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For Candida species, a bimodal wild-type MIC distribution for echinocandins exists, but resistance to
echinocandins is rare. We characterized isolates from patients with invasive candidiasis (IC) breaking through
>3 doses of micafungin therapy during the first 28 months of its use at our center: MICs were determined and
hot-spot regions within FKS genes were sequenced. Eleven of 12 breakthrough IC cases identified were in
transplant recipients. The median duration of micafungin exposure prior to breakthrough was 33 days (range,
5 to 165). Seventeen breakthrough isolates were recovered: FKS hot-spot mutations were found in 5 C. glabrata
and 2 C. tropicalis isolates; of these, 5 (including all C. glabrata isolates) had micafungin MICs of >2 �g/ml,
but all demonstrated caspofungin MICs of >2 �g/ml. Five C. parapsilosis isolates had wild-type FKS sequences
and caspofungin MICs of 0.5 to 1 �g/ml, but 4/5 had micafungin MICs of >2 �g/ml. The remaining isolates
retained echinocandin MICs of <2 �g/ml and wild-type FKS gene sequences. Breakthrough IC on micafungin
treatment occurred predominantly in severely immunosuppressed patients with heavy prior micafungin expo-
sure. The majority of cases were due to C. glabrata with an FKS mutation or wild-type C. parapsilosis with
elevated micafungin MICs. MIC testing with caspofungin identified all mutant strains. Whether the naturally
occurring polymorphism within the C. parapsilosis FKS1 gene responsible for the bimodal wild-type MIC
distribution is also responsible for micafungin MICs of >2 �g/ml and clinical breakthrough or an alternative
mechanism contributes to the nonsusceptible echinocandin MICs in C. parapsilosis requires further study.

Invasive candidiasis (IC) is an important, life-threatening
infection in hospitalized patients. The echinocandins (mica-
fungin, caspofungin, and anidulafungin) are the newest class of
medications approved for the prophylaxis and treatment of IC.
They act via noncompetitive inhibition of �-1,3-glucan syn-
thase, the enzyme responsible for producing �-1,3-D-glucan in
the fungal cell wall (41). These drugs have low toxicity and few
drug-drug interactions and possess a broad spectrum of anti-
fungal activity against Candida species, including those resis-
tant to fluconazole. In clinical trials, the echinocandins have
demonstrated noninferiority for the treatment of IC versus
amphotericin B deoxycholate, liposomal amphotericin B, and
fluconazole (25, 32, 44). The echinocandins are considered
interchangeable for clinical use, and a recent study comparing
micafungin to caspofungin for IC supports this notion (38).
Based on the accumulated experience, echinocandins are now
considered a first-line therapeutic choice for IC (37).

The echinocandins exhibit a bimodal MIC distribution
among Candida species. MICs of C. parapsilosis, C. guillier-
mondii, and C. famata MICs (MIC90, 0.25 to 2 �g/ml) are up to
133 times higher than those of C. albicans, C. glabrata, C.
tropicalis, C. krusei, and C. kefyr (MIC90, 0.015 to 0.25 �g/ml)
(42). However, this difference has not translated into consis-
tent clinical failure (25, 38, 44), and the MIC breakpoint for
echinocandin susceptibility was set at �2 �g/ml, which is in-
clusive of 99% of the wild-type distribution of all Candida

species (9). Organisms with MICs of �2 �g/ml are considered
“nonsusceptible,” but the breakpoint for resistance has yet to
be determined owing to the paucity of clinical isolates available
from patients failing echinocandin therapy and with MICs of
�2 �g/ml.

As echinocandin use has escalated, cases of echinocandin
breakthrough IC have been described (6, 7, 13, 25, 39, 50), and
nonsusceptible isolates (MIC � 2 �g/ml) have been recovered
from patients who demonstrated treatment failure (9). More-
over, several of these nonsusceptible isolates possess nonsyn-
onymous point mutations in genes encoding the �-1,3-glucan
synthase enzyme complex (Fksp) (4, 13, 39, 47). These specific
FKS “hot-spot” mutations reduce the susceptibility of the
�-1,3-glucan synthase enzyme complex to echinocandin drugs,
supporting a biological mechanism of resistance (14).

