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A B S T R A C T

In viticulture, there are several applications where 3D bud detection and localization in vineyards is a necessary
task susceptible to automation: measurement of sunlight exposure, autonomous pruning, bud counting, type-of-
bud classification, bud geometric characterization, internode length, and bud development stage. This paper
presents a workflow to achieve quality 3D localizations of grapevine buds based on well-known computer vision
and machine learning algorithms when provided with images captured in natural field conditions (i.e., natural
sunlight and the addition of no artificial elements), during the winter season and using a mobile phone RGB
camera. Our pipeline combines the Oriented FAST and Rotated BRIEF (ORB) for keypoint detection, a Fast Local
Descriptor for Dense Matching (DAISY) for describing the keypoint, and the Fast Approximate Nearest Neighbor
(FLANN) technique for matching keypoints, with the Structure from Motion multi-view scheme for generating
consistent 3D point clouds. Next, it uses a 2D scanning window classifier based on Bag of Features and Support
Vectors Machine for classification of 3D points in the cloud. Finally, the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) for 3D bud localization is applied. Our approach resulted in a maximum
precision of 1.0 (i.e., no false detections), a maximum recall of 0.45 (i.e. 45% of the buds detected), and a
localization error within the range of 259–554 pixels (corresponding to approximately 3 bud diameters, or
1.5 cm) when evaluated over the whole range of user-given parameters of workflow components.

1. Introduction

In this work, we present an approach for the efficient 3D detection
and localization of grapevine buds. 3D models were reconstructed from
multiple images captured during the winter season in natural field
conditions (i.e., natural sunlight and the addition of no artificial ele-
ments) using a mobile phone RGB camera.

Grapevine buds were recognized early in viticulture history as one
of the most important parts of the plant, mainly because they contain
the whole plant productive capacity, from which all sprouts, leaves,
bunches, and tendrils grow. In particular, bud bunch fertility, a.k.a.
fruitfulness, is of particular interest, as it has a direct impact on the main
goal of vine production, that is, to increase productivity without af-
fecting fruit quality. It has been shown that bud fruitfulness depends on
the amount of sunlight exposure of buds during the period starting at
bud initiation in early spring throughout its development stage up to 30

days after bloom [15,21,11,25,35,27]. Shading conditions during this
period strongly depend on what we call shading structure, consisting in
the localization and geometric characterization of those parts of the
plant that occlude sunlight, mainly the leaves and bunches that grow
after bloom. In addition, sunlight exposure can be used by growers to
influence the productivity of the next period by choosing those buds
that received the most sunlight exposure. In practice, this happens by
deciding pruning procedures late in the winter [23]. There is a balance,
however, as unpruned buds will produce vegetation, shading the newly
initiated buds, and therefore, affecting the productivity of the next
period. The decision of optimal pruning is, therefore, a complex task
that must be carefully balanced between: (i) productivity maximization
of the starting period determined by buds with maximum sun exposure,
and (ii) productivity maximization of the following period determined
by the shading conditions resulting from the green vegetation growing
from those buds.
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A solution to the first issue requires measuring the sun exposure of
individual buds at regular intervals from initiation to 30 days after
bloom and then recovering this value for each bud months later during
winter pruning. Sunlight exposure has been measured so far through
manual positioning of radiation sensors [25]. These manual procedures,
however, are far from efficient for the massive measuring of sunlight
exposure of individual plants, not to mention of individual buds. Our
work aims to partially fulfill the need for an efficient method for
measuring and recording the sunlight exposure of individual buds. The
general rationale behind our approach is that it is possible to compute
the sunlight exposure of a bud with high-precision when the precise 3D
localization of the bud, the shading structure around it, the geo-posi-
tioning of the field, and the dates of interest are fed to a sun radiation
model [29,8]. It is an ambitious goal, attended partially by the present
work that provides a solution to the 3D localization of winter buds.
Future work, however, will have to solve the problem of producing the
shading model. This could be done by localizing buds from initiation till
the end of summer, and then by identifying buds between consecutive
3D modelizations to allow the recording of long-term sun exposure. A
solution to the second issue requires a thorough understanding of which
summer shading structures result from different winter pruning pro-
cedures and trellis systems [11,14]. This demands measuring the
shading structure, a procedure which is currently unavailable.

Simulations are a possibility for partially overcoming the inability to
reconstruct the shading structure, necessary for solving both issues.
There is a line of research that studies different procedures for produ-
cing simulated whole plant shading structures, including the canopy and
bunches [13,16]. They typically require plant architecture and bud
localization as input. However, bud localization information, being
inexistent, is provided by randomly simulating their position. Our work
provides a solution to the latter, while [26] is one of the many studies
that provide a solution to the former. Despite being a simulated model,
the shading structure has the potential to produce invaluable—and to
this day inexistent—information on the (simulated) long-term sun ex-
posure of large bud samples, including months with a fully grown ca-
nopy. In particular, with plant architecture before the winter pruning, it
is possible to simulate the backward shading structure of the previous
spring as well as different forward shading structures resulting from
different pruning treatments.

