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ON THE SMALLEST LAPLACE EIGENVALUE FOR NATURALLY

REDUCTIVE METRICS ON COMPACT SIMPLE LIE GROUPS

EMILIO A. LAURET

Abstract. Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact
connected Lie group G, there is a positive real number C such that λ1(G, g) diam(G, g)2 ≤ C

for all left-invariant metrics g on G. In this short note, we establish the conjecture for the small
subclass of naturally reductive left-invariant metrics on a compact simple Lie group.

For an arbitrary compact homogeneous Riemannian manifold (M, g), Peter Li [Li80] proved
that

(1) λ1(M, g) ≥ π2/4

diam(M, g)2
.

Here, λ1(M, g) denotes the smallest positive eigenvalue of the Laplace–Beltrami operator on
(M, g) and diam(M, g) is the diameter of (M, g), that is, the maximum Riemannian distance be-
tween two points inM . This lower bound has been recently improved by Judge and Lyons [JL19,
Thm. 1.3].

In contrast, there is no uniform upper bound for the term λ1(M, g) diam(M, g)2 among
all compact homogeneous Riemannian manifolds. For instance, the product (Mn, gn) of n d-
dimensional round spheres of constant curvature one satisfies λ1(Mn, gn) = d and diam(Mn, gn) =√
nπ goes to infinity when n → ∞.
Eldredge, Gordina and Saloff-Coste have recently conjectured the existence of a uniform

upper bound valid on special classes of homogeneous Riemannian manifolds, namely, the space
of left-invariant metrics on a fixed compact connected Lie group.

Conjecture 1. [EGS18, (1.2)] Given G a compact connected Lie group, there exists C > 0
(depending only on G) such that

(2) λ1(M, g) ≤ C

diam(M, g)2

for all left-invariant metrics g on G.

Among many other results, they confirm its validity for SU(2) in [EGS18, Thm. 8.5]. Explicit
values of C for SU(2) and SO(3) can be found in [La19, Thm. 1.4].

The main goal of this article is to give a simple and short proof of the validity of the weaker
conjecture after restricting to naturally reductive left-invariant metrics on a compact connected
simple Lie group G (Theorem 4 below). The reader should not consider this result as a strong
evidence of Conjecture 1.

We next define naturally reductive metrics (see for instance [Be, §7.G]). Let (M, g) be a
homogeneous Riemannian manifold. We fix a base point m ∈ M and H a transitive group of
isometries of (M, g). Let K be the isotropy subgroup at m, that is, K = {a ∈ H : a ·m = m}.
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The Lie algebra h of H decomposes into a sum h = k⊕ p, where k denotes the Lie algebra of K
and p is Ad(K)-invariant. For X ∈ h, we write X = Xk +Xp according to this decomposition.
We have the identifications M ≡ H/K and TmM ≡ p, and the metric g on M corresponds to
an Ad(K)-invariant inner product 〈·, ·〉m on p.

Definition 2. A Riemannian manifold (M, g) is said to be naturally reductive if it admits a
transitive action by isometries by a Lie group H and an Ad(K)-invariant complement p as
above such that

(3) 〈[Z,X ]p, Y 〉m + 〈X, [Z, Y ]p〉m = 0

for all X, Y, Z ∈ g. (Here, [·, ·] denotes the bracket of the Lie algebra h.)

A naturally reductive space can be seen as a generalization of a symmetric space. Among
their nice geometric properties, we have that every geodesic is an orbit of an one-parameter
group of isometries. Normal homogeneous spaces are also naturally reductive. However, the
class of naturally reductive spaces is much broader and contains many other interesting cases.

We now give a simple construction of naturally reductive metrics in the case of interest of
this paper, that is, when M is a simple compact connected Lie group.

Remark 3. LetG be a semisimple compact connected Lie group. It is well known that the space
of left-invariant metrics on G is in 1-to-1 correspondence with the space of inner products on
its Lie algebra g. Let K be a closed subgroup of G and let p denote the orthogonal complement
of k in g with respect to the Killing form Bg of g. (We recall that Bg is an Ad(G)-invariant
negative definite bilinear form on g.) Given h a bi-invariant metric on K and α a positive real
number, we define the left-invariant metric gh,α on G induced by the inner product on g given
by

(4) gα,h(X, Y ) = h(Xk, Yk) + α (−Bg)(Xp, Yp) for X, Y ∈ g.

D’Atri and Ziller proved that gα,h is naturally reductive for all α, h as above (see [DZ79,
Thm. 1]). (Note that the transitive group H as in Definition 2 is G × K acting on G as
(a, b) ·x = axb−1 for a, x ∈ G, b ∈ K.) Moreover, they also proved that any naturally reductive
metric on G is isometric to one of the above form when G is assumed simple (see [DZ79,
Thm. 3]).

We are now in position to prove the main theorem.

Theorem 4. Let G be a compact connected simple Lie group. There exists C = C(G) > 0 such

that

(5) λ1(G, g) ≤ C

diam(G, g)2

for all naturally reductive metrics g on G.

