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Abstract
Extending the relation between semi-Heyting algebras and semi-Nelson algebras to dually hemimorphic semi-Heyting
algebras, we introduce and study the variety of dually hemimorphic semi-Nelson algebras and some of its subvarieties. In
particular, we prove that the category of dually hemimorphic semi-Heyting algebras is equivalent to the category of dually
hemimorphic centered semi-Nelson algebras. We also study the lattice of congruences of a dually hemimorphic semi-Nelson
algebra through some of its deductive systems.
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1 Introduction

In 1942 ‘modal symmetric propositional calculus’ was introduced by Moisil [13]. It is the extension
of the positive calculus of Hilbert–Bernays obtained by adding as new connective the De Morgan’s
negation ′, which verifies the two axioms α → α′′, α′′ → α and the following contraposition rule:
if α → β then β ′ → α′. In 1980 Monteiro introduced the structure of ‘symmetric Heyting algebras’
[14]. An algebra (A, ∧, ∨, →,′ , 0, 1) is said to be a symmetric Heyting algebra if (A, ∧, ∨, →, 0, 1) is
a Heyting algebra and (A, ∧, ∨,′ , 0, 1) is a De Morgan algebra. In the mentioned paper Monteiro
proved an algebraic completeness theorem for the modal symmetric propositional calculus by
showing that the variety of symmetric Heyting algebras is its equivalent semantics. In 1987 this
variety was also studied by Sankappanavar [20], among others.

Later, in 2008, Sankappanavar introduced and studied semi-Heyting algebras as an abstraction
of Heyting algebras [21]. There already exists some literature related to this variety. The papers
that deal with this variety from an algebraic point of view include [1–4, 7, 21] and the papers that
deal with logical approaches include [5, 6, 9]. Then, in 2011, Sankappanavar introduced a variety of
algebras called ‘dually hemimorphic semi-Heyting algebras’ as expansions of semi-Heyting algebras
by a dual hemimorphism, which is a common generalization of De Morgan operation and the dual
pseudocomplementation [19]. This variety was studied logically in a recent work [8].

Nelson algebras were defined by Rasiowa [17]. The class of Nelson algebras, which is a variety,
is the algebraic semantics of the intuitionistic propositional calculus with strong negation introduced
by Nelson [15]. There is a close relationship between Nelson algebras and Heyting algebras, as it
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2 Dually Hemimorphic Semi-Nelson Algebras

was investigated by Vakarelov [24] and Sendlewski [22], among others. This relationship is part
of what is now known as twist structures [12, 16, 18] and date back to [11]. In [10] Cornejo
and Viglizzo extended the twist construction to semi-Heyting algebras obtaining a new variety,
which they called semi-Nelson algebras. They considered semi-Heyting algebras and introduced
semi-Nelson algebras, showing that some of the features of the original constructions between
Heyting algebras and Nelson algebras given by Vakarelov are preserved [24]. More precisely, the
following properties were proved in [10]: (i) if A is a semi-Heyting algebra then we can define a
semi-Nelson algebra, F(A), and if B is a semi-Nelson algebra then we can define a semi-Heyting
algebra, G(B); (ii) if A is a semi-Heyting algebra then there exists an isomorphism between A and
G(F(A)), and if B is a semi-Nelson algebra then B is isomorphic to a subalgebra of F(G(B)). In [10]
the authors also characterized the lattice of congruences of a semi-Nelson algebra and they used it
in order to prove that the variety of semi-Nelson algebras is arithmetical, has equationally definable
principal congruences and has the congruence extension property.

The main goal of this paper is to extend the relation between semi-Heyting algebras and semi-
Nelson algebras [10] in the framework of dually hemimorphic semi-Heyting algebras and some of its
subvarieties [19]. The paper is structured as follows. In Section 2 we recall the definition of the vari-
ety of dually hemimorphic semi-Heyting algebras and some of its subvarieties, as well the relation
between them. In Section 3 we introduce and study the variety of dually hemimorphic semi-Nelson
algebras and some of its subvarieties. In Section 4 we explore the relation between dually hemimor-
phic semi-Heyting algebras and dually hemimorphic semi-Nelson algebras. In particular, we prove
that the category of dually hemimorphic semi-Heyting algebras is equivalent to the category of dually
hemimorphic centered semi-Nelson algebras. In Section 5 we study the lattice of congruences of any
dually hemimorphic semi-Nelson algebra. Finally, in Section 6 we present an alternative construction
of the equivalence for the category of dually hemimorphic centered semi-Heyting algebras.

2 Preliminaries

Throughout this paper we will use the same notation for a class of algebras and its corresponding
(algebraic) category.

DEFINITION 2.1
An algebra (A, ∧, ∨, →, 0, 1) of type (2, 2, 2, 0, 0) is a semi-Heyting algebra if (A, ∧, ∨, 0, 1) is a
bounded lattice and the following equations are satisfied:

(E1): x ∧ (x → y) = x ∧ y,
(E2): x ∧ (y → z) = x ∧ [(x ∧ y) → (x ∧ z)],
(E3): x → x = 1 .

We write SH for the variety of semi-Heyting algebras. The underlying lattice of a semi-
Heyting algebra is necessarily distributive, as it is shown in [21]. Semi-Heyting algebras share with
Heyting algebras the following properties: they are pseudocomplemented and their congruences are
determined by the lattice filters. The relationship between the variety of semi-Heyting algebras and
the varieties of Heyting algebras (and its expansions) has been also studied in [1–4, 19]. In [21] it was
proved that Heyting algebras are semi-Heyting algebras, which satisfy the equation (x∧y) → x = 1.

Now we give the definition of dually hemimorphic semi-Heyting algebra, which was introduced
by Sankappanavar in [19].

DEFINITION 2.2
An algebra (A, ∧, ∨, →,′ , 0, 1) of type (2, 2, 2, 1, 0, 0) is said to be a dually hemimorphic
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Dually Hemimorphic Semi-Nelson Algebras 3

semi-Heyting algebra if (A, ∧, ∨, →, 0, 1) is a semi-Heyting algebra and the following equations
are satisfied:

(E4): 0′ = 1,
(E5): 1′ = 0,
(E6): (x ∧ y)′ = x′ ∨ y′.

We write DHMSH to indicate the variety of dually hemimorphic semi-Heyting algebras.
Let (A, ∧, ∨, →,′ , 0, 1) be an algebra of type (2, 2, 2, 1, 0, 0). To improve the readability of this

paper we expose the following list of equations:

(E7): (x ∧ y) → x = 1
(E8): (x ∨ y)′ = x′ ∧ y′
(E9): x′′ ≤ x

(E10): x′′ = x
(E11): (x ∨ y)′′ = x′′ ∨ y′′
(E12): x′′′ = x′
(E13): x ∨ x′ = 1
(E14): (x ∨ (x → 0))′ = x′ ∧ (x → 0)′
(E15): x ∨ (x → 0) = 1
(E16): (x ∨ y′)′ = x′ ∧ y′′
(E17): x′ ∧ x′′ = 0.

We also list the following sets formed by the above equations:

S1 = {(E7)}
S2 = {(E8)}
S3 = {(E8), (E9)}
S4 = {(E8), (E10)}
S5 = {(E8), (E10), (E7)}
S6 = {(E11), (E12)}
S7 = {(E9), (E11), (E12)}
S8 = {(E9), (E11), (E12), (E13)}
S9 = {(E9), (E11), (E12), (E13), (E7)}
S10 = {(E9), (E11), (E12), (E15)}
S11 = {(E9), (E16), (E17)}
S12 = {(E8), (E9), (E16), (E17)}
S13 = {(E9), (E14), (E16), (E17)}
S14 = {(E13)}.

To avoid confusions we will present the definitions of some subvarieties of DHMSH by using a
table. These classes of algebras were introduced in [19].

DEFINITION 2.3
The Figure 1 represents how several subvarieties of DHMSH are defined in [19] where the first
column indicates the name of the class, the second column indicates the defining set of equations
modulo DHMSH and the third column indicates the notation along this paper.

Most of the proofs of the items in the below lemma could be found in [19]. The rest are
straightforward.
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4 Dually Hemimorphic Semi-Nelson Algebras

FIGURE 1. Subvarieties of DHMSH.

LEMMA 2.4
The following inclusions are proper:

(1) DMH ⊆ DMSH ⊆ DmsSH ⊆ OCKSH ⊆ DHMSH,
(2) DPCH ⊆ DPCSH ⊆ DQDSH ⊆ DSDSH ⊆ DHMSH,
(3) DQDBSH ⊆ DQDSH,
(4) DSSH ⊆ DQSSH,
(5) BDQSSH ⊆ DQSSH,
(6) DPCH ⊆ DHMH ⊆ DHMSH,
(7) DMH ⊆ DHMH,
(8) DSCSH ⊆ DHMSH.

3 Dually hemimorphic semi-Nelson algebras

In this section we introduce the variety of dually hemimorphic semi-Nelson algebras and some of its
subvarieties. The motivation to introduce this variety will be justified in the next section, when we
study its connection with the variety of dually hemimorphic semi-Heyting algebras.

Let (A, ∧, ∨, →,′ , 0, 1) be an algebra of type (2, 2, 2, 1, 0, 0). We define the binary map →N
on A by

x →N y := x → (x ∧ y).

In order to improve the readability of this section we will expose the following list of equations:

(E18): x ∧ (x ∨ y) = x,
(E19): x ∧ (y ∨ z) = (z ∧ x) ∨ (y ∧ x),
(E20): ∼∼ x = x,
(E21): ∼ (x ∧ y) =∼ x∨ ∼ y,
(E22): x∧ ∼ x = (x∧ ∼ x) ∧ (y∨ ∼ y),
(E23): x ∧ (x →N y) = x ∧ (∼ x ∨ y),
(E24): x →N (y →N z) = (x ∧ y) →N z,
(E25): (x →N y) →N [(y →N x) →N [(x → z) →N (y → z)]] = 1,
(E26): (x →N y) →N [(y →N x) →N [(z → x) →N (z → y)]] = 1,
(E27): (∼ (x → y)) →N (x∧ ∼ y) = 1,
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Dually Hemimorphic Semi-Nelson Algebras 5

(E28): (x∧ ∼ y) →N (∼ (x → y)) = 1.
(E29): (∼ 1)′ = 1
(E30): 1′ → (∼ 1) = 1
(E31): ((x → y) ∧ (y → x) ∧ x)′ → ((x → y) ∧ (y → x) ∧ y)′ = 1
(E32): (∼ x′) → (∼ x ∧ (x′ → x)) = 1
(E33): (∼ x ∧ (x′ → x)) → (∼ x′) = 1
(E34): (x ∧ y)′ → (x′ ∨ y′) = 1
(E35): (x′ ∨ y′) → (x ∧ y)′ = 1
(E36): (x ∨ y)′ → (x′ ∧ y′) = 1
(E37): (x′ ∧ y′) → (x ∨ y)′ = 1
(E38): x′′ →N x = 1
(E39): x →N x′′ = 1
(E40): (x ∨ y)′′ → (x′′ ∨ y′′) = 1
(E41): (x′′ ∨ y′′) → (x ∨ y)′′ = 1
(E42): x′′′ → x′ = 1
(E17): x′ → x′′′ = 1
(E43): x ∨ (x → (∼ 1)) = 1
(E44): (x′ ∧ x′′) → (∼ 1) = 1
(E45): (x ∨ y′)′ → (x′ ∧ y′′) = 1
(E46): (x′ ∧ y′′) → (x ∨ y′)′ = 1
(E47): (x ∨ (x → (∼ 1)))′ → (x′ ∧ (x → (∼ 1))′) = 1
(E48): (x′ ∧ (x → (∼ 1))′) → (x ∨ (x → (∼ 1)))′ = 1.

