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Abstract The adequate management of scientific work-
flow applications strongly depends on the availability of
accurate performance models of sub-tasks. Numerous
approaches use machine learning to generate such models
autonomously, thus alleviating the human effort associated
to this process. However, these standalone models may lack
robustness, leading to a decay on the quality of information
provided to workflow systems on top. This paper presents
a novel approach for learning ensemble prediction models
of tasks runtime. The ensemble-learning method entitled
bootstrap aggregating (bagging) is used to produce robust
ensembles of M5SP regression trees of better predictive per-
formance than could be achieved by standalone models. Our
approach has been tested on gene expression analysis work-
flows. The results show that the ensemble method leads to
significant prediction-error reductions when compared with
learned standalone models. This is the first initiative using
ensemble learning for generating performance prediction
models. These promising results encourage further research
in this direction.
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1 Introduction

Workflow technology is intended to ease the development
of applications by combining reusable software components
permitting the development of large-scale applications by
people with low or even null experience in programming
languages. For this reason, workflow technology has been
widely accepted in many scientific areas [20].

Scientific workflows usually describe large-scale data-
intensive applications, whose execution is delegated to
Workflow Management Systems (WMSs). This aspect is very
important because users can take advantage of a huge com-
puting power (i.e. clusters, grids or clouds) while abstracted
from the particularities of the underlying infrastructure.

For managing the applications efficiently, WMSs rely on
runtime estimates of tasks. This information is the basis for
several processes like for example: task scheduling, fulfill-
ment of quality of service (QoS) requirements, auto-scaling
cloud infrastructures among others [3,5,11].

Most of the prediction methods used by WMSs were
crafted for characterizing parallel applications [17]. Although
such techniques provide accurate predictions, they require
the supervision of an expert for constructing and tuning the
prediction models. Such requirements invalidate one of the
main advantages of workflow technology: simplicity for the
user.

To cope with such limitation many authors applied
machine-learning methods to generate runtime prediction
models (semi-)automatically from historical data of previous
task executions. The methods used focus on the construction
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of a single model which may present a lack on robust-
ness. Unlike these, ensemble-learning methods are capable
of achieving a higher performance than standalone models
due to the combination of multiple models for obtaining the
predictions [13].

Following this line of thought, we have proposed a novel
method for the autonomous generation of combined runtime
prediction models derived using ensemble-learning methods.
The final objective of our approach is the minimization of
the human effort when generating the models without trad-
ing off the accuracy of predictions. This paper extends the
ideas exposed in previous work [15] by providing an new
experimental setting and deepening the analysis of results by
applying adequate statistical tests.

The rest of this paper is organized as follows. In Sect. 2
we provide a review of application performance prediction
strategies based on machine-learning methods. Section 3
presents our approach for learning runtime prediction mod-
els and also explains several machine-learning methods used
in related work and a well known ensemble-learning method
used for validating our approach. Section 4 describes a set
of bioinformatics workflows and the experimental settings
of this study. Section 5 presents and discusses the results
obtained. Finally, conclusions and future work are given in
Sect. 6.

2 Related work

The prediction of applications’ performance has been stud-
ied since the genesis of parallel and distributed comput-
ing [2,17] due to its importance on the management of
applications. Many of these techniques involve tedious tasks
such as the construction of models by hand, benchmarking
resources, profiling applications, etc. Among all the proposed
techniques, machine-learning methods permit the deriva-
tion of models based on historical data (examples) in an
automatic fashion. These methods represent an important
advantage for workflow applications running on grids or
clouds because models can be refined learning from new
examples over time without requiring intervention of the
user.

Prophesy [21] is a system for predicting the performance
of applications in parallel and grid environments using his-
torical data. Among the prediction strategies in Prophesy,
(polynomial) curve fitting is used for constructing the mod-
els in an automated fashion. However, the authors state that
the method is not suitable for scenarios with different system
configurations.

Some of these strategies address the prediction issue using
the k-Nearest Neighbors strategy [9, 14]. Predictions are per-
formed by first looking execution examples with similar
features (e.g. examples with similar task parameters, proces-
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sor speed, etc.) to the prediction query. Then, the execution
times corresponding to the selected examples are averaged
and returned as the prediction.

Authors like Ould-Ahmed-Vall et al. [16] used regression
trees for modeling the performance of compute-intensive
tasks and compared them with the performance of Artifi-
cial Neural Networks and Support Vector Regression. The
authors used data obtained from a suite of benchmarks.
Results reported by the authors correspond to a double-
processor machine.

