or negative values far from the
threshold h. Then, eq. (5) generates a discrete value based
on these corrections. In these cases, for realistic values of
the noise intensity f(S, ǫ), the stochastic dynamics plays
no role on these corrections.

The situation is different when δAijδǫ = 0. Now, the
stochastic dynamics drive the system. It is clear that the
noise adds a random value to the previous state Aij(l).
The probability that this result crosses the threshold h
depends on the noise intensity f(S, ǫ). Then, by choosing
this function properly, we can produce the same effect of
random mutation as in the algorithmic version (NMTS).

In conclusion, our subsystem of eqs. (4) and (5) pro-
duces the same results as the NMTS defined in table 1.
However, it is important to understand the significant dif-
ferences between the use of an algorithm to create the
stochastic signal and the autonomous way for its genera-
tion by a map.

The noise intensity function f(S, ǫ). In the previous
subsection we have discussed how the transitions and mu-
tations in our scheme work with eqs. (4) and (5). We ob-
serve that these transitions have a strong dependency on
the noise intensity function f(S, ǫ). It is clear that the
probability q(S, ǫ) to cross the threshold h is given by

q(S, ǫ) =
1

2

[

1 − erf

(

h√
2f(S, ǫ)

)]

. (6)

Our particular choice is to make q(S, ǫ) = Sǫ in order to
reproduce the algorithm of table 1. It is straightforward
to show that the function f(S, ǫ) must be taken as

f(S, ǫ) =
h√

2erf−1(1 − 2Sǫ)
. (7)

Here, erf−1(x) is the inverse of the error function erf(x).
As a result, the probability of transitions per epoch is the
same as we defined in our algorithmic scheme with the
NMTS. In this work we take always h = 0.5. Note that
f(S, ǫ) → 0 when ǫ → 0.

Numerical results. – We present two systems where
we can apply our new formulation. The first one is a
model of flow processing network, and the second one is a
network of first-order chemical reactions.
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Fig. 1: (Colour online) Final network at the end of the evolu-
tion shown in fig. 2. The network has N = 46 elements divided
into Nin = 8 input nodes (blue squares), M = 30 middle nodes
(gray circles) and Nout = 8 output nodes (red trapeziums).

Flow processing networks. The first example we con-
sider is the flow processing network model with time-
programmed responses. This has been studied by the
author in prior works [15] and [16]. In those articles, we
have used an annealing-like algorithm to perform super-
vised learning in order to obtain functional networks. Def-
initions and properties of this model can be found from the
previous references.

A network of this model presents a layered structure
with N nodes divided into Nin input nodes, M middle
nodes and Nout output nodes. Input nodes receive fluxes
that are redistributed by the middle nodes. The output
nodes obtain the final fluxes as responses. Note that a
functional network must be able to produce a desired set of
flux levels in the output nodes (target response). Figure 1
presents an example of these networks. The difference
between the actual output pattern and the target one is
called the flow error ǫ of a network. These networks are
characterized by their discrete-time dynamics; thus, the
error of a network with respect to a target function is
not defined for all time, and we need to wait for some
iterations until the network can generate its response. As
a result, we consider that the link dynamics operate after
the network can produce its response.

We present a typical evolution pattern for one of these
networks in fig. 2(a) from the link dynamics given by
eqs. (4) and (5). As the first example, we consider a net-
work with N = 46 elements divided into Nin = 8 input
nodes, M = 30 middle nodes and Nout = 8 output nodes,
with noise intensity S = 1 × 10−4 and K = 104. The ini-
tial conditions for the evolution take a random structure
with connectivity p = 0.2. This network is also taken as
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<
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(a)

(b)

Fig. 2: (Colour online) (a) Flow error ǫ as a function of the
number of epochs for one network evolution with N = 46
nodes. (b) Mean flow error as a function of the noise inten-
sity S. Each point corresponds to the average value over 100
realizations. Error bars indicate the dispersion of the distribu-
tions of the realizations for each ensemble.

memory for the first epoch delay (η = 1). As a result, the
initial errors for the actual network and its memory are
the same.

We find that the flow error ǫ decreases with the number
of epochs, and the error value becomes relatively small at
the end of the evolution. Note that networks with this size,
constructed in [15] by using an annealing algorithm, could
reach a mean error 〈ǫ〉 ≈ 0.25 at best. Thus, our new au-
tonomous method can reach a similar performance for the
chosen number of epochs1. Figure 1 presents the final net-
work from the evolution shown in fig. 2(a). We can observe
during the evolution that at times, large values of the flow
error appear, but normally they are corrected in the fol-
lowing epochs. This is because the network performs each
time better and a random mutation has in general a neg-
ative effect on the network functionality (larger ǫ).