We also list the following sets formed by the above equations:

T1 = {(E7)}
T2 = {(E36), (E37)}
T3 = {(E36), (E37), (E38)}
T4 = {(E36), (E37), (E38), (E39)}
T5 = {(E7), (E36), (E37), (E38), (E39)}
T6 = {(E40), (E41), (E42), (E43)}
T7 = {(E38), (E40), (E41), (E42), (E43)}
T8 = {(E13), (E38), (E40), (E41), (E42), (E43)}
T9 = {(E7), (E13), (E38), (E40), (E41), (E42), (E43)}
T10 = {(E38), (E40), (E40), (E42), (E43), (E44)}
T11 = {(E38), (E45), (E46), (E47)}
T12 = {(E36), (E37), (E38), (E45), (E46), (E47)}
T13 = {(E38), (E45), (E46), (E47), (E48), (E49)}
T14 = {(E13)}.

In what follows we recall some definition given in [10], which we shall use later.

DEFINITION 3.1
An algebra (A, ∧, ∨, →, ∼, 1) of type (2, 2, 2, 1, 0) is a semi-Nelson algebra if the conditions (E18)–
(E28) are satisfied.

We write SN for the variety of semi-Nelson algebras [10]. These algebras are linked with Nelson
algebras in many senses (see [10]). In particular, the variety of Nelson algebras is a proper subvariety

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article-abstract/doi/10.1093/jigpal/jzz030/5613741 by guest on 16 D

ecem
ber 2019



6 Dually Hemimorphic Semi-Nelson Algebras

of the variety of semi-Nelson algebras [25]. Axioms (E18) and (E19) are those given by Sholander
in [23], which define distributive lattices, so in what follows we will use freely the arithmetic rules
of distributive lattices.

DEFINITION 3.2
An algebra (A, ∧, ∨, →, ∼,′ , 1) of type (2, 2, 2, 1, 1, 0) is a dually hemimorphic semi-Nelson algebra
if (A, ∧, ∨, →, ∼, 1) is a semi-Nelson algebra and satisfies the equations from (E29) to (E35).

We denote by DHMSN to the variety of dually hemimorphic semi-Nelson algebras.
The following lemma involves some algebraic properties of DHMSN.

LEMMA 3.3
Let (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN and a, b, c ∈ A. Then the following properties hold:

(1) a∨ ∼ 1 = a,
(2) 1 →N a = a,
(3) a →N a = 1,
(4) a →N (b ∧ c) = (a →N b) ∧ (a →N c),
(5) if a ≤ b then a →N b = 1,
(6) (a ∨ b) →N c = (a →N c) ∧ (b →N c),
(7) a ≤ b if and only if a →N b = 1 and ∼ b →N∼ a = 1,
(8) if a →N b = b →N c = 1 then a →N c = 1,
(9) (∼ 1) →N a = 1,

(10) (a∧ ∼ a) →N b = 1,
(11) a →N b = a →N (a ∧ b),
(12) (a → b) →N (a →N b) = 1,
(13) a →N b = 1 and b →N a = 1 if and only if a → b = 1 and b → a = 1,
(14) if a →N b = 1 then a →N (a ∧ b) = 1,
(15) (a′ ∨ b′ ∨ c′) →N (a ∧ b ∧ c)′ = 1,
(16) (a ∧ b ∧ c)′ →N (a′ ∨ b′ ∨ c′) = 1.

PROOF. Items (1)–(13) follow from several results of [10, Lemmas 2.4, 2.6 and 2.7].
Let us prove item (13). By hypothesis we have that a →N b = 1. Then apply item (11).
In order to check (15) note that, by (E35), we have that (a′ ∨ (b ∧ c)′) → (a ∧ (b ∧ c))′ = 1. Then

it follows from items (2) and (12) that

(a′ ∨ (b ∧ c)′) →N (a ∧ (b ∧ c))′ = 1. (3.1)

Taking into account equation (E35) we obtain

(b′ ∨ c′) → (b ∧ c)′ = 1. (3.2)

Hence, it follows from by items (2) and (12) that (b′ ∨ c′) →N (b ∧ c)′ = 1. So, by (5),

(b ∧ c)′ →N (a′ ∨ (b ∧ c)′) = 1. (3.3)

Using item (8) in equations (3.2) and (3.3) we deduce the equality

(b′ ∨ c′) →N (a′ ∨ (b ∧ c)′) = 1. (3.4)
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Dually Hemimorphic Semi-Nelson Algebras 7

FIGURE 2. Subvarieties of DHMSN.

Therefore, (a′∨(b′∨c′)) →N (a′∨(b∧c)′) (6)= (a′ →N (a′∨(b∧c)′))∧((b′∨c′) →N (a′∨(b∧c)′))
(5)= 1 ∧ ((b′ ∨ c′) →N (a′ ∨ (b ∧ c)′)) = (b′ ∨ c′) →N (a′ ∨ (b ∧ c)′) (3.4)= 1. Then using item (8) and
the equation (3.1), (a′ ∨ (b′ ∨ c′)) →N (a ∧ (b ∧ c))′ = 1.

The proof of item (16) is similar by using identity (E34). �
Again, to avoid confusions, we present the definitions of subvarieties of DHMSN by using a table.

DEFINITION 3.4
The Figure 2 is the definition of subvarieties of DHMSN, where the first column indicates the name
of the class, the second one indicates the defining set of equations modulo DHMSN and the third
one indicates its notation along this paper.

In what follows we will show some examples of algebras of DHMSN.

L1

’ : 0 1 2
1 0 1

∼: 0 1 2
0 2 1

→: 0 1 2
0 1 0 1
1 0 1 2
2 1 0 1

∧ : 0 1 2
0 0 0 2
1 0 1 2
2 2 2 2

∨ : 0 1 2
0 0 1 0
1 1 1 1
2 0 1 2

We have that L1 ∈ DMSN ∩ DPCSN ∩ DQDSN and L1 /∈ DMN ∪ DPCN ∪ DQDBSN ∪
DHMN.

L2

’ : 0 1 2 3 4
1 4 1 1 1

∼: 0 1 2 3 4
2 3 0 1 4

→: 0 1 2 3 4
0 1 0 2 2 4
1 0 1 2 3 4
2 0 0 1 1 1
3 0 0 1 1 1
4 0 0 1 1 1

∧ : 0 1 2 3 4
0 0 0 2 3 4
1 0 1 2 3 4
2 2 2 2 3 2
3 3 3 3 3 3
4 4 4 2 3 4

∨ : 0 1 2 3 4
0 0 1 0 0 0
1 1 1 1 1 1
2 0 1 2 2 4
3 0 1 2 3 4
4 0 1 4 4 4
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8 Dually Hemimorphic Semi-Nelson Algebras

In this example we have that L2 ∈ DmsSN and L2 /∈ DMSN.
L3

’ : 0 1 2 3 4
1 4 1 1 1

∼: 0 1 2 3 4
2 3 0 1 4

→: 0 1 2 3 4
0 1 1 2 2 4
1 0 1 2 3 4
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1

∧ : 0 1 2 3 4
0 0 0 2 3 4
1 0 1 2 3 4
2 2 2 2 3 2
3 3 3 3 3 3
4 4 4 2 3 4

∨ : 0 1 2 3 4
0 0 1 0 0 0
1 1 1 1 1 1
2 0 1 2 2 4
3 0 1 2 3 4
4 0 1 4 4 4

We have that L3 ∈ DHMN and L3 /∈ DMN.
L4

’ : 0 1 2 3 4
2 2 1 1 1

∼: 0 1 2 3 4
3 4 2 0 1

→: 0 1 2 3 4
0 1 0 2 3 3
1 0 1 2 3 4
2 0 0 1 1 1
3 0 0 1 1 1
4 0 0 1 1 1

∧ : 0 1 2 3 4
0 0 0 2 3 4
1 0 1 2 3 4
2 2 2 2 3 4
3 3 3 3 3 4
4 4 4 4 4 4

∨ : 0 1 2 3 4
0 0 1 0 0 0
1 1 1 1 1 1
2 0 1 2 2 2
3 0 1 2 3 3
4 0 1 2 3 4

We have that L4 ∈ OCKSN ∩ DSDSN and L4 /∈ DmsSN ∪ DQDSN.
L5

’ : 0 1 2 3 4
0 4 1 1 1

∼: 0 1 2 3 4
2 3 0 1 4

→: 0 1 2 3 4
0 1 0 2 2 4
1 0 1 2 3 4
2 0 0 1 1 1
3 0 0 1 1 1
4 0 0 1 1 1

∧ : 0 1 2 3 4
0 0 0 2 3 4
1 0 1 2 3 4
2 2 2 2 3 2
3 3 3 3 3 3
4 4 4 2 3 4

∨ : 0 1 2 3 4
0 0 1 0 0 0
1 1 1 1 1 1
2 0 1 2 2 4
3 0 1 2 3 4
4 0 1 4 4 4

We have that L5 ∈ DQDSN and L5 /∈ DPCSN ∪ DSCSN.
L6

’ : 0 1 2 3 4
0 4 1 1 1

∼: 0 1 2 3 4
2 3 0 1 4

→: 0 1 2 3 4
0 1 1 2 2 4
1 0 1 2 3 4
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1

∧ : 0 1 2 3 4
0 0 0 2 3 4
1 0 1 2 3 4
2 2 2 2 3 2
3 3 3 3 3 3
4 4 4 2 3 4

∨ : 0 1 2 3 4
0 0 1 0 0 0
1 1 1 1 1 1
2 0 1 2 2 4
3 0 1 2 3 4
4 0 1 4 4 4

We have that L6 ∈ DHMN and L6 /∈ DPCN.
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Dually Hemimorphic Semi-Nelson Algebras 9

L7

’ : 0 1 2 3 4 5 6
2 6 1 1 1 1 1

∼: 0 1 2 3 4 5 6
3 4 5 0 1 2 6

→: 0 1 2 3 4 5 6
0 1 0 2 3 3 5 6
1 0 1 2 3 4 5 6
2 0 0 1 5 5 5 6
3 0 0 0 1 1 1 1
4 0 0 0 1 1 1 1
5 0 0 0 1 1 1 1
6 0 0 0 1 1 1 1

∧ : 0 1 2 3 4 5 6
0 0 0 2 3 4 5 6
1 0 1 2 3 4 5 6
2 2 2 2 3 4 5 6
3 3 3 3 3 4 3 3
4 4 4 4 4 4 4 4
5 5 5 5 3 4 5 5
6 6 6 6 3 4 5 6

∨ : 0 1 2 3 4 5 6
0 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1
2 0 1 2 2 2 2 2
3 0 1 2 3 3 5 6
4 0 1 2 3 4 5 6
5 0 1 2 5 5 5 6
6 0 1 2 6 6 6 6

We have that L7 ∈ DHMSN and L7 /∈ DSDSN.