These techniques use statistical or machine-learning
methods to estimate the performance of tasks on distrib-
uted computing environments. The techniques have been
developed having in mind compute-intensive applications
disregarding important information sources such the size or
the structure of data, to say nothing of data provenance [4]
(i.e. the origin and transformations suffered by the data
during the execution of an application). In the context of
scientific workflows, where data is becoming a first-class
citizen [7,12], this information is fundamental for achieving
accurate performance predictions.

A second aspect to remark is that these strategies rely on
the use of a standalone model for performing the predic-
tions. It is known that combining multiple models usually
permits achieving a higher performance than using a unique
model [13].

As the main contribution, this paper proposes a novel
method for minimizing the intervention of a human expert
to model the performance of tasks in the context of scien-
tific workflows. The proposed approach relies on ensemble
machine learning methods for generating models in a auto-
matic fashion. Several sources of information like task
parameters, hardware information, data characteristics and
provenance information, are incorporated to maximize the
accuracy of the models.

3 Learning performance models

This section describes a generic strategy for the autonomous
generation of performance models (AGPM) for the pre-
diction of workflow task runtime. Unlike other strategies,
AGPM relies only on information accessible from the under-
lying workflow management system or from the definition
of the application itself.

AGPM considers tasks as black boxes, which permits the
modeling of software components whose code is unavailable
or inaccessible. The user only needs to define the meta-data
of tasks that might be important for modeling their perfor-
mance. In this way, the process of performance modeling is
focused on the parameters and data that affect the perfor-
mance (user’s empirical knowledge) and not in the particular
process implemented by the tasks.
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AGPM relies on machine-learning methods to model
task’s running time using information of workflow tasks para-
meters, data and dependencies as well as resource benchmark
metrics. These methods permit the construction of the mod-
els and their readjustment as new performance data becomes
available. In this manner, the required human effort to main-
tain the models is greatly reduced while keeping a high
predictive accuracy. AGPM uses ensemble machine learn-
ing methods to construct a meta-model comprising multiple
sub-models to achieve higher quality predictions.

3.1 AGPM learning process

AGPM drives a continuous learning process that comprises
4 stages: (i) execution of workflow tasks, (ii) performance
data gathering, (iii) model learning, and (iv) tasks runtime
prediction. These stages and their relationships are shown in
Fig. 1.

These stages are repeated continuously throughout the
execution of several applications. Each one of these cycles
permits the adaptation of the models to new (unseen) exe-
cution examples improving the predictive accuracy of the
models over time. The important aspect to note is that
this adaptive learning process improves the accuracy of
the prediction models without requiring human interven-
tion more than the initial setup of the performance data to
collect.

Stage 1: Workflow tasks execution This stage involves the
execution and monitoring of tasks as well as the generation
of the corresponding execution logs, which are later used in
the following stages. This stage is carried out entirely by the
WMS.

Stage 2: Performance-data gathering Consists in the har-
vesting of the necessary information for the further learn-
ing/refinement of the performance models. Execution logs
are used to extract valuable information of tasks performance
such as the parameters and the data used, provenance infor-
mation and the characteristics of the resources where the
tasks were executed. AGPM compiles all the information
that can be gathered from the running workflow management

run-time predictions
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Fig. 1 Learning process carried out by AGPM

system. The collected data is stored in separate datasets for
each type of runnable task. Section 3.2 discusses in detail the
representation of such performance data.

Stage 3: Model learning At this point of the process, the
databases contain updated information of the last task exe-
cution. AGPM then learns a new model for each type of
task following a two-step procedure consisting of (i) data
pre-processing, and (ii) ensemble model learning. AGPM
pre-processes the databases in order to prepare the data for
the ensemble learning strategy. As a second step, multiple
models are learned from the data and combined in order to
perform future runtime predictions. Section 3.3 provides a
deeper insight on the described process which is the central
contribution of this paper.

Stage 4: Tasks runtime prediction Consists in the generation
of runtime estimates for tasks using the models constructed
on the previous stage. Runtime estimates are obtained consid-
ering the inputs of workflow tasks (i.e. parameters and data)
and the characteristics of the resources which will eventually
execute such tasks.

3.2 Performance-data representation

Performance data is stored separately for each type of task.
The performance dataset for a task can be formally defined
asaset D = {x@, yO}i=l ‘where x¥) represents a column
vector of features for the ith recorded execution example of
a task, y(®) is the measured runtime for such execution (also
known as farget), and m is the total number of examples in
the database.