In February 2006, micafungin became the formulary echi-
nocandin at our hospital, a tertiary care center with multiple
intensive care units, two dedicated hematopoietic stem cell
transplant (HSCT) units, and an active solid organ transplant
(SOT) service. Multiple patients with breakthrough IC while
receiving micafungin therapy were noted. These cases were
reviewed, and the Candida isolates recovered from these pa-
tients were screened for FKS gene mutations; results were
correlated with MIC values.

(This work was presented in part at the 49th Interscience
Conference on Antimicrobial Agents and Chemotherapy, San
Francisco, CA, 12 to 14 September 2009 [slide presentation
M-1243]).

MATERIALS AND METHODS

Definitions. Breakthrough IC was defined as a positive culture for Candida
spp. collected from a normally sterile site in a patient receiving micafungin for 3
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days (minimum of 3 doses of drug). Episodes were further characterized as new
disease versus recurrence of previously documented disease based on clinical and
microbiologic characteristics. For patients with previously documented disease,
IC was considered breakthrough only if the primary therapy was successful (i.e.,
negative culture from the original site of infection, if available, and clinical
resolution of symptoms and signs of infection). Cases of primary treatment
failure, defined by persistently positive culture, were excluded. The source of
breakthrough infection was determined by investigator adjudication. Specifically,
because catheter cultures are not performed at our institution, we defined cath-
eter-related candidemia as a patient who had an indwelling central venous
catheter (CVC) at the time of breakthrough candidemia and no other apparent
source for bloodstream infection (with the exception of the catheter).

Chart review. This study was approved by the Duke University Medical Center
(DUMC) Institutional Review Board. Pharmacy records were queried to deter-
mine the denominator which included all patients who received at least 3 doses
of micafungin. The DUMC Clinical Microbiology Laboratory database was que-
ried to identify patients with Candida spp. isolated from sterile body sites during
the study period, and the lists were cross-referenced. Medical records were
reviewed to confirm cases and to extract pertinent clinical information.

Susceptibility testing. Isolates were originally recovered by the BACTEC 9240
or BacT/Alert 3D blood culture system. Candida sp. isolates were retrieved from
frozen storage (�80°C) and reidentified by classical methods, and susceptibility
testing was performed in duplicate using the CLSI M27-A3 broth microdilution
method (9). An echinocandin MIC of �2 �g/ml was considered nonsuscep-
tible (9).

Molecular identification. Initial identification was confirmed by sequencing of
the 5.8S RNA gene and adjacent internal transcribed spacer regions 1 and 2 (52).
Molecular identification was performed in order to avoid misidentification with
the novel anamorphic related species of C. glabrata [C. bracarensis (10) and C.
nivariensis (1)] and C. parapsilosis [C. orthopsilosis and C. metapsilosis (45)].

Genotyping. The Candida FKS1 and FKS2 genes were sequenced in the “hot-
spot” regions by the Sanger methodology using a CEQ 8000 Beckman Coulter
genetic analysis system. GenBank accession numbers and FKS region sequences
are displayed in the supplemental material.

MLST. Two pairs of isolates underwent multilocus sequence typing (MLST) as
previously described (11, 46), using the Candida tropicalis Multi Locus Sequence
Typing website developed by Keith Jolley, sited at the University of Oxford,
Oxford, United Kingdom (19a), funded by the Wellcome Trust (accessed 11
April 2010).

Statistical analysis. Descriptive statistics were determined. The Wilcoxon rank
sum test was employed for between-group comparisons. Statistical analyses were
performed using the SAS 9.2 software program (SAS Institute, Cary, NC).
Two-sided P values of 0.05 were used to determine statistical significance.

