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ABSTRACT This paper proposes a novel metaheuristic framework using a Differential Evolution (DE)
algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined
employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-
II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened
with the ability to search global mono-objective optimum of DE, that enhances the capability of finding
those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and
performance comparisons between different evolutionary algorithms were performed on a referent problem
for the mono-objective and multi-objective literature, which consists of the design of a double reduction
gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of
solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of
potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain
the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially
in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the
whole POF which significantly improves the few previous multi-objective studies.

INDEX TERMS Differential evolution, evolutionary computation, gear train optimization, genetic algo-
rithms, mechanical engineering, multi-objective evolutionary algorithms, non-dominated sorting genetic

algorithm-II.

I. INTRODUCTION

Stochastic in nature, evolutionary algorithms (EAs) in their
version of genetic algorithms (GAs) [1]-[3] have been
applied effectively in science, engineering and engineering
design [4]-[7]. The evolution of a population of solutions,
using a parent selection process first, and reproduction oper-
ations (crossower and mutation) on the selected parents later,
provides the GAs with great skill to find an approximate opti-
mal solution to problems of high computational complexity.
In these algorithms, to ensure the improvement of solutions
quality, the selection operator is decisive and must be care-
fully chosen [8], [9]. Differential evolution (DE) is a simple
yet powered stochastic real-parameter global optimization
algorithm [10]-[12]. It is not inspired by natural evolution
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but, it uses computer operators similar to those employed by
a standard EA. Each population consists of individuals called
parameter vectors or genomes. Based on the concept of vector
difference, DE combines with certain probability the compo-
nents of randomly selected and distinct existing individuals to
generate new individuals. Particle swarm optimisation (PSO)
is an efficient population-based search method inspired by the
behaviour of flocks of birds or schools of fish [13]-[16]. Each
population consists of particles that move over the search
space. In each iteration of the method, each of the particles
in the population moves through the search space at a certain
speed according to its own experience (the best individual
solution of the particle in the search history) and with the
experience provided by the best global solution found so
far. In order to speed up the PSO convergence, a simplified
PSO, that uses the global best only, called an accelerated
PSO (APSO), was proposed in [17]. Also, to increase the
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convergence even further, a simpler version of APSO with
the same order of convergence was proposed in [18].

In engineering, many real optimization problems require
meeting, simultaneously, multiple objectives in con-
flict. In this multi-objective context, the multi-objective
evolutionary algorithms (MOEAs) [19], [20] have demon-
strated excellent skills to generate, not a single solution, but
yes an approximate set of non-dominated solutions called
Pareto optimal front (POF). The non-dominated sorting
genetic algorithm-II (NSGA-II) [21], the multi-objective evo-
lutionary algorithm based on decomposition (MOEA/D) [22]
and the global weighting achievement scalarizing function
genetic algorithm (GWASF-GA) [23] are well-known and
state-of-the-art MOEAs. NSGA-II is based mainly on two
mechanisms: Pareto dominance as a criterion to converge to
the Pareto front and crowding-distance operator as augment-
ing diversification in the population. MOEA/D uses a strategy
of breaking down the multi-objective problem (MOP) into a
number of scalar subproblems that are solved simultaneously
through the evolution of a population of solutions. For the
scalarization of subproblems MOEA/D can use different
approaches, such as the Tchebycheff approach which works
well for combinatorial problems. GWASF-GA, similar to
NSGA-II, classifies solutions on Pareto fronts but based
on the achievement scalarizing function of Wierzbicki [24].
Despite the advances made by these and other state-of-
the-art algorithms, it is still difficult to incorporate diver-
sity in MOPs, specially, when MOPs have many decision
variables [25] or many objectives to considers [26], [27].
In addition, in [28] the difficulties of convergence of MOEAs
when they are applied to problems that present areas with
poor solution densities are pointed out, as will be verified in
this paper.

Hybrid techniques combine heuristics and/or metaheuris-
tics (MH) in order to combine their advantages and obtain
better yields than those obtained by applying each algorithm
separately. Several classifications have been proposed for
hybrid metaheuristics [29], [30], [32]. In fact, a significant
number of hybrid combinations MH + MH have been formu-
lated. Among the DE 4+ MOEA hybrids, that are an extension
of DE to solve MOPs, are those based on decomposition
strategy such as MOEA/D-DE [33] and MOEA/D-I [34], and
those that use Pareto-based ranking assignment and crowding
distance such as NSDE [35], DEMO [36] and MODE [37].
MOEA/D-DE uses a DE operator and a polynomial mutation
operator to produce new solutions, and also uses two mea-
sures to maintain population diversity. Hybrid-MOEA/D-I
optimizes each subproblem by combining GA and DE opera-
tors as a mixed reproduction operator, with the aim of diversi-
fying the search. In MODE the best individual is added to the
population to generate offspring. In DEMO the new solutions
are immediately inserted in the population allowing them to
be candidates to be selected as parents in the next generation.
NSDE is a simple modification for real representation of
the NSGA-II where crossover and mutation operators are
replaced by those adopted in DE.
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Another approach that is based on the synergy between
different algorithms are frameworks methods [38]. Unlike
hybrid methods, frameworks maintain the complete structure
of the intervening algorithms. This allows the frameworks
to alternate, in the same optimization process (i.e. a single
run), different optimization strategies achieving very good
results. These methods have shown their potential in various
optimization problems. For example, in [39] the evolutionary
scatter search and PSO are associated to solve a routing
problem with time windows. While for the same routing
problem but in a multi-objective version, a framework based
on MOEA/D and heuristics is proposed [40]. In [41] a
framework based on GA and PSO is developed to solve data
mining problems. Also in the area of detection of cancer
genes framework based methods have been used, as in the
case of [42]. In this case the authors propose a framework
based on harmony search and GA. As well there have been
problems in the chemical industry addressed by frameworks
methods, like in [43], where the framework uses APSO and
SQP algorithms. Note that in this latter case an EA is associ-
ated with an exact method.

This work solves the optimal design of a double reduction
gear train, which consists of sprockets that engage each other
to transmit power. Double reduction gears are generally used
in applications that require very high speeds. A good number
of MH have been proposed for the resolution of this type of
systems. The problem considered here (multi-objective case)
has the special feature of having very low density of solutions
in some of the areas near to the POF. For tackling this prob-
lem, a novel metaheuristic framework called DE-NSGA-II
is proposed, which uses a collaborative combination with
sequential execution [30] of the DE and NSGA-II algorithms.
This metaheuristic framework allows to diversify the search
of solutions, especially in areas with low solution density,
and obtain a better approximation of the POF. An original
enumeration study of the problem is also presented, which
reveals why its resolution is so difficult using both exact
and metaheuristic algorithms. Finally, a broad comparison
of performance was made between different EAs (mono-
objective and multi-objectives), showing the advantages of
DE-NSGA-II for the multi-objective case.

This paper has been structured as follows. Section II intro-
duces the problem of optimizing the design of a double reduc-
tion gear train and presents a small review of the literature
as well as a brief description of some existing algorithms
used in the literature to solve this problem. Section III details
the proposed metaheuristic framework. The experiments and
results achieved are discussed in section I'V. Finally, section V
describes the conclusions and future work.

Il. GEAR TRAIN DESIGN PROBLEM.