Finally, we note that both issues require an autonomous system for
executing pruning. Historically, pruning procedures have been simpli-
fied to be accessible for humans. However, this may change with the
extra information provided by 3D modeling, namely, the identification
of fruitful buds and predictions of next-period's shading structures. With
this information, the resulting optimal pruning may be too sophisti-
cated to be amenable for human execution, requiring autonomous
pruning systems.

In addition to measuring sunlight exposure and guiding autonomous
pruning, bud localization is also required as part of the measuring
processes of other variables of interest in viticulture. These are bud
count, type-of-bud classification, bud geometric characterization, in-
ternode length, and bud development stage. Their values at any loca-
tion are of importance to agronomists for deciding on possible treat-
ments (e.g., the application of fertilizers, canopy pruning), or for
predicting plant productivity. Observation and measurement of crop
variables is a fundamental task that offers the agronomist information
about crop state, providing the means for informed decision-making of
what treatments must be applied in order to maximize productivity and
crop quality. At present, these variables are measured through direct or
indirect human visual inspection, whose elevated cost often results in
the measurement of only a small sample of all cases. When data are
scarce, even powerful statistical techniques may still result in high
uncertainty in the decision-making process, motivating the introduction
of improved sensing procedures. Locating buds is a necessary task to
conduct a proper measurement of the above variables. However, 2D
localization is sufficient for all variables with the exception of internode

length, for which 3D localization of two consecutive buds in a cane is
necessary to avoid perspective errors. Still, automatic, high-throughput
measurement of these variables would come with no extra cost with an
autonomous 3D localization system in place.

1.1. Related work

There are many computational approaches to aid viticulture, in-
cluding detecting grapes and bunches, estimating grape size and
weight, estimating production and foliar area indexes, phenotyping,
and autonomous selective pulverization [19,30,6,12,2,31]. For a more
extensive review, see [37].

Specifically concerning the detection of grapevine buds, there are
two recent studies (in 2D only) that address the problem of grapevine
bud detection [38,12]. The first one presents a grapevine bud detection
algorithm designed specifically to establish the groundwork for a future
autonomous pruning system in the winter season (with no leaves left
that may occlude the vision and operation of the cutting mechanism).
Bud detection is performed from RGB images (the image resolution in
this study is unknown). Furthermore, on top of this assumption, images
are captured indoors with an industrial CCD camera with controlled
background and lighting conditions. To discriminate between plant and
background pixels, the authors apply a simple threshold resulting in a
binary image to obtain a wire skeleton of the plant. Under the as-
sumption that bud morphology is similar to that of the corners, they
apply Harris’ algorithm [9] to the skeleton image for detecting those
corners. This process produces a recall of 0.702, i.e., 70.2% of buds
detected. Although some improvements are suggested by the authors,
the most striking limitations of this work are the need for images cap-
tured under controlled indoors conditions and the fact that the resulting
localizations are in 2D. A second work for bud detection is presented by
Herzog et al. [12]. This work introduces three methods of bud detec-
tion. The best results are obtained with the semi-automatic method that
requires human intervention for validating the quality of the results.
Detection is based on 3456×2304 RGB images, where the scene is
altered with an artificial black background, producing a recall of 0.94.
The authors argue that this recall is enough to satisfy the phenotyping
of plants. However, as the authors themselves point out, these good
results are mainly explained by the particular color and morphology of
the buds, captured when bud sprouts are visibly green and their average
size is around 2 cm (compared to a typical 5 mm diameter of a dormant
bud) which makes it easier to discriminate them visually from other
plant components. Although these works represent important ad-
vancements in specific bud detection applications, they suffer from
some of the following limitations: (i) the use of an artificial background,
(ii) controlled indoors luminosity, (iii) the need for human intervention,
(iv) the detection of buds in an advanced stage of development, and (v)
detection is in 2D.

Dey et al. [5] introduced a pipeline for recovering the 3D structure
of the grapevine plant in the spring–summer season (i.e., with leaves
and fruits) from a 3D point cloud. This 3D point cloud visually re-
presents the surface parts of the environment, where each point is re-
presented by a tuple containing the 3D position in world coordinates (x,
y, z). Cloud reconstruction is obtained with the algorithm proposed by
Snavely et al. [28]. Afterwards, the cloud is classified into leaves,
branches, and fruits by means of a supervised classification algorithm
that uses shape and color features. The experiments show an accuracy
of 0.98 for grapes before maturation (still green) and 0.96 for fully ripe
grapes (color change), where accuracy corresponds to the proportion of
all observations (both grapes and background) that were correctly
classified. Despite the similarities with our work, their work classifies
grapes and ours classifies buds, making it hard to compare them. This is
mainly due to the geometrical nature of the features they use that one
would expect to work better for close-to-spherical shapes such as that of
grapes, but which may work poorly for buds that present a highly ir-
regular shape.
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2. Materials and methods

In this section we provide a detailed description of our approach of
3D detection and localization of grapevine buds together with a de-
tailed description of the input collection of images.

