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Mathematical Modeling of Bivariate
Distributions of Polymer Properties Using 2D
Probability Generating Functions. Part II:
Transformation of Population Mass Balances
of Polymer Processes

Adriana Brandolin, Mariano Asteasuain®*

This is the second of two works presenting a new mathematical method for modeling bivariate
distributions of polymer properties. It is based on the transformation of population balances
using 2D probability generating functions (pgf) and a posteriori recovery of the distribution
from the transform domain by numerical inversion. Part I
of this work was devoted to the numerical inversion step.
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1. Introduction

Most common polymer synthesis methods produce
resins that are composed by molecules which are not
identical. This results from the random nature of the chain
building process. At the very least, the resulting polymer
chains vary in size. Hence, polymer samples are character-
ized by a distribution of chain length, or molecular weight.
Molecular weight distributions (MWDs) may have very
different shapes. Other polymer properties may also be
described by a distribution. Branched polymers, for
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instance, present distributions of branch points and of
crystallizable segments. Copolymers have chains with
different amounts of each of the comonomers, and there-
fore they exhibit a composition distribution. Besides, the
length of the comonomer sequences varies along the
copolymer chains.

The polymer chain microstructure, including the MWD,
the copolymer composition distribution (CCD), the long-
chain branching distribution (LCBD), the short-chain
branching distribution (SCBD), the sequence length dis-
tribution (SLD), etc., have a profound influence on the end-
use properties of the material. For example, high molecular
weight polyolefins exhibit improved mechanical proper-
ties, but on the other hand they have higher melt viscosities
and therefore they are more difficult to process. Polyolefins
with broad or bimodal MWD may present good mechanical
properties due to the high molecular weight fraction, as
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well as improved processability thanks to its low molecular
weight tail. The CCD also plays an important role in the
applicability of copolymers, since it has influence on final
properties such as stiffness, hardness, shrinkage, transpar-
ency, and optical properties.!*! The LCBD significantly
influences the rheological properties of polymers, affecting
the flow properties of the melted material, as well as solid
state properties, like orientation effects and stressed
induced crystallization.’) The SCBD impacts on the polymer
density. On its turn, the SLD affects the bulk and interfacial
activity of copolymers, as well as the glass transition
temperature and the lower critical solution temperature.*!
Due to the strong relationship between processing and end-
use properties of polymers and their distributed molecular
properties, a detailed knowledge of them is very important.
In many cases, a proper characterization of a polymer
sample will require simultaneous information on more
than one property distribution. For instance, the joint
MWD-CCD is important for copolymer systems; MWD-
SCBD and/or LCBD are needed in the case of branched
polymers. This requirement must be taken into account in
the development of advanced mathematical models of
polymer systems.

The prediction of a single property distribution, in most
cases the MWD, has been extensively studied. However, the
treatment of more than one independent property coordi-
nate leads to highly complex problems for which seldom
solution approaches have been developed. It is possible to
divide reported modeling techniques into two major
groups: stochastic methods and deterministic methods.
Stochastic approaches are mainly represented by the
Monte Carlo technique. The advantage of this approach is
that it is relatively simple to implement and can provide
extremely detailed information about the polymer micro-
structure and chain topological architecture that is not
available with deterministic solvers. For example, Krallis
et al!¥ applied a Monte Carlo Method to predict the
bivariate  MWD-CCD in a copolymerization system.
Meimaroglou et al®! used a Monte Carlo technique for
modeling the bivariate MWD-LCBD in the synthesis of
highly branched polymers. Costeux'® applied a Monte Carlo
simulation for predicting the MWD-LCBD in the production
of branched metallocene ethylene homopolymers using
mixture of single-site catalysts. Soares and Hamielec” used
Monte Carlo simulations to predict the MWD-LCBD-CCD of
polyolefins produced under steady-state conditions with
the mechanism of terminal branching. A significant
drawback of this technique is the high computational cost
required to obtain accurate results, even in modern,
parallelized systems.[®!