RESULTS

From February 2006 through May 2008, 649 patients re-
ceived at least 3 doses of micafungin. Twelve patients (1.8%)
with breakthrough infection met our predefined case definition
and are summarized in Table 1. Case patients had a mean age
of 43 years (range, 18 to 65) and included 7 males and 5
females. Underlying diseases included receipt of HSCT (n �
5), orthotopic liver transplant (OLT) (n � 3), bilateral ortho-
topic lung transplant (BOLT) (n � 3), and ventral hernia
repair with chronic mesh infection (n � 1). Of the HSCT
recipients, four had received allogeneic HSCT and had graft-
versus-host disease (GVHD). Two patients were neutropenic,
including the single autologous HSCT recipient.

Micafungin breakthrough occurred a median of 41 days fol-
lowing transplantation (range, 2 to 284 days). The median
numbers of days to breakthrough IC following HSCT and SOT
were 190 days and 30 days, respectively (difference between
groups, P � 0.15). At the time of breakthrough infection, all
case patients were receiving micafungin (100 mg) intrave-
nously daily. The median total micafungin exposure in the 6
months preceding breakthrough IC was 33 days (range, 5 to
165), while the median contiguous micafungin exposure prior
to breakthrough was 20 days (range, 5 to 165 days). Neither the

contiguous nor the total micafungin exposure differed signifi-
cantly between micafungin-nonsusceptible versus susceptible
isolates (P � 0.51 and P � 0.53, respectively) or isolates with
versus without FKS hot-spot mutations (P � 0.42 and P � 0.18,
respectively).

Indications for micafungin administration included prophy-
laxis (4 cases), empirical therapy for sepsis (3 cases), treatment
for diagnosed Candida infection (3 cases), and febrile neutro-
penia (2 cases). In all cases, empirical therapy was continued as
prophylaxis after initial cultures for fungus were negative.

Because several patients had multiple pathogens recovered
from various sites, 25 total Candida isolates were targeted for
analysis, including 19 recovered at the time of breakthrough, of
which 17 were available for testing (Table 2). Two break-
through isolates were unavailable for analysis (C. parapsilosis
from biliary fluid, patient 8; C. albicans from pleural fluid,
patient 10), and two other isolates were likely the same strain
captured from different sites. These two isolates, C. tropicalis
from pleural fluid and from blood in patient 11, were recov-
ered 1 day apart and had identical FKS gene sequences, MICs
within one dilution for all susceptibility tests performed, in-
cluding azoles, and an identical, unusual MLST (ST6) (Can-
dida tropicalis Multi Locus Sequence Typing website developed
by Keith Jolley, sited at the University of Oxford [19a], funded
by the Wellcome Trust; accessed 11 April 2010). Patient 8 had
a second episode of IC with C. glabrata 15 days after the initial
breakthrough episode with C. parapsilosis. This occurred after
micafungin was discontinued in favor of liposomal amphoter-
icin B plus fluconazole combination therapy, but given the
recent prior C. parapsilosis breakthrough with micafungin ther-
apy, these C. glabrata isolates were also analyzed. MLST of
both C. glabrata isolates revealed ST3, a common global C.
glabrata strain type (29) (Multi Locus Sequence Typing website
developed by David Aanensen, sited at Imperial College, Lon-
don, funded by the Wellcome Trust; accessed 11 April 2010).
The isolates also had identical FKS gene sequences and echi-
nocandin MICs but different morphology types and disparate
azole MICs (fluconazole and voriconazole MICs [�g/ml] for
the 1st isolate were 16 and 0.75, while MICs for the 2nd isolate
were �256 and �32, respectively). Thus, each isolate is pre-
sented individually. Details of the MLST analyses are pre-
sented in the supplemental material.