PRELIMINARY STUDY

The gear train design problem addressed in this work is
a problem well-studied in the literature and was proposed
in [44]. The problem consists in the design of a gear train
to reduce the entry angular speed of the train, to a lower
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FIGURE 1. Double reduction gear train.

departure speed. The angular velocity variation, i.e., the
two-gear transfer ratio, n, is usually described as:

wo 1]
n=-—=—

o 1o ey
where wq is the angular velocity of the output gear, w; is
the angular velocity of the input gear, and #y and ¢; are the
number of teeth of the output and input gears, respectively.
Therefore, the transmission ratio is inversely proportional to
the number of teeth of the gears. Fig. 1 illustrates the problem
considered for this study, which contemplates 2 pairs of gears
(4 gears in total) and aims to bring the transmission ratio as
close as possible to the value 1/6.931. Then, the transmission
equation (1) can be rewritten for this problem as:
1 tptp X1X2

— @)

"= 6.931 B TALR - X3X4

On the other hand, Sandgren [44] proposed that none of the
gears had less than 12 teeth or more than 60. Thus, the gear
train design problem seeks to obtain a gear set (x1, xp, X3
and x4) so that the double reduction gear train is as close
as possible to 1/6.931 and respect the feasibility conditions,
i.e., each design variables x; is an integer in the range [12, 60].
Formally, this problem can be defined as follows:

) 1 X1X2 5
min f(x) = [m — E
st.12<x;,<60 i=1,2,3,4 3)

The problem (3) was first proposed and solved in [44]
using the branch and bound method (BB) and, later, Kannan
and Kramer [45] addressed it using the augmented Lagrange
multiplier (AL) method. Since then, a good number of meta-
heuristic algorithms have been used to solve this problem,
for example, the combined genetic adaptive search (Gene
AS) [46], [47] (the principal difference between Gene AS
and GA is the mode the variables are coded and the mode
crossover and mutation operators are applied), the mine blast
algorithm (MBA) [48] (whose idea emerges from the analysis
of the landmine explosion), the biogeography-based opti-
mization algorithm [49] (inspired by the way in which biolog-
ical species are distributed in time and space), the electromag-
netism optimization algorithm [50] (where a hybridization of
the electromagnetism-like mechanism with a descent search
is performed) and intelligent swarm-inspired algorithms such
as the cuckoo search (CS) algorithm [51] (which combines
the parasitic behaviour of breeding some species of cuckoo
with Lévy’s flight strategy of some birds and fruit flies),
the locust search II algorithm [52] (inspired by the gregarious
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behaviour observed in swarms of desert lobsters), the unified
particle swarm optimization (UPSO) algorithm [53] (basi-
cally, this algorithm articulates the local and global variant
of the standard PSO as a unified mechanism), the APSO
algorithm [17], the improved accelerated PSO (IAPSO) algo-
rithm [54] (in essence, this algorithm is characterized by
the replacement of the position of a particle by the best
position, giving a memory to the APSO algorithm, and the
introduction of two selected functions to ensure a balance of
exploration and exploitation, during search process) and the
hybrid PSO-GA algorithm [55] (PSO and GA techniques are
combined, in particular, crossover and mutation operators, are
included in the standard PSO algorithm).

Using multi-objective optimization concepts, the prob-
lem (3) can be redefined as a multi-objective optimization
problem as in (4). To this end, a new objective func-
tion, that minimizes the maximum size of any of the four
gears, has been added. Initially, this problem was defined
in [56]. The interest now, is not to have a single solu-
tion but rather a more balanced set of solutions that could
interest a potential decision maker, since the new objective
tends to reduce costs. Only a few authors, and with rel-
ative success, have solved this problem. In [56] NSGA-II
is applied and the Inverted and shrinkable Pareto archived
evolutionary strategies (ISPAES) algorithm, which modifies
the Pareto archived evolution strategy (PAES) algorithm [57],
is used in [58].

) 1 X1X2 5
minfi) =103 ~ oma

min f>(x) = max(xy, x2, X3, Xa)
st.12<x;<60 i=1,2,3,4 )

The problem (4) can be solved by explicit enumeration
using 6 bits (which allow to represent 2°6 = 64 differ-
ent binary solutions) for the binary coding of the values
of each variable x;,i = 1,2,3,4. This implies an explo-
ration space of 64* = 16,777,216 solutions. Considering
that the values of each variable are restricted to the range
[12, 60] and reducing the numerous solutions of the deci-
sion space that produce identical solutions in the objective
space (overlapping solutions [59]), a total of 662,165 feasible
non-overlapping solutions are obtained. Fig. 2 shows the
feasible non-overlapping solutions of the problem. A poor
density of solutions can be seen in the area near the Pareto
front with low values of fj(x). This low density may cause
important difficulties to find good solutions in this area for
MOEAs, solutions that may be of potential interest to a
decision maker. The 28 solutions that constitute the true POF
are also shown in Fig. 2. Their numerical values and their
respective desings (i.e., the value of the decision variables)
are shown in Table 1. The maximum values found for f; and
f> were, respectively, fi = 617.807 and f» = 60. These
values are used for the estimation of the reference point of
the hypervolume metric [60] used in Section IV to make
comparisons.
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FIGURE 2. Pareto optimal front and feasible set of solutions for the
double reduction gear train design problem obtained by explicit
enumeration.

TABLE 1. Numerical values of the Pareto optimal front solutions and
their respective design variables, for the double reduction gear train
design problem, obtained by explicit enumeration.

fi(x) fa(x) w1x2T3 74
2.700857148886513e-12 49 191643 49
1.545045049989077¢-10 44 21134344
2.357640658024884¢e-09 39 121532 39
6.654885712880334¢e-09 38 16 12 35 38
1.827380235299579¢-08 37 12 1227 37
2.726450597715287e-08 36 1312 30 36
2.505232028972835e-07 35 13123135
7.778632310703362¢-07 32 12123132
3.096463758747167e-05 31 121231 31
2.471396296003555¢-04 30 12 12 30 30
7.260549955046195¢e-04 29 12122929
1.551898629947143e-03 28 121228 28
2.835726451107918e-03 27 12122727
4.724971306088980e-03 26 12 1226 26
7.416770701595737e-03 25 12122525
1.117686117050354¢-02 24 12122424
1.636669780661988¢e-02 23 12122323
2.348290717683538e-02 22 12122222
3.321553178525184e-02 21 12122121
4.653540972049632¢e-02 20 12122020
6.482759745921461e-02 19 12121919
9.009909906751659¢-02 18 121218 18
1.253093246549743e-01 17 121217 17
1.749085331875285¢-01 16 121216 16
2.457389878477507¢-01 15 12121515
3.485893441323532e-01 14 121214 14
5.009690638972156¢-01 13 12121313
7.322578740113634e-01 12 12121212

Ill. PROPOSED METAHEURISTIC FRAMEWORK

For addressing the problem described in the previous section,
a novel metaheuristic framework using a DE algorithm with
the NSGA-II is proposed. First, the DE and NSGA-II algo-
rithms are presented and then the proposed metaheuristic
framework.

A. DIFFERENTIAL EVOLUTION ALGORITHM
DE searches for a global optimum in a s-dimensional real
parameter space D C R®. It begins with a randomly initiated
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population of M s-dimensional real-valued parameter vec-
tors. Each vector forms a candidate solution to the opti-
mization problem. Once the initial population is generated,
the mutation, crossover and selection operators follow each
other iteratively until a stop criterion is met.

Mutation (DE/rand/I). For each i-th target vector from the
current population, P8, three other distinct parameter vectors,
say x‘fli, xfzi and xfﬂ. are sampled randomly. The indices ry;,
ry; and r3; are mutually different integers randomly chosen
from the range [1, M ], which are also different from the index

i. Then Eq. (5) is applied:

mg:xf]i+F(xg —x%), for i=1,2,....M (5

i roi r3i

where FF € (0, 2] is a real constant factor determined by
the user, which controls the amplification of the differential
variation (szl. - xf3 »)- The higher the value of F, the more
the search space is explored, while the smaller the value of
F, the more the search space is exploited. Finally, if any
component of the mutant vector is outside its definition range,
we match it to the nearest bound.

Crossover. In this step, the trial vectors tf are generated
by randomly mixing the components of the mutant vectors
m¢ with those of the target individuals x{, as follows, for
i=12,...,Nandj=1,2,...,s:

m§ ; if rand;j10, 1] < Cr

g _
{xfj if rand; j[0, 1] > Cr

tf, = ©)
where Cr € (0, 1) is the crossover constant also determined
by the user and rand; j[0, 1] is a uniformly distributed random
number lying between 0 and 1. A value of Cr close to the
unit gives rise to trial vectors constructed mainly from the
components of the mutant vectors, while a value close to
zero will generate trial vectors constructed mainly from the
components of the target individuals.