Each feature vector x = [x1,X2,...,Xxn]" comprises
three types of elements: (i) task features, which represent
the inputs of the task, e.g. parameter values, data size, etc.;
(i1) provenance features, describe previous processes that
generated or modified the input data; and (iii) resource fea-
tures, which model characteristics of the resource used on
the execution of the task.

Task features This information includes the values of input
parameters and characteristics of the data such as size, num-
ber of lines, registers or columns, etc.

Provenance features This type of features capture informa-
tion of the data origin and the transformations produced by
other tasks during the execution of the workflow. Such infor-
mation can be easily extracted from the description of the
workflow.

Resource features This kind of features describe the comput-
ing resources used in the tasks execution. These features can
be obtained from the WMS. Such information is mainly pro-
vided by resource benchmarks. In general, WMSs provide
such metrics and update them regularly.

@ Springer



Cluster Comput

3.3 Learning prediction models

Machine-learning methods are the core of our approach. This
section briefly describes some of the traditional machine-
learning techniques used in the state of the art to produce
(standalone) prediction models. This section also discusses
an ensemble-learning method entitled bootstrap aggregat-
ing (or simply bagging) used as mean to validate the
hypothesis of this paper.

3.3.1 Preprocessing

Before constructing the models, the available performance
datais normalized to avoid the dominance of some features of
higher orders of magnitude in the construction of the models.
To such end, each feature x; is transformed into a new feature
X; computed as X; = %, where u and o are the mean and
the standard deviation of all the values for the feature x;.

3.3.2 Standalone models

Our implementation of AGPM includes some well estab-
lished machine-learning strategies used in previous work on
performance prediction. The following paragraphs describe
the essential concepts underlying such strategies.

Artificial neural networks (ANNs) These models emulate the
operation of biological neural networks [24]. We specifically
consider the feed-forward networks, which comprise a set of
neurons (units) arranged in multiple layers. Units in one layer
are connected only to units in the following layer. The last
layer contains only one neuron whose output predicts the
target value y. Networks used in this study comprise one
hidden layer with n/2 hidden units, where n is the number of
features in the input vector. The parameters of the network
are a matrix @) e R#+Dx/2) and a column vector @@ e
R™/? that model the interactions between the units in different
layers. Figure 2 shows an example neural network.

The activation (outputs) of the hidden units are computed
asa = o (x-OW), where X is an input vector x extended with
afirst component xg = 1 (biasunit),ando (z) = 1/(1+e7%),

e
i=nj=n/2 output layer

hidden layer

input layer

Fig. 2 Artificial neural network example. The network comprises one
hidden layer and a single output unit y that provides the runtime pre-
diction
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which is the sigmoid function. Activation of the hidden units
are forward propagated to the next layer to produce the pre-
dicted value of the running time y = a - ®®, where a is
the activation vector a of the hidden layer extended with
a bias unit ¢y = 1. Learning the model consists of learn-
ing the weights in the network, i.e. the values of @) and
©®@. The back-propagation [24] algorithm is used to this
end.

k-Nearest neighbors (k-NN) In this strategy, training exam-
ples are stored verbatim. A distance function is used to
determine those k examples of the training set that are clos-
est (i.e., most similar) to an unknown test example [1]. The
output of the method is the average of the target values (i.e.
runtimes) corresponding to such k nearest examples. In this
study we use the Euclidean distance, which is possible since
all of our features are numeric. The distance between two

examples x(1 and x® with components x{l), xél), cee, x,(,l)

) @ 2) . 1 2
andxl( ),xé ),...,x,(l ) is: Z'l'(xi( ) —xl(. ))2.

Support vector regression (SVR) SVR [19] is an adaptation of
the Support Vector Machines (SVM) classification strategy to
deal with the prediction of numeric classes. Produced models
can be expressed in terms of a few support vectors that best
describe a prediction surface. The SVR model has the form
f&x) = D icsy o; K(x®, x) + b, where SV is the set of
support vectors and K (x| x) is a kernel function that maps
an example into a feature space of higher dimensions. ¢; and
b are model parameters determined by solving the following
optimization problem:

!
17
min — +C +&F
Lmin_ya'a ;@, &0
st y—fi) =e+§

fa)—y <e+§

&, ";‘_i* > 0,

where C is the model complexity parameter which penal-

izes the loss of training errors, & and & are slack variables
that specify upper and lower bound training errors subject

K3 +&

O Example
® Support vector

Fig. 3 SVR example. Left figure a represents the prediction function
f(x) and the right figure b represents the optimization function
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to an error tolerance ¢. To model non-linear functions of the
running time we use a radial basis function (RBF) kernel:

. , . 12
k(x(’>,x(])) = exp (—J/ Hx(l) _ x(])” ) (D)

with y = 0.01. The values parameters of SVR were set to
C =1 and ¢ = 0.001. Figure 3 presents an example of the
SVR optimization procedure.