Proof. Let G be a compact connected simple Lie group. We pick any naturally reductive metric
on G, that is, gα,h as in (4), for some choice of K, α, and h as in Remark 3. Since the term
λ1(M, g) diam(M, g)2 is invariant under positive scaling of g, we can assume without loosing
generality that α = 1. We abbreviate gh = gh,1. Moreover, we avoid the case when p = 0 for
being trivial since gh is necessarily a negative multiple of the Killing form Bg of g. Under this
new assumption, p 6= 0, we will not use that h is a bi-invariant metric on K. More precisely,
gh is defined as in (4) with α = 1 and h any inner product on k.

We need to introduce some notions to give an upper bound for the diameter. Recall that a
sub-Riemannian manifold is a triple (M,H, s), where M is a smooth manifold, H is a subbundle
of TM and s = (sm)m∈M denotes a family of inner product on H which smoothly vary with the
base point (see [Mo] for a general reference). A smooth curve γ on (M,H, g) is called horizontal
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if γ′(t) ∈ Hγ(t) for all t. When H satisfies the bracket-generating condition (i.e. the Lie algebra
generated by vector fields in H spans at every point the tangent space of M), also known as
Hörmander condition, the Chow–Rashevskii Theorem ensures that diam(M,H, s) < ∞ when
M is compact, that is, any two points in M can be joined by a horizontal curve on (M,H, s). It
follows immediately that, if g is a Riemannian metric on M and we define the sub-Riemannian
metric s on (M,H) given by sm = gm|Hm

for all m ∈ M , then

(6) diam(M, g) ≤ diam(M,H, s).

We consider the sub-Riemannian manifold (G,H, s) determined by

H =
⋃

a∈G
dLa(p), sa

(

dLa(X), dLa(Y )
)

= −Bg(X, Y ),(7)

for X, Y ∈ p and a ∈ G. Here, La : G → G is given by La(x) = ax and p is seen as a subspace
of TeG ≡ g. Sub-Riemannian structures on arbitrary Lie groups of this form are called left
invariant. Since s is the restriction of gh to H, (6) gives

(8) diam(G, gh) ≤ diam(G,H, s).

We next show that diam(G,H, s) < ∞. It is sufficient to show that H satisfies the bracket-
generating condition by Chow–Rashevskii Theorem. Since H is left invariant, this condition
is equivalent to show that the Lie subalgebra of g generated by p, say a, satisfies a = g. We
next prove that a is an ideal of the simple Lie algebra g, giving the required assertion. For
X = Xk + Xp ∈ g and Y ∈ a, we have that [X, Y ] = [Xk, Y ] + [Xp, Y ], so it remains to show
that [Xk, Y ] ∈ a since [Xp, Y ] ∈ a is clear. The subspace a is spanned by elements of the
form [Y1, [Y2, · · · , [Yn−1, Yn] · · · ]] with Y1, . . . , Yn ∈ p. We next show by induction on n that
[Xk, Y ] ∈ a for such element Y . The case n = 1 is clear since [Xk, Y ] = [Xk, Y1] ∈ p because
Y = Y1 ∈ p and p is ad(k)-invariant. Furthermore, the Jacobi identity implies

(9) [Xk, Y ] =
[

[Xk, Y1], [Y2, · · · , [Yn−1, Yn] · · · ]
]

+
[

Y1, [Xk, [Y2, · · · , [Yn−1, Yn] · · · ]]
]

,

thus the inductive step also follows. This concludes the proof of a = g and its consequence
diam(G,H, s) < ∞.

We now consider the Riemannian submersion with totally geodesic fibers given by

(10) (K, h) −→ (G, gh)
π−→ (G/K,−Bg|p),

which is a particular case of the general construction in [BB82, §2.2] and [Be, Thm. 9.80]. The
spectral theory of Riemannian submersions with totally geodesic fibers has been intensively
studied; see for instance [GLP]. It is well known that if f is an eigenfunction of the Laplace–
Beltrami operator ∆b of the base space (G/K,−Bg|p) with corresponding eigenvalue λ, then
f ◦ π is an eigenfunction of the Laplace–Beltrami operator ∆gh of (G, gh) with corresponding
eigenvalue λ. Consequently, the smallest positive eigenvalue of ∆b is an upper bound for the
smallest positive eigenvalue of ∆gh, that is

(11) λ1(G, gh) ≤ λ1(G/K,−Bg|p).
We have shown that λ1(G, gh) diam(G, gh)

2 ≤ λ1(G/K,−Bg|p) diam(G,H, s)2 for every left-
invariant metric h on k, when p 6= 0. Note that the right hand side depends on K and p, but
not on h. We conclude the proof by a finiteness argument on the choice of K and p.

There is a finite collection K of closed subgroups of G such that, for any naturally reductive
left-invariant metric g on G, there are K ∈ K, α > 0, and h a bi-invariant metric on k such
that (G, g) is isometric to (G, gh,α) as in Remark 3 (see [GS10, Cor. 3.7]). Hence, by taking

(12) C = max
K∈Kr{G}

{

λ1(G/K,−Bg|p) diam(G, p,−Bg|p)2, λ1(G,−Bg) diam(G,−Bg)
2
}

,

we conclude that (13) holds for all naturally reductive left-invariant metrics on G. �
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Inside the proof, for a fixed closed subgroup K of G with dimK < dimG (i.e. p 6= 0), it was
not used that h is a bi-invariant inner product on k. Thus, it was also proven the following
statement.