Selection. To keep the population size constant in all gen-
erations, selection is applied to determine, between the trial
vectors and the target ones, which vector goes to the next gen-
eration. Let be f(x) the objective function to be minimized,
the selection operation is described as

o+ _ () <rec)
P INEE A > £

B. NON-DOMINATED SORTING GENETIC ALGORITHM 11
Of recognized efficiency, the general operation of NSGA-II
[21] follows the following scheme: (i) random creation of
a first population of parents P of size N, (ii) selection
by tournament (best rank and crowding) and application of
crossover and mutation operators to create a population of
descendants Q8 of size N, (iii) form a combined population
RS = P8 U Q8, (iv) classify RS on non-dominated fronts,
(v) then add each front, in increasing order until a front Fj
cannot be fully integrated into the new population P8*! of
size N, then classifying the Fy front by crowding-distance to
add solutions until the size P$T! equals N, (vi) if the stop
condition is not met return to step (ii).

for i=1,2,....,.M (7)
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C. DE-NSGA-II FRAMEWORK

The proposed framework improves the ability to search for
the POF of a MOEA when highly complex problems are
solved and, in particular, the one presented in section II. The
basic idea is to take advantage of the skills of a MOEA and
enrich them with the global mono-objective search skills of
DE, in order to find those extreme POF solutions that are
difficult to achieve. In this work, NSGA-II and DE are used,
however another metaheuristic could be used, although the
performance could be different. The general flow chart of
the proposed algorithm (see Fig. 3) consists of the following
steps:

Step 0. Define the initial parameters of both NSGA-II
(N, PCr,PMut, G) and DE (M, F, Cr, Gpg) Step 1. Ran-
domly generate an initial population P® (NSGA-II popula-
tion) of size N.

Step 2. Assign P8 = PY.

Step 3. Classify by dominance P in Pareto fronts, {F;}.

Step 4. Generate the initial population of DE, U, from the
M (< N) best solutions of P¢ (best rank and crowding)

Step 5. Run DE up to stop criterion is met.

Step 6. Include in P$ the elitist solutions from DE.

Step 7. Obtain P$*1,

Step 8. Assign P8 = P8t1,

Step 9. If NSGA-II stop criterio is not met, go to Step 3.

Fig. 3 shows how DE and NSGA-II exchange the best
solutions from the mono-objective point of view. Although
in the problem considered in this work it is enough to make
this exchange with only one of the objectives, it can be easily
extended to more or even all the objectives of the problem
considered. Thus, if k is the number of objectives to optimize
and r is the number of objectives represented by the hard-
to-find POF extremes, the complexity of DE-NSGA-II is
O(kN? + rMGpg). Consequently, the greater the number
of objectives, the greater the complexity of the algorithm.
One way to overcome this limitation is to use parallel
programming.

IV. COMPARATIVE RESULTS

In the following subsections, a comparative analysis is per-
formed between some of the most representative algorithms
of both the mono-objective EA family and the MOEA family,
and the DE-NSGA-II framework proposed in this work. All
experiments are carried out with the problem of designing
a double reduction gear train defined in section II. Each
algorithm has been independently run 100 times for each
test instance in the same initial conditions, from a randomly
generated population. The settings and metrics used to eval-
uate the algorithms are presented in subsection IV-A. The
mono-objective problem defined by eq. (3) is solved in sub-
section I'V-B and the multi-objective problem raised in eq. (4)
is solved in both subsections IV-C and IV-D.

A. SETTINGS AND METRICS
The APSO, DE and NSDE algorithms were implemented
with real coding. Comparing with many PSO variants, APSO
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N, PCr, PMut. &
M,F,Cr,Gpg

)

Randomly generate an initial population: P® = fx?}

N
CR*
i=1

Sort P9 on Pareto fronts: [F’kg}

)

a_ 0 M _
Set UY = {uj }jzl = best(Pf) c pY

~

Crossover
Selection

Mutation (D E/rand/l}l

M
Elitism: ES = {eﬁ}k best o pest (1 °DE)

Update elitist solutions: P¢ « ES
Selection (Binary tournement)
NSGA - II = Crossover
Mutation

Sort P9 on Pareto fronts: {F’f}

FIGURE 3. Flow chart of DE-NSGA-II.

uses only two parameters (o and f) and the mechanism is
simple to understand. In this work a variant of APSO pro-
posed in [18] has been implemented, which reduces random-
ness as iterations progress. In particular, « = 8’ is considered
where § € (0, 1) and ¢ represents the current iteration of the
algorithm. DE also uses two parameters (F' and Cr). In all
the experiments, we will use the same settings of APSO and
DE parameters, that is, we have used the learning parameters
B = 0.6 and § = 1.0, the mutation factor F = 0.3 and
the crossover factor Cr = 0.9. Prior to the selection of
these parameters, 100 runs of the APSO and DE algorithms
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TABLE 2. APSO (N =50 and G = 100): the best fitness values over 100 independent runs for different values of 8 and §. The global optimum is

highlighted in bold.

Bestfitness B=00 B=01 B=02 =03 B=04 B=05 =06 =07 f=08 B=09 A=10
5§=100 6.19¢-09 2.73¢-08 2.73¢-08 7.13e-08 6.19¢-09 1.31e-08 1.18e-09 2.36e-09 832e-09 2.06e-08 2.18e-08
§=0.1 233e07  1.09e-07 3.37e-08 6.07e-08 1.56e-07 2.73e-08 2.36e-09 2.36e-09 23le-1l 236e-09 8.92e-08
5§=102 236e-09 1.18¢-09 2.86e-08 5.52¢-08 1.46e-08 2.36e-09 2.36e-09 2.36e-09 9.52e-09 2.73e-08  2.36e-09
5§=103 5.50e-08 4.50e-09 1.39e-08 1.17e-10  1.83e-08 1.55e-10 2.18¢-08 1.36e-09 2.36e-09 23le-11  2.36e-09
5 =04 273e08  2.18e-08  4.20e-07 2.36e-09 1.36e-09 1.18¢-09 4.47e-08 2.70e-12  131e-08 9.92e-10 2.3le-11
5§=05 236e-09 3.30e-09 2.36e-09 3.07e-10  2.36e-09  5.35e-08 2.70e-12  2.36e-09 2.36e-09 4.92e-09 1.55e-10
5§=106 273¢08 1.09e-07 6.19e-09 1.17e-10  3.45e-09 2.3le-11  2.36e-09 2.36e-09 2.36e-09 1.12e-08 2.70e-12
§=0.7 246e-08 1.79e-07 55208 273e-08 1.16e-07 1.55e-10  9.52e-09 2.70e-12  1.18e-09 8.32e-09  2.36e-09
5§=108 4.63e-07  23le-11  23le-11  2.36e-09 1.18e-09 2.73e-08 2.36e-09 9.92e-10 1.17e-10 9.92e-10 2.3le-11
5§=109 1.12¢-08  2.36e-09 2.70e-12  2.70e-12  136e-09 1.18e-09 9.92e-10 1.18e-09 1.17e-10 1.55e-10  6.92e-10
§=1.0 1.17e-10  270e-12  23le-11  1.55e-10 2.3le-11  23le-11  270e-12 23le-11  23le-1l  23le-ll  23le-11

TABLE 3. APSO (N = 50 and G = 100): mean values over 100 independent runs for different values of 8 and 5. Mean values less than 1.e-04 are

highlighted in bold.

Mean =00 f=01 =02 =03 f=04 f=05 F=06 =07 =08 f=09 F=10
§=00 254603 2.11e-03 158e-03 2.04e-03 2.15e03 3.01e-03 1.42e-03 2.11e-03 1.68e-03 1.68e-03  1.63e-03
§=01 249e03 2.87e-03 238e-03 220e-03 2.26e03 1.74e-03 127e-03 1.17e-03 1.16e-03 2.18e-03  2.27e-03
§=02 249e03 191e-03 2.17¢-03 187e-03 149e-03 1.74e-03 2.09%-03 248e-03 1.52e-03 2.65¢-03  1.88¢-03
§=03 321e03 21903 222-03 237e-03 291e03 1.95¢-03 2.11e-03 2.78e-03 1.51e-03 2.65e03  1.39%-03
§=04 29903 2.68-03 190e-03 174e-03 3.78e-03 2.36e-03  1.48¢-03 2.08e-04 2.20e-03 2.62e-03 2.31e-03
§=05 28403 3.53¢-03 2.65¢-03 208e-03 1.53e-03 2.51e-03 1.95¢-03 240e-03 2.02e-03 2.02e-03  1.46e-03
§=06 371e03 196e-03 2.78¢-03 1.62e-03 2.88e-03 2.06e-03 1.44e-03 221e-03 1.56e-03 1.76e-03  1.51e-03
§=07 154e03 220e-03 1.88e-03 2.65¢-03 2.26e-03 127e-03 224e-03 141e-03 18le-03 1.19e-03  1.53e-03
§=08 259%-03 26le03 257e-03 191e03 9.79%-04 1.28e-03 2.04e-03 13503 2.24e-03 1.87e-03  7.38e-04
§=09 210e03 1.66e-03 124e-03 141e-03 1.29e03 1.69e-03 1.14e-03 1.04e-03 1.25e03 6.08¢-04  6.75e-04
§=1.0 7.12e04 5.69-06 4.7de-06 116e-05 2.52e04 5.99e-05 5.10e-06 527e-06 6.93e-05 23305 7.47¢-06

TABLE 4. APSO (N = 50 and G = 100): standard deviation values over 100 independent runs for different values of g and §. Standard deviation values

less than 1.e-04 are highlighted in bold.