Deterministic methods demand less computational time
and storage capacity than stochastic methods. Besides, they
are more appropriate for identification and optimization
purposes, where it is necessary to deal with smooth,
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differentiable structures. These methods are based on the
solution of the kinetic population balance equations. These
balances are infinite in number, because the independent
property coordinates (ie, chain length of monomer/
comonomer, number of short/long branches, etc) are
theoretically unbounded. The most straightforward solu-
tion approach is the direct numerical integration of the
population balances of the polymer species. Under certain
circumstances the infinitely sized system can be truncated
by setting arbitrary upper bounds for the property variables
and solving for all smaller values. Although this technique
may demand solving a large system of equations, it is a
simple and straightforward modeling approach. Zapata-
Gonzalez et al!®! applied this approach to predict the
bivariate MWD of an intermediate moiety in RAFT
polymerizations. The quasi-steady state approximation
was used in order to remove the stiffness of the system or
equations. In earlier works, the numerical fractionation
technique was used for predicting the bivariate MWD-
LBCD.) This method consists in dividing the total
population of polymer chains into classes according to
the number of branching. Reconstruction of the MWD at
high monomer conversions and high branching content
may demanded a high computational load because a large
number of classes is required in order to reduce approx-
imation errors. More recently, Krallis et al.* and Meimar-
oglou et al.,[S] in parallel with their Monte Carlo model,
applied a 2D sectional grid method for predicting the
bivariate MWD-CCD and MWD-LCBD. In general, this
method provided very accurate predictions of the molecular
and branching characteristics of highly branched polymers
in a relatively short time. ledema et al.* developed a
calculus method based on so-called distributed moments,
in which the chain length distribution is obtained
rigorously and the additional properties are computed as
averages withrespect to chainlength. Recently, Schuitte and
Wulkow!*!] presented a hybrid deterministic-stochastic
method that combines advantages of both approaches. This
hybrid method is based on computing the basic chain
length distribution deterministically and adding further
properties using a stochastic method based on relatively
small ensembles of chains. This method was applied for
predicting bivariate MWD-CCD and trivariate MWD-CCD-
LCBDs in copolymerization systems.

In part I of this work,[*?! we presented a new approach for
the prediction of bivariate distributions of polymer proper-
ties, based on the transformation of population mass
balances by means of probability generating functions
(pgfs). Previously, our research group had employed the pgf
technique as a comprehensive numerical tool for the
prediction of the MWD in free radical polymer pro-
cesses.['*14 The pgf method was developed as a general
modeling tool that can be applied to different systems. It
provided excellent results in terms of accuracy, simplicity of
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implementation and computational effort, in models for
simulation and optimization activities. In its previous state
of the art, this technique employed univariate pgfs, which
allowed modeling a single distribution. In parts I and II of
this work, we present an extension of this technique to 2D
pgfs, in order to model bivariate distributions. Briefly, the
pgf technique consists of the following steps: (i) transfor-
mation of the polymer population balances to the pgf
domain, (ii) solution of the transformed balances to
compute pgf transforms of the distribution, and (iii)
numerical inversion of the transforms obtained step (ii)
to recover the bivariate distribution. In part I, the
development of suitable numerical inversion algorithms
of 2D pgf transforms was described. The purpose of part Il of
thiswork is to analyze comprehensively the transformation
of the population balances to the pgf domain. A 2D pgf
transform table is developed, which allows an easy and
quick transformation of any typical polymer balance
equation.

2. Pgf Modeling Method

Predicting a bivariate property distribution involves
calculating the concentration of a chemical species [S,, ]
for every possible value n and m of the two domains.
If this operation were to be performed straightforwardly
by solving the population balances of the chemical species
present in the reacting system, an infinitely large system of
equations would result. This is so because the random
variables are usually unbounded (i.e., degrees of polymer-
ization or number of branches range from 1 to infinity).
Even though the upper limits were restricted to given
maximum values based on previous knowledge of the
system, the number of equations would be intractable in
most cases for a bivariate distribution since an nypax X Mmax
grid, which easily involves thousands or millions of
balance equations, needs to be computed. Different
methods may be applied to this system in order to limit
its size. One of them is the 2D pgf transform approach,
which is appropriate for obtaining complete property
distributions.