The detection and localization workflow consists of five stages as
depicted in Fig. 1: (1) a 3D construction technique known as Structure
from Motion [10] that, given as input a set of 2D images of some scene,
produces both the 3D geometry (point cloud) of the scene and the
camera pose of each 2D image; (2) a scanning-window technique [36]
over each 2D image of the scene, used for classifying each of the image-
patches corresponding to each window as either a bud or not, through
the classifier presented by [20]; (3) a voting scheme for the classifica-
tion of each 3D point in the cloud as being part of a bud or not, based on
the number of patches and number of images in the scene that contain
its projection; (4) a clustering stage for the 3D detection of buds by
running the DBSCAN spatial clustering algorithm [7] over the 3D cloud
points classified as part of a bud, with each cluster representing a de-
tected bud; (5) localization of buds as the center of mass of the point
cloud corresponding to each cluster.

The first stage consists in the use of the 3D reconstruction technique

known as Structure from Motion (SfM) [10] that, given as input a set of
2D images of some scene, produces both the 3D geometry (point cloud)
of the scene and the camera pose of each 2D image (see an illustrative
result of stage 1 in Fig. 1, corresponding to an actual scene re-
construction from images in the collection). The method starts by de-
tecting the keypoints of the 2D images using the ORB (Oriented FAST
and Rotated BRIEF) algorithm [24]. These keypoints are then grouped in
projection bundles, one per 3D point in the cloud, with each image
contributing at best one keypoint to the bundle. Each of the bundle
keypoints corresponds to the projection of the 3D point in its corre-
sponding image. The trick is that it is possible to construct these pro-
jection bundles before knowing the actual location of the corresponding
3D point, by considering that keypoints are the projection of the same
3D point if they match visually. This matching is conducted by first
applying the DAISY algorithm [32] to compute a visual feature de-
scriptor of the local neighborhood of each keypoint, and then using the
FLANN (Fast Approximate Nearest Neighbor Search) algorithm [18] to
visually match keypoints of different images in the scene. To do this, it
takes every two images of the scene and performs a symmetric distance
comparison, in feature space, between the feature descriptors of their
keypoints. More precisely, it considers that a keypoint k of the first

Fig. 1. Schematics of the workflow for 3D bud detection and localization. The input is a set of 2D images of some scene (upper-left). Stage 1: estimation of 3D points
and camera pose (cones) for 3D scene reconstruction by Structure from Motion. Stage 2: scanning-window 2D detection of buds over each 2D image of the scene,
showing in green those keypoints classified as bud, and in red, those classified as non-bud. Stage 3: voting scheme to produce the classification of 3D points as bud or
not (green and red dots, respectively). Stage 4: spatial clustering of all 3D bud points to individualize buds, by considering different clusters as different buds (white
circles). Stage 5: locates buds as the center of mass of 3D points of clusters (blue dots for each cluster). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)
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image visually matches some keypoint descriptor k′ in the other, if on
the one hand, it holds that among all keypoints in the second image,
descriptor k′ is the closest to descriptor k. On the other hand, the op-
posite also holds, that is, if among all descriptors in the first image,
descriptor k is the closest to descriptor k′. Ultimately, the goal is to use
these bundles to determine not only the position of these 3D points, but
also the camera pose of each image. Clearly, a single bundle is not
enough, and since it provides at most one projected point per image, it
is insufficient to constrain its pose. Instead, more bundles increase the
constraint, as they provide more projected points per image, to even-
tually restrict its pose completely. In practice, the matching is noisy,
and there is no analytical solution to this constraint problem, so the
process proceeds through a minimization called bundle adjustment [33].
The bundle adjustment proceeds iteratively in an online minimization
process, proposing at each step a value for the camera pose parameters
as well as the coordinates of the 3D points and computes as cost
function the so called reprojection error. This is computed as follows: (i)
first it uses the camera poses to project each 3D point into each 2D
image; (ii) then it computes the squared distance between each key-
point in the image to its corresponding projected position; and (iii) it
sums these squared distance over all keypoints of all 2D images and
reports its squared root, resulting in a quantity measured in pixel units.
The implementation of SfM used in this work is that provided by the
OpenCV 3.2.0 open source library [3], which implements the SfM
version1 of Hartley and Zisserman [10] described in this section. It also
uses the third-party library Ceres-Solver (A Nonlinear Least Squares
Minimizer) [1] for the bundle adjustment minimization process.