SD =00 pB=01 pB=02 p=03 p=04 p=05 =06 =07 =08 pB=09 pB=10
0=0.0 457e-03 4.30e-03 2.97e-03 3.95e-03 4.17e-03  7.42e-03  3.51e-03  4.49e-03 3.20e-03  4.07e-03  3.77¢-03
0 =01 391e-03 6.63e-03 5.94e-03 3.60e-03 4.31e-03 3.96e-03  2.90e-03 2.47e-03 2.36e-03 4.77e-03  4.62e-03
0=0.2 49503 3.78¢-03 4.87e-03 3.25¢-03 3.17e-03  4.00e-03  5.40e-03  4.70e-03  2.74e-03  6.82¢-03  3.08¢-03
0=0.3 6.04e-03 3.72¢-03 5.15¢-03 4.37e-03  6.16e-03  4.51e-03  3.58e-03 5.79e-03  2.95e-03 3.66e-03  2.76e-03
0 =04 519-03 576e-03 3.84e-03 3.02e-03 9.90e-03  5.79e-03  3.63e-03  4.57e-03 4.35e-03  5.24e-03  5.07e-03
0=0.5 597e-03 9.44e-03 5.12¢e-03 3.77e-03  3.20e-03  5.82e-03  4.44e-03  8.97e-03 4.14e-03  4.94e-03  2.90e-03
0=0.6 654e-03 4.01e-03 5.85¢-03 3.75¢-03 5.70e-03  3.99e-03  3.72e-03 3.98e-03 2.87e-03  3.96e-03  3.35¢-03
0 =0.7 2.66e-03 4.90e-03 3.93e-03 4.29¢e-03 4.94e-03  2.73e-03  5.93e-03  3.43e-03 3.65e-03 2.64e-03 5.41e-03
0=0.8 536e-03 6.80e-03 5.24e-03 4.57e-03 2.18e-03  2.89¢-03  5.10e-03  3.10e-03  6.25e-03  3.80e-03  2.51e-04
0=0.9 390e-03 3.17e-03 3.12¢-03 3.03e-03  3.09e-03  4.55e-03 3.19¢-03 3.44e-03 3.23e-03  1.50e-03  2.18¢-03
0=1.0 192¢-03 5.35e-05 2.71e-05 1.12¢e-04 1.69¢-03 4.95e-04 3.50e-05 2.11e-05 4.92¢-04 1.38e-04 5.46e-05

with a population size N = 50 and a maximum number
of generations G = 100 were performed to compare the
different effects of 8, &, F, and Cr in order to find the best
results. The experimental results are recorded in Tables 2—7.
From Tables 2—4, it can be clearly seen that the best values
of mean and standard deviation correspond to § = 1.0.
However, the results seem insensitive to parameter 8 but as,
in general, APSO performs slightly differently with different
B, weset 8 = 0.6. From Tables 5-7, it can be clearly seen that
the best values of mean and standard deviation correspond to
Cr=09and F =03 or F =0.4. We set F = 0.3.

The GA, NSGA-II, GWASF-GA and MOEA/D algorithms
were implemented with binary coding, and binary tournament
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selection operator, uniform crossover rate of 0.8 and bitwise
mutation rate of 1/L were used, where L = 24 is the string
length (each variable uses 6 bits). These parameters values
were used with good performance in [21]. In addition, for the
GA the size of the elitist population was 3 and a probabilistic
binary tournament selection (the best solution is chosen with
probability [0, 0.7]) was adopted [9]. The parameters used for
the DE-NSGA-II are a combination of those specified above
for both the DE and the NSGA-IIL.

The population sizes, N and/or M, and the maximum
number of generations, G and/or Gpg, used in each of the
algorithms are indicated in the corresponding subsection for
each experiment. As recommended by the authors, the value
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TABLE 5. DE (N = 50 and G = 100): the best fitness values over 100 independent runs for different values of F and C,. The global optimum is highlighted

in bold.
Bestfitness F =00 F=01 F=02 F=03 F=04 F=05 F=06 F=07 F=08 F=09 F=1.0
Cr=0.0 8.58¢-07 4.50e-09  1.40e-07 1.88e-07 9.75e-10  4.47e-08  2.36e-09 3.85e-07 1.61e-07 2.73e-08  4.76e-07
Cr=0.1 2.31le-11  23le-11  2.70e-12  2.70e-12  2.70e-12  2.3le-11  2.70e-12  2.3le-11  8.89¢-10  1.17e-10  2.70e-12
Cr=0.2 2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.3le-11  1.17e-10  9.94e-11
Cr=0.3 2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.31e-11 2.31e-11 2.31e-11
Cr=0.4 2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12 2.3le-11  2.3le-11  6.60e-10
Cr=0.5 9.94e-11  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12
Cr=0.6 2.31e-11 2.70e-12  2.70e-12 2.70e-12 2.70e-12 2.70e-12 2.70e-12  2.70e-12  2.70e-12 2.70e-12 2.70e-12
Cr=0.7 9.94e-11  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12
Cr=0.8 2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12
Cr=0.9 2.31le-11  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12
Cr=1.0 1.36e-09  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12  2.70e-12

TABLE 6. DE (N = 50 and G = 100): mean values over 100 independent runs for different values of F and C,. Mean values less than 1.e-10 are highlighted

in bold.
Mean F=00 F=01 F=02 F=03 F=04 F=05 F=06 F=07 F=08 F=09 F=10
Cr=0.0 1.63e-03 1.82e-03 3.28e-03  2.09¢-03  2.73e-03  2.70e-03  2.16e-03  3.14e-03  3.28¢-03  1.98¢-03  1.80e-03
Cr=0.1 1.69%-08 6.50e-09 6.57e-09 6.52e-09 1.03e-08 1.69¢-08 1.48¢-08 1.54e-08 6.57e-09 2.29e-08  1.99e-08
Cr=0.2 1.04e-08 2.31e-09 3.62e-09 4.28e-09 3.61e-09 4.50e-09 6.58¢-09 7.14e-09  3.62¢-09 9.36e-09  1.14e-08
Cr=0.3 211e-08 1.63e-09 1.74e-09 2.55¢-09 3.18¢-09 4.17¢-09  4.72¢-09  3.92¢-09 1.74e-09 6.05e-09  7.33e-09
Cr=0.4 2.06e-08 1.29¢-09 1.14e-09 1.64e-09 1.87e-09 2.61e-09 3.32e-09 3.27e-09 1.14e-09 5.06e-09 6.74e-09
Cr=0.5 590e-08 7.55e-10 7.05e-10  1.64e-09  1.54e-09 2.24e-09 2.28e-09 2.39¢-09 7.05e-10 4.52¢-09  6.04e-09
Cr=0.6 9.5%-08 6.4le-10 542e-10 5.13e-10  9.26e-10  1.10e-09  1.82e-09  2.39e-09 5.42e-10  3.40e-09  3.67e-09
Cr=0.7 176e-07 9.80e-10 3.29¢e-10 4.24e-10 5.74e-10  9.05e-10  9.83e-10  1.50e-09  3.29e-10  2.22¢-09  3.89e-09
Cr=0.8 3.95e-07 1.77¢-09 2.79¢-10 2.04e-10 2.70e-10  5.45e-10 6.51e-10  9.68e-10  2.79e-10  1.49e-09  2.62e-09
Cr=0.9 3.18¢-06 4.93e-09 3.43e-10 9.40e-11 9.96e-11  1.94e-10 4.09e-10  8.44e-10  3.43e-10 1.31e-09  1.44e-09
Cr=1.0 1.69e-03 2.20e-04 3.34e-09 1.26e-10 1.17e-10  1.08e-10  1.59e-10  3.47e-10  3.34e-09  7.59e-10  1.59e-09

TABLE 7. DE (N = 50 and G = 100): standard deviation values over 100 independent runs for different values of g8 and §. Standard deviation values less

than 2.5e-10 are highlighted in bold.