MOS5P regression trees The M5 Prime (MS5P) is an algo-
rithm that permits the induction of decision trees whose
leaves are associated to regression models [22]. M5P trees
are a combination of decision trees and linear models in
the tree leaves. The model is generated in three phases as
follows.

First, a decision-tree is induced using the M5 algo-
rithm [18]. The tree is constructed using a splitting criterion
that minimizes the intra-subset variation in the output val-
ues down each branch. Given a node, the subset is divided
by selecting the feature that maximizes the standard devi-
ation reduction (SDR), which is computed as: SDR =
o(D)—->; % x o (D;), where o (+) is the standard devia-
tion, D is the set of examples that reach the node and the D;
are the sets that result from splitting the node on the selected
feature. The procedure continues until the variation of the
output values in a node is small or the number of examples is
small.

Second, linear regression is used on each node to gener-
ate a model (regression hyperplane) considering only those
features tested in the sub-tree below. The tree is pruned start-
ing from the leaf nodes until the expected estimated error
decreases [22].

Finally, a smoothing function is applied to avoid sharp dis-
continuities between the hyperplanes. The procedure starts
from the leaf node to the root node smoothing the predicted
value along the path. The smoothing of a prediction is made
as p = %, where p is the prediction passed from the
node below, ¢ is the prediction for the model associated to
this node, n is the number of instances that reach the node
below and k is a constant usually equal to 15. An example of
MS5P regression tree is given in Fig. 4.

% prediction
N

hyperplanes

Fig. 4 Example of an M5SP regression tree

predictions —| Average —Fprediction

base models
(M5P trees)

sub-samples

Fig. 5 Bagging process. The n sub-samples (D; ) are used to construct
the base models (M;), which are M5P regression trees. Outputs of the
base models are averaged to produce the performance prediction

3.3.3 Learning ensemble models

One of the main advantages of ensemble-learning meth-
ods is that they often produce predictions of better quality
than those obtained by standalone models. For generat-
ing the models we use the bootstrap aggregating (bagging)
technique [13]. This technique reduces the variance of the
learning process as the expected error is derived from multi-
ple training sets sub-sampled from the original set.

The bagging technique works as follows. For a given train-
ing dataset D, n new training datasets (D;) of size m’ are
obtained by sampling the set D randomly with replacement.
This means that, for generating each of the D; sub-samples,
some examples are removed and some of them are repeated.
Each of the n samples are used to learn n different (base)
models. The outputs of the n models are combined by aver-
aging their predictions.

In this paper, the base models are learned using the M5P
method discussed on Sect. 4. The selection of this method for
learning the base model lies on that standalone M5P regres-
sion trees tend to have higher variance than the remaining
methods. Therefore, bagging of M5P trees can produce an
ensemble model with lower variance than the standalone trees
and thus improve their performance. The entire process is
illustrated in Fig. 5.

4 Experiments

To analyze the performance of the ensemble method we eval-
uated the predictive accuracy of standalone models generated
using the reviewed methods and ensemble models learned
with the bagging strategy.

4.1 Gene expression analysis workflows

For the purposes of this work we evaluated our approach
on bioinformatics data-mining workflows, which perform
a large-scale gene expression analysis experiment (GEAE).
The goal of the experiment is to evaluate a novel classification

@ Springer
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GEAE fold iof 10 Folds

Training
Dataset Fold

Testing
Dataset Fold

Random Ranker SVM-RFE Ranker

n randomly
selected
features

n best
features

classifier's
predictive accuracy

B Results-gathering

Database

classifier's
predictive accuracy

Fig. 6 GEAE workflows. One of the fold for a GEAE experiment oper-
ating on a given dataset. Each fold involves the execution of a Random
ranker task, an SVM-RFE ranker tasks and two GELF tasks giving rise
to 2 sub-experiments: a «<Random, GELF», and b «<SVM-RFE, GELF».
For each dataset 10 folds are generated

algorithm (GELF) [8] on their respective ability to classify
unseen gene expression samples!.