Theorem 5. Let G be a compact connected simple Lie group, let K be a closed subgroup of

G of dimension strictly less than dimG, and let p denote the orthogonal complement of k in g

with respect to the Killing form Bg of g. There exists C = C(G,K) > 0 such that

(13) λ1(G, g) ≤ C

diam(G, g)2

for every left-invariant metric g on G satisfying that g(k, p) = 0 and g|p is a negative multiple

of Bg|g.
Theorem 4 applied to the well-known situation G = SU(2) returns that (2) is valid for a

codimension one subspace of the space of left-invariant metrics up to isometry, as shown in
the next example. For higher-dimensional compact connected simple Lie groups, the analogous
codimension increases considerably.

Example 6. We consider G = SU(2), which is diffeomorphic to the 3-sphere S3. The elements

X1 =

(

i 0
0 −i

)

, X2 =

(

0 1
−1 0

)

, X3 =

(

0 i
i 0

)

,(14)

form a basis of the Lie algebra su(2). For positive real numbers a1, a2, a3, let g(a1,a2,a3) denote the
left-invariant metric on SU(2) induced by the inner product on su(2) given by g(a1,a2,a3)(Xi, Xj) =
a2i δi,j. Note that g(1,1,1) is a negative multiple of Bsu(2). Although the dimension of the space of
inner products on su(2) is 6, Milnor [Mi76] proved that every left-invariant metric on SU(2) is
isometric to g(a1,a2,a3) for some a1, a2, a3 > 0. (Permutations of (a1, a2, a3) do note change the
isometry class of g(a1,a2,a3); see e.g. [EGS18, Lem. 2.8].)

The only proper closed connected subgroup of G up to conjugation is the torus

(15) T :=

{(

eiθ

e−iθ

)

: θ ∈ R

}

.

Up to homotheties, there is only one bi-invariant metric on T . Since the Lie algebra of T is
t := Span

R
{X1}, D’Atri and Ziller’s Theorem mentioned in Remark 3 ([DZ79, Thm. 3]) ensures

that every naturally reductive left-invariant metric on SU(2) is isometric to

(16) gα,β := β g(1,1,1)|t ⊕ α g(1,1,1)|p = g(
√
β,
√
α,
√
α)

for some α, β > 0, where p = Span
R
{X2, X3}. These metrics are precisely the 3-dimensional

Berger spheres.
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References

[BB82] L. Bérard-Bergery, J.-P. Bourguignon. Laplacians and Riemannian submersions with totally

geodesic fibres. Illinois J. Math. 26:2 (1982), 181–200.
[Be] A. Besse. Einstein manifolds. Class. Math. Springer, Berlin, 2008.
[DZ79] J.E. D’Atri, W. Ziller. Naturally reductive metrics and Einstein metrics on compact Lie groups.

Mem. Amer. Math. Soc. 18:215, 1979.
[EGS18] N. Eldredge, M. Gordina, L. Saloff-Coste. Left-invariant geometries on SU(2) are uniformly

doubling. Geom. Funct. Anal. 28:5 (2018), 1321–1367. DOI: 10.1007/s00039-018-0457-8.
[GLP] P.B. Gilkey, J.V. Leahy, J. Park. Spectral geometry, Riemannian submersions, and the Gromov-

Lawson conjecture. Stud. Adv. Math., Chapman & Hall/CRC, Boca Raton FL, 1999.

http://dx.doi.org/10.1007/s00039-018-0457-8


ON THE SMALLEST LAPLACE EIGENVALUE 5

[GS10] C. Gordon, C. Sutton. Spectral isolation of naturally reductive metrics on simple Lie groups. Math.
Z. 266:4 (2010), 979–995. DOI: 10.1007/s00209-009-0640-6.

[JL19] C. Judge, R. Lyons. Upper bounds for the spectral function on homogeneous spaces via volume

growth. Rev. Mat. Iberoam. 35:6, (2019), 1835–1858. DOI: 10.4171/rmi/1103.
[La19] E.A. Lauret. The smallest Laplace eigenvalue of homogeneous 3-spheres. Bull. Lond. Math. Soc.

51:1, (2019), 49–69. DOI: 10.1112/blms.12213.
[Li80] P. Li. Eigenvalue estimates on homogeneous manifolds. Comment. Math. Helvetici 55 (1980), 347–363.

DOI: 10.1007/BF02566692.
[Mi76] J. Milnor. Curvatures of left invariant metrics on lie groups. Adv. Math. 21:3 (1976), 293–329. DOI:

10.1016/S0001-8708(76)80002-3.
[Mo] R. Montgomery. A tour of subriemannian geometries, their geodesics and applications. Math. Sur-

veys Monogr 91. Amer. Math. Soc., Providence, 2002.
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