In the second part of the first example, we study the
performance of the evolutions with respect to the noise in-
tensity S. We consider several ensembles of 100 networks
that evolve with the same value of S. All simulations have
107 epochs. Each evolution in an ensemble reproduces a
random target pattern; therefore, the outcome tends to
an average over all possible functionalities. Figure 2(b)
presents the mean flow errors 〈ǫ〉 and their dispersions for
several ensembles as a function of the noise intensity pa-
rameter S. We observe that this curve has a minimum
for S = 3.12 × 10−4. For larger and smaller values of S,

1In the present work we change the normalization of the er-
ror definition used in [15]. The actual error ǫ must be divided by
2NinT = 2 × 8 × 10 = 160 to get consistent values of the error with
the ones shown in [15].
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the mean flow error increases. The maximum and mini-
mum values in these simulations are compatible with those
found in our previous works [15,16].

Finally, it is interesting to make a comparison between
the results of this work and those obtained from an an-
nealing algorithm in [15] and [16]. Although the networks
constructed by these two different methods are at the end
quite similar, the evolutions with our new dynamics are
slower in terms of epochs. We need nearly one order of
magnitude more epochs to find networks with similar per-
formance (flow error). There are two main reasons for
this difference. The first is that the new dynamics always
accept non-functional mutations that are removed in the
next epochs. As a result, twice as many iterations are re-
quired to deal with this effect. The second reason is that
there is one link mutation per epoch in the annealing al-
gorithm, whereas all links can change simultaneously in
the new autonomous dynamics.

First-order chemical reaction networks. As a second
example, we develop networks of first-order chemical reac-
tions. They are characterized by linear dynamics for the
concentrations of the compounds involved [32]. A system
of these chemical reactions is described by an adjacency
matrix A with elements Aij = 1 if compound j produces
compound i, and Aij = 0 otherwise. Self-connections are
not allowed. Figure 3 shows networks with this architec-
ture. The dynamics of the compound concentration xi of a
system with N nodes is governed by the following system
of differential equations:

ẋi =

N
∑

k=1

Aikxk −
N

∑

k=1

Akixi − γxi + Iext
i . (8)

In this expression, γ is the rate of degradation of the chem-
ical species and Iext

i is an external input flow applied to
the node i. Note that all the kinetics rate constants be-
tween compounds are equal to the unity in this model.

These dynamics imply that the total instantaneous con-
centration evolves to a constant value C =

∑N

k=1
Iext
k /γ =

∑N

k=1
xk(t) when t → ∞. The network dynamics set-

tle in a stable fixed point in the space of concentrations.
Thus, the concentration of each compound in the stable
fixed point depends on the network architecture A of the
reactions.

The purpose of a network in this model is to establish
certain values of concentrations x̂i for the last Nout nodes
of the network. We consider that only an external in-
put flow is applied to the first node of the network, i.e.,
Iext
1 
= 0. Thus, the reactions propagate from this input

node according to the network structure A.
We define the error ǫ(t) of the system as the sum of the

absolute differences between the current and target values
of concentrations:

ǫ(t) =
1

2C

N
∑

i=N−Nout+1

|xi(t) − x̂i|. (9)

Fig. 3: (Colour online) Chemical networks. Initial network (a)
and final network (b) of the evolution shown in fig. 4. Networks
have N = 10 nodes with one input node (blue square) and two
output nodes (red trapeziums).

We can summarize the problem now: given a set of target
concentrations {x̂i}, the network architecture must evolve
by eqs. (4) and (5) minimizing the error (9), whereas the
concentrations evolve according with (8).

The first example presented for this system is the evo-
lution of a network of N = 10 elements and with Nout = 2
nodes. The target values required for the output nodes
are x̂9 = 6.5 and x̂10 = 2.5, while for the external input
flow, Iext

1 = 1. The degradation rate is γ = 0.1, hence,
the total concentration is C = 10. Note that we require
only that the 90% of the total concentration C arrives to
the output nodes to avoid unattainable target concentra-
tions given the rate constants of the reactions. The other
parameters of the system are S = 0.005 and η = 1. Since
the characteristic time of this system is given by 1/γ = 10,
we take τ = 20 (∆ = 20). Thus, we ensure that the sys-
tem has enough time to define properly the error ǫ between
epochs. Numerical integration is done with a second-order
Runge-Kutta algorithm with dt = 0.01. The initial ran-
dom network has a probability of connection of p = 0.2.
Initial concentrations are xi = 0. The delayed system
(memory) is initialized with the same network structure
and error of such initial network.