Breakthrough yeasts were most commonly recovered from
blood (8/12 cases) or blood and another site (2/12 cases). In the
other two cases, the breakthrough isolate was recovered from
pleural fluid (1/12 cases) and ascites plus abdominal fascia
(1/12 cases). Among all HSCT recipients, a central venous
catheter (CVC) was implicated by the investigators as the
likely source of breakthrough infection. The source was judged
to be the abdomen for all liver transplant recipients and the
thorax for 2 of the 3 lung transplant recipients.

The most common breakthrough isolates were C. parapsilo-
sis (7 isolates) and C. glabrata (6 isolates), followed by
C. tropicalis (3 isolates), C. albicans (1 isolate), C. dubliniensis
(1 isolate), and C. krusei (1 isolate). Per Table 2, of the 17
breakthrough isolates available for testing, 10 (59%), 7 (41%),
and 11 (65%) were nonsusceptible (MIC � 2 �g/ml) to mica-
fungin, caspofungin, and anidulafungin, respectively. Five of 6
(83%) C. parapsilosis isolates and 5/6 (83%) C. glabrata isolates
were micafungin nonsusceptible; all other Candida spp. re-
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mained micafungin susceptible. However, all 6 C. parapsilosis
isolates remained caspofungin susceptible.

FKS gene mutations were detected in 9 isolates (C. glabrata
[5 isolates], C. tropicalis [2 isolates], C. dubliniensis [1 isolate],
and C. krusei [1 isolate]). All mutations detected in C. glabrata
and C. tropicalis were in hot-spot regions; mutations detected
in C. dubliniensis and C. krusei were outside the hot-spot re-
gions and did not confer echinocandin nonsusceptibility. No
mutations other than the naturally occurring polymorphism at
the 3	 end of hot spot 1 were detected among the C. parapsi-
losis isolates.

Among the 5 C. glabrata isolates with hot-spot mutations, all
were nonsusceptible to all 3 echinocandins. The C. tropicalis
heterozygous FKS mutants demonstrated mixed susceptibility
(MIC range, 2 to 8 �g/ml). Caspofungin in vitro testing per-
fectly separated FKS hot-spot mutants (caspofungin MIC � 2
�g/ml) from strains carrying the wild-type FKS gene (caspo-
fungin MIC � 2 �g/ml). Six additional isolates of interest were
also tested. Candida sp. isolates recovered from patients prior
to micafungin breakthrough infection (n � 3) were echinocan-
din susceptible and without FKS gene rearrangements. Three
C. glabrata isolates recovered after the initial breakthrough IC
episode retained their respective FKS gene mutations and non-
susceptible MICs.

Treatment success of breakthrough IC was described in 7/12
(58%) cases; two patients died before receipt of �2 doses of
alternate antifungal therapy, and three patients failed to clear
their infection. Treatment regimens included both mono-
therapy (n � 8) and combination therapy (n � 4). The most

common (n � 6) and successful (5/6; 83%) approach was
single-agent lipid amphotericin B.

DISCUSSION

The frequency of breakthrough IC during echinocandin
therapy varies depending on the indication for which the echi-
nocandin is being used. Based on clinical trial data, rates of
breakthrough IC range from 2.9% in patients receiving echi-
nocandins empirically during febrile neutropenia to 0.2% in
patients receiving echinocandin therapy for documented IC (7,
16, 25, 30, 32, 35, 38, 44, 48, 50). In case reports of break-
through infection in the literature, the vast majority of patients
were severely immunocompromised, and the indication for
echinocandin therapy included febrile neutropenia (n � 4),
hematologic malignancy prophylaxis (n � 5), and primary
treatment for IC (n � 3) (6, 13, 21, 24, 39, 49). Given the varied
indications for micafungin administration in our patients, the
1.8% rate of breakthrough IC appears consistent with previous
reports.

