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Abstract. Gamma-Amino Butyric Acid (GABA) is the main 
inhibitor neurotransmitter of the Central Nervous System (CNS). Its 
peripheral administration has been matter of discussion. On the one 
hand, it has been reported that it does not cross the Blood-Brain 
Barrier (BBB), and, on the other hand, it has been associated with 
multiple therapeutic regimens and supplements by peripheral 
administration. The aim of the present study is to elucidate the 
possibility of a central sedative effect when administered 
peripherally. An experimental cohort of 90-day-old Holtzman male 
rats weighing 240-270 g was used. It was divided into 2 groups: 
saline-controls (n = 9) and GABA treated rats (12.5 mg/kg, n = 9). 
Both groups were intraperitoneally injected. The motor behavioral 
patterns displayed in the Opto Varimex (OVM) were studied. 
Vertical, horizontal, ambulatory and non-ambulatory movements 
and the number of movements were recorded in an automated way. 
Horizontal movements constitute the integration of ambulatory and 
non-ambulatory movements. Student t test was used comparing 
groups. In this experiment, there were non-significant downward 
trends in vertical, ambulatory, non-ambulatory and number of 
movements. Ambulatory and non-ambulatory tendencies acquired 
significance when treated together as horizontal movements 
(p < 0.05). We may conclude that peripheral administration of 
GABA produced a decrease of the horizontal movements in the open 
field test. It may be interpreted as a sedative effect, suggesting a 
passage of GABA through BBB, with central effects. However, 
there are several alternative possibilities to explain present findings. 
Other experiments will elucidate the implications or scope of the 
present findings. 
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Introduction 

Gamma-Amino Butyric Acid 
(GABA) is the main inhibitor 
neurotransmitter of the central nervous 
system (CNS). It comes from the action of 
glutamate decarboxylase on glutamate. 
Various forms of this enzyme have been 
described (see Waagepetersent al., 1999). 
The fact that various drugs use its receptor 
has given it relevant clinical importance. 
This is the case of benzodiazepines and 
barbiturates, among many others. There are 
GABA receptors distributed throughout the 
body, and its role has been proposed in 
hepatic encephalopathy (Jones et al., 1984). 

Its peripheral administration has 
been the reason for various postures. On the 
one hand, it has been reported that it does 
not cross the blood-brain barrier (BBB), 
and, on the other hand, it has been 
associated with multiple therapeutic 
regimens and supplements by peripheral 
administration (Mesones and Cia, 1985; 
Halson, 2014). 

The aim of the present study is to 
elucidate the possibility of a central 
sedative effect when administered 
peripherally. The Opto Varimex (OVM) 
test was used, since it may serve for 
detection of modifications in locomotor 
activity. A decrease in this behavior is 
classically considered a sign of sedative 
effects (Maj et al., 1977). 

Materials and methods 

An experimental cohort of 
90 day-old Holtzman male rats weighing  
 

240-270 g was used. It was divided into 
2 groups: saline-controls (n = 9) and GABA 
treated rats (12.5 mg/kg, n = 9). Animals 
were intraperitoneally injected 5 min before 
testing. Saline controls and GABA treated 
rats run alternatively in the test. One control 
rat was followed by a treated rat, ensuring 
the matching of both groups’ individuals. 

Apparatus and test 
The locomotor behavior of the rats 

was evaluated in an Opto Varimex 
Apparatus (OVM, Columbus Instruments). 
It is a plexiglass box (50 x 50 x 30 cm) with 
infrared cells that automatically record the 
different types of movements produced by 
the rat. Vertical, horizontal, ambulatory and 
non-ambulatory movements were recorded 
in an automated way. Horizontal 
movements constitute the integration of 
ambulatory and non-ambulatory 
movements. 

Data analysis 
Student t test was used comparing 

groups. In all cases a value of p < 0.05 (two 
tails) was considered significant. Results 
are reported as means and standard error of 
the mean (SEM). 

Results 

In this experiment, there were non-
significant downward trends in vertical. 
ambulatory, non-ambulatory and number of 
movements. Ambulatory and non-
ambulatory tendencies acquired 
significance when treated together as 
horizontal movements (p < 0.05, Figure 1). 
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Figure 1. Number of counts obtained in the Opto Varimex (OVM, Columbus Instruments) in vertical 
movements, horizontal movements, ambulatory movements, non ambulatory movements and number of 
movements. Comparison was made between saline controls (n = 9) and GABA injected rats (n = 9), 
introducing them in alternative form. Values are presented as means ± standard error of the means (SEM). 
In all cases a p < 0.05 was considered significant. 