The experiment comprises the execution of several work-
flows. Each of them processes one of 20 micro-array datasets
used for the experiment using a tenfold cross-validation
scheme. Figure 6 represents one fold of a GEAE workflow.

As can be seen from the figure each fold involves the exe-
cution of 3 types of tasks. Two of them are ranker tasks that
perform a selection of genes in order to reduce the num-
ber of features for training the classifier. The first one uses
recursive feature elimination using support vector machines
(called SVM-RFE ranker), and the second one returns a ran-
dom order of features (Random ranker). These ranker tasks
precede the execution of the third type of tasks that consist
on learning and evaluating the performance of the (GELF)
classifier. GELF is a feature construction algorithm based on
iterative improvement of the best solution obtained by the
state-of-the-art approach [8].

Each workflow comprises 20 sub-experiments: both com-
binations of the GELF task with the rankers (Random and
SVM-RFE) applied on the 10 dataset folds. As can be seen
each workflow application consists of 40 tasks (i.e. 10 Ran-
dom ranker executions, 10 SVM-RFE ranker executions and
20 GELF executions).

! This task of classification learning should not be confused with the
learning task of runtime prediction.
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Table 1 Computing infrastructure description

Characteristics Resource type

Twister Reloaded Opteron
Proc. vendor Intel Intel AMD
Proc. model Core2 Duo P4 HT Opteron 242
Frequency 3.0 GHz 3.0 GHz 1.6 GHz
Memory 4GB 1 GB 2 GB
JavaMFlops 962.23 281.05 400.76
KFlops 17.54E5 4.99E5 6.63E5
MIPS 4983.80 1465.42 2057.00
Quantity 10 12 4

4.2 Performance datasets

To collect the performance data, we measured the runtime of
multiple instances of GELF tasks using 20 different micro-
array datasets the 26 different computing resources described
in Table 1. The infrastructure runs HTCondor? version 7.4.1
for administrating the tasks. JavaMFlops, KFlops and MIPS
are the performance metrics for the resources provided by
the SciMark2.,? Linpack* and Dhrystone [23] benchmarks
respectively

For testing the applicability of our approach we evaluated
the performance of the GEAE workflows using homoge-
neous (solely twister-type resources) and heterogeneous (all
the resources) infrastructures. The execution of workflows
was carried multiple times on each type of infrastructure to
obtain the necessary data for learning the models. Execution
logs generated were used to feed the performance databases
for each type of task. Table 2 presents the features used for
each execution example for the ranker tasks (Random and
SVM-RFE) and the GELF tasks comprised in the GEAE
workflows.

4.3 Preliminary analysis of tasks

For an initial characterization of tasks we present some sta-
tistic measures of tasks’ runtime considering the execution
examples in the performance datasets. Table 3 summa-
rizes these measures considering mean and average runtime
values, dispersion (standard deviation, minimum and max-
imum values) and shape of the distribution (skewness and
kurtosis).

The following list describes the main observations derived
from the analysis of the mentioned measures:

2 HTCondor. http://research.cs.wisc.edu/htcondor/.
3 SciMark2 benchmark. http://math.nist.gov/scimark2.
4 Linpack benchmark. http://www.netlib.org/linpack.
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Table2 Features in the performance datasets for GEAE workflow tasks

Feature Description

dataset-id {1,2,...,20}

predecessor” {Random, SVM-RFE}
tr-size Size in bytes of the training set
tr-rows No. of rows in the training set

tr-columns No. of columns in the training set

tt-size* Size in bytes of the training set
tt-rows* No. of rows in the testing set
tt-columns* No. of columns in the testing set

java-mflops SciMark2 benchmark results

kflops Linpack benchmark results
mips Dhrystone benchmark results
runtime Measured runtime

These are grouped (by single lines) into provenance, task and resource
features. The last feature is the target variable (running time)
* Features that pertain only to GELF

Table 3 Tasks characterization according to various statistic measures
including mean and median values, dispersion and shape of the distri-
bution

Measures Task

Random SVM-RFE GELF
Mean 12.70 29.20 3842.87
Median 11 26 3204
SD 7.06 16.79 2463.38
Min 4 9 907
Max 55 109 17889
Skewness 1.19 1.21 1.62
Kurtosis 1.75 1.67 3.31

1. Mean and median values indicate that GELF tasks have
a considerable longer runtimes (in the order of 1 hour)
than the the two ranker tasks (around 30 seconds).

2. Standard deviation and extreme values (min and max)
indicate a high variability of tasks’ runtime. This obser-
vation is specially notorious in the case of GELF, which
presents very large maximum values (up to 5 hours of
computation).