SD F=00 F=01 F=02 F=03 F=04 F=05 F=06 F=07 F=08 F=09 F=1.0
Cr=0.0 295e-03 3.33e-03 6.49e-03 3.86e-03 5.82e-03 5.85e-03 5.10e-03 7.26e-03 5.35e-03 4.90e-03  3.84e-03
Cr=0.1 339%-08 1.09¢e-08 1.37e-08 9.34e-09  1.43e-08 4.85e-08 2.80e-08 2.73e-08  2.14e-08  3.40e-08  2.58e-08
Cr=0.2 142e-08 3.19¢e-09 5.73e-09 7.32e-09 5.35e-09 6.39¢e-09 9.45e-09 8.48e-09 9.30e-09 1.32e-08 1.36e-08
Cr=0.3 623e-08 2.05e-09 231e-09 430e-09 5.02e-09 6.48e-09 6.16e-09 4.98e-09 9.15e-09 8.13e-09  8.27e-09
Cr=04 4.11e-08 2.88e-09 1.18¢-09 2.82¢-09 2.56e-09 4.39¢-09 4.16e-09 5.03e-09 6.0le-09  7.22e-09  8.47e-09
Cr=0.5 15%-07 7.86e-10 6.45e-10 2.82e-09 3.03e-09 2.99e-09 2.77e-09 3.78e-09 5.72e-09 5.71e-09  7.30e-09
Cr=0.6 1.77e-07 8.62e-10  6.80e-10  6.71e-10  1.06e-09  1.37e-09  2.87e-09 3.47¢-09  3.70e-09  5.69e-09  5.38e-09
Cr=0.7 3.95e-07 1.03e-09 4.87e-10 6.22e-10 6.74e-10 8.28e-10 1.05e-09  1.33e-09  3.18e-09 3.32e-09  5.25e-09
Cr=0.8 857e-07 3.76e-09 4.76e-10 4.04e-10  4.65e-10  7.04e-10  6.84e-10  9.69e-10  1.97e-09  1.25e-09  3.94e-09
Cr=0.9 830e-06 1.45e-08 533e-10 2.32¢-10 2.24e-10 3.52e-10  6.08¢-10  1.79¢-09  8.29e-10  1.79¢-09  1.56e-09
Cr =10 2.80e-03 1.25e-03 2.29e-08 2.75e-10 2.71e-10  2.62e-10  3.34e-10  594e-10 7.42e-10 7.71e-10  5.51e-09

of the T parameter in GWASF-GA [23] was taken equal to
N and in MOEA/D [22] T = 10%N. In order to obtain
a comparison in equal conditions between the DE-NSGA-II
framework proposed in this work and NSGA-II, it was con-
sidered as stopping criterion to reach a maximum number
of objective function evaluations. In all other comparisons
the stopping criterion was to reach a maximum number of
generations, G and/or Gpg.

As explained in section II, the gear train design problems
defined by eq. (3) and eq. (4) have four integer variables
x; € [12,60],i = 1,2,3,4. A 6-bit binary encoding
allow us to define 26 = 64 different integer values for
each variable, but since these values must be within a certain
range, unfortunately, unviable designs or unfeasible solutions
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are generated, which demand repairing methods. This paper
compares two simple methods to repair the unfeasibility of
the designs, namely repair I and repair II, in order to pre-
serve the viability of the solutions. In repair I method (see
Algorithm 1), half of the unfeasible values of the x variables
are setted to the lower bound value, i.e. 12, and the rest of
unfeasible values are setted to the upper bound value, i.e. 60.
On the other hand, in repair II method (see Algorithm 2), all
unfeasible values of the variables x are reassigned with the
upper bound, which is located in the most conflictive region
of the feasible space.

Mono-objective algorithms were compared in terms of
statistical results and number of function evaluations (NFEs).
In this paper, the computational cost, which is considered as
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Algorithm 1 Function Repair I: Evaluate Feasibility of

x;i=1,2,3,4
Input: Lower bound of x, a = 12, upper bound of x, b =
60

Output: Value of x
l:fori=1,...,4

2: ifx;>8&x; <56
3 X;=Xx;+4
4. elseif x; <7
5: X;=a

6: elseif x; > 57
7 X; = b

8: endif

9: end for

Algorithm 2 Function Repair II: Evaluate Feasibility of
x;i=1,2,3,4
Input: Lower bound of x, a = 12, upper bound of
X, b =60
Output: Value of x
l:fori=1,...,4

2. ifx; <48

3 X, =X;+a
4: else

5: X, =b

8: endif

9: end for

the best NFEs corresponding to the obtained best solution,
is calculated by the product of the population size (swarm
particle number in APSO) and the maximum number of
iterations or generations (i.e. NFEs = N x G).

The hypervolume (HV) indicator suggested in [60] is used
as a comparison measure between multi-objective algorithms.
The reference point considered for the calculation of HV
was (620, 65), which guarantees that it is dominated by all
the solutions generated during the evolution of the algo-
rithms. In addition, the attainment surface concept intro-
duced in [61] is used considering the approach suggested by
Knowles [62].

Moreover, a Wilcoxon rank-sum test [63] has been per-
formed to make pairwise comparisons between the algo-
rithms to study the significance of the results obtained.
A significance level of 5% has been taken and the null
hypothesis was ‘“‘the two algorithms have the same average
indicator”, that is, the Wilcoxon test was used to determine
if the difference between both means was statistically sig-
nificant. If the p-value is less than 0.05, the null hypothe-
sis is rejected and, then, we can conclude that the means
of the two algorithms are comparable. In this case, a new
Wilcoxon rank-sum test with one-sided alternative ‘‘greater”
(or “less’) and the same significance level is performed, that
allows us to conclude which algorithm obtains better results
than the other.
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FIGURE 4. DE vs GA vs APSO (N = 100 and G = 100): box plots of the
fitness values.

e DE = DE
- = GA = = =GA
APSO APSO
107 1 107 f
2 6
-
B g
& =
5 g
2 = L
=z 10
m
1
10 !
- L
10770
_? _____ ,
T me me e e ow = =y
10"2 L L L L 10"2 L L L L
20 40 60 80 100 20 40 60 80 100

Generations Generations

FIGURE 5. DE vs GA vs APSO (N = 100 and G = 100): evolution of the
average fitness (left), evolution of the best fitness (right).

B. DE VS GA VS APSO

In this subsection, the DE, GA and APSO algorithms are
compared for the mono-objective problem (3). Mean, stan-
dard deviation (in subscript), and the best and worst fitness
values achieved by each algorithm (over 100 independent
runs) are shown in Table 8. It can be seen that in all the
experiments performed DE obtains better results than GA,
and GA obtains better results than APSO.

Figs. 4 and 5 extend the comparative results of the experi-
ment with N = 100 and G = 100 from Table 8. Fig. 4 shows
the box plots of the distribution of fitness values and it is
observed that DE solutions are concentrated very close to the
global optimum, since its median is 2.3078e-11, GA solutions
are farther away from the global optimum with a median
equal to 1.3616e-09 and APSO solutions are even further
away from the global optimum with a greater dispersion and
amedian equal to 1.1173e-08. The advantage of the DE algo-
rithm over GA and APSO is also shown in Fig. 5 (left), that
presents the evolution of the average fitness of the population
per generation for the three algorithms, and in Fig. 5 (right),
which shows that DE finds the best fitness value in the first
generations while GA needs at least 60. In this case, APSO
performs better than GA in the first generations.
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TABLE 8. DE vs GA vs APSO: mean, standard deviation (in subscript), and the best and worst fitness values, respectively, over
100 independent runs.