The 2D pgf transform is defined for a discrete bivariate
probability distribution p; , (n,m) as

¢a1a2 (z1,22) :ZZZ

n=0 m=0

2" Py, 0, (N, 1) (1)

In this expression, random variables identified by the
indices n and m are the distributed properties, and z1 and z2
are the dummy variables of the pgf corresponding to the
transformation on the variables idenfied by n and m,
respectively. For the sake of clarity, the distributed
properties will be referred as n and m, respectively, in
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the remainder of the paper. The notation employed in this
article also uses a superscript to indicate the chemical
species whose property is being considered, and the pgf
order (a;,a,) to indicate different types of probabilities. The
probability distribution pfll?az(n,m) is related to the
concentration of the chemical species by the following
relationship:

ai a
B nm®[S, |
pal.az (n7m) ~ > ™

> 2. pq®2[Sp ]

p=04g=0

Examples of pairs (n,m) of distributed properties can
be mentioned, such as (hnumber of monomer 1, number
of monomer 2) units in a copolymer chain, or the
(chain length, number of branches) in a branched polymer,
etc. The probability distribution has physical meanings
for some combinations of (a,a,). For instance, in the
case of a; =0, a, =0 it represents the number fraction of
species S.

Replacing Equation (2) in Equation (1), the following
expression for the pgf definition is obtained:

b5, o(21,22) = —— ZZZ 1"22™ n“*m® (S, m]

Z Z ﬂlqﬂ2 [SP q] n=0 m=0

p=04g=0

o0 o0
=3 Z Zzl z2™n

ai,a; n=0 m=

m®[Sy m]

s
where A,

Z Z p™q®[Sp4lis the double moment of
=0g=0
order (aq,a,) of the bivariate distribution of species .
It is interesting to note the resulting pgf expressions for
particular values of the dummy variables z1 and z2 that are

useful in the pgf transformation procedure:

o0 oo
P ( LSS 070" ne me S, ]
a1 daz n=0 m=0
[Soo] .
—— Ifai=0,a,=0
=1{ A3, (4)
0 otherwise
oo o0
0}, o, (21,0) Z > 21"0™ nm (S ]

alﬂﬂz n=0 m=0

00
LS ons,

(11!12 n=

0

al Sn 0] lfaz =0
Ty )
0 otherwise
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Analogously,
(11 ,as (O 22)
z2Mm®*|S ifa, =0
Oaz mX: [ Om] f ! (6)
0 otherwise
¢’a1,a2 (z1,1) Z Z 21" m% (S, ] (7)
al az n=0 m=0
ﬂ1 (1,22) Z Z 22" N m®2 Sy | (8)
01 az n=0 m=0
a1 = D nem S =1 (9)
(11 az n=0 m=

Besides, Equation (10) and (11) present the derivatives of
the pgf with respect to the dummy variables. These
derivatives appear in the pgf transformation process.

a(pal 2,(21,22)
0z1

=3 zlzzzl"zzm e[Sy )

ay,dz n=0 m=

S
)“a1+1 a2¢a1+1 ap (217 22)

(10)
A5 4y 71
a(pal 0, (21,22)
0z1
— ii nz22Mn m® s, ]
A 72 .
ai,az n=0 m=0
)“csz a +1¢a a11(21,22)
1,42 1,42 (11)

A5 0,22

The pgf modeling method is based on the transformation
of the infinite population mass balances governing the
polymer process into the pgf domain, obtaining a system of
equations in which the dependent variable is the pgf
transform of the distribution. Pgf values are calculated by
solving this system, from which the desired distribution is
obtained by means of an inversion formula. The reason for
this transformation is that pgf evaluations at a relatively
coarse grid of its dummy variables z1 and z2 are required for
recovering the distribution for a set of arbitrary values of
the random variables. Hence, a finite and reasonably sized
system of equations needs to be solved in order to predict
the distribution.

Part I of this work!*?! was focused on the development of
suitable numerical inversion methods of 2D pgfs that allow
recovering the distributions from the transformed domain.
Efficient and accurate inversion methods were presented
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and thoroughly analyzed. This article, Part IT of this work, is
devoted to the mathematical procedures required to obtain
the transformed equations. The development of a pgf
transform table, likewise a Laplace transform table, that
allows an easy transformation of the population balance
equations, is shown.

3. Structure of the Population Balances from
the Point of View of the Pgf Transformation

In a polymer reaction system, population balance
equations are composed by an accumulation term (which
iszerointhe case of steady-state systems) and a sum of terms
corresponding to the generation or consumption of the
species due to each of the reaction steps and the contribu-
tions of the inputs to and outputs from the system. Table 1
shows a compilation of kinetic steps that are typical in
polymerization systems, divided into linear copolymeriza-
tion and homopolymerization with branching, two classic
situations in which bivariate distributions appear. The
terminal model is assumed for the copolymerization case,
but the extension to the penultimate model is straightfor-
ward. This table is not intended as a complete collection of
balance terms, but it provides a proper selection of the
different balance term structures, from the point of view of
the pgf transformation, that are likely to be found when
applying the pgf technique to a polymer system.