3. Skewness values (major than 1) indicate that the distrib-
utions are very right-skewed. This means that the three
distributions are very asymmetric, with many of the exe-
cution examples concentrated on left of the mean and
with extreme values to the right.

4. Kurtosis values (larger than 0) indicate that the distrib-
utions have very sharp peaks with values concentrated
around the mean and thicker tails. Large kurtosis values
mean high probability for extreme values.

(a) Random ranker
Execution time (bin) [s]
Resource type
M Opteron
¥ Reloaded
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Fig. 7 Runtime histograms for the three analyzed tasks. Bars dis-
criminate by colors the three types of resource used to generate the
performance datasets
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To complete this analysis, Fig. 7 presents runtime his-
tograms for the three tasks differentiating by resource type.
As said before it can be seen that the distributions are
very right-skewed, having a large concentration of exam-
ples around the mean value and extreme values to the right.
As we will see on Sect. 5.2, the skewness of these distribu-
tions will be reflected on the types of errors incurred by the
models.

4.4 Experimental settings

GEAE workflows were executed several times to gen-
erate the required performance data to learn the mod-
els. For each task we obtained two datasets compris-
ing 4000 execution examples each one. The first one,
called homogeneous, contains running instances where only
resources Twister type (see Table 1) were used. The sec-
ond dataset, called heterogeneous, contains running instances
corresponding to the use of all resource types. Table 2

@ Springer
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Table 4 Parameters used for the learning methods

Method Parameter/function Value
k-NN k: number of neighbors 3

Distance function Euclidean
MS5P Min. no. of instances per leaf 4

Pruned Yes

Smoothed Yes
ANN Number of hidden layers n/2

Hidden units type Sigmoid

a: learning rate 0.3

m: momentum 0.2

Number of training epochs 500
SVR Kernel function K (x¥, x()) RBF

y: RBF’s parameter, Eq. (1) 0.01

C: model complexity 1

&: error tolerance 0.001
Bagging bootstrap size 28007

n: number of base models 10

Base learner Ms5P

2800 is the total number of examples in the training set

describes the features used to describe the task execution
examples.

With these six datasets we trained models using all the
learning methods discussed previously. From these datasets,
70 % of the (4000) original instances were used for training
and the remaining 30 % for validation. For each dataset, this
process was repeated 30 times using random sub-sampling
without replacement to obtain 30 different pairs of training
and validation sets.’

The implementations of all the methods used are provided
by the Weka library [6] version 3.6.8. Table 4 provides a
summary of the parameters used by the machine learning
methods. These parameters except for k in k-NN are the
default values in Weka. It is worth pointing out that it was
deliberately decided to use the default parametrization for
all the methods in order to resemble use cases of a user with
no experience on machine learning or performance predic-
tion.

For measuring the performance of each model we use
the Relative Absolute Error (RAE), which is computed as
"T’V: ]y‘li-'-:l\i Z:;’l"l - 100 %, where p; and y; rep-
resent the predicted and actual values respectively for the i ™
example. y represents the mean value of the actual values and
m is the number of testing examples. This metric measures
the deviation of predictions with respect to the actual values.

error =

> This sub-sampling process should not be confused with the sub-
sampling carried out in bagging.
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S Results and analysis

Section 5.1 compares the performance of the discussed learn-
ing methods. A detailed analysis of predictions performed by
the bagging strategy is presented further in Sect. 5.2.

5.1 Comparison of learning methods

Table 5 presents the prediction errors of each strategy for the
homogeneous and heterogeneous environments. Highlighted
values represent the minimum errors for each combination
of task type and environment (scenario).

It can be seen that bagging is the best performing method
considering all the scenarios. The best bagging results are
evidenced for the GELF task, which presents median errors
of 28.7 and 22.1 % for the homogeneous and heterogeneous
environments respectively.

The highest errors are evidenced in the prediction of
runtime for the Random ranker over the homogeneous envi-
ronment which goes up to 46.4 %. The reason behind this
observation is twofold. In the first place, the duration of the
task does not depend on the size of the input data, which
makes it difficult to characterize its performance. In the sec-
ond place, Random ranker tasks running on resources of
the homogeneous environment present a very short duration
(median of 7 ms). This fact makes difficult the proper mea-
suring of the runtime.

Another aspect to note is that in general, all the methods
present a low dispersion on their performance, except for
ANN which presents much higher deviations. These results
can be mainly explained on the selection of parameters for
ANN. The variability can be reduced by setting a higher
number of training epochs. But, as said before, we decided
to keep the default values assuming a setting by an inexperi-
enced user.