G N =20 N =30 N =40 N =50 N =100
20 DE 1.309¢-085.848¢—08  5.979¢-091 239¢—08  2.707e-094.705¢—09  2.159¢-093.056¢—09 1.235e-091.937¢—09
2.700e-12 5.788e-07  2.700e-12 9.467e-08  2.700e-12 2.726e-08  2.700e-12 1.827e-08 2.700e-12 1.827e-08
GA 4.044e-076.687¢—07 1.538e-073.369¢—07 1.247e¢-072.397¢—07  5.599e-089.861e—07 2.292e-085.765¢—08
8.887e-104.231e-06  2.307e-112.022e-06  8.887e-10 1.381e-06  8.887e-10 6.409e-07 3.068e-10 4.755e-07
APSO 6.386e-031.345¢—02 9.460e-042.589¢—03 1.243e-032.913¢—03 5.955e-041.793¢—03 6.187e-054.199¢—04
2.357e-09 7.213e-02  1.545e-10 1.401e-02  1.166e-10 1.290e-02  2.700e-12 1.061e-02  2.700e-12e-3.753e-03
30 DE 29433'095.5885—09 11716—091,1306_09 10026‘091.3885—09 1.0986—091‘4106_09 4.2476—106,3045_10
2.700e-12 2.726e-08  2.700e-12 6.193e-09  2.700e-12 1.117¢-08  2.700e-12 8.700e-09 2.700e-12 2.357e-09
GA 1.991e-073 605e—07  7.915¢-081 406e—07  4.870e-083.159¢—08  3.960e-088 269¢—08 1.145e-081 356 —08
9.921e-10 2.022e-06  9.939e-11 7.798e-07  2.307e-11 4.755¢-07  2.307e-11 5.193e-07 2.308e-11 7.802e-08
APSO  1.571e-035.205e—03  1.902e-035.200e—03  5.726e-042.175¢—03  1.788e-049.213¢—04 1.521e-051.076¢—04
1.545e-103.691e-02  1.545e-103.241e-02  2.700e-12 1.715¢-02  1.166e-10 7.857¢-03 2.307e-119.007e-04
40 DE 2~0353'093.558e—09 9.1586—1013313_09 7.3306-10&4956_10 5.5856—107672@_10 2.0496—10&4845_10
2.700e-12 2.726e-08  2.700e-12 8.700e-09  2.700e-12 4.503e-09  2.700e-12 3.299¢-09 2.700e-12 1.361e-09
GA 1.276e-073.086e—07  4.560e-088 427¢—08  2.548e-085.175¢—08  2.545¢-085.707¢—08 7.242e-098 986 —09
3.067e-10 2.022e-06  2.700e-12 5.041e-07 8.887e-10 4.04e-07 2.307e-11 4.755e-07 2.308e-11 3.881e-08
APSO  2.423e-036.485¢—03 6.609e-042 g04e—03 1.359e-046.159¢—04 1.833e-048.609¢—04 1.929¢-051.844¢—04
1.545e-10 3.605e-02  2.307e-11 2.075¢-02  2.700e-12 3.920e-03  2.700e-12 6.440e-03 2.307e-11 1.844e-03
50 DE 1.639e-092 .865¢—09 5.827e-108.516e—10 5.181e-106.762¢—10 3.140e-104.721e—10 1.213e-102.687¢—10
2.700e-12 1.827¢-08  2.700e-12 3.824e-09  2.700e-12 3.299¢-09  2.700e-12 2.357e-09 2.700e-12 1.263e-09
GA 1.2266—073,1286_07 2A634e—0839526_08 1.4486—0&8266_08 1~2156‘0814506e—08 5.3656—097,2076_09
2.307e-112.022e-06  1.545e-10 2.663e-07  2.307e-11 7.802¢-08  2.307e-11 1.155e-07 9.940e-11 2.726e-08
APSO 1.720e-034.172¢—03 3.702e-041 228¢—03 2.021e-048.394¢—04 1.417e-045.991¢—04 3.377e-087.810e—08
2.700e-12 2.641e-02  2.700e-12 9.528e-03  2.307e-11 4.988e-03  2.307e-11 4.302e-03 2.700e-12 4.359¢-07
70 DE 1.656e-093.502¢—09  5.013e-106.933e—10  2.333e-104.297¢—10  2.103e-104.846e—10  6.742e-111.973¢—10
2.700e-12 2.726e-08  2.700e-12 2.357e-09  2.700e-12 2.357e-09  2.700e-12 2.357e-09 2.700e-12 1.183e-09
GA 5.650e-081.443¢—07  3.376e-088.734e—08  1.209e-08 949e—08  1.312e-083.501c—08  4.004e-096.022¢—09
2.307e-11 1.116e-06  1.166e-10 7.778e-07  2.307e-11 1.234e-07  9.939e-11 3.005e-07 2.701e-12 2.726e-08
APSO 1.4166—035,3586_03 2.4916—041,1216_03 5.2886—052,4705_04 3.8286—063‘4916_05 6.8536—075,6305_06
2.307e-114.746e-02  2.307e-119.010e-03  2.307e-11 1.773e-03  2.307e-11 3.493e-04 2.700e-12 5.634e-05
100 DE 1.857e-093.871¢—09 3.135e-104.697¢—10 2.782e-105.002¢—10 8.238e-112.118¢—10 3.154e-111.239¢—10
2.700e-12 2.726e-08  2.700e-12 2.357e-09  2.700e-12 2.357¢-09  2.700e-12 9.921e-10 2.700e-12 8.887e-10
GA 3.573e-086.524¢—08  1.412e-082.341e—08  8.421e-091 415¢—08  5.681e-091.006e—08  2.704e-094.024¢—09
2.700e-12 4.359¢-07  2.307e-11 1.761e-07  2.307e-11 1.155e-07  2.307e-11 7.802e-08 2.701e-12 2.726e-08
APSO 3‘0806—032,1196_02 9.0246—055171@_04 3.0546—0414655_03 7.6656—054‘3365_04 3.3776—087,8103_08

1.545e-10 2.107e-01

1.545e-10 4.102e-03

2.307e-11 1.114e-02

2.307e-11 3.844e-03

2.700e-12 4.359¢-07

A Wilcoxon rank-sum test has been performed to deter-
mine whether the difference between the average fitness
values achieved by the DE, GA and APSO algorithms is
statistically significant. The results are shown in Table 9,
where a symbol A indicates that the algorithm in the row has
reached a better average fitness value than the algorithm in
the column. From Table 9, it can be concluded that DE obtains
better average fitness in all cases and AG improves to APSO
in solving the problem discussed in this paper.

In addition, another statistical comparison was developed,
in which the number of times the global optimum is found
in 100 runs is analyzed. This experiment was repeated
100 times, where each experiment consisted of performing
100 runs of DE or GA or APSO. In Fig. 6 the average number
of times the global optimum appears in 100 trials of each
experiment with DE and GA is shown. For example, for
values N = 100 and G = 100, the average number of times
the global optimum appears with DE is 48.24 and with GA
is only 0.96. All values shown in Fig. 6 confirm that better
results are obtained with DE. In all cases, APSO found the
global optimum with an average number of times lower than
the one obtained with GA.
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TABLE 9. DE vs GA vs APSO: Wilcoxon rank-sum test to compare
average fitness.

GA APSO
N = 20, 30,40,50,100 N = 20, 30, 40, 50, 100
G =20 ANANA ANANNA
G =30 ANANNANA VANWANVANVANVAN
DE G =40 VANWANVANVANVAN JANVANVANVANWAN
G =50 VANWANVANVANVAN JANVANVANANWAN
G =170 ANANANA ANANNANA
G =100 ANANNA ANANNANNA
G =20 JANVANVANWANWAN
G =30 ANANNANA
GA G =40 ANANNANA
G =50 JANVANANVANWAN
G =170 JANWANVANVANVAN
G =100 VANWANVANANVAN

The problem (3) has also been used as a reference in
other research papers. Table 10 (extended from [54] and [55])
shows the results obtained in this work with GA (NFEs =
800) and DE (NFEs = 800) together with those achieved
by other metaheuristic methods. It can be seen that DE
(NFEs = 800) has the best average fitness value followed
by MBA (NFEs = 1120) and IAPSO (NFEs = 800).
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FIGURE 6. DE vs GA: average number of times the best appears
in 100 trials.

Although PSO + GA outperforms the previous ones, its
reference paper does not clearly indicate the NFEs value,
which can be up to a maximum of 20 x 4 x 5000 = 40000.
In which case, it should be noted that DE with NFEs = 900
(N = 30, G = 30) (see Table 8) already improves the average
fitness of the PSO-GA. In any case, in Table § we can see that
DE with NFEs = 10000 (N = 100, G = 100) reaches the best
average fitness value (3.154605e-11).