From each one of the reaction steps in this table, reaction
rate terms for the involved polymer species arise, as shown
in the second column of this table. When a reaction step
contributes in a different way to living polymer radical and
to dead copolymer balance equations, reaction rate terms
are preceded by the polymer spec1es to whose balance

equation they belong (ie, Ry
that the term — Z Ric ijh 00[

Z Rec ijAg, O[Rn m) Means
m belongs to the balance

equation of spec1és R ). Accumulation and input/output
terms are also shown in Table 1. Symbol k stands for a
kinetic constant, I is an initiator molecule, 6 is an integer
number, Ri is an initiation radical, f is the initiator
efficiency, M is a monomer (with a superscript indicating
the monomer type in the copolymerization case), V is the
reaction volume, R, ,,, is @ homopolymer with n branches
and chainlengthm, Rl  isaliving copolymerradicalwithn
units of monomer 1 and m units of monomer 2 with a
monomer I final unit, P, ,,, is a dead copolymer with n units
of monomer 1 and m units of monomer 2, or a dead
homopolymer with n branches and chain length m, S, ,,, is
any living or dead polymer species with n and m units of the
first and second distributed properties, respectively, )\{11 ay 18
the double moment of order a;,a, of the MWD of species j,
and risthe independent variable in the differential balance
equation.
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Table 1. Accumulation, input/output and kinetic steps in polymerization reactions. Contribution to population balances of polymer species
and general structure of the balance terms.

Kinetic step Population balance term General structure
Accumulation 3[Sn,m] 3[Sn,m]

« at o T
Input/output input : ZFmput [Sn, m]mput input : o[Spm)

output : o|S
output : ZFompm [Sn, m}output put : o[Sym]

Global cumulative distribution nom nm
ad S [Si] @y [Si]
i=0 j=0 i=0j=0
Cumulative distribution n n
. ) ) [Sim] @ [Sim]
in the first domain i=1 i=1
Cumulative distribution m m
) . @ [Sni] a3 [Sni]
in the second domain i=1 i=1
Copolymerization
Initiation
k
1% R
Ri+M f_> Rlz ii-13 i=1,2 Gf kal [Ml} []MZ] Vién, 2— 15m1 1 Rln‘m : asn’zfism’ifl
. Ckpi ; 2 T Rl a[S ] a[S 1 } a[S ,1]
i M p.ij ) o i .o k. M {Rl ] n.m nm|, n-1m|; nm
nm T Tni2jmijo nm ];. pjl}[ ] nm Ol[Sn—l‘,m]8n,18m,07O‘[Sn‘,m—l]sn,osm,l

i=1,2, ] =12 2 . i
+ 2; kpji[M'] [R]n+i—2.m+l—i}
j=

(1 - 8n‘2—i8m‘i—1)
Termination by combination

kec ij . 2 j : R a|S
mt R’rq —]> Prnyr, m-+q; Rln,m i Z ktc‘ij)hg{o [R;qtm] o [ n,m]
=1
1=LZJ:L2 !
n m-1 1 oo m—1 1w
Pom tRic12 >, > RyRa s Pam o) Sy sSn—rm-s:
r=1 s=0 r=1 s=0
1 n-1 m . el m
+§ktc’ll ZRY,SR”*V:”"*S (l_ 5”‘1) o > SrsSn-rm-s
r=1 s=0 r=1s=0 '
1 S 2 2 n-1m
+ E ktc,22 R"SR"*N”*S (l - Sm,l) o E Sr,ssn—r.m—SSn,L
r=0 s=1 r=15=0 '
n m-1
o Z Sr,ssn—r m—s
r=0 s=1
n m-1
o Z Sr,ssn rm—sOm.1
r=0 s=1
Termination by disproportionation
kg _ 2 P R . :a|S
m + Rhg = Pam +Prg, Rim =3 a2 Eo[Rh) o Lonn]
=]
i=1,2,j=1,2 g
2 2 i o Ppm:afS
Pt 323 S R o+ {5