4 Relation between DHMSH and DHMSN

In this section we describe the constructions that realizes the connection between dually hemimor-
phic semi-Nelson algebras and dually hemimorphic semi-Heyting algebras.

In order to avoid confusions, in this sections we will use the following notation:

Class of algebras Language
DHMSN {∧, ∨, →, ∼,′ , 1}
DHMSH {∩, ∪, ⇒,† , ⊥, �}

4.1 The quotient algebra

In what follows we will prove that for every dually hemimorphic semi-Nelson algebra it is possible
to build up a dually hemimorphic semi-Nelson algebra.

We start with some preliminary definitions and results.
Let A be a semi-Nelson algebra. It follows from [10, Lemma 3.1] that the binary relation ≡

defined on A by

x ≡ y if and only if x → y = 1 and y → x = 1

is an equivalence relation compatible with the operations ∼, ∧, ∨ and →.
For every x ∈ A we write [[x]] for the equivalence class associated with x.
Note that it follows from item (13) of Lemma 3.1 that the relation ≡ can be replaced by

x ≡ y if and only if x →N y = 1 and y →N x = 1.
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10 Dually Hemimorphic Semi-Nelson Algebras

Let A ∈ SN. We denote by sH(A) to the algebra (A/≡, ∩, ∪, ⇒, ⊥, �), where A/ ≡ is the set of
equivalence classes and the operations on A/ ≡ are defined as follows:

• ⊥ = [[∼ 1]],
• � = [[1]],
• [[x]] ∩ [[y]] = [[x ∧ y]],
• [[x]] ∪ [[y]] = [[x ∨ y]],
• [[x]] ⇒ [[y]] = [[x → y]].

By [10, Theorem 3.4] we have that sH(A) is a semi-Heyting algebra.

LEMMA 4.1
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN. The relation ≡ is compatible with the operation ′.

PROOF. Let us consider x, y ∈ A such that x ≡ y. Then x → y = y → x = 1. Hence,

1
(E31)= ((x → y) ∧ (y → x) ∧ x)′ → ((x → y) ∧ (y → x) ∧ y)′ = (1 ∧ 1 ∧ x)′ → (1 ∧ 1 ∧ y)′

= x′ → y′.
Similarly, it can be verified that y′ → x′ = 1. Therefore, x′ ≡ y′. �
Let A ∈ DHMSN. We also denote by sH(A) the algebra (A/≡, ∩, ∪, ⇒,† , ⊥, �), where the

operation † is defined by

• [[x]]† = [[x′]].

The well definition of the previous operation follows from Lemma 4.1.

THEOREM 4.2
Let A ∈ DHMSN. Then sH(A) is a dually hemimorphic semi-Heyting algebra.

PROOF. We will show that sH(A) satisfies the equations (E4), (E5) and (E6).
It follows from (E29) that ⊥† = [[∼ 1]]† = [[(∼ 1)′]] = [[1]] = �, so (E4) is satisfied.
Now we will prove (E5). Taking into account (9) of Lemma 3.3 we have that

(∼ 1) →N 1′ = 1. (4.1)

By (E30) it holds that 1′ → (∼ 1) = 1. Hence, it follows from (2) and (12) of Lemma 3.3 that

1′ →N (∼ 1) = 1. (4.2)

Applying (13) of Lemma 3.3 in (4.1) and (4.2) we obtain that (∼ 1) → 1′ = 1′ → (∼ 1) = 1.
Thus,

�† = [[1]]† = [[1′]] = [[∼ 1]] = ⊥.

Straightforward computations based on (E34) and (E34) prove that sH(A) satisfies (E6). �
LEMMA 4.3
Let A ∈ DHMSN. The following conditions are satisfied:

1. If A satisfies (E7) then sH(A) satisfies (E7).
2. If A satisfies (E38) then sH(A) satisfies (E9).
3. If A satisfies (E45) then sH(A) satisfies (E17).

PROOF. Let x, y ∈ A.

1. ([[x]] ∩ [[y]]) ⇒ [[x]] = [[x ∧ y]] ⇒ [[x]] = [[(x ∧ y) → x]]
(E7)= [[1]] = �.
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Dually Hemimorphic Semi-Nelson Algebras 11

2. It follows from (E38) that x′′ →N x = 1. Then, by (14) of Lemma 3.3, x′′ →N (x′′ ∧ x) = 1.
Besides, by (5) of Lemma 3.3 we have that (x′′ ∧ x) →N x′′ = 1. Hence, [[x′′]] = [[x′′ ∧ x]].

3. It follows from (E45) that (x′ ∧x′′) →N (∼ 1) = (x′ ∧x′′) → (∼ 1) = 1. By (9) of Lemma 3.3
we conclude that (∼ 1) →N (x′ ∧ x′′) = 1. �

Let M1 be the set formed by the following elements:

• {DHMH,DHMN},
• {OCKSH,OCKSN},
• {DmsSH,DmsSN},
• {DMSH,DMSN},
• {DMH,DMN},
• {DSDSH,DSDSN},
• {DQDSH,DQDSN},
• {DPCSH,DPCSN},
• {DPCH,DPCN},
• {DQDBSH,DQDBSN},
• {DQSSH,DQSSN},
• {DSSH,DSSN},
• {BDQSSH,BDQSSN},
• {DSCSH,DSCSN}.

THEOREM 4.4
Let {A,B} ∈ M1 and B = (B, ∧, ∨, ∼,′ , 1) ∈ B. Then sH(B) ∈ A.

PROOF. It follows from straightforward computations based on Theorem 4.2 and Lemma 4.3. �

4.2 Vakarelov’s construction

We will see that Vakarelov’s construction on semi Heyting algebras works as well for dually
hemimorphic semi-Heyting algebras [10].

We start with some preliminary definitions and results.
Let A = (A, ∩, ∪, ⇒, ⊥, �) ∈ SH. Define the following set:

K(A) = {(a, b) ∈ A × A : a ∩ b = 0}.

We denote by Vk(A) to the algebra (K(A), ∧, ∨, →, ∼, 1), where the operations are given by

(V1) (a, b) ∧ (c, d) = (a ∩ c, b ∪ d),
(V2) (a, b) ∨ (c, d) = (a ∪ c, b ∩ d),
(V3) (a, b) → (c, d) = (a ⇒ c, a ∩ d),
(V4) ∼ (a, b) = (b, a),
(V5) 1 = (�, ⊥).

It follows from [10, Theorem 4.1] that if A = (A, ∩, ∪, ⇒, ⊥, �) ∈ SH, then Vk(A) ∈ SN.

DEFINITION 4.5
Let A = (A, ∩, ∪, ⇒,† , ⊥, �) be a dually hemimorphic semi-Heyting algebra. For (a, b) ∈ K(A) we
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12 Dually Hemimorphic Semi-Nelson Algebras

define the following unary operation on K(A):

(a, b)′ = (a†, b ∩ (a† ⇒ a)).

Note that ′ is well defined. In fact, if a ∩ b = 0 then a† ∩ b ∩ (a† ⇒ a)
(E1)= a† ∩ b ∩ a = 0.

For A ∈ DHMSH we also write Vk(A) for the algebra (K(A), ∧, ∨, →, ∼,′ , 1).

THEOREM 4.6
If A = (A, ∩, ∪, ⇒,† , ⊥, �) ∈ DHMSH, then Vk(A) ∈ DHMSN.

PROOF. We will see that Vk(A) satisfies the equations (E29)–(E35). Let (a, b), (c, d) ∈ K(A). Then

(E29): (∼ 1)′ = (∼ (�, ⊥))′ = (⊥, �)′ = (⊥†, � ∩ (⊥† ⇒ ⊥)) = (⊥†, ⊥† ⇒ ⊥)
(E4)= (�, � ⇒

⊥) = (�, ⊥) = 1.
(E30): 1′ → (∼ 1) = (�, ⊥)′ → (∼ (�, ⊥)) = (�†, ⊥ ∩ (�† → �)) → (⊥, �) = (�†, ⊥) →

(⊥, �)
(E5)= (⊥, ⊥) → (⊥, �) = (⊥ ⇒ ⊥, ⊥ ∩ �) = (�, ⊥) = 1.