The second stage of the proposed workflow runs a scanning-window
2D detection technique [36] over each 2D image of the scene. This
technique proceeds by sliding a fixed size window over the whole
image, at fixed size steps with some overlap, and by classifying each
image patch covered by each window either containing a bud or not.
The classification is performed using the classifier proposed by [20].
The results are patches with known geometry and localization in the
image, classified either containing a bud or not. Results of this stage are
shown in stage 2 of Fig. 1, with keypoints belonging to patches classi-
fied as bud depicted in green (light gray) points, and those belonging to
non-bud patches depicted in red (dark gray). The classifier of Perez
et al. proceeds in a workflow of computer vision and machine learning
sub-processes: (i) First, it runs Scale-Invariant Features Transform (SIFT)
[17] for computing the low-level visual features of the keypoints of
each patch; (ii) it then runs Bag of Features (BoF) [4] for constructing a
higher level descriptor of the patch, based on patch keypoints and their
SIFT descriptors; and (iii) it concludes by running a Support Vectors
Machine [34] modeler for training a binary classifier based on a col-
lection of labeled patches represented by their BoF descriptors. It is
important to note that in this work, we reproduced the same classifier
of Perez et al. by training with the parameters provided in their work
and the training collection made publicly available,2 leaving only the
choice of scanning-windows parameters, i.e., window size and step. At
first glance, it would seem that in order to obtain a good classification,
one should choose a window and step sizes so that each bud in the
image is perfectly circumscribed by some patch. This is clearly not only
impossible to perform for all buds and images for fixed window and
step sizes of the training collection—as buds are variable in size—but it
is also impossible for a testing collection, since here bud sizes and po-
sitions would be unknown. However, together with the classifier, Perez
et al. provide a robustness analysis for window geometry showing that
the classifier is robust to patches that have lost up to 40% of the bud's
pixels (i.e., at least 60% of the bud's pixels are visible), and it contains
non-bud visual information covering up to 80% of the patch (i.e., bud
pixels cover at least 20% of the patch). Based on these numbers and an

approximate bud diameter of 150 pixels obtained from an inspection of
our collection of 2D images (see below for more details of this collec-
tion), we chose a window size of 150×150 pixels and a step of 75
pixels. This guarantees a 50% overlap between contiguous patches,
considering that these values should produce bud coverage within the
accepted values of the robustness analysis.

The third stage of the workflow combines the results of the first two
stages: the 3D position of keypoints and classification of patches to
produce the classification of these 3D points as part of a bud or not. The
3D classification proceeds through a voting scheme for each 3D point
that classifies it as being part of a bud whenever the number of images
in which it has been detected surpasses a threshold τI. Here, a 3D point
is considered as detected in some 2D image whenever the keypoint in
the projected bundle of this 3D point corresponding to that image falls
within a minimum number τP of bud patches of that image (see Fig. 1).
The basic rationale behind this voting scheme is the intuition that only
true bud visual aspects will show in all images, whereas noisy detec-
tions would show them in only one of the images and cancel them out
by the voting filter as long as it is kept in low levels. As with previous
stages, this process is illustrated in Fig. 1, showing five lines going from
one keypoint in each 2D image in stage 2 to one 3D point in the re-
constructed scene of stage 3. The keypoints at the point of origin of
these 5 lines correspond to a bundle, with 3 (2) of them classified as bud
(no-bud), so both the keypoint and its line were colored green (red), or
light (dark) gray for grayscale versions of the image. As seen in the
image, the 3D point is colored red (dark gray), corresponding to no-
bud, a result of the voting scheme for threshold τI=4 or τI=5.

At this point we have a 3D point cloud, with each point in the cloud
classified as being part of a bud or not. This however does not in-
dividualize buds, nor does it provide a localization for them (a process
conducted in the last two stages of our workflow) also depicted in
Fig. 1. To do this, the workflow continues with stage 4 that executes the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [7]
to spatially cluster the 3D bud points, considering different clusters as
different buds. This algorithm works under the fundamental assumption
that points located in dense regions belong to the same cluster, thus
searching for high density regions separated by low density regions. An
important property of this algorithm is that it requires no pre-
determination of the number of clusters, a property necessary to au-
tomatize detection in scenes with an a priori unknown number of buds.
It is also designed to discover arbitrary-shaped clusters and is robust to
noisy points excluding them from any cluster. The key idea of the
cluster recognition process is to detect high density regions by requiring
for each point of a cluster that the region of radius r around it contain at
least m other points belonging to the same cluster. The two parameters r
and m are user-specified and may drastically affect the outcome of this
stage (as shown later in the results section 3). To conclude we have to
deal with a rather technical issue, necessary for a proper reproducibility
of our workflow. Scene reconstruction by the SfM method may result in
rather arbitrary scales, with differences of orders of magnitude, re-
sulting in parameter values r which greatly affect the DBSCAN process.
To give a sense of this variation, we computed for each scene the mean
minimum distance (MMD) that reports the mean value of the distance of
each 3D point in the cloud of that scene to its closest 3D point in the
same scene. Fig. 2 shows a histogram for MMD over the 47 scenes, in
log scale, showing a variation range of over 15 orders of magnitude. To
address this dispersion, we re-scaled the radius parameter r multiplying
it by the MMD of the scene before passing it to DBSCAN.

The workflow then ends with a fifth and final stage that locates buds
in the centers of mass of the 3D points of its cluster.