 
Discussion 

In the present experiment we 
observed a significant decrease in 
ambulatory movements. All other 
parameters evidenced non significant 
decreases. The decrease in locomotor 
activity (ambulatory movements) has been 
classically interpreted as a sedative effect 
(Maj et al., 1977). The site of action of 
GABA administered here to produce this 
effect may be a matter of discussion. Earlier 
studies postulated that GABA cannot cross 
the BBB (see Boonstra et al., 2015). 
Several initial findings gave support to this 
idea (Van Gelder and Elliot, 1958; Elliot 
and Van Gelder, 1958; Roberts et al., 1958; 
Baxter and Roberts, 1958; Roberts and 

Kuriyama, 1968; Kuriyama and Sze, 1971; 
Knudsen et al., 1988). Subsequent studies 
showed that GABA could cross the barrier, 
although in very small amounts (see 
Boonstra et al., 2015). More sophisticated 
technology led to different results, allowing 
sustaining that at least small amount of 
GABA may go through the BBB (Frey and 
Löscher, 1980; Löscher, 1981; Löscher and 
Frey, 1982; Al-Sarraf, 2002; Shyamaladevi 
et al., 2002). Taking these facts into 
account, a passage of GABA through the 
BBB cannot be ruled out. 

On the other hand, the observed 
action could be due to its effect in areas 
without barriers. This could be the case in 
various brain areas, particularly the 
circumventricular organs (CVOs) and 
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hypothalamic nucleuses. A fenestrated 
vasculature has been described in CVOs, 
but also in arcuate nucleus (AN) has been 
described an important vascular 
permeability (Morita and Miyata, 2012). 

The case of AN is very interesting. 
It has a private milieu. This milieu is closed 
to neighboring structures. However, it is 
open to other structure, the infundibular 
recess, which through some structural 
arrangements facilitates an influence of 
cerebrospinal fluid (CSF) to AN. By this 
way, some peripheral hormones can 
influence hypothalamic regions. 
Consequently, a BBB interruption is not 
necessary to reach them (Rodríguez and 
Blázquez, 2010). 

AN integrates circuits related to 
stress, and could exert some influence on 
brain regions protected by the BBB (Sapru, 
2013). It should be noted that the AN 
proyects to nucleus acumbens septi, bed 
nucleus of the stria terminalis, amygdalin 
nucleuses and lateral septal nucleus (see 
Sapru, 2013). Some of these nucleuses have 
a role in anxiety behaviors (Gargiulo et al., 
1996; Martínez et al., 2002, a and b; Llano 
et al, 2012, 2013; Marinzalda et al., 2014). 
Furthermore, other several brain areas 
receive projections from AN, including 
periaqueductal gray substance, dorsal raphe 
nucleus and locus coeruleus (Sapru, 2013). 
This nucleus also has effects on the 
regulation of blood pressure (Sapru, 2013), 
and an influence of this type could have had 
an effect on the decrease in the horizontal 
movements. 

Finally, a role of the peripheral 
action of GABA cannot be ruled out. The 
role of GABA in gut has been highlighted, 
and various studies have been directed at 
the intestinal microbiota (see Mayer et al., 
2015). In the present intraperitoneal 
injection scheme, although the GABA did 
not reach the intestinal lumen, the 
absorption of this drug was made by the 
portal system, which drains the veins from 
the intestine, mimicking in this sense 
physiological conditions. 

Several endocrine and neurocrine 
mechanisms have been involved in  
 

brain/gut axis communication, and even a 
role for gut microbiota signaling has been 
proposed. By the inverse way, it has been 
also proposed that the brain may be 
influencing microbiota through autonomic 
nervous system (Mayer et al., 2015). 
Following these ideas, a role for GABA 
within the gut has been conceived 
(Blackshaw, 2001), and a role for 
microbiota has been proposed as 
psychobiotic, modifying GABA and other 
gut neurotransmitters (Dinan et al., 2013; 
Scott et al., 2013; Patterson et al., 2014; 
Wall et al., 2014). 

Recently, a new family of drugs 
that are already in clinical use has been 
derived from this compound. This is the 
case of new derivatives that are postulated 
to easily pass the BBB, such as Gabapentin 
(Morris, 1999) and Pregabalin (Feng et al., 
2001). It has been asserted that this is a 
difference with GABA when it is 
administered systemically. 

We may conclude that the 
peripheral administration of GABA 
produced a significant decrease of the 
horizontal movements in the open field test. 
The effect observed here can be interpreted 
as a sedative effect, suggesting a passage of 
GABA through BBB, with central effects. 
However, there are several alternative 
possibilities, as it was previously said. This 
opens the door to discussions and future 
studies on the effects of peripherally 
administered GABA. Other experiments 
will elucidate the implications or scope of 
the present findings. 

Conclusion 

We may conclude that present 
results allow supporting the idea of a 
central action of peripherally administered 
GABA. New studies are necessary to 
establish definitive conclusions. 
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