i=1j=1
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Kinetic step

Population balance term

General structure

Reaction with terminal double bound

: dbl]
i
Rn,m +Prq Rjn+r ,m+q

i=1,2 j=1,2

Chain transfer to transfer agent

fsx
+S—>R2 ii—-1

+Pn,m,1 =1,2

Chain transfer to monomer

i fmu
R, +M =R,

+Pum,i=1,2,j=1,2

Chain transfer to polymer

fpij

Rl +Prq—>R]rq+an7
i:1,2,]:1,2

Initiation

k
I % 6Ri

. Ski
Ri+M— Rl)l
Propagation

kp
Rn,m +M — Rn7m+1

Termination by combination

ktc
Rom +Rrg — Pnir-1miq

£/ Macromolecular

. 2 .
Rom =2 ka (R |20
]:

n-1m
thiasi 3 3 [Prs] [R s
r=0 s=0
n m-1
+ktd2lz Z [ 75}[ n—r,m— si|
r=0 5=
2 .
33 R [P
i=1j=1

! m - kfs,-[S])\gfoSn‘z,i

5m,i—1 - kfsi[s] {R;.m}

Pom : gkfsi[s} [Riz,m]

2 o
om0 Remji M) AR 0 8n 2 i8m.ia
j=1

gy ][R
2

Pom : E 22: kfmU [MJ] [Rihm]

i=1j=1

Ri

nm

2 L .
. Z kfpjin27lmlil}\§{opn,m
1

~Repijrs_j 1 [Rhy ]

2 2 , _
Prm : 1:21]2 kfpij)‘ijJ—l [Rln‘m]
~kgpih§ on> i [Po ]

Branching

Rn,m : ef kd[l] [M}Vam‘l

Rnm : —Rp[M][Rnm]
+hp[M][Rnm-1] (1 = m1)

Rn,m : *ktc)\g‘o[ n,m]

1 n m-1
anii ZZ TS

r=1 s=1
nr+lm s( )
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R, afSam], ni:i

nm nm ParSard sn r,m-—s>
n m-1 2
Z: 2: r,s Yl r,m-—s’

Pom:a [Snﬁm]

R;l,m : aan,lam‘()? O‘(Sn‘,O(Sm‘h o [Sn_’m:l
Pom : oz[Sn,m]

R;‘m : aSn_lem,o,a6n408m71,a[5n1m]

Pom:a [S,Lm]

Ripm Loan [Sn,m}v am [Sn,m]> a[sn,m}
Ppm :om[Smn], am [Sn,mL a[Snﬁm]
Rn,m : oth;

Rom:a [Sntm] , o [Sn,mfl],
a[sn,m—l] (Sm,l
Rom : a[Snrm}

n m-1
Pom o Z Z Sr,ssn—r+1,m—57
r=1 s=1
n m-1
ad > SrsSn—r+1m-sOma
r=1 s=1
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Kinetic step

Population balance term

General structure

Termination by
disproportionation

k
Rum +Rrg =% P + Prg

Pum : ktd)\g‘o [Riz‘m]

Reaction with terminal
double bound

Rom : —kiatSo Ry n]

Rom:a [Sn,m]

Pom:a [Sn.m}

k, . P _
Rnm +Pr.q 2, Rn+r,m+q Rn"m ) kdlrnig,?n[iln.,m] Rnm [ ] nX: mX: rs n r,m-s
+kdb Z Z [Pr,s}[ n—r‘m—s} n-1m- :l =
r=1 s=1 Z Z s n rm—s%n,1s
(1=8,2)(1 = 8m1) =1 s=1
1m-1
Z Z 555531 r,m— 58m>17
n-1m-1
Z Z r,s n r,m— 56&187’11
Ppm : _kdbkg,o[ n,m} Pom: a[sn,m}
Chain Scission
Rn,m+l ﬁ’ Pn,m +R1,1 Rn,m :—ks [an] (1 - 8""71) Rom : a[smm] ) a[sn’m] 8mvl’a8"’18m‘l

(52

\\Mg

Chain transfer to transfer agent

ks
Rim+S— Rl.l +Prz,m

Ppm: kfs [S][ n,m]

Chain transfer to monomer

k
Rn,m +M ﬂ} Rl,l +Pn,m

Pym: kfs [S][ n,m]