In fig. 4 we present the time evolution for this system.
Figure 4(a) shows the evolution of the error ǫ(t) as a func-
tion of time. We observe that this quantity decreases al-
most to zero at the end of the simulation. Note the strong
variations during this process, signaling the strong effects
of mutations on the functionality when the system has
small error values. Figure 4(b) shows the evolutions of the
concentrations for the target compounds (nodes 9 and 10).
We can see that both concentrations can almost reach the
target values. Finally, in fig. 3 we present the initial and
final networks for this example.
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Fig. 4: (Colour online) (a) Error ǫ as a function of time.
(b) Concentrations x9 and x10 of the two output nodes as a
function of time. Target values: x̂9 = 6.5 and x̂10 = 2.5.

We focus now on the dependence of the error ǫ on the
noise intensity parameter S and the delay η. We con-
sider ensembles of 100 networks with different random tar-
gets and initial conditions. In this study, networks have
N = 10 elements with Nout = 2 output nodes. The tar-
get values x̂9 and x̂10 are randomly chosen with uniform
distributions between zero and one, and later normalized
in order to satisfy that x̂9 + x̂10 = 0.9Iext

1 /γ. We consider
again Iext

1 = 1. The simulation have 105 epochs.

Figure 5 shows the mean error 〈ǫ〉 as a function of the
noise intensity parameter S for different values of η. We
observe that the curves have similar behaviour for all three
cases. The minimum mean values are also similar for the
three curves, which indicates that the three proposed de-
lay values have similar performance. We note, however,
that for η = 3 there is a broader range of noise intensities
with small errors. We find that there is relatively large
dispersion for the final error values inside each ensemble
of networks. This shows that the difficulty of the ran-
dom target patterns can be quite different among them.
In conclusion, we observe that there is an optimum value
of noise intensity at S ≈ 3.2 × 10−2 that produces func-
tional networks with smaller error. If the noise intensity
is very low, the ratio of mutation is also low and there
are not enough epochs in the simulation to find func-
tional networks. On the contrary, large values of noise
produce a large ratio and the system cannot find good
solutions.

Note that both in this system and in the previous one,
an error value of zero cannot be reached generally. In
effect, these networks with ten nodes have 2N2

−N ≈ 1027

configurations, but the target concentrations have random
real values. As a result, the learning capacity is limited
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Fig. 5: (Colour online) (a) Mean error 〈ǫ〉 as a function of
the noise intensity parameter S for three different values of
delay η. Error bars indicate the dispersion of the distributions
of the realizations for each ensemble.

to finding a good configuration that minimizes the error.
Since the error ǫ is different from zero, the noise intensity
does not vanish and random mutations are always present.
In consequence, we can find large error values during the
evolution even when the system is reaching configurations
with small error.

Discussion and conclusions. – In this work, we have
designed link evolution dynamics that can be expressed as
a map where the link state is updated after fixed time
intervals. The proposed dynamics are constructed fol-
lowing our conjecture of autonomous learning previously
presented for systems that feature parameters with con-
tinuous time domain [26]. We show through two dif-
ferent systems that the network architectures can evolve
autonomously to produce a target pattern that minimizes
an error function.

The formulation we present in this manuscript has the
same scheme of parameter updated through a map as our
previous discrete time model shown in ref. [27]. In effect,
in both formulations we require that the time interval τ
between updates be long enough to allow the system to
reach a well-defined error value.

Although our learning scheme can be seen just as one
more optimization algorithm that is even less efficient
than other well-known ones, our main goal is to abil-
ity to write a dynamical system for the whole process.
This is because the autonomous learning conjecture opens
the possibility to create a system able to perform a pre-
scribed task in a self-organized way without needing a tu-
tor or a central processing unit. In effect, a dynamical
system that contains not only the evolution laws of the
system variables but also the learning mechanisms can
be constructed as a physical system. For example, it is
known that analog computers are electronic circuits es-
pecially designed in order to integrate systems of differ-
ential equations in real time. As a result, an electronic
circuit that is able to learn by our proposed mechanisms
is a concrete possibility. These characteristics are essen-
tial for applications where no external control or algorith-
mic evolutions can be implemented, such as biological and
nanosystems [33].
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