C. NSGA-II VS MOEA-D VS GWASF-GA VS NSDE

Four popular MOEAs are compared in this subsection.
Table 11 shows the mean, standard deviation (in sub-
script), and the best and worst hypervolume (HV) indica-
tors achieved from 100 independent runs. It can be seen
that, in all experiments, the NSGA-II algorithm achieves
the best performance. Also, it is noted that all the algo-
rithms implemented with binary representation, case of
NSGA-II, GAWASF-GA and MOEA/D, achieve better
results when use repair II as repairing method for unfeasible
solutions.
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Figs. 7 and 8 show a more detailed comparison between the
four algorithms for the repair I experiment with G = 100 and
N = 100 from Table 11. Fig. 7 shows the box plots based
on the hypervolume approximation metric. It is observed
that the best median and the lowest dispersion is obtained
with NSGA-II. The advantage of NSGA-II over the other
algorithms is also shown in Fig. 8 (left) that presents the
average hypervolume evolution per generation. NSGA-II is
followed, from best to worst result, by NSDE, GWASF-GA
and MOEA/D. Fig. 8 (right) shows the evolution of the
average percentage of different solutions in the population
(of size N) and would explain why the different returns of
the algorithms, i.e. the presence of overlapping solutions. For
example, from Fig. 8 (right) it is extracted that at the end
of the evolution, NSGA-II and NSDE have similar values of
the average percentage of different solutions although with
slightly better hypervolume value for NSGAII (see Table 11),
however in the first generations this value is better for NSDE
than for NSGA-II, which justifies that in the first generations
NSDE has better average hypervolume value than NSGA-II
(see Fig. 8 (left)). The same analysis can be done with the
results achieved by GWASF-GA and MOEA/D.
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TABLE 10. Comparison and statistical results for gear train model found by different mono-objective methods (NA - not available).

Algorithms NFEs Best ‘Worst Mean Std. dev. T1 T2 T3 T4
BB [44] 5.712e-06 NA NA NA 18 22 45 60
AL [45] 2.146e-08 NA NA NA 13 1533 41
Gene AS [46] 5000 2.701e-12 NA NA NA 19 16 49 43
PSO-GA [55] NA 2.70085e-12 3.2999¢-09 1.2149e-09 8.7787e-10 19164349
MBA [48] 1120 2.70085e-12 2.0629¢-08 2.4716e-09 3.9400e-09 19 1643 49
UPSO [53] 100000 2.70085e-12 8.94899¢-07 3.80562e-08 1.09631e-07 NA

CS [51] 5000 2.701e-12 2.3576e-09 1.9841e-09 3.5546e-09 19 16 43 49
APSO [17] 8000 2.700857e-12 7.072678e-06  4.781676e-07 1.44e-06 19 16 43 49
TIAPSO [54] 800 2.700857e-12 1.827380e-08  5.492477e-09 6.36e-09 19 16 43 49
Present study (by enumeration) 2.7008571488865e-12 19164349
GA Present study 800 3.067556e-10 2.022601e-06  1.276162e-07  3.086869¢-07 19 16 43 49
DE Present study 800 2.700857e-12 2.726451e-08  2.035909¢-09  3.558971e-09 19 16 43 49

TABLE 11. NSGA-II vs MOEA/D vs GWASF-GA vs NSDE (G = 100):
mean, standard deviation (in subscript), and the best and

worst hypervolume, respectively, over 100

independent runs.

repair I N =50 N =100
NSGA-II 4.75281.4580e—01 4.84521 4114e—01
5.0248 - 4.5302 5.0984 - 4.5419
MOEA/D 3.89653.8264¢—01 3.96663 7465 —01
4.6404 - 3.2060 4.6565 - 3.4188
GWASF-GA  4.55321 .9674e¢—01 4.61602.0598¢—01
4.9561 - 4.1200 4.8397 - 3.6302
repair 11 N =50 N =100
NSGA-II 4.95951.1066e—01 5.00211.0550e—01
5.4335 - 4.5985 5.4155-4.7188
MOEA/D 3.92673.6317e—01  4.1729973.3397¢—01
4.6605 - 3.2935 4.6640 - 3.4624
GWASF-GA  4.72231 9471e—01 4.74651 5993¢—01
5.0000 - 4.1962 49783 - 4.1840
N =50 N =100
NSDE 4.89461.1465¢—01 4.96321 3941¢—01

5.2960 - 4.5418

5.3502 - 4.6120

Again, a Wilcoxon rank-sum test was performed to deter-
mine whether the difference between the average hypervol-
ume values reached by each pair of algorithms is statistically
significant. The results are shown in Table 12 where a symbol
A indicates that the algorithm in the row has reached a
better average hypervolume than the algorithm in the column,
asymbol V indicates that the algorithm in the row has reached
a worse average hypervolume than the algorithm in the col-
umn and again a symbol — indicates that the comparative is
not statistically significant. The results obtained by applying
repair I indicate that NSDE obtains better average hypervol-
ume than MOEA/D, GWASF-GA and NSGA-II (between
NSDE and NSGA-II only in one case the difference is not
significant), NSGA-II achieves better average hypervolume
than MOEA/D and GWASF-GA and, lastly, GWASF-GA
achieves better average hypervolume than MOEA/D. Also,
from Table 12 (repair II) it is conclude that all tests are
statistically significant, and NSGA-II wins in all cases, NSDE
wins MOEA/D and GWASF-GA, and GWASF-GA wins

MOEA/D.
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TABLE 12. NSGA-Il vs MOEA/D vs GWASF-GA vs NSDE: Wilcoxon
rank-sum test to compare the hypervolume indicator.

repair I: N = 50, 100

MOEA/D GWASF-GA NSDE
NSGA-II JANWAN YANWAN VvV -
MOEA/D vV vV
GWASF-GA \AY
repair II: N = 50, 100
MOEA/D GWASF-GA NSDE
NSGA-II YANWAN AN JANWAN
MOEA/D vV vV
GWASF-GA \YAY
70 T T T
60+
bt
50+ A g
+1
E
) TR
¥ 40t e B
N i
301 —=— True POF i
mm—— Aftainment surface NSGA-II
mmEE Attainment surface NSDE
20 mmm=s Attainment surface GWASF-GA 1
Altainment surface MOEA/D
+  Feasible set
b 10"‘” 16’5 16”

£%)

FIGURE 9. NSGA-II vs MOEA/D vs GWASF-GA vs NSDE (N = 100 and
G = 100, repair 1l): 50% attainment surface.

In addition, Fig. 9 shows the 50% attainment surface over
100 independent runs of NSGA-II, NSDE, GWASF-GA and
MOEA/D. For a more complete comparison, the true Pareto
front and the feasible solution set are also shown. According
to the results shown in Table 11 and Figs. 7 and 8§, in Fig. 9 it
is observed that NSGA-II achieves the best 50% attainment
surface. However, the 50% attainment surface stagnates for
all algorithms in the Pareto front zone with low solution
density, highlighting the difficulty of the problem when it is
solved using MOEAs.
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TABLE 13. DE-NSGA-II (repair 11): mean, standard deviation (in subscript), the best and worst hypervolume indicator, over 100 independent runs, with

G =100 and (M x Gpg + N) x G evaluations.

M =20 N =80

M=30N =170

M =40 N =60

M =50N =50

Gpr =20
Gpr =30
Gpg =40
Gpg =50
Gpg =170
Gpg = 100

5.5592733 2220 —02
5.582365 - 5.368282
5.5578781.7452¢—02
5.582365 - 5.496172
5.5491702.2785¢—02
5.582365 - 5.437964
5.5433425 4314 —02
5.580535 - 5.461478
5.5404033.5937¢—02
5.582365 - 5.332845
5.5432362.5624¢—02
5.580352 - 5.438514

5.5571923 7718 —02
5.582365 - 5.428426
5.5486012.8543¢—02
5.582365 - 5.412035
5.5349723 7976e—02
5.578644 - 5.314085
5.5357312.4159¢—02
5.580352 - 5.455241
5.5314382.8599¢—02
5.578845 - 5.445423
5.5155724.6801e—02
5.577416 - 5.350312

5.5389394.0896¢—02
5.582365 - 5.338458
5.5293704.3369¢—02
5.580352 - 5.327332
5.5293704.3369¢—02
5.580352 - 5.327333
5.5164904.6994¢—02
5.579308 - 5.229564
5.5131644.6737¢—02
5.573443 - 5.339896
5.5019164.3828¢—02
5.567423 - 5.370499

5.5078931.1221e—01
5.574693 - 5.167925
5.4900757.0215e—02
5.5693347- 5.259644
5.4900757.0215¢—02
5.569335 - 5.259644
5.4913665.0352¢—02
5.567614 - 5.342674
5.4673086.1254¢—02
5.562015 - 5.253888
5.4483796.5730e—02
5.561375 - 5.218822

TABLE 14. NSGA-II (repair Il): mean, standard deviation (in subscript), the best and worst hypervolume indicator, over 100 independent runs, with

N =100 and N x G evaluations.