Chain transfer to polymer

ke
Rn,m + Pr.q - Rr+1,q + Pnm

Different conventions are used in the literature for the
minimum values of the chain lengths or number of
branches. In this paper, it is considered that a copolymer
has at least one unit of any of the comonomers, that is, fora
copolymer P, ,,, n>0, m >0, and n+ m > 1. This is further
restricted for living radicals, since a living radical ending in
a monomer i unit must have at least one unit of this
monomer (i.e., fortheliving radical R% whn> 1).Inthe case of
branched homopolymers, the minimum number of
branches is 1, which means that the main chain is regarded
as abranch. Hence, for ahomopolymer S,, ,,, with n branches
and chain length m, n >1 and m > 1. Factor a stands for all

M \11095
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Rnﬁm : kfm [M}Ag‘o‘sn‘l‘SMJ

Rn,m : kfpmkgopn,ltm — kfp}‘g,l [Rn,m}

Pom: fkfpn)»gopn‘m + kfp)‘gl[ ”‘m]
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Rut] ) (16ma)

Pnm ks [Rn‘erl]

Pn,m : a[sn‘erl]

- kfs [S][ n,m] Rom : adn16m1, 0l[sn,m]

Pom:a [Sn‘m}

- kfm [M] [Rn,m} Rnm : @én18m, a[sn,m]

Pom:a [SH,m}

Rnm :am [Sn—l,m] ;& [Snﬁm]

Pom:a [Sn,m}

the variables that are not themselves functions of the
distributed domains. Examples would include concentra-
tions of monomer, solvent or initiator, kinetic constants,
and the like.

The balance terms shown in column 2 of Table 1 can be
represented by a general structure. This structure is
composed by the product of a factor « multiplied by the
concentrations of polymer species with certain values of
the two distributed domains that characterize them. The
representation of the balance terms according to this
general structure is shown in the third column of Table 1.
From inspection of the balance terms, it can be seen that
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many of them share the same general structure. For
instance, terms corresponding to the system input/output,
termination by combination or disproportionation for
radical species, reaction with terminal double bond for
dead polymer species, and others, have the same structure
a[Spm]. The general structure is what matters when
performing the 2D pgf transformation. Hence, all terms
with the same general structure will have the same pgf
transform, regardless the kinetic step they come from. This
facilitates considerably the pgf transformation process and
allows condensing information on the pgf transformation.
The pgf transformation process is described in the next
section.

4. Pgf Transformation

The pgf transform of a balance equation consists of the sum
of the transforms of the individual terms comprising it. The
general method to carry out the 2D pgf transformation
consists in multiplying each term of the population balance
equation, which is function of the concentrations of
polymeric species characterized by the two distributed
domains n and m, by z1"z2™n*m% (a, =0, 1,a, =0, 1), and
then performing a double summation for all possible values
of nand m. Theresultis putin terms of the 2D pgfs by means
of the definitions of the pgf and the different probabilities,
obtaining an equation which is now function of the 2D pgf
and moments of the bivariate distributions.

The transformation process can be tedious and time
consuming. In order to aid in this procedure, the different
general structures of the terms that may appear in
population balance equations were collected and tabulated
together with their 2D pgf transforms. This information is
presentedin Table 2. Comprehensiveness was sought when
building this table. However, it should not be regarded as
absolutely complete. Details on the transformation proce-
dure to obtain the results shown in this table are given in
the Appendix section. If a different kinetic step from those
presented in Table 1 appears, its pgf transform can be
derived following the procedures explained there.

Although powerful, the pgf method still cannot be used
on every type of polymerization. So far we have been able to
apply this method for the cases were termination constants
are independent of chain length. The applicability of this
technique to polymerization systems where thekineticrate
of termination depends on the chain length is not
straightforward and it further requires an exhaustive
mathematical work that is under way.

Three examples are presented in the next section in order
to illustrate how to apply the previous derivations to
transform the population balances of a polymer process
into the 2D pgf domain.
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5. Application Examples

This sectionillustrates the application of the pgf method for
modeling bivariate polymer distributions. The pgf techni-
que is applied for modeling the bivariate MWD in a
copolymerization system.

A general kinetic scheme that collects the most usual
reactions appearing in different copolymerization systems
is shown in Table 3.