The explanation for echinocandin breakthrough may be ei-
ther clinical factors in the host and/or drug resistance in the
pathogen (23). Our data suggest that both host and microbio-
logic factors may be contributing to echinocandin failure.
Among isolates tested and reported in the literature, high
MICs obtained in vitro have been associated with hot-spot
mutations of the FKS genes (Table 3). Conversely, global sam-
pling of Candida spp. with low (wild-type) echinocandin MICs
has demonstrated the absence of such mutations (53). The

TABLE 2. In vitro susceptibilities and genotypes of breakthrough isolatesa

Patient no. Breakthrough
Candida species Site of culture

MIC (�g/ml)b
Fksp amino acid

substitutionc
ANF CAS MCF

1 C. parapsilosis Blood 4 1 4 None
C. krusei Blood 0.25 1 0.25 1: H675H/Qd

2 C. parapsilosis Blood 8 1 8 None
3 C. glabrata Blood 8 �16 8 1: S629P
4 C. parapsilosis Blood 4 1 4 None
5 C. glabrata Blood 4 �16 4 2: S663P
6 C. glabrata Blood 0.25 0.25 0.25 None
7 C. parapsilosis Abdominal fascia 2 0.5 1 None

C. glabrata Ascites 4 4 4 2: S663F
8 C. parapsilosis Blood 4 0.5 4 None

C. parapsilosish Biliary fluid
C. glabratae Blood 8 �16 8 2: S663P
C. glabratae Blood 4 �16 4 2: S663P

9 C. parapsilosis Blood 4 1 4 None
10 C. albicansh Pleural fluid
11 C. dubliniensis Pleural fluid 0.06 0.25 0.06 1: L635V � T655Ad

C. tropicalisf Blood 4 8 2 1: S80S/Pg

C. tropicalisf Pleural fluid 2 4 2 1: S80S/Pg

12 C. tropicalis Blood 0.12 0.25 0.06 None

a ANF, anidulafungin; CAS, caspofungin; MCF, micafungin.
b Susceptibility testing was performed using the M27-A3 broth microdilution method (9).
c The number preceding the colon has the following meanings: 1 denotes FKS1, and 2 denotes FKS2. The first letter and following 3-digit number represent the

wild-type amino acid for that position in the protein; the last letter denotes the resultant amino acid change from the gene mutation. In cases of diploid organisms,
heterozygous mutations are annotated by 2 letters (example, S/P).

d Outside the “hot-spot” regions.
e Patient 8 C. glabrata breakthrough isolates obtained 14 days after the initial C. parapsilosis breakthrough infection; the patient was receiving liposomal amphotericin

B, 5 mg/kg of body weight/day, and FLU, 400 mg/day, at the time of recovery. See Table 1, footnote d, and the primary text for further details.
f Patient 11 C. tropicalis was presumptively the same strain isolated from different sites (same FKS gene sequence and MICs to azoles and echinocandins within one

dilution, and identical, unusual MLST sequence type �ST6�).
g For Fks1p, the C. tropicalis S80S/P amino acid substitution is the C. albicans S645S/P amino acid substitution equivalent.
h Breakthrough isolate not available.
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majority of our breakthrough C. glabrata isolates possessed
FKS hot-spot mutations and nonsusceptible echinocandin
MICs. Wild-type C. glabrata is inherently susceptible to echi-
nocandins; in global surveillance studies, the MIC at which
90% of isolates were inhibited (MIC90) by micafungin was
0.015 �g/ml, firmly placing it on the susceptible end of the
species distribution (43). This wild-type susceptibility finding
coupled with broadening azole resistance has driven the use of
echinocandins for C. glabrata treatment, generating selection
pressure for resistant organisms. Unlike that of other common
Candida spp., the C. glabrata genome is haploid, requiring only
a single FKS gene hot-spot mutation for “homozygosity.” In
addition, mutations in either FKS1 or FKS2 are sufficient to
confer resistance. However, even in diploid Candida spp., het-
erozygous FKS hot-spot mutations typically result in either a
resistant or mixed phenotype, and prior breakthrough case
reports do not share this overrepresentation of C. glabrata
(Table 3) (4, 14).