The final outcome of the workflow just described is bud clusters in
3D together with their respective centers of mass. An ideal correct
outcome would, therefore, consist of a number of clusters matching
exactly the number of buds in the scene, with their centers of mass
coincident with the center of mass of the buds. Instead, wrong outcomes
would consist of mislocated clusters, worse, spurious clusters, that

1 http://docs.opencv.org/trunk/d4/d18/tutorial_sfm_scene_reconstruction.html.
2 Available in http://dharma.frm.utn.edu.ar/vise/bc/.
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correspond to no actual bud of the scene or buds that have no cluster
representing them. In the next subsection we describe in detail the
collection of 47 scenes used in the evaluation described in the following
section. It first introduces formally some performance measures that
quantify these different aspects of the quality of the 3D bud detection
workflow. Then, it reports their values for a representative spectrum of
values for the four user-defined parameters that control these outcomes
(i.e., image-voting threshold τI, patch-voting threshold τP, DBSCAN
radius r, DBSCAN minPts m).

2.1. Collection of scenes and their 2D images

We captured a collection of images that satisfy the requirements of
this work: they were taken in the winter season using RGB mobile
phone cameras in natural field conditions. In addition, there are specific
requirements for capturing 2D images imposed by the third-party
modules of the proposed workflow: the SfM module of OpenCV 3.2.0
for 3D reconstruction of grapevine branches and the 2D detection al-
gorithm based on the approach of Perez et al. [20]. Firstly, the doc-
umentation of the SfM algorithm3 recommends in the order of 3–5
images for a proper reconstruction, captured from differing points of
view, but as close as possible to one another. In addition, the elements
of the scene (i.e., branches) need to be well focused, and exposition
levels kept within reasonable values. Secondly, the scanning windows
algorithm and the bud classifier used within require buds of at least 100
pixels to maintain the robustness of classification results, as re-
commended by the authors. This resulted in the following image cap-
tured:

1. with a Samsung Galaxy A5 mobile phone camera, without flash, in
JPEG format, and a resolution of 4128× 3096 pixels;

2. satisfying the focus and exposition level requirements of the SfM
modules as detailed above, with 5 images per scene;

3. positioning the camera over an imaginary circular path around the
branch, at approximately equal displacements between them, with
an overlap above 80%, and always pointing toward the branch,
conditions that guarantee a good reconstruction;

4. at a distance of 12 cm from the branches to guarantee that buds are

at least 100 pixels in diameter for the chosen resolution;
5. on sunny days, under normal field conditions, without altering the

scene with artificial elements, and maintaining natural lighting
conditions;

6. between 15:00 and 17:00 h in late August (winter in the southern
hemisphere), when leaves are either dry or have fallen, but before
sprouting again (see Fig. 3).

We captured 60 scenes for a total of 300 2D images, corresponding
to branch parts of a single grapevine plant (as exemplified by the 5
images of Fig. 3). It is worth mentioning that our workflow omits any
automation for the selection of input images in order to guarantee the
success of the 3D reconstruction. Therefore, from a total of 60 scenes,
10 were manually discarded for not following the focus and exposition
quality requirements of the SfM module. After the SfM reconstruction, 3
more were discarded due to failure in reconstruction (detected by re-
projection errors of 60 pixels or more). After this manual pruning, the
collection was left with 235 images corresponding to the 47 remaining
scenes, with mean and standard deviations of the reprojection error of
2.91 and 5.41 pixels, respectively. Among these scenes we counted a
total of 106 buds, with an average of 2.25 buds per scene.

We ran the 2D bud classification over this image collection to assess
the merit of the 2D bud classifier of [20] for stage 2, when pre-trained
over the original image collection. To assess classifier recall, i.e., the
proportion of true buds it could detect, we considered two different
collections of patches representing true buds. The first was a collection
of perfectly-circumscribed patches extracted from rectangles that per-
fectly circumscribe each bud in each image collection. Second, we ran a
scanning-window of 150×150 pixels and a step of 75 pixels and col-
lected all patches that overlapped a bud on at least one pixel. We also
assessed the precision classifier, i.e., the proportion of detected buds
that were indeed true buds. To do this, we considered the same scan-
ning-window, but this time collected the complement set, i.e., all pat-
ches that did not contain a single bud pixel. After running the classifier
over all these image patches, we obtained a recall of 0.978 for the
perfectly-circumscribed patches, a recall of 0.0596 for the single pixel
overlapping cases, and a precision of 0.0511 for the non-overlapping
patches. The latter is a result of the fact that from all ≈559K patches of
the scanning-window containing no buds, 15,756 were incorrectly
classified as buds, i.e., were false positives, drastically reducing the
proportion of true positives over all those classified as buds.

Fig. 2. Histogram of the mean minimum distance (MMD) over the 47 scenes of the corpus, with the X-axis shown in log scale. The histogram shows the enormous
dispersion in MMD, with cases ranging over 15 orders of magnitude.

3 http://docs.opencv.org/trunk/da/db5/group__reconstruction.html.
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3. Experiments

In this section we present results of systematic experiments that
evaluate the quality of the 3D structures produced by our approach. We
first introduce quantitative performance measures that assess detection
and localization errors that report hard errors of true buds that were
undetected, or clusters that detected no bud, and soft errors reporting
how far the correctly detected buds fell from the actual position of the
buds they detected. Values for these performance measures are reported
systematically for a representative range of values of user-input para-
meters, the two thresholds τI and τP of the voting scheme (stage 4), the
radius r, and minimum number of points m of the DBSCAN clustering
algorithm.