(E31): First, notice that

((a, b) → (c, d)) ∧ ((c, d) → (a, b)) = (a ⇒ c, a ∩ d) ∧ (c ⇒ a, c ∩ b)

= ((a ⇒ c) ∩ (c ⇒ a)), (a ∩ d) ∪ (c ∩ b)). (4.3)

Then ((a, b) → (c, d)) ∧ ((c, d) → (a, b)) ∧ (a, b)
(4.3)= ((a ⇒ c) ∩ (c ⇒ a)), (a ∩ d) ∪ (c ∩

b))∧(a, b) = ((a ⇒ c)∩(c ⇒ a)∩a, (a∩d)∪(c∩b)∪b) = ((a ⇒ c)∩(c ⇒ a)∩a, (a∩d)∪b)
(E1)= (a ∩ c, (a ∩ d) ∪ b).
In consequence,

((a, b) → (c, d)) ∧ ((c, d) → (a, b)) ∧ (a, b) = (a ∩ c, (a ∩ d) ∪ b). (4.4)

Similarly, we have that

((a, b) → (c, d)) ∧ ((c, d) → (a, b)) ∧ (c, d) = (a ∩ c, (c ∩ b) ∪ d). (4.5)

Thus,
(((a, b) → (c, d)) ∧ ((c, d) → (a, b)) ∧ (a, b))′ → (((a, b) → (c, d)) ∧ ((c, d) → (a, b)) ∧
(c, d))′ (4.4) and (4.5)= (a∩c, (a∩d)∪b)′ → (a∩c, (c∩b)∪d)′ = ((a∩c)†, ((a∩d)∪b)∩((a∩
c)† → (a∩c))) → ((a∩c)†, ((c∩b)∪d)∩((a∩c)† → (a∩c))) = ((a∩c)† ⇒ (a∩c)†, (a∩
c)† ∩((c∩b)∪d)∩((a∩c)† → (a∩c))) = (�, (a∩c)† ∩((c∩b)∪d)∩((a∩c)† → (a∩c)))
(E1)= (�, (a ∩ c)† ∩ ((c ∩ b) ∪ d) ∩ (a ∩ c)) = (�, ⊥) = 1.

(E32): First, note that

∼ (a, b)′ =∼ (a†, b ∩ (a† ⇒ a))

= (b ∩ (a† ⇒ a), a†). (4.6)

and

(∼ (a, b) ∧ ((a, b)′ → (a, b))) = (∼ (a, b) ∧ ((a†, b ∩ (a† ⇒ a)) → (a, b)))

= ((b, a) ∧ ((a†, b ∩ (a† ⇒ a)) → (a, b)))

= (b ∩ (a† ⇒ a), a ∪ (a† ∩ b)). (4.7)

Hence,
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Dually Hemimorphic Semi-Nelson Algebras 13

(∼ (a, b)′) → (∼ (a, b)∧ ((a, b)′ → (a, b)))
(4.6) and (4.7)= (b∩ (a† ⇒ a), a†) → (b∩ (a† ⇒

a), a∪ (a† ∩b)) = (�, b∩ (a† ⇒ a)∩ (a∪ (a† ∩b))) = (�, (b∩ (a† ⇒ a)∩a)∪ (b∩ (a† ⇒
a)∩a†∩b)) = (�, ⊥∪(b∩(a† ⇒ a)∩a†∩b)) = (�, b∩(a† ⇒ a)∩a†∩b)

(E1)= (�, b∩a†∩a)

= (�, ⊥) = 1.
(E33): (∼ (a, b) ∧ ((a, b)′ → (a, b))) → (∼ (a, b)′) (∼ (a, b) ∧ ((a, b)′ → (a, b))) → (∼ (a, b)′)

(4.6) and (4.7)= (b ∩ (a† ⇒ a), a ∪ (a† ∩ b)) → (b ∩ (a† ⇒ a), a†) = (�, b ∩ (a† ⇒ a) ∩ a†)
(E1)= (�, b ∩ a† ∩ a) = (�, ⊥) = 1.

(E34): We have that

((a, b) ∧ (c, d))′ = (a ∩ c, b ∪ d)′

= ((a ∩ c)†, (b ∪ d) ∩ ((a ∩ c)† ⇒ (a ∩ c))). (4.8)

Besides,

(a, b)′ ∨ (c, d)′ = (a†, b ∩ (a† ⇒ a)) ∨ (c†, d ∩ (c† ⇒ c))

= (a† ∪ c†, b ∩ (a† ⇒ a) ∩ d ∩ (c† ⇒ c)). (4.9)

Hence,

((a, b)∧(c, d))′ → ((a, b)′ ∨(c, d)′) (4.8) and (4.9)= ((a∩c)†, (b∪d)∩((a∩c)† ⇒ (a∩c))) →
(a† ∪ c†, b ∩ (a† ⇒ a) ∩ d ∩ (c† ⇒ c))

(E6)= (a† ∪ c†, (b ∪ d) ∩ ((a ∩ c)† ⇒ (a ∩ c))) →
(a† ∪ c†, b ∩ (a† ⇒ a) ∩ d ∩ (c† ⇒ c)) = (�, (a† ∪ c†) ∩ b ∩ (a† ⇒ a) ∩ d ∩ (c† ⇒ c))
= (�, (a† ∩ b ∩ (a† ⇒ a) ∩ d ∩ (c† ⇒ c)) ∪ (c† ∩ b ∩ (a† ⇒ a) ∩ d ∩ (c† ⇒ c)))
(E1)= (�, (a† ∩ b ∩ a ∩ d ∩ (c† ⇒ c)) ∪ (c† ∩ b ∩ (a† ⇒ a) ∩ d ∩ (c† ⇒ c)))

a∩b=⊥=
(�, ⊥ ∪ (c† ∩ b ∩ (a† ⇒ a) ∩ d ∩ (c† ⇒ c)))

(E1)= (�, ⊥ ∪ (c† ∩ b ∩ (a† ⇒ a) ∩ d ∩ c))
c∩d=⊥= (�, ⊥ ∪ ⊥) = 1.

(E35): ((a, b)′ ∨ (c, d)′) → ((a, b)∧ (c, d))′ (4.8) and (4.9)= (a† ∪ c†, b ∩ (a† ⇒ a)∩ d ∩ (c† ⇒ c)) →
((a ∩ c)†, (b ∪ d) ∩ ((a ∩ c)† ⇒ (a ∩ c)))

(E6)= ((a ∩ c)†, b ∩ (a† ⇒ a) ∩ d ∩ (c† ⇒ c)) →
((a ∩ c)†, (b ∪ d) ∩ ((a ∩ c)† ⇒ (a ∩ c))) = (�, (a ∩ c)† ∩ (b ∪ d) ∩ ((a ∩ c)† ⇒ (a ∩ c)))
(E1)= (�, (a ∩ c)† ∩ (b ∪ d)∩ (a ∩ c)) = (�, ((a ∩ c)† ∩ (a ∩ c)∩ b)∪ ((a ∩ c)† ∩ (a ∩ c)∩ d))
a∩b=c∩d=⊥= (�, ⊥) = 1. �

Now we give some additional properties involving the subvarieties of dually hemimorphic semi-
Heyting algebras and dually hemimorphic semi-Nelson algebras. Since the results given here are
very technical, we recommend to the reader don’t read the proofs of them in a first lecture of the
present paper.

THEOREM 4.7
Let {A,B} ∈ M1 and A = (A, ∩, ∪, ⇒,† , ⊥, �) ∈ A. Then Vk(A) ∈ B.

PROOF. By Theorem 4.6 we know that Vk(A) ∈ DHMSN. Let (a, b), (c, d) ∈ K(A). Note that

(a, b)′′ = (a†, b ∩ (a† ⇒ a))′ = (a††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†)). (4.10)

We consider the following cases:

1. A = DHMH : ((a, b)∧ (c, d)) → (a, b) = (a∩ c, b∪d) → (a, b) = ((a∩ c) ⇒ a, a∩ c∩b) =
((a ∩ c) ⇒ a, ⊥)

(E7)= (�, ⊥) = 1.
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14 Dually Hemimorphic Semi-Nelson Algebras

2. A = OCKSH : ((a, b) ∨ (c, d))′ → ((a, b)′ ∧ (c, d)′) = (a ∪ c, b ∩ d)′ → ((a†, b ∩ (a† ⇒
a)) ∧ (c†, d ∩ (c† ⇒ c))) = ((a ∪ c)†, (b ∩ d) ∩ ((a ∪ c)† ⇒ (a ∪ c))) → (a† ∩ c†, (b ∩
(a† ⇒ a)) ∪ (d ∩ (c† ⇒ c))) = ((a ∪ c)† ⇒ (a† ∩ c†), (a ∪ c)† ∩ ((b ∩ (a† ⇒ a)) ∪ (d ∩
(c† ⇒ c))))

(E8)= ((a† ∩ c†) ⇒ (a† ∩ c†), (a† ∩ c†) ∩ ((b ∩ (a† ⇒ a)) ∪ (d ∩ (c† ⇒ c))))
(E3)=

(�, (a† ∩ c†) ∩ ((b ∩ (a† ⇒ a)) ∪ (d ∩ (c† ⇒ c)))) = (�, (a† ∩ c† ∩ b ∩ (a† ⇒ a)) ∪ (a† ∩
c† ∩ d ∩ (c† ⇒ c)))

(E1)= (�, (a† ∩ c† ∩ b ∩ a) ∪ (a† ∩ c† ∩ d ∩ c)) = (�, ⊥) = 1. Besides we
have that ((a, b)′ ∧ (c, d)′) → ((a, b) ∨ (c, d))′ = ((a†, b ∩ (a† ⇒ a)) ∧ (c†, d ∩ (c† ⇒ c))) →
(a ∪ c, b ∩ d)′ = (a† ∩ c†, (b ∩ (a† ⇒ a))∪ (d ∩ (c† ⇒ c))) → ((a ∪ c)†, (b ∩ d)∩ ((a ∪ c)† ⇒
(a ∪ c)))

(E8)= (a† ∩ c†, (b ∩ (a† ⇒ a)) ∪ (d ∩ (c† ⇒ c))) → ((a† ∩ c†), (b ∩ d) ∩ ((a† ∩ c†) ⇒
(a ∪ c))) = ((a† ∩ c†) ⇒ (a† ∩ c†), (a† ∩ c†) ∩ (b ∩ d) ∩ ((a† ∩ c†) ⇒ (a ∪ c)))

(E3)=
(�, (a† ∩c†)∩ (b∩d)∩ ((a† ∩c†) ⇒ (a∪c)))

(E1)= (�, a† ∩c† ∩b∩d ∩ (a∪c)) = (�, ⊥) = 1.
3. A = DmsSH : as in the Case 2 we have that Vk(A) ∈ OCKSN. Then we only need compute

the following calculus: (a, b)′′ → ((a, b)′′ ∧ (a, b))
(4.10)= (a††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†)) →

((a††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†)) ∧ (a, b)) = (a††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†)) →
(a†† ∩ a, b)

(E9)= (a††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†)) → (a††, b) = (a†† ⇒ a††, a†† ∩ b)
(E9)=