In contrast, C. parapsilosis, our most common breakthrough
Candida spp., has not been associated with characteristic hot-
spot mutations. Instead, a naturally occurring polymorphism in
the FKS gene is thought to confer higher echinocandin MICs.
Among 759 C. parapsilosis isolates recovered in global surveil-
lance, the MIC90 of micafungin was 2 �g/ml, although no
organism had an MIC of �2 �g/ml (42). The amino acid
substitution of proline for alanine (P660A) encoded in the
FKS1 hot-spot region of C. parapsilosis appears to be respon-
sible for the intrinsically higher MICs (12). In our C. parapsi-
losis breakthrough isolates, none had characteristic hot-spot
mutations but all contained the naturally occurring P660A
substitution and mixed echinocandin MICs. Eighty-three per-
cent (5/6) of our C. parapsilosis isolates had nonsusceptible
micafungin MICs (range, 4 to 8 �g/ml), a finding which clearly
differs from the global surveillance data (42). These six isolates
all had caspofungin MICs of 0.5 to 1 �g/ml. Whether this
difference in MICs actually predicts clinical failure with mica-
fungin versus caspofungin is not known. Kabbara et al. re-
ported two cases of C. parapsilosis infection that broke through
caspofungin treatment, and the 2 isolates had MIC distribu-
tions similar to those of our isolates; micafungin and caspo-
fungin MICs in that study were 8 and 1 �g/ml, respectively
(21). For C. parapsilosis, we are not aware of any animal study
investigating the impact of differential echinocandin MICs
(i.e., higher micafungin or anidulafungin than caspofungin
MICs) on response to echinocandin treatment. The mecha-
nisms responsible for and clinical impact of the mixed echino-
candin MICs in C. parapsilosis are therefore unclear. Perhaps
an unidentified secondary resistance mechanism is at play in
these isolates and caspofungin testing in vitro is unable to
detect its presence. Alternatively, caspofungin may have
greater activity than the other echinocandins against these C.
parapsilosis isolates. Additional investigation in this area is
needed.

The apparent difference in echinocandin MICs among FKS
gene mutants also merits comment. This relationship was pre-
viously explored in detail with C. albicans (14). In that study, all
strains with caspofungin MICs of �2 �g/ml had both hot-spot
gene rearrangements and a �50-fold decrease in glucan syn-
thase sensitivity to echinocandins, indicating direct drug resis-
tance. Interestingly, the micafungin and anidulafungin MICs of

those same mutants were lower (range, 0.16 to 4 �g/ml); most
were in the “susceptible” range. However, these differences in
drug potency were neutralized and in vitro echinocandin cross-
resistance became apparent when the culture medium was
mixed with 50% human serum, a finding which has been rep-
licated elsewhere (34, 36). In our case series, caspofungin test-
ing by current CLSI guidelines, which does not include the
addition of serum to the test medium, detected all 7 isolates
with hot-spot mutations, while anidulafungin and micafungin
would have missed 1 and 2 of the C. tropicalis isolates with
heterozygous FKS mutations, respectively. Combining our re-
sults with other reports in the literature and based on FKS
kinetic studies, caspofungin appears to be the most reliable of
the echinocandins for detecting FKS gene mutations in vitro
using the currently approved M27-A3 susceptibility testing
method for yeasts.

It is important to emphasize that prolonged echinocandin
exposure may play a role in the development of FKS muta-
tions. Our patients had substantial micafungin exposure, and
prior case reports of breakthrough infections describe similar
long exposures (median, 24 days). Although the durations of
micafungin exposure were not significantly different between
species with and without in vitro micafungin susceptibility or
between yeasts with and without FKS gene mutations, this lack
of statistical correlation may have been due to the low total
number of cases.