It is worth pointing out that these results have been
obtained using only benchmark information of the resources.
It is expected that incorporating benchmark information of
memory or disks will improve the quality of predictions. A
second aspect ignored in this study is the effect of CPU load
while executing the applications. In this work the CPU load
was not measured.

Table 6 presents the error reductions in percentage points
of the ensemble method in comparison with the best com-
petitor strategy (indicated in Versus column). The d col-
umn represents the difference of median errors as d =
mediancomperiror —Mmedianyqgging in percent points. To deter-
mine if our results are statistically significant we used the
Mann—Whitney U test [10] with a confidence level of o« =
0.05. This is a non-parametric test whose null hypothesis is
that two populations are the same. In our case the significance
of results can be asserted when the p value (the probability of
obtaining the observed results if the null hypothesis is true) is
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Table 5 Relative absolute errors for the homogeneous and heterogeneous environments

Task Strategy Prediction erro—homogeneous env. (%) Prediction erro—heterogeneous env. (%)
Mean Median Min Max SD Mean Median Min Max SD
Random k-NN 47.96 48.13 44.23 51.31 1.72 20.96 20.95 19.23 22.62 1.07
MS5P 46.88 47.05 43.75 50.11 1.26 22.05 21.98 20.68 24.53 1.03
ANN 55.83 52.42 45.40 102.42 11.89 29.28 25.36 19.86 54.39 10.09
SVR 49.58 49.77 46.37 51.53 1.21 34.70 34.73 32.16 38.00 1.45
Bagging 46.63 46.41 43.92 53.72 1.86 19.96 19.94 18.08 21.63 0.86
SVM-RFE k-NN 28.08 28.01 25.77 30.66 1.12 11.08 11.11 10.11 12.48 0.53
MS5P 27.62 27.70 25.46 30.02 0.95 15.44 15.68 13.11 17.41 0.97
ANN 37.48 34.24 27.04 74.97 11.24 18.50 16.26 12.52 55.45 8.07
SVR 31.11 30.97 29.22 32.89 1.01 27.63 27.59 24.92 29.78 1.17
Bagging 26.54 26.68 24.80 28.26 0.95 10.31 10.33 9.46 11.23 0.50
GELF k-NN 44.55 44.44 42.49 46.87 1.12 31.24 31.49 28.91 33.22 1.14
MS5P 43.32 43.50 40.77 45.15 1.07 30.70 30.78 28.47 32.62 0.98
ANN 57.21 54.18 46.59 83.49 10.38 38.19 35.97 30.74 65.44 6.64
SVR 52.34 52.51 49.82 55.91 1.40 39.54 39.55 37.61 41.98 1.17
Bagging 28.85 28.72 27.13 31.36 1.16 22.36 22.06 20.57 3148 1.86

Smallest errors are highlighted in bold

Table 6 Error reductions of the ensemble method in comparison with
the best competitor strategy (versus column), the difference of median
errors (d column) and the significance of results according to the Man-
n—Whitney U test

Env. Task Versus d P

Homog. Random MS5P 0.6 0.13
SVM-RFE M5P 1.0 121 x 1074
GELF M5P 14.8 2.87 x 10~ 1

Heterog. Random MS5P 1.0 334x107°
SVM-RFE k-NN 0.8 223 x10°°
GELF M5P 8.7 273 x 10710

less than &, i.e. when we discard the null hypothesis. The table
also presents the p values in the last column. Those p values
smaller than « are highlighted with bold font indicating the
scenarios where bagging improvements are significant.

The table shows that error reductions are significant for
5 of the 6 studied scenarios (all except Random ranker task
in the homogeneous environment). Results evidence that for
the ranker tasks (in the heterogeneous environment) the error
reductions are around 1 percentage point. For the GELF task
we can observe higher error reductions of 8.7 percentage
points in the heterogeneous environment and 14.8 percentage
points in the homogeneous one.

5.2 Analysis of ensemble predictions

This section provides an analysis of the predictions per-
formed by the bagging strategy. Figure 8 presents the

predictions performed by the models learned for combination
task-environment. Each sub-figure shows the actual runtimes
of the tasks versus the values predicted by the ensemble
method. Lines in the graphs work as a reference for com-
parison. They represent the performance of an hypothetical
perfect predictor.