(�, a†† ∩ a ∩ b) = (�, ⊥) = 1.
4. A = DMSH: as in the Case 2, Vk(A) ∈ OCKSN. Taking into account a similar computation

to that of the Case 3 we obtain that (a, b)′′ → ((a, b)′′ ∧ (a, b)) = 1. Note that (a, b) →
((a, b) ∧ (a, b)′′) (4.10)= (a, b) → ((a, b) ∧ (a††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†))) = (a, b) →
(a ∩ a††, b)

(E10)= (a, b) → (a, b) = 1.
5. A = DSDSH: taking into account (4.10) we have that

(a, b)′′′ (4.10)= (a††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†))′

= (a†††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†) ∩ (a††† ⇒ a††)), (4.11)

(a, b)′′ ∨ (c, d)′′ = (a†† ∪c††, b∩(a† ⇒ a)∩(a†† ⇒ a†)∩d ∩(c† ⇒ c)∩(c†† ⇒ c†)) (4.12)

and

((a, b)∨ (c, d))′′ = ((a∪c)††, (b∩d)∩ ((a∪c)† ⇒ (a∪c))∩ ((a∪c)†† ⇒ (a∪c)†)). (4.13)

Now we will prove the equation (E40): ((a, b) ∨ (c, d))′′ → ((a, b)′′ ∨ (c, d)′′) (4.12)= (a ∪ c,

b ∩ d)′′ → (a†† ∪ c††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†) ∩ d ∩ (c† ⇒ c) ∩ (c†† ⇒ c†))
(4.13)=

((a ∪ c)††, (b ∩ d) ∩ ((a ∪ c)† ⇒ (a ∪ c)) ∩ ((a ∪ c)†† ⇒ (a ∪ c)†)) → (a†† ∪ c††, b ∩
(a† ⇒ a) ∩ (a†† ⇒ a†) ∩ d ∩ (c† ⇒ c) ∩ (c†† ⇒ c†)) = ((a ∪ c)†† ⇒ (a†† ∪ c††), (a ∪ c)†† ∩
b∩(a† ⇒ a)∩(a†† ⇒ a†)∩d∩(c† ⇒ c)∩(c†† ⇒ c†))

(E11)= ((a†† ∪c††) ⇒ (a†† ∪c††), (a†† ∪
c††)∩ b ∩ (a† ⇒ a)∩ (a†† ⇒ a†)∩ d ∩ (c† ⇒ c)∩ (c†† ⇒ c†)) = (�, (a†† ∪ c††)∩ b ∩ (a† ⇒
a) ∩ (a†† ⇒ a†) ∩ d ∩ (c† ⇒ c) ∩ (c†† ⇒ c†))

(E1)= (�, ⊥) = 1. The equation (E41) is proved

as follows: = ((a, b)′′ ∨ (c, d)′′) → ((a, b) ∨ (c, d))′′ (4.13)= (a†† ∪ c††, b ∩ (a† ⇒ a) ∩ (a†† ⇒
a†)∩ d ∩ (c† ⇒ c)∩ (c†† ⇒ c†)) → ((a, b)∨ (c, d))′′ (4.12)= (a†† ∪ c††, b ∩ (a† ⇒ a)∩ (a†† ⇒
a†) ∩ d ∩ (c† ⇒ c) ∩ (c†† ⇒ c†)) → ((a ∪ c)††, (b ∩ d) ∩ ((a ∪ c)† ⇒ (a ∪ c)) ∩ ((a ∪ c)†† ⇒
(a∪c)†)) = ((a†† ∪c††) ⇒ (a∪c)††, (a†† ∪c††)∩(b∩d)∩((a∪c)† ⇒ (a∪c))∩((a∪c)†† ⇒
(a ∪ c)†))

(E11)= (�, (a†† ∪ c††)∩ (b ∩ d)∩ ((a ∪ c)† ⇒ (a ∪ c))∩ ((a†† ∪ c††) ⇒ (a ∪ c)†))
(E1)=
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Dually Hemimorphic Semi-Nelson Algebras 15

(�, (a†† ∪ c††) ∩ (b ∩ d) ∩ ((a ∪ c)† ⇒ (a ∪ c)) ∩ (a ∪ c)†)
(E1)= (�, (a†† ∪ c††) ∩ b(b ∩

d) ∩ (a ∪ c) ∩ (a ∪ c)†)
(E1)= (�, ⊥) = 1. The equation (E42) can be proved as follows:

(a, b)′′′ → (a, b)′ (4.12)= (a†††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†) ∩ (a††† ⇒ a††)) → (a, b)′ =
(a†††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†) ∩ (a††† ⇒ a††)) → (a†, b ∩ (a† ⇒ a))

(E12)= (a†, b ∩
(a† ⇒ a) ∩ (a†† ⇒ a†) ∩ (a††† ⇒ a††)) → (a†, b ∩ (a† ⇒ a)) = (a† ⇒ a†, a† ∩ b ∩
(a† ⇒ a)) = (�, a† ∩ b ∩ (a† ⇒ a))

(E1)= (�, ⊥) = 1. Finally, the equation (E43) is satisfied

because (a, b)′ → (a, b)′′′ (4.11)= (a, b)′ → (a†††, b∩ (a† ⇒ a)∩ (a†† ⇒ a†)∩ (a††† ⇒ a††)) =
(a†, b ∩ (a† ⇒ a)) → (a†††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†) ∩ (a††† ⇒ a††))

(E12)= (a†, b ∩ (a† ⇒
a)) → (a†, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†) ∩ (a††† ⇒ a††)) = (a† ⇒ a†, a† ∩ b ∩ (a† ⇒
a) ∩ (a†† ⇒ a†) ∩ (a††† ⇒ a††))

(E1)= (a† ⇒ a†, ⊥) = (�, ⊥) = 1.
6. A = DQDSH: as in the Case 5 we have that Vk(A) ∈ DSDSN. Then it can be proved (a, b)′′ →

((a, b)′′ ∧ (a, b)) = 1 as in the Case 3.
7. A = DPCSH: as in the Case 6, Vk(A) ∈ DQDSN. Finally, we need to show the following:

(a, b) ∨ (a, b)′ = (a, b) ∨ (a†, b ∩ (a† ⇒ a)) = (a ∪ a†, a ∩ b ∩ (a† ⇒ a)) = (a ∪ a†, ⊥)
(E13)=

(�, ⊥) = 1.
8. A = DQDBSH: as in the Case 6, Vk(A) ∈ DQDSN. Besides, (a, b) ∨ ((a, b) → (∼ 1)) =

(a, b)∨((a, b) → (∼ (�, ⊥))) = (a, b)∨((a, b) → (⊥, �)) = (a, b)∨(a ⇒ ⊥, a) = (a∪(a ⇒
⊥), ⊥)

(E15)= (�, ⊥) = 1.
9. A = DQSSH: we have that (a, b)′′ → ((a, b)′′ ∧ (a, b)) = 1 as in the Case 3. Note that in

this case (a, b)′ ∧ (c, d)′′ = (a†, b ∩ (a† ⇒ a)) ∧ (c, d)′′ (4.10)= (a†, b ∩ (a† ⇒ a)) ∧ (c††, d ∩
(c† ⇒ c) ∩ (c†† ⇒ c†)) = (a† ∩ c††, (b ∩ (a† ⇒ a)) ∪ (d ∩ (c† ⇒ c) ∩ (c†† ⇒ c†))). Thus,

(a, b)′ ∧ (c, d)′′ = (a† ∩ c††, (b ∩ (a† ⇒ a)) ∪ (d ∩ (c† ⇒ c) ∩ (c†† ⇒ c†))). (4.14)

Besides, ((a, b) ∨ (c, d)′)′ = ((a, b) ∨ (c†, d ∩ (c† ⇒ c)))′ = (a ∪ c†, b ∩ d ∩ (c† ⇒
c))′ = ((a ∪ c†)†, b ∩ d ∩ (c† ⇒ c) ∩ ((a ∪ c†)† ⇒ (a ∪ c†)))

(E16)= (a† ∩ c††, b ∩ d ∩
(c† ⇒ c) ∩ ((a† ∩ c††) ⇒ (a ∪ c†))). Thus,

((a, b) ∨ (c, d)′)′ = (a† ∩ c††, b ∩ d ∩ (c† ⇒ c) ∩ ((a† ∩ c††) ⇒ (a ∪ c†))). (4.15)

Now we will prove the equations (E45), (E46) and (E47).

• (E45) : ((a, b)′ ∧ (a, b)′′) → (∼ 1)
(4.10)= ((a, b)′ ∧ (a††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†))) →

(∼ 1) = ((a†, b ∩ (a† ⇒ a)) ∧ (a††, b ∩ (a† ⇒ a) ∩ (a†† ⇒ a†))) → (∼ 1) =
(a† ∩ a††, b ∩ (a† ⇒ a)) → (∼ 1)

(E17)= (⊥, b ∩ (a† ⇒ a)) → (∼ 1) = (⊥, b ∩
(a† ⇒ a)) → (⊥, �) = (�, ⊥) = 1.

• (E46) : ((a, b)′ ∧ (c, d)′′) → (((a, b) ∨ (c, d)′)′) (4.14)= (a† ∩ c††, (b ∩ (a† ⇒ a)) ∪ (d ∩
(c† ⇒ c) ∩ (c†† ⇒ c†))) → (((a, b) ∨ (c, d)′)′) (4.15)= (a† ∩ c††, (b ∩ (a† ⇒ a)) ∪ (d ∩
(c† ⇒ c) ∩ (c†† ⇒ c†))) → (a† ∩ c††, b ∩ d ∩ (c† ⇒ c) ∩ ((a† ∩ c††) ⇒ (a ∪ c†))).