Symbols I, Ri, S*, and W ( j=1,2) denote, respectively,
initiator, initiation radical from initiator decomposition,
initiation radical from transfer to transfer agent, and
monomers. The symbols R}, and Py, ,, identify the live and
dead copolymer chains, respectively, with n units of
monomers M* and m units of monomers M?, and a
monomer M'as final unit. Although this kinetic mechanism
is not completely general, it allows most of the accepted
kinetic phenomena. Extension to multiple transfer agents,
capping reactions (i.e., in controlled living polymerization),
etc,, is trivial.

5.1. Case I

As a first case study, a hypothetical copolymerization
reaction (system S1) described only by initiation, propaga-
tion, and termination by disproportionation steps will be
considered. The corresponding population balances are
shown in Table 4.

The first step of the pgf technique is transforming the
population balances of the polymer species (Equation 24
and 25) into the pgf domain. In this case only the number
distribution will be recovered from the transformed
domain, so pgfs of order (0,0) will be computed. The pgf
transform table (Table 2) can be used to perform this
transformation. In order to use this table, first the general
structure of each of the terms in the population balances
has to be identified. For instance, the accumulation term
4% - ml; inEquation (24) corresponds to the entry —™ dof s” ml
T2.1 of Table 2. Hence, the transform of thls term is

AOR R (21,22))
0000 The term 2fkqll]

inrow

Ml
[M1[}+[]MT} On2-idmi-1 Can be
found in row T2.3 with the general structure «d, ,6m ., and
its transform is 2fkq][l] %zlz‘izzi‘l. The transform of

theterm Z kp ji [M] [R’

hvicomi1i| (1 = 8n2-idm;i 1) isfound,

expandmg the sum in j, in rows T2.6 and T2.8. From row
T2 6 it can be seen that the transform of

Z kp,ji[M'] [ viomil 1] is, collecting again the sum in j,

_X;kai[Ml](zi)<k§fo¢§fo(21,zz)). In the same way, row
j=

2 .
T2.8 tells that the transform of Y- kpji [M'] [Rjn riom +1_i]
j=

2 ) . .
Sn2-i0mi-1is Y kpji[M'] (zi) {RJOAO] .Species R}, ; does not exist
=t '

M \llfl‘"§
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Step Equation
Initiation I efickq oRi (12)
(13)
Ri+ M —> 2 -1
\ kis (14)
s+ MW %R ja
Propagation o kpj (15)
Rom +R]'>q T Rppo—jmyj-1
ermination by combination - i k)
Termination by combinati 1 ik (16)
Rom t Rrg — Pnirmag
Termination by disproportionation 4 17
y CIsprop RL +R,qt—]>an+P,q (17)
ain transfer to monomer Rtrm ij
Chain transfer t 1 (18)
R, +MJ—>an+R2”1
Chain transfer to transfer agent ; krs i 19
Chain transfer to polymer 1p.i 20
Poy R, +P,q‘—pipnm+R,q (20)
Reaction of terminal double bond kdb.ij (21)
i J
R + Prq I Rn+r m+q
I Table 4. Population balances for system Si.
Species Equation
Initiator d[I] (22)
—— = —kg[l
= hall
Monomers [M] M2 i1, (23)
—ar —2fkq[l] M+ m] ]; kpji [M p‘o,o
Live d[Ri ] [M’] ) o (24)
copolymer 4 - = 2fkq|]] W&r@—i&n,i—l + Z kp.ji [M'] [R],q+i,2>m+1,i] (1= 8n2-i0mii-1)
=1
2 . 2 ’ .
= kpjj {Rhm] = > kuiho {Rz‘m]
=1 =1
i=1,2;,n=2—1,...,oom=i—1,...,00
Dead copolymer dPrm 2.2 (25)

i=1j=1

because any polymer radical has at least one monomer unit
of any of the monomers. Hence, it can be considered

that [ A o} = 0 and therefore the transform of Z kp ji [M]

[R]rx+i—2.m+l—1] 8n2—ibm,i-1 18 0. Frnally, the transforms of the
2 .
terms — > kp ;i [M] [
j=

in row T2.5 with the general structure «[S,m,]. The

} Z Rea A S [R’ ] can be found

2 ; ipi
transforms of these terms are — Y~ kp ;[ [)»50(1)‘5,0(21, 22)}
=t '
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oo; m=0,...,00

l

_ 22: ke ;2R (ASIO 5.0(21, 22)). Concluding, the transformed
j=1

equation of Equation (24) is the collection of the transforms of

its individual terms shown above and is presented in

Equation (26) in Table 5.