3.1. Performance measures

Now, let us explain the details of the detection and localization errors.
Detection error: This measure represents the hard errors of true

buds that were undetected or clusters that detected no bud, reported by
the well-known precision and recall measures, respectively. These are
formally defined as =

+
recall TP

TP FN and =
+

precision TP
TP FP , with TP, FP,

and FN denoting true positives, false positives, and false negatives, re-
spectively [22]. These quantities contrast the results of our 3D detection
workflow with the ground truth obtained from manual detection of
buds, corresponding to the center of mass of the perfect circumscription
rectangles described in the collection section above (cf. Section 2.1).

Specifically in this work, we consider that a bud has been correctly
detected—that is, it is a TP—whenever it satisfies symmetrical closeness
to some cluster—i.e., this bud is the closest bud to its closest clus-
ter—with closeness being measured in Euclidean distance in pixels.
This definition of TPs could result in clusters far away from a bud being
counted as its TP, as long as they satisfy symmetrical closeness. In
practice, however, our results show this is not the case, as worst loca-
lization errors are around 600 pixels. Additionally we consider that a
bud has been missed—that is, it is a FN—when its closest cluster is itself
closer to some other bud, and that a cluster detects no bud—that is, it is
a FP—when it is not the closer cluster to its closest bud. The definitions
of these quantities are illustrated in Fig. 4. Dotted rectangles A and B
mark buds manually circumscribed with their center of mass marked as
a dot within it. The blue (dark) dots 1, 2, and 3 within the dotted circles
mark the projection of the center of mass of three detected bud clusters.
Since cluster 1 is the closest to bud B, and at the same time, bud B is the
closest bud to cluster 1, then, cluster 1 is the TP of bud B. In addition,
even though clusters 2 and 3 have bud B as the closest one, they are
themselves not the closest to B (cluster 1 is), so they are FPs. Finally,
bud A is a false negative as none of the clusters has this bud as its
closest.

Localization error: Detection error measured by precision and re-
call. It is an important measure of quality, but it may miss the soft lo-
calization errors that zoom into the detected buds represented by true
positives and report how far their detection has fallen from their true
position. Formally, we report as localization error the mean of the

individual localization error of all buds, with the individual localization
error computed as the distance between the center of mass of the cir-
cumscribed rectangle of the bud and the center of mass of its symme-
trically closest cluster.

The computation of precision, recall, and localization error require
the 3D coordinate of each bud's center of mass. In practice, this de-
mands measuring the 3D localization of each bud over a common co-
ordinate system for all of them, an extremely complex task to be per-
formed manually, so the alternative of measuring ground-truth 3D
localizations for our collection was discarded as an option. We con-
sidered instead an approximated alternative for measuring these errors,
one that computes them in the 2D pixel space of each image. Therefore,
instead of considering the 3D localizations of both clusters’ center of
mass and bud's center of mass, it considers their reprojected localizations
over each individual image, i.e., their coordinates in the 2D pixel space
of each image corresponding to their position in the field of view of the
camera corresponding to that image. The computation of these re-
projected localizations can be easily automated. Once computed, the

Fig. 3. Example of the images of one scene of the corpus, with circles marking the bud location.

Fig. 4. The figure illustrates the definitions of true positives (TP), false positives
(FP), and false negatives (FN). Dotted rectangles A and B mark buds manually
circumscribed with their centers of mass marked as a dot within it. The blue
(dark) dots 1, 2, and 3 within the dotted circles mark the projection of the
center of mass of three detected bud clusters whose position has been selected
manually for illustration purposes. Since cluster 1 is the closest to bud B, and at
the same time, bud B is the closest bud to cluster 1, then cluster 1 is the TP of
bud B. Even though clusters 2 and 3 have bud B as the closest one, they are
themselves not the closest to B (cluster 1 is), so they are FPs. Finally, bud A is a
FN as none of the clusters has this bud as its closest. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of the article.)
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computation of precision, recall and localization errors followed exactly
their 3D definition, but over 2D localizations, replacing 3D Euclidean
distance with 2D Euclidean distance in pixels. Fig. 5 illustrates this
approximation with the image on the right showing two clusters of the
3D point geometry of a branch, with their centers of mass reprojected
into one of the 2D images of the scene. The 2D localization errors are
shown in red line segments.

Now, we proceed to discuss the results obtained from the systematic
experiments.