= (�, a† ∩ c†† ∩ b ∩ d ∩ (c† ⇒ c) ∩ ((a† ∩ c††) ⇒ (a ∪ c†)))
(E1)= (�, a† ∩ c†† ∩ b ∩ d ∩

(c† ⇒ c) ∩ (a ∪ c†)) = (�, (a† ∩ c†† ∩ b ∩ d ∩ (c† ⇒ c) ∩ a) ∪ (a† ∩ c†† ∩ b ∩ d ∩
(c† ⇒ c) ∩ c†)) = (�, ⊥ ∪ (a† ∩ c†† ∩ b ∩ d ∩ (c† ⇒ c) ∩ c†))

(E1)= (�, ⊥ ∪ (a† ∩ c†† ∩
b ∩ d ∩ c ∩ c†)) = (�, ⊥) = 1.
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16 Dually Hemimorphic Semi-Nelson Algebras

• (E47) : = (((a, b) ∨ (c, d)′)′) → ((a, b)′ ∧ (c, d)′′) (4.14)= (((a, b) ∨ (c, d)′)′) →
(a† ∩ c††, (b ∩ (a† ⇒ a)) ∪ (d ∩ (c† ⇒ c) ∩ (c†† ⇒ c†)))

(4.15)= (a† ∩ c††, b ∩ d ∩
(c† ⇒ c)∩((a† ∩c††) ⇒ (a∪c†))) → (a† ∩c††, (b∩(a† ⇒ a))∪(d∩(c† ⇒ c)∩(c†† ⇒
c†))) = (�, a† ∩ c†† ∩ ((b∩ (a† ⇒ a))∪ (d ∩ (c† ⇒ c)∩ (c†† ⇒ c†)))) = (�, (a† ∩ c†† ∩
b∩ (a† ⇒ a))∪ (a† ∩ c†† ∩d ∩ (c† ⇒ c)∩ (c†† ⇒ c†)))

(E1)= (�, (a† ∩ c†† ∩b∩a)∪ (a† ∩
c†† ∩d ∩ (c† ⇒ c)∩c†))

(E1)= (�, (a† ∩c†† ∩b∩a)∪ (a† ∩c†† ∩d ∩c∩c†)) = (�, ⊥) = 1.
10. A = DSSH: the equations (E36) and (E37) can be proved as in the Case 2. The equation (E38)

can be showed as in the Case 3. Finally, the equations (E45), (E46) and (E47) can be checked
as in the Case 9.

11. A = BDQSSH: in this case note that ((a, b) ∨ ((a, b) → (∼ (�, ⊥))))′ = ((a, b) ∨ ((a, b) →
(⊥, �)))′ = ((a, b) ∨ (a ⇒ ⊥, a))′ = (a ∪ (a ⇒ ⊥), ⊥)′ = ((a ∪ (a ⇒ ⊥))†, ⊥) = ((a ∪
(a ⇒ ⊥))†, ⊥)

(E14)= (a† ∩ (a ⇒ ⊥)†, ⊥) and (a, b)′ ∧ ((a, b) → (∼ (�, ⊥)))′ = (a, b)′ ∧
((a, b) → (⊥, �))′ = (a, b)′ ∧ (a ⇒ ⊥, a)′ = (a, b)′ ∧ (a ⇒ ⊥, a)′ = (a†, b ∩ (a† ⇒ a)) ∧
((a ⇒ ⊥)†, a ∩ ((a ⇒ ⊥)† ⇒ (a ⇒ ⊥))) = (a† ∩ (a ⇒ ⊥)†, (b ∩ (a† ⇒ a)) ∪ (a ∩
((a ⇒ ⊥)† ⇒ (a ⇒ ⊥))))

(E14)= (a† ∩ (a ⇒ ⊥)†, (b ∩ (a† ⇒ a)) ∪ (a ∩ ((a ⇒ ⊥)† ⇒ (a ⇒
⊥)))). Thus,

((a, b) ∨ ((a, b) → (∼ (�, ⊥))))′ = (a† ∩ (a ⇒ ⊥)†, ⊥) (4.16)

and

(a, b)′ ∧ ((a, b) → (∼ (�, ⊥)))′ = (a† ∩ (a ⇒ ⊥)†,

(b ∩ (a† ⇒ a)) ∪ (a ∩ ((a ⇒ ⊥)† ⇒ (a ⇒ ⊥)))). (4.17)

Hence, ((a, b) ∨ ((a, b) → (∼ (�, ⊥))))′ → ((a, b)′ ∧ ((a, b) → (∼ (�, ⊥)))′) (4.16) and (4.17)=
(a† ∩ (a ⇒ ⊥)†, ⊥) → (a† ∩ (a ⇒ ⊥)†, (b ∩ (a† ⇒ a)) ∪ (a ∩ ((a ⇒ ⊥)† ⇒ (a ⇒ ⊥)))) =
(�, (a† ∩ (a ⇒ ⊥)†) ∩ ((b ∩ (a† ⇒ a)) ∪ (a ∩ ((a ⇒ ⊥)† ⇒ (a ⇒ ⊥))))) = (�, (a† ∩ (a ⇒
⊥)† ∩ b ∩ (a† ⇒ a)) ∪ (a† ∩ (a ⇒ ⊥)† ∩ a ∩ ((a ⇒ ⊥)† ⇒ (a ⇒ ⊥)))

(E1)= (�, (a† ∩
(a ⇒ ⊥)† ∩ b ∩ a)∪ (a† ∩ (a ⇒ ⊥)† ∩ a ∩ (a ⇒ ⊥))

(E1)= (�, (a† ∩ (a ⇒ ⊥)† ∩ b ∩ a)∪ (a† ∩
(a ⇒ ⊥)† ∩ a ∩ ⊥)) = (�, ⊥) = 1. Besides, ((a, b)′ ∧ ((a, b) → (∼ (�, ⊥)))′) → ((a, b) ∨
((a, b) → (∼ (�, ⊥))))′ (4.16) and (4.17)= (a† ∩ (a ⇒ ⊥)†, (b ∩ (a† ⇒ a)) ∪ (a ∩ ((a ⇒ ⊥)† ⇒
(a ⇒ ⊥)))) → (a† ∩ (a ⇒ ⊥)†, ⊥) = (�, ⊥) = 1. Then Vk(A) satisfies the equations (E48)

and (E49). The rest of the equations can be verified as in the Case 9.
12. A = DSCSN: the proof is similar to that of the Case 7.
13. A ∈ {DMH,DPCH}: The fact that A is in DMSH and in DPCSH can be proved as in the

Cases 4 and 7, respectively. Then the proof can be finished following the Case 1. �

4.3 Representations

In this section we show that there exists a representation of dually hemimorphic semi-Nelson
algebras as subalgebras of the Vakarelov construction applied to a suitable dually hemimorphic
semi-Heyting algebra, much in the same manner as in the case of semi-Nelson (Nelson) and semi-
Heyting (Heyting) algebras. In the other direction, we can also represent every dually hemimorphic
semi-Heyting algebra as a quotient of a dually hemimorphic semi-Nelson one.

Let A = (A, ∧, ∨, →, ∼, 1) ∈ SN. It follows from the proof of [10, Corollary 5.2] that the map
h : A → (Vk(sH(A))) defined by h(a) = ([[a]], [[∼ a]]) is an injective morphism.
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Dually Hemimorphic Semi-Nelson Algebras 17

THEOREM 4.8
If A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN then A is isomorphic to a subalgebra of Vk(sH(A)).

PROOF. We only need to check that the map h preserves the operation ′. Observe that h(a′) =
([[a′]], [[∼ a′]]) and

(h(a))′ = ([[a]], [[∼ a]])′ = ([[a]]†, [[∼ a]] ∩ ([[a]]† ⇒ [[a]])) = ([[a′]], [[∼ a ∩ (a′ → a)]]).

Since A satisfies the equalities (E32) and (E33) then [[∼ a′]] = [[∼ a ∩ (a′ → a)]]. Hence, h(a′) =
(h(a))′. �

In semi-Heyting algebras we can define the pseudocomplement of an element a as a∗ = a ⇒ 0. In
particular, a∗ = a ⇒N 0 (see [21]). Let A = (A, ∩, ∪, ⇒, ⊥, �) ∈ SH. The map i : A → sH(Vk(A))
defined as i(a) = [[(a, a∗)]] is an isomorphism, as it was showed in the proof of [10, Theorem 5.3].

THEOREM 4.9
If A = (A, ∩, ∪, ⇒,† , ⊥, �) is a dually hemimorphic semi-Heyting algebra then A is isomorphic to
sH(Vk(A)).

PROOF. We only need to show that the map i preserves the unary operation †. Note that

i(a†) = [[(a†, (a†)∗)]].

We also have that

(i(a))† = [[(a, a∗)]]† = [[(a, a∗)′]] = [[(a†, a∗ ∩ (a† ⇒ a))]].

Since

(a†, a∗ ∩ (a† ⇒ a)) → (a†, (a†)∗) = (�, a† ∩ (a†)∗) = (�, ⊥) = 1

and

(a†, (a†)∗) → (a†, a∗ ∩ (a† ⇒ a)) = (�, a† ∩ a∗ ∩ (a† ⇒ a)) = (�, a† ∩ a∗ ∩ a) = (�, ⊥) = 1

we have that [[(a†, (a†)∗)]] = [[(a†, a∗ ∩ (a† ⇒ a))]]. Therefore, i(a†) = (i(a))†. �
The following results are immediate consequence of Theorems 4.4, 4.8 and 4.9.

COROLLARY 4.10
Let {A,B} ∈ M1 and B = (B, ∧, ∨, ∼,′ , 1) ∈ B. Then B is isomorphic to a subalgebra of Vk(sH(B)).

COROLLARY 4.11
Let {A,B} ∈ M1 and A = (A, ∩, ∪, ⇒,† , ⊥, �) ∈ A. Then A is isomorphic to sH(Vk(A)).

The following lemma give some properties involving the subvarieties of dually hemimorphic semi-
Nelson algebras presented in this paper.

LEMMA 4.12

(1) DMN ⊂ DMSN ⊂ DmsSN ⊂ OCKSN ⊂ DHMSN,
(2) DPCN ⊂ DPCSN ⊂ DQDSN ⊂ DSDSN ⊂ DHMSN,
(3) DQDBSN ⊂ DQDSN,
(4) DSSN ⊂ DQSSN,
(5) BDQSSN ⊂ DQSSN,
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18 Dually Hemimorphic Semi-Nelson Algebras

(6) DPCN ⊂ DHMN ⊂ DHMSN,
(7) DMN ⊂ DHMN,
(8) DSCSN ⊂ DHMSN.

PROOF. The inclusions are an immediate consequence of Lemma 2.4 and Corollaries 4.10 and 4.11.
The following algebra is a dually hemimorphic semi-Nelson algebras, where the operations are

defined as follow:

’ : 0 1 2 3
1 0 1 1

→: 0 1 2 3
0 1 1 1 1
1 0 1 2 3
2 3 1 1 3
3 2 1 2 1

∧ : 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 3

∨ : 0 1 2 3
0 0 1 2 3
1 1 1 1 1
2 2 1 2 1
3 3 1 1 3.