There may be a fitness cost to the yeasts from an altered Fks
protein. Emerging data from both fly and mouse models com-
paring wild-type and FKS mutant C. albicans suggest attenu-
ated virulence in the hot-spot-mutated strain (5). Of our 5
patients infected with hot-spot mutants, 2 were symptomatic
with fever while 3 were septic and critically ill with several
acute problems in addition to the IC. Thus, it is difficult to
assess the clinical consequence, if any, of potential attenuated
fitness of the FKS gene-mutated strains in our cohort.

In addition to microbiologic resistance, clinical factors
clearly played a role in our echinocandin breakthrough infec-
tions. Five breakthrough isolates tested susceptible to all echi-
nocandins in vitro and negative for hot-spot mutations yet were
responsible for invasive disease during micafungin treatment.
Microbial resistance was probably not the explanation. Al-
though drug exposure was not formally assessed in our pa-
tients, all patients were receiving 100 mg of micafungin by vein
daily, the recommended dose for IC (2). The patients in our
study were very sick, with prolonged hospitalizations, and all
but one either were receiving exogenous immunosuppression
or were neutropenic: 11 died within 6 months of breakthrough
IC diagnosis. The single long-term survivor was relatively
healthy and experienced only temporary single-organ dysfunc-
tion at the time of breakthrough IC. The data support the
hypothesis that some breakthrough yeast infections are mark-
ers for uncontrolled underlying disease rather than inappro-
priate antifungal therapy. Emerging mechanistic data may pro-
vide further insights. For example, echinocandins unmask the
�-glucan of fungi enabling increased host macrophage and
neutrophil activity in vitro (18, 26, 51). A variety of host re-
sponses were presumably blunted in our immune-suppressed
patients.

Among clinical factors contributing to breakthrough infec-
tion, a protected site or persistent nidus of infection appeared
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to play a significant role. In all 7 cases in which the CVC was
implicated as the source of infection, removal of the catheter
was necessary for treatment success. Biofilms on CVCs can
protect the pathogen from antimicrobial killing and provide an
ideal site for resistance to develop. Although echinocandins do
have in vitro and in vivo activity in biofilm models, this did not
seem to be protective in our patients (19, 28). The 3 liver
transplant recipients all suffered from dysfunctional grafts
which served as functionally irremovable reservoirs of infec-
tion. In a similar fashion, an infected pleural space likely
served as the primary source of infection for two break-
throughs involving lung transplant recipients. As a class, the
echinocandins, including micafungin, have performed well in
intra-abdominal infection (25, 32, 54), but data on outcomes
with echinocandins in Candida empyema are lacking. Distri-
bution of micafungin in humans is limited, but data from an-
imal models suggest adequate levels are achieved in lung, liver,
spleen, and kidney tissue (20). Taken together, a protected site
and persistent nidus yielded clinical resistance and may also
have promoted microbiological resistance with the gradual se-
lection of FKS mutant strains.

The echinocandins have emerged as a first-line therapy for
IC and neutropenic fever, as well as effective agents for pro-
phylaxis during the preengraftment phase of HSCT. In this
report, we describe 12 cases of breakthrough IC occurring in
patients receiving micafungin for a variety of indications.
While the series is not large enough to declare definitive con-
clusions regarding the reasons for breakthrough infection,
these cases likely involve a combination of microbiological and
host factors. The majority of cases were due to either C. gla-
brata with FKS hot-spot mutations or wild-type C. parapsilosis
with a naturally occurring polymorphism (P660A) encoded in
the FKS1 gene hot-spot region. Prolonged micafungin expo-
sure may predispose to echinocandin resistance in C. glabrata,
and caspofungin appears to be the most reliable surrogate for
the echinocandin class for detecting FKS hot-spot mutations in
vitro. Whether the naturally occurring polymorphism within
the C. parapsilosis FKS1 gene responsible for the bimodal wild-
type MIC distribution is sufficient for micafungin “resistance”
and clinical breakthrough or an alternative mechanism con-
tributes to the nonsusceptible echinocandin MICs requires fur-
ther study.
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