G =480 G =680 G =880

G =1,080 G =1,480 G =2,080

5.10761.0541e—01
5.4973 - 4.9524

5.1302¢.8246e—01

5.3327 - 4.9524 5.3152-4.9639

5.13210.8009e—01  5.14500.6805e—01

5.18050.5359¢—01
5.4398 - 4.9638

5.1703¢.6257¢—01

5.3638 - 4.9638 5.3617 - 4.9639
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FIGURE 10. DE-NSGA-II vs NSGA-II (208,000 evaluations): box plots
based on the hypervolume metric.

D. DE-NSGA-II VS NSGA-II (REPAIR II)

In this subsection, the proposed DE-NSGA-II is compared
with the NSGA-II (repair II), since this algorithm proved
to be the one that obtained the best results in the previous
subsection IV-C. In order to have an equitable compari-
son, the stopping criterion for both algorithms was defined
as the maximum number of evaluations of the objective
functions.

Table 13 presents the values of the means, standard devi-
ations (in subscript), best and worst hypervolume (HV) indi-
cator reached by DE-NSGA-II for different values of the
number of generations of DE, Gpg, and different population
sizes, N for NSGA-II and M for DE. This table shows that
the results obtained with M = 20 and N = 80 do not
differ greatly from those achieved in the rest of experiments.
In addition, the number of evaluations of the objective func-
tions, (M x Gpg + N) x G, is smaller. For this reason,
only the results of the experiments performed with M = 20
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and N = 80 have been compared with NSGA-II (repair II).
The results obtained with NSGA-II (repair II) are shown
in Table 14. It is observed that DE-NSGA-II obtains better
results in all cases.

For more detail, the results of the experiment with
208,000 objective function evaluations (M = 20, N =
80 and Gpg = 100 for DE-NSGA-II (see Table 13) and
N = 100 and G = 2, 080 for NSGA-II (see Table 14)) are
shown in Figs. 10 and 11. Fig. 10 shows that DE-NSGA-II
achieves better results than NSGA-II (repair II). Fig. 11 (left)
shows that although initially NSGA-II obtains better values
of the average hypervolume, then DE-NSGA-II improves
those values. This improvement can be explained because
DE-NSGA-II achieves, throughout the evolution of the algo-
rithm, the best average percentage of different solutions in the
population of size N (see Fig. 11 (rigth)).
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TABLE 15. DE-NSGA-1I vs NSGA-II: Wilcoxon rank-sum test to compare
the hypervolume indicator.

DE-NSGA-II vs NSGA-I.. M =20 N =80

48,000 evaluations
68,000 evaluations
88,000 evaluations
108,000 evaluations
148,000 evaluations
208,000 evaluations
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FIGURE 12. DE-NSGA-II vs NSGA-II (208,000 evaluations): 50%
attainment surface.

TABLE 16. DE-NSGA-1I vs NSGA-II: Average number of times that the
hard-to-reach extreme solution of the POF appears in 30 trials and
standard deviation (in subscript).

Evaluations  DE-NSGA-II  NSGA-II
48,000 24.475.90 0,330.61
68,000 39.205.82 0,270.45
88,000 45.435 74 0,300.60
108,000 54.175.52 0,300.65
148,000 63.374.56 0,170.38
208,000 76.004.93 0,330.67

Table 15 shows the results obtained with the Wilcoxon
rank-sum test. It can be seen that the proposed algo-
rithm DE-NSGA-II obtains better average hypervolume than
NSGA-II in all cases (A).

In Fig. 12 the 50% attainment surface obtained by the
DE-NSGA-IT and NSGA-II algorithms are shown. It is inter-
esting to remark that in the area of Pareto’s optimal front
with low density of solutions, the 50% attainment surface
obtained by DE-NSGA-II wholly dominates the attainment
surface achieved by NSGA-II.

A statistical comparison was made in which each experi-
ment, which consisted of executing each algorithm 100 times,
was performed 100 times. The results are shown in Fig. 13
and Tablel6. Specifically, Fig. 13 shows the average num-
ber of times that the hard-to-reach extreme solution of
the POF (2.700857148886513e-12, 49) was achieved in
the 100 independent runs of each experiment. For exam-
ple, for 208,000 evaluations of the objective functions,
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hard-to-reach extreme solution of the POF appears in 100 trials.
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WASF-GA and MOEA/D algorithms.

the average number of times that this solution was found with
DE-NSGA-II was 76.00 and with NSGA-II only 0.33 times.

Finally, for the problem (4), Fig. 14 shows the POFs
obtained with DE-NSGA-II, NSGA-II, WASF-GA and
MOEA/D in this work, with NSGA-II in [56] (coincide with
those obtained in this work) and with ISPAES in [58], as far
as we know all the multi-objective methods that have been
applied to this problem (4). It can be seen that DE-NSGA-II
finds the whole POF A-E, while NSGA-II finds only section
B-E, NSDE and ISPAES section C-E and WASF-GA and
MOEA/D section D-E.

V. CONCLUSION AND FUTURE WORK

This paper proposes a MH + MH framework (DE +
NSGA-II) (called DE-NSGA-II) with sequential coopera-
tion. An extensive experimental comparative study between
EAs is carried out using mono-objective and multi-objective
approaches, considering as test-bed a double reduction gear
system design problem from the literature.

A preliminary analysis of the problem (solved by enu-
meration) reveals that the zone where the optimal solution
for the mono-objective problem is found, which coincides
with one extreme zone of the Pareto optimal front for the
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multi-objective problem, is scarcely populated. This explains
why exact and metaheuristic algorithms get poor returns
when they address this problem.

Regarding the mono-objective formulation of the problem,
the results obtained when comparing the algorithms DE,
GA and APSO show that in all the experiments DE obtains
the best fitness values. Also, for the same number of fitness
function evaluations, DE obtains the best yields compared to
other metaheuristic techniques of the literature, followed by
the IAPSO algorithm.

For the multi-objective problem, a rigorous compara-
tive analysis was made between state-of-the-art algorithms
(NSGA-II, GWASF-GA, MOEA/D and NSDE) using two
quality indicators: the hypervolume metric measure and the
attainment surface concept. In addition, the algorithms pro-
grammed with binary representation were compared using
two different repair strategies for non-feasible solutions.
NSGA-II obtained the best results in all experiments per-
formed, followed by NSDE, GWASF-GA and MOEA/D,
in that order.

Finally, the DE-NSGA-II algorithm proposed in this work
was compared with NSGA-II (repair II) using the number of
evaluations of the objective functions as stop criterion in both
algorithms. Clearly, DE-NSGA-II obtained in all performed
experiments the best average hypervolume value. In addition,
in the low density zone of the POF solutions, the 50% attain-
ment surface obtained by DE-NSGA-II wholly dominates
the attainment surface achieved by NSGA-II. Also, in the
statistical comparison of the number of times that the hard-
to-reach extreme solution of the POF is found, DE-NSGA-II
yielded the best average value. In addition, DE-NSGA-II
finds the whole POF while other multi-objective metaheuris-
tic techniques only find a section of it, and this section
corresponds to the area with the highest solution density.
Therefore, our framework proposal constitutes a state-of-the-
art method for this problem.

Extending this research to other real engineering problems
with difficulties similar to those of the problem studied in this
work, as well as studying other framework designs to com-
bine multiple metaheuristics and incorporation of knowledge
of the problems in the algorithms, are lines of interest to study
in future works.
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