In particular, taking into account the previous algebra it is possible to show that OCKSH �=
DHMSH, DQSSH �= DSSH and DQSSH �= BDQSSH. Then it follows from Corollaries 4.10
and 4.11 that OCKSN �= DHMSN, DQSSN �= DSSN and DQSSN �= BDQSSN. The rest
of the inclusions are strict, and this fact can be proved taking into account the examples given in
Section 3. �

4.4 Dually hemimorphic centered semi-Nelson algebras

We write SNc for the category whose objects are algebras (T , ∧, ∨, →, ∼, c, 0, 1) of type
(2, 2, 2, 1, 0, 0, 0), where (T , ∧, ∨, →, ∼, 1) is a semi-Nelson algebra, 0 =∼ 1 and c satisfies
that c =∼ c. The morphisms of SNc are the algebra homomorphisms. In [7] it was proved that
there exists a categorical equivalence between SNc and SH. More precisely, if A ∈ SNc then
sH(A) = (A/≡, ∩, ∪, ⇒, ⊥, �) ∈ SH and if f : A → B ∈ SNc then sH(f ): sH(A) → sH(B)
given by (sH(f ))([[a]]) = [[f (a)]] is a morphism in SH. If A ∈ SH then Vk(A) = (K(A), ∧, ∨, →
, ∼, c, 0, 1) ∈ SNc, where c is defined as c := (0, 0). If f : A → B is a morphism in SH

then Vk(f ) : Vk(A) → Vk(B) given by (Vk(f ))(a, b) = (f (a), f (b)) is a morphism in SNc. For
A ∈ SNc we have that the map h : A → (Vk(sH(A))) defined by h(a) = ([[a]], [[∼ a]]) is an
isomorphism. For A ∈ SH we have that the map i : A → sH(Vk(A)) given by i(a) = [[(a, a∗)]] is an
isomorphism.

REMARK 4.13
The functors sH : SNc → SH and Vk : SH → SNc

1 establish a categorical equivalence between
SNc and SH with natural isomorphisms h and i.

We write DHMSNc in order to define the category whose objects are algebras (T , ∧, ∨, →, ∼
,′ , c, 0, 1) of type (2, 2, 2, 1, 1, 0, 0, 0) such that (T , ∧, ∨, →, ∼, c, 0, 1) ∈ SNc and (T , ∧, ∨, →, ∼
,′ , 1) ∈ DHMSN.

Let f : A → B be a morphism in DHMSNc. It is immediate that sH(f ) : sH(A) → sH(B) is a
morphism in DHMSH. Conversely, if f : A → B is a morphism in DHMSH then straightforward
computations show that Vk(f ) : Vk(A) → Vk(B) is a morphism in DHMSNc. Thus, we have
functors sH : DHMSNc → SH and Vk : SH → DHMSNc.

1Note that we are also abusing notation here with the name of the previous two functors. We believe it is clear which is
the corresponding functor considered in each case.
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Dually Hemimorphic Semi-Nelson Algebras 19

THEOREM 4.14
The functors sH : DHMSNc → DHMSH and Vk : DHMSH → DHMSNc establish a categorical
equivalence between DHMSNc and DHMSH with natural isomorphisms h and i.

PROOF. It follows from Remark 4.13, Theorem 4.8 and Theorem 4.9. �

5 Deductive systems and congruences in DHMSN

In [10] it was proved that given a semi-Nelson algebra, the set of its congruences is in bijection with
a subclass of its deductive systems. In this section we obtain a similar property for the case of dually
hemimorphic semi-Nelson algebras.

DEFINITION 5.1
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN. A subset D ⊆ A is an N-deductive system of A if for every
a, b ∈ A, the following conditions are satisfied:

Ds1) 1 ∈ D,
Ds2) if a, a →N b ∈ D then b ∈ D.

We say that D is an N
′
-deductive system if satisfies the following additional condition:

Ds3) if a ∈ D then (a′) →N (∼ 1) ∈ D.

Let (A, ∧, ∨, 1) be a lattice with last element and F ⊆ L. Recall that F is said to be a
filter of L if the following conditions are satisfied: (i) 1 ∈ F; (ii) if x ≤ y and x ∈ F
then y ∈ F; and (iii) if x, y ∈ F then x ∧ y ∈ F. The following three lemmas involve
properties of deductive systems. See [10, Lemma 6.3], [10, Lemma 6.5] and [10, Lemma 6.6],
respectively.

LEMMA 5.2
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN. If D is an N-deductive system of A then D is a filter.

LEMMA 5.3
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN and D an N-deductive system. If a →N b ∈ D and
b →N c ∈ D, then a →N c ∈ D.

LEMMA 5.4
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN and D an N-deductive system of A. If a, b ∈ A, then

a → b ∈ D andb → a ∈ D if and only ifa →N b ∈ D andb →N a ∈ D.

In what follows we will see that every N
′
-deductive system of a dually hemimorphic semi-Nelson

algebra determines a congruence. Let A = (A, ∧, ∨, ∼,′ , 1) ∈ DHMSN and D an N
′
-deductive

system of A. In A we can define the following binary relation:

a ≡D b if and only if a → b, b → a, ∼ a →∼ b, ∼ b →∼ a ∈ D.

Note that it follows from Lemma 5.4 that the definition of ≡D is equivalent to the following one:

a ≡D b if and only if a →N b, b →N a, ∼ a →N∼ b, ∼ b →N∼ a ∈ D.

The following lemma will be used to prove that ≡D preserves the unary operation ′.
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20 Dually Hemimorphic Semi-Nelson Algebras

LEMMA 5.5
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN, D an N

′
-deductive system of A and a, b ∈ A such that

a ≡D b. Then the following conditions are satisfied:

(1) a′ →N b′ ∈ D,
(2) (a′ → a) → (b′ → b) ∈ D,
(3) (∼ a′) →N (∼ b′) ∈ D.

PROOF.

(1) By hypothesis we have that a →N b, b →N a, ∼ a →N∼ b, ∼ b →N∼ a ∈ D. It follows
from (5) of Lemma 3.3 that a′ →N ((a → b)′ ∨ (b → a)′ ∨ a′) = 1. Besides, it follows from
(5) of Lemma 3.3 that ((a → b)′ ∨ (b → a)′ ∨ a′) →N ((a → b) ∧ (b → a) ∧ a)′ = 1.
Taking into account (8) of Lemma 3.3 we deduce the equality

a′ →N ((a → b) ∧ (b → a) ∧ a)′ = 1. (5.1)

By equation (E31) we obtain that ((a → b)∧(b → a)∧a)′ → ((a → b)∧(b → a)∧b)′ = 1,
so by (2) and (12) of Lemma 3.3 we have that

((a → b) ∧ (b → a) ∧ a)′ →N ((a → b) ∧ (b → a) ∧ b)′ = 1. (5.2)

The item (16) of Lemma 3.3 implies that

((a → b) ∧ (b → a) ∧ b)′ →N ((a → b)′ ∨ (b → a)′ ∨ b′) = 1. (5.3)

Thus, it follows from (8) of Lemma 3.3 applied in (5.1), (5.2) and (5.3) that a′ →N ((a →
b)′ ∨ (b → a)′ ∨ b′) = 1. Hence,

a′ →N ((a → b)′ ∨ (b → a)′ ∨ b′) ∈ D. (5.4)

Since a → b ∈ D then (a → b)′ →N (∼ 1) ∈ D. By (9) of Lemma 3.3, (∼ 1) →N b′ = 1 ∈
D. Then Lemma 5.3 implies that (a → b)′ →N b′ ∈ D. Analogously, (b → a)′ →N b′ ∈ D.
Besides, b′ →N b′ = 1 ∈ D. In consequence, taking into account (6) of Lemma 3.3 we obtain
that

((a → b)′∨(b → a)′∨b′) →N b′ = ((a → b)′ →N b′)∧((b → a)′ →N b′)∧(b′ →N b′) ∈ D
(5.5)

because D is a filter by Lemma 5.2. By using Lemma 5.3 applied in (5.4) and (5.5) we
conclude that a′ →N b′ ∈ D.

(2) It follows from item (1) of this lemma that a′ → b′ ∈ D and b′ → a′ ∈ D. By equation (E25)
we have that (a′ →N b′) →N [(b′ →N a′) →N [(a′ → a) →N (b′ → a)]] = 1 ∈ D. Hence,

(a′ → a) →N (b′ → a) ∈ D. (5.6)

It follows from (E26) that (a′ →N b′) →N [(b′ →N a′) →N [(b′ → a) →N (b′ → b)]] =
1 ∈ D and

(b′ → a) →N (b′ → b) ∈ D. (5.7)

Then, by Lemma 5.3 applied in (5.6) and (5.7) we obtain that (a′ → a) → (b′ → b) ∈ D.
(3) It follows from (2) that (a′ → a) → (b′ → b) ∈ D. Since a ≡D b then (∼ a) →N (∼ b) ∈ D.

By (5) of Lemma 3.3, ((∼ a)∧(a′ → a)) →N (a′ → a) = 1 ∈ D. It follows from Lemma 5.3
that ((∼ a) ∧ (a′ → a)) →N (b′ → b) ∈ D. Similarly, ((∼ a) ∧ (a′ → a)) →N (∼ b) ∈ D.
Straightforward computations based on (4) of Lemma 3.3 show that ((∼ a) ∧ (a′ → a)) →N
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Dually Hemimorphic Semi-Nelson Algebras 21

((∼ b) ∧ (b′ → b)) = (((∼ a) ∧ (a′ → a)) →N (∼ b)) ∧ (((∼ a) ∧ (a′ → a)) →N (b′ →
b)) ∈ D because D is a filter, i.e.

((∼ a) ∧ (a′ → a)) →N ((∼ b) ∧ (b′ → b)) ∈ D. (5.8)

The assertion (∼ a′) → (∼ a ∧ (a′ → a)) = 1 holds in the algebra by (E32). Then by (2) and
(12) of Lemma 3.3 we deduce that

(∼ a′) →N (∼ a ∧ (a′ → a)) = 1 ∈ D. (5.9)

Taking into account Lemma 5.3 applied in (5.8) and (5.9) we obtain that

(∼ a′) →N ((∼ b) ∧ (b′ → b)) ∈ D. (5.10)

Using (E33) we have that ((∼ b) ∧ (b′ → b)) → (∼ b′) = 1. Thus, by (2) and (12) of
Lemma 3.3,

((∼ b) ∧ (b′ → b)) →N (∼ b′) = 1 ∈ D. (5.11)

Therefore, it follows from (5.3) applied in (5.10) and (5.11) that

(∼ a′) →N (∼ b′) ∈ D. �
LEMMA 5.6
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN and D an N

′
-deductive system of A. The relation ≡D is a

congruence.