3.2. Systematic results

Fig. 6 reports precision and recall detection errors as well as the lo-
calization error (in pixels) for all assignments obtained from the

following values of the four free parameters τI∈ {1, 2, 3, 4, 5}, τP∈ {1,
2, 3, 4}, r∈ {0.01, 0.05, 0.10, 0.50, 1, 2, 3, 5, 10, 50, 100}, and m∈ {1,
3, 5, 10, 25, 50, 100, 200} where τI and τP are the image and patch
voting thresholds, respectively, and r and m are the DBSCAN radius and
minPts, respectively. This figure shows a scatter plot of recall versus
precision with a gray-scale color coding denoting the localization error.
In this plot, darker colored dots represent assignments of the four free
parameters with a lower localization error, with the best possible out-
come for the detection error corresponding to both recall and precision
equal to 1, located in the top-right corner at coordinates (1, 1). Results
in the plot show an abrupt fall of recall for small precisions, next, a
rather constant recall after a precision of 0.2, and finally, for a large
precision, a fall in recall to its lowest value of recall=0.2 for preci-
sion=1. The worst localization errors of approximately 600 pixels

Fig. 5. This figure shows the reprojection into
2D of a 3D bud detection, together with its 2D
localization error, computed as the reprojec-
tion error. In the figure, the light green squares
A and B (or light-gray in gray-scale version)
correspond to the actual localization of the two
buds, whereas the blue circles 1 and 2 (dark
gray in gray-scale version) represent the re-
projected center of mass. The 2D localization
error of each bud is represented by the length
of red line segments 1A and 2B (dark gray in
gray-scale version). (For interpretation of the
references to color in this figure legend, the
reader is referred to the web version of the
article.)

Fig. 6. The figure shows recall versus precision detection errors for all assignments of the free parameters τI, τP, r, m, with a gray-scale color coding denoting the
localization error in pixels(with darker color for lower errors).
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(light-gray) are concentrated at mid-range recalls of around 0.5 and
decrease for either large and small recall values. As extreme assign-
ments for the detection error, we have the upper-left case of re-
call=0.85 and precision≊ 0, meaning that although most buds have
been detected (85% more precisely), an extremely large number of buds
has been falsely detected. On the other end, we have the dark dots in
the lower right sector corresponding to recall=0.2 and precision=1.
This case corresponds to assignments of the free parameters that in-
correctly miss 80% of the buds, but on the other hand, not a single
detected bud is wrong. More details of extreme assignments are shown
in Table 1. Although there are no assignments close to optimal values of
(1, 1), it is worth highlighting that for a precision of exactly 1, recall
values range between 0.22 and 0.45.

The data plotted in Fig. 7 is the precision and recall over all as-
signments of the four free parameters showing two box-plots, one for
precision (in light-gray) and one for recall (in dark-gray) with boxes
grouping all assignments of each image voting threshold, regardless of
the value of the other parameters. The figure shows a clear trend for
both precision and recall, with the distribution of precision assignments
leaning toward the upper values for larger thresholds, concentrating on
90% for τI=4, and on 100% for τI=5. In contrast, recall distribution
moves toward lower values for large thresholds, concentrating at 50%
for τI=1 and decreasing down to 30% for τI=5.

4. Discussion

From Fig. 6 we considered as best outcomes those located at pre-
cision =1 (i.e., all detections correspond to actual buds) and recall in a
range from 0.38 to 0.45 (i.e., between 38% and 45% of buds detected).
These assignments show localization errors in the range of 259–554
pixels, which correspond to approximately 3 buds and approximately
1.5 cm. This is because, for the image scale in the collection, average
bud diameter is 159 pixels with 95% of the total probability mass
falling within the range of [80,263] pixels. In the grapevine variety of
our study, average bud diameter is approximately 5mm.

We consider high precision at the expense of lower recall because
we regard these to be best for the central application of our work: es-
timation of future shading (canopy) structure through simulations. As
mentioned in the introduction, these simulation techniques take as
input different numerical parameters of plant architecture including, in
particular, the localization of its buds. Since in practice, it is an

extremely difficult task to measure even the 3D localization of a few
buds, these simulations contemplate the possibility of localizing missing
buds—even all 100% of them—through stochastic procedures. In other
words, they contemplate low recall values, even 0%. Furthermore,
these methods may not easily tolerate the input of badly localized buds,
or even worse, buds located where in practice there is none, as it would
be the case of falsely detected buds. In those cases—equivalent to low
precision—the simulated structure may end up with false shoots, bun-
ches, fruits and leaves. These results, however, still present important
limitations. First, the sampling of these 45% of buds cannot be con-
trolled or designed, but is rather biased by unknown visual character-
istics of the undetected buds. In addition, the workflow as presented
here still depends on manual capturing of a handful of images for tens
of scenes per plant, a clear bottleneck for high throughput. A fully
automated workflow would require: (i) recording all reconstructed
scenes in a common coordinate system, currently reconstructed into
completely independent coordinate systems; (ii) automatic pre-selec-
tion of images, e.g., focused, valid exposures; (iii) validation of correct
3D scene reconstructions, e.g., those with low reprojection errors; and
(iv) autonomous planning and positioning of an autonomous capturing
device (e.g., drone) for producing valid image collections for each re-
construction.