From the figure it can be seen that in the case of the het-
erogeneous environment, the points seem to be closer to the
reference line. This indicates that the models achieved lower
errors in the heterogeneous environment than in the homo-
geneous one.

An interesting pattern appears by comparing the predic-
tions for the Random task on both type of environments.
The arrangement of points for such task in the homoge-
neous environment (Fig. 8a) presents a similar shape to the
subset of points in the bottom-left of Fig. 8b, which corre-
sponds to the heterogeneous environment. Indeed, both sets
of points correspond to execution examples on twister-type
resources (see Table 1). Two more groups can be identi-
fied between 15 s and 25 s (Opteron type), and over 25 s
(Reloaded type). For SVM- RFE and GELF tasks, the points
are also grouped but sets are more overlapped than in the
case of the RANDOM task for which the sets are clearly
separated.

Another pattern shared by the six scenarios is that points
present more dispersion as the duration of tasks is longer. It
is also noticeable that in such long duration tasks, prediction
errors tend to arrange below the reference line. This obser-
vation is explained by the fact that there are less examples
related to larger execution times, which hinders the proper
modeling.
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Fig. 8 Predictions for the models generated using the bagging strategy. Points represent the actual runtimes versus the predicted values for the
execution examples in the validation. Lines on each graph represent the performance of an hypothetical perfect predictor

To complete this analysis, Fig. 9 presents the magnitude
of Bagging errors for the six scenarios grouping instances
by to actual task runtimes. Each graphic is divided in two
parts: the upper half shows the mean over-estimation errors
and the lower half show the mean under-estimation errors.
Each bar also shows the number of instances for which the
mean values were computed.

Green bars on the upper half of the graphics show
over-estimation errors. We can observe that in general,
such error types tend to disappear as the real runtime
of tasks augments. Conversely, orange bars on the lower
half of the graphics show the opposite behavior for under-
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estimation errors. The magnitude of such errors tend to
augment considerably as the real runtime of tasks aug-
ments.

As we said in Sect. 4.3, execution instances present a very
right-skewed distribution having most of them concentrated
close to the small runtimes (median of the distribution) and
fewer instances to the right (long tail). This means that there
is more data for short running tasks that for long-running
tasks. This fact impacts the on the performance of models in
two ways.

First, for short-duration tasks the models present lower
errors due to the availability of data, which permits a
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proper modeling of performance. Second, for long-running
tasks, models show a bias towards the underestimation of
predictions because of the availability of a larger corpus
of short-duration instances. Incorporating more execution
instances for long-running tasks during training would help
on reducing such bias and improving the quality of predic-
tions.

6 Concluding remarks

In this paper we proposed an approach for the autonomous
learning of runtime prediction models suitable for scien-
tific workflows executing on grids or clouds. The novelty of
this approach lies on the utilization of an ensemble-learning
method entitled bootstrap aggregating (bagging) to construct
an ensemble of models using data provenance information
and other sources of data available in workflow management
systems.

The bagging method consists on the construction of
several models using a base learning method on different sub-
samples of the original performance data. The base learner
selected for this work is the M5SP learning method for the
induction of regression trees. Bagging (as other ensemble-
learning methods) leads to reductions of the variance of
models and thus to a reduction of the prediction errors.

The conducted experiments were designed for evaluating
the performance of models learned using bagging in compar-
ison with other widely used methods for learning standalone
models. To this end, these machine-learning methods were
applied on performance datasets obtained from the execu-
tion of real-world bioinformatics workflows for the analysis
of gene expressions data over homogeneous and heteroge-
neous computing environments.

The results indicate that models learned using bagging
outperform strategies that learn standalone models. The best
results show significant margins of improvement with respect
to their competitors. In the best case, ensemble models
present error reductions ranging from 14.8 percentage points
to 25.5 percentage points on the homogeneous environment,
and ranging from 8.7 percentage points to 17.5 percentage
points for the heterogeneous case.

It is worth to point out that this work is related to a large
body of previous research on meta-learning, in which learn-
ing from features of algorithms and data is considered. The
main differences are that (i) we also consider features of
the computing environment, and that (ii) we predict runtime
whereas in meta-learning, classification accuracy is usually
the prediction target.

Undoubtedly, there is much more that can be investigated
in relation with complex models for predicting the perfor-
mance of data-intensive scientific workflows. This paper is an
initial step towards such objective. Incorporating more com-
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plete information of the resources such as memory and disk
benchmarks, characteristics of caches of multi-core architec-
tures (latency, hits, etc.) as well as CPU load is one of the
most important next steps to follow.
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