PROOF. It follows from [10, Lemma 6.7] that ≡D is an equivalence relation compatible with the
operations ∼, ∧, ∨, →. We will prove that ≡D also preserves the operation ′. Let a, b ∈ A such that
a ≡D b. It follows from (1) of Lemma 5.5 that a′ →N b′ ∈ D. Similarly, we have that b′ → a′ ∈ D.
Taking into account (3) of Lemma 5.5 we have that (∼ a′) →N (∼ b′) ∈ D. In an analogous way,
(∼ b′) →N (∼ a′) ∈ D. Therefore, a′ ≡D b′. �

Let us now check that every congruence on a dually hemimorphic semi Nelson algebra determines
a deductive system. From now on we denote by Con(A) the congruence lattice of an algebra A. If
Θ ∈ Con(A) we denote by [[a]]Θ the class of an element a ∈ A modulo Θ .

LEMMA 5.7
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN. If Θ ∈ Con(A), then [[1]]Θ is an N

′
-deductive system.

PROOF. It follows from [10, Lemma 6.4] that [[1]]Θ satisfies Ds1) and Ds2). We will prove Ds3).
Let a ∈ A such that (a, 1) ∈ Θ . Since Θ is a congruence, (a′ → (∼ 1), 1′ → (∼ 1)) ∈ Θ . Then by
(E30) we obtain that 1′ → (∼ 1) = 1. Therefore, a′ → (∼ 1) ∈ [[1]]Θ . �

The following three results are consequence from Lemma 5.6, Lemma 5.7, [10, Lemma 6.8], [10,
Lemma 6.10] and [10, Theorem 6.11].

LEMMA 5.8
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN and D be an N

′
-deductive system of A. Then [[1]]≡D = D.

LEMMA 5.9
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN and Θ ∈ Con(A). Then

≡[[1]]Θ = Θ .

If A ∈ DHMSN we will write DedN(A) for the lattice of N ′-deductive systems of A.
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22 Dually Hemimorphic Semi-Nelson Algebras

THEOREM 5.10
Let A = (A, ∧, ∨, →, ∼,′ , 1) ∈ DHMSN. Then the lattices DedN(A) and Con(A) are isomorphic.

It follows from [10, Theorem 6.13] that DHMSN is congruence permutable and it follows from
[10, Corollary 6.14] that DHMSN is arithmetical.

6 Final remarks

In this final section we will prove that the categories DHMSH and DHMSNc are equivalent by
considering an alternative construction to that given in Section 4.

We start with some preliminary definitions and results.
Let A = (A, ∧, ∨, →, ∼, c, 0, 1) ∈ SNc and define the set C(A) = {x ∈ A : x ≥ c}.

We have that C(A) = (C(A), ∩, ∪, ⇒, ⊥, �) ∈ SH. For a morphism f : A → B ∈
SNc, the map C(f ):C(A) → C(B), given by C(f )(a) = g(a), is a morphism in SH. More-
over, C is a functor from SNc to SH. If A ∈ SH then the map αA : A → C(Vk(A))

given by αA(a) = (a, 0) is an isomorphism in SH. If A ∈ SNc, the map βA : A →
Vk(C(A)) given by βA(a) = (a ∨ c, ∼a ∨ c) is an isomorphism in SNc. The following is
[7, Theorem 3.9].

THEOREM 6.1
The functors Vk and C establish a categorical equivalence between SH and SNc with natural
isomorphisms α and β.

In what follows we will give some technical properties of DHMSNc.

LEMMA 6.2
If A = (A, ∩, ∪, ⇒,† , ⊥, �) ∈ DHMSH, then Vk(A) satisfies the following equalities:

(1) x′ ∨ c = (x ∨ c)′,
(2) ((x ∨ c) ∧ (y ∨ c))′ = (x ∨ c)′ ∨ (y ∨ c)′,
(3) ∼ x′ ∨ c = (∼ x ∨ c) ∧ ((x ∨ c)′ → (x ∨ c)).

PROOF.

1. ((a, b) ∨ (⊥, ⊥))′ = (a, ⊥)′ = (a†, ⊥) = (a†, b ∩ (a† ⇒ a)) ∨ (⊥, ⊥) = (a, b)′ ∨ (⊥, ⊥).

2. (((a, b) ∨ (⊥, ⊥)) ∧ ((c, d) ∨ (⊥, ⊥)))′ = ((a, ⊥) ∧ (c, ⊥))′ = (a ∩ c, ⊥)′ = ((a ∩ c)†, ⊥)
(E6)=

(a† ∪ c†, ⊥) = (a†, ⊥) ∨ (c†, ⊥) = (a, ⊥)′ ∨ (c, ⊥)′ = ((a, b) ∨ (⊥, ⊥))′ ∨ ((c, d) ∨ (⊥, ⊥))′.
3. (∼ (a, b) ∨ (⊥, ⊥)) ∧ (((a, b) ∨ (⊥, ⊥))′ → ((a, b) ∨ (⊥, ⊥))) = ((b, a) ∨ (⊥, ⊥)) ∧ (((a, b) ∨

(⊥, ⊥))′ → ((a, b)∨ (⊥, ⊥))) = (b, ⊥)∧ ((a, ⊥)′ → (a, ⊥)) = (b, ⊥)∧ ((a†, ⊥) → (a, ⊥)) =
(b, ⊥) ∧ (a† ⇒ a, ⊥) = (b ∩ (a† ⇒ a), ⊥) = (b ∩ (a† ⇒ a), a†) ∨ (⊥, ⊥) =∼ (a†, b ∩ (a† ⇒
a)) ∨ (⊥, ⊥) =∼ (a, b)′ ∨ (⊥, ⊥). �

The following corollary follows from Lemma 6.2, Theorem 4.8 and the fact that morphisms in
SN between objects in SNc necessarily preserves c.

COROLLARY 6.3
Let A = (A, ∧, ∨, →, ∼,′ , c, 0, 1) ∈ DHMSNc. Then the following equalities are satisfied:

(1) x′ ∨ c = (x ∨ c)′,
(2) ((x ∨ c) ∧ (y ∨ c))′ = (x ∨ c)′ ∨ (y ∨ c)′,
(3) ∼ x′ ∨ c = (∼ x ∨ c) ∧ ((x ∨ c)′ → (x ∨ c)).
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Dually Hemimorphic Semi-Nelson Algebras 23

LEMMA 6.4
Let A = (A, ∧, ∨, →, ∼,′ , c, 1) be an algebra of type (2, 2, 2, 1, 1, 0, 0) such that satisfies the
following conditions:

(1) (A, ∧, ∨, 0, 1) is a lattice with last element,
(2) c = 1′,
(3) ((x ∨ c) ∧ (y ∨ c))′ = (x ∨ c)′ ∨ (y ∨ c)′.

Then A satisfies (x ∨ c)′ ≥ c.

PROOF. Let x ∈ A. Then c ≤ c∨ (x∨c)′ (2)= 1′ ∨ (x∨c)′ = (1∨c)′ ∨ (x∨c)′ (3)= ((1∨c)∧ (x∨c))′ =
(x ∨ c)′. �
LEMMA 6.5
Let A = (A, ∧, ∨, →, ∼,′ , c, 1) ∈ DHMSNc. Then A satisfies the following equalities:

(1) c′ = 1,
(2) c = 1′,
(3) (x ∨ c)′ ≥ c.

PROOF.

1. Note that 1
(E29)= (∼ 1)′ = (∼ (1 ∧ c))′ = ((∼ 1) ∨ (∼ c))′ = ((∼ 1) ∨ c)′ 3.3(1)= c′.

2. It follows from (E30) that 1′ → (∼ 1) = 1. Then it follow from (2) and (12) of Lemma 3.3
that

1′ →N (∼ 1) = 1. (6.1)

By (9) of Lemma 3.3,

(∼ 1) →N c = 1. (6.2)

By (8) of Lemma 3.3 in (6.1) and (6.2) we obtain that

1′ →N c = 1. (6.3)

By (10) of Lemma 3.3 we have that (c∧ ∼ c) →N (∼ 1′) = 1. As c =∼ c,

(∼ c) →N (∼ 1′) = 1. (6.4)

By (7) of Lemma 3.3 applied in (6.3) and (6.4) we obtain that

1′ ≤ c.

By other hand, 1′ ∨ c
6.3(1)= (1 ∨ c)′ = 1′. Thus,

c ≤ 1′.

3. In the previous item we show that A satisfies the equality 1′ = c. By (2) of Corollary 6.3 we
have that A satisfies the equality ((x ∨ c) ∧ (y ∨ c))′ = (x ∨ c)′ ∨ (y ∨ c)′. So, by Lemma 6.4
we have that

(x ∨ c)′ ≥ c. �
LEMMA 6.6
If A = (A, ∧, ∨, →, ∼,′ , c, 1) ∈ DHMSNc then C(A) = (C(A), ∧, ∨, →,′ , c, 1) ∈ DHMSH.
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24 Dually Hemimorphic Semi-Nelson Algebras

PROOF. By Lemma 6.5 the equality (x ∨ c)′ ≥ c is satisfied. Hence, the operation ′ is well defined
in C(A). It follows from (1) and (2) of Lemma 6.5 that C(A) verifies (E4) and (E5). Besides, by (2)
of Lemma 6.3 we have that C(A) satisfies (E6). �

It is immediate that C is a functor from DHMSNc and DHMSH.

LEMMA 6.7

(a) Let A ∈ DHMSH and a ∈ A. Then αA(a†) = αA(a)′.
(b) Let A ∈ DHMSNc and a ∈ A. Then βA(a′) = βA(a)′.

PROOF.

(a) αA(a†) = (a†, 0) = (a, 0)′ = αA(a)′.
(b) βA(a′) = (a′ ∨ c, ∼ a′ ∨ c)

6.3(1)= ((a ∨ c)′, ∼ a′ ∨ c)
6.3(3)= ((a ∨ c)′, (∼ a ∨ c) ∧ ((a ∨ c)′ →

(a ∨ c))) = (a ∨ c, ∼ a ∨ c)′ = βA(a)′. �
Therefore, it follows from Lemma 6.7 and Theorem 6.1 the following result.

THEOREM 6.8
The functors Vk and C establish a categorical equivalence between DHMSH and DHMSNc with
natural isomorphisms α and β.

In conclusion, the present paper is a continuation of a work started in [10], where the correspon-
dence between the variety of Heyting algebras and the variety of Nelson algebras was generalized in
the framework of the varieties of semi-Heyting algebras and of semi-Nelson algebras, respectively.
More precisely, the main goal of this paper was to extend the results of [10] in the framework of the
variety of dually hemimorphic semi-Heyting algebras [19].
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