While these issues render the current approach still unpractical for
satisfying all the requirements of the measuring process of the variables
of interest, these limitations may still be overcome by future research.
Indeed, these results are strong enough to motivate further research on
the possibilities of computer vision and machine learning for spatial
modeling of vines. We conclude with some more detail on the limita-
tions of the two motivating applications:

• Optimal pruning design: Despite all the limitations, our work
provides agronomists with novel information on bud localization
that is currently almost impossible to measure. As already men-
tioned, this information, together with a model of the plant's ar-
chitecture, can become input for backward and forward simulators
to improve the studies on optimal pruning procedures. Currently,
those simulators only use the plant's architecture, since bud locali-
zation is unavailable, while with our work they can locate 45% of
them with a maximum displacement of 1.5 cm. Subjective assess-
ments indicate that these localization errors should not have a major
impact on the shading structures simulated, an assessment that can
only be rendered conclusive once actual simulations are performed.

• Internode length: This variable reports the distance between two
consecutive nodes of the same branch. However, since buds always
grow over nodes, the distance of consecutive buds over the branch
are a very close approximation of internode length. On the one
hand, bud localization alone is insufficient, as there is no informa-
tion on whether those buds belong or not to the same branch. On the
other hand, integration with plant architecture reconstruction
techniques can easily overcome this limitation. However, a 45%
recall presents a more difficult challenge. This recall is still too low
for guaranteeing that two detected buds are indeed nearest neigh-
bors over the cane. With larger recalls, statistics may be of help by
reducing the probability that there is still an intermediate bud be-
tween any two detected buds.

The trend of precision boxes Fig. 7 highlights a positive feature of
the workflow's voting step: a drastic improvement in precision from 2D
to 3D. As already discussed above in Section 2.1, the 2D classification
resulted in a precision of 0.0511 corresponding to 15,756 non-bud
patches falsely classified as bud patches. Interestingly, the precision 1.0
for a voting threshold of 5 implies that none of these 2D patches con-
tributed to a 3D bud cluster. This is explained by two facts: first, that
larger voting thresholds require that more 2D images agree on their
classification of a patch for it to contribute with its keypoints in the 3D
cloud. Second, this helps clean up the noise by our intuition that only

Table 1
A summary of best results with the top (bottom) 5 rows showing best results in
terms of precision (recall). The values with the best precision (recall) are
marked in bold. The column “#(Assignments)” corresponds to the number of
different value assignments for the four free parameters that produced the
precision and recall results of the first two columns. The table is completed with
the mean and standard deviation of the true positive localization errors over
these assignments and the mean of each of the four parameters over their values
for each of these assignments.

Precision Recall #(Assignments) Localization
error of TPs

τI τP r m

1 0.45 25 554.87
(34.7)

3.08 2.52 1.83 120.60

1 0.441 47 462.73
(21.98)

3.53 2.40 3.48 94.26

1 0.423 2 371.96
(2.45)

4.00 2.00 0.75 7.50

1 0.414 27 367.96 (0.0) 4.00 2.00 6.77 98.70
1 0.405 35 330.90

(0.00)
4.00 3.00 5.80 83.97

0.001 0.82 1 247.5 1.00 1.00 10.00 1.00
0.001 0.82 1 244.21 1.00 1.00 5.00 1.00
0.002 0.775 1 305.98 1.00 1.00 50.00 1.00
0.021 0.753 1 348.84 1.00 1.00 50.00 3.00
0.052 0.737 1 374.70 1.00 1.00 50.00 5.00
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true bud visual aspects will show in all images, while noisy aspects will
tend to show in only few images.

5. Conclusions

In this work we introduce a workflow for the localization of
grapevine buds in 3D space obtained from plant parts 3D models re-
constructed from multiple 2D images, captured during the winter
season, using RGB mobile phone cameras in natural field conditions.
The proposed workflow is based on well-known computer vision and
machine learning algorithms, such as SfM, SIFT, BoF, SVM, DAISY, ORB
and DBSCAN. We justified the importance of bud 3D detection through
their potential applications, such as prolonged sunlight exposure, au-
tonomous pruning systems, and internode length. When assessed over a
representative range of values of user-input parameters, the best out-
come obtained was a precision of 1 and a recall in the range of
0.38–0.45 with a localization error in the range of 259–554 pixels
equivalent to approximately 3 buds. These results represent an im-
portant impact of our approach to the problem of designing optimal
pruning procedures with measurement of bud sunlight exposure and
autonomous pruning as two relevant and challenging sub-problems.
Our approach has the potential of providing novel information for
producing both backward (previous Spring) and forward (following
Spring) simulated shading structures paramount for estimating sunlight
exposure of buds, and with it, the potential productivity of the pruning
procedure. There are several automation steps still missing, however,
which are all addressable by future work: registering of all the scenes in
a common coordinate system, automatic pre-selection of images, au-
tonomous detection of valid scene reconstructions (e.g., low reprojec-
tion errors), and autonomous positioning and posing of the capturing
device. Finally, further research is required for improving recall, for
instance, exploring novel reconstruction techniques and novel means
for aggregating 2D patch classification into a detection algorithm. One
could also consider integrating information from other parts of the
plant, for instance, following the information provided by Xu et al.

[38]. As discussed in Section 1.1, their work uses only information
about plant architecture to position buds. This information is in-
dependent of that used by the workflow of our work, suggesting in-
teresting possible integrations.
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