Following the same procedure, the pgf transforms
of the terms in Equation (25) can be found in rows T2.1,
T2.4, and T2.5, previous expansion of the double sum
in i and j. It should be noted that, since R! has at least one
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I Table 5. Pgf equations for system S1.

A. Brandolin, M. Asteasuain

Variable

Equation

Pgf of the live copolymer MWD dyR (z1,22)

2

- ka,ij[lw]w (21,22)

] T - (26)

gt = Ykl anﬂzzf1 + > g i [MT] (zi)y® (21, 22)

j=1

Zktdu MouR(a1,22) =12

j=1 j=1
Pgf of the dead copolymer MWD dyF(z1,22 2 2 A (27)
& y % =3 kea 8o VRi(21, 22)
i=1j=
with
¥ (21,22) = ko oo 0(21,22)
here A and defined as follows:

unit of M; and R? has at least one unit of M,, [R}),m] —0and ' NEre S ANCPale delined as lotows
[wa} = 0. Therefore, the pgfs involved in row T2.4 are A= 22 11;/’_2?] i=0,....N,j=0,....i
equal to zero according to their definitions in Equation (5) with h
and (6). The pgf transform of Equation (25) is built (k) = 1 I=0
collecting these terms, and is shown in Equation (27) in ! k(e+1)...(k+1-1) 1>0
Table 5. (31)

The pgf technique requires the inversion of the pgf .~ h(2i)
transforms obtained from the solution of Equation (26) 5\; it7h
and (27). The pgf inversion method employed here is h(0) =1
the adaptation of Papoulis’ method for 2D pgf inversion h(1) =1/2 (32)
developed in Part I of this work.*? According to . . . A

1)h 1)=(i+1)=h(i) —ih(i—1

this method the MWD is obtained from the transform (i+Dhi+1) = @21+ )2 (i) —ih(i—1)

domain as:

(In(2))” r

" vl.¢'(z1,22).v

MWD pumber fraction (n > m) =

(28)

where q; (z1,22) is a matrix of 2D pgf transforms defined
as

(1?(210,220) </;(zlo,222) (3’(210,221\,)
= A‘zl,zZ 2'zl , 22
¢ (21,22) = (212,220) (1 N)7
_q?’(le,ZZO) q;'(zlmzzN)_
zij = e QU@
(29)

and v is a constant vector that is obtained by solving the
linear system

(30)

Macromol. Theory Simul. 2013, 22, 273-308
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Variable N appearing in Equation (29) and (31) is a
parameter of this inversion method. Guidelines for setting
the value of this parameter can be found elsewhere.[*?! It
can be noted from Equation (29) that the inversion method
determines the values of the dummy variables z1 and z2 for
which the pgf is required, which are zij = e~(+VIn@)/n;
i=1,2,j=0,...N. The number of pgf values, and hence the
number of pgf equations in the model, is (N + 1)° per pair of
(n,m) values for which the MWD is to be computed. The pgf
values for each (n,m) pair are independent of each other,
which means that the grid of the MWD can be made as scarce
as desired, and that this grid can be divided into separate
subsections for calculating the complete MWD. This allows
adjusting the size of the mathematical model.

The MWD expressed in weight fraction can be calculated
from the MWD expressed in number fraction recovered
from the transform domain as

MWDweight fraction ( n,m )

_ (Mw1n + Mwym)MWDyumberfraction (1, M)

(33)
MWl)‘i,O + szkg,l

Moments of the MWD are required to solve Equation (26),
(27), and (33). Moment equations can be obtained from the
polymer population balances using well-know techniques.
These equations are shown in Table 6.
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I Table 6. Moment equations for system Si.
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Variable

Equation

Moment of order RI i}
(ay,a,) of the live
copolymer MWD

2 i
R
- Z kp }”al az

i= 1727 (al7a2) =

2 2 o

R 4R
=D _kairforie
i—1 j=1

Moment of order dxil o
(ay,a,) of the dead  dt

copolymer MWD

The whole mathematical model consists of the pgf
equations (Equation 26 and 27) parameterized for the set of
values of z1 and z2 required by the inversion method, the
moment equations (Equation 34 and 35), initiator and
monomers’ balances (Equation 22 and 23), the algebraic
equations of the inversion method (Equation 28--32), and
Equation (33) for computing the weight fraction MWD. This

] i
Zktd ‘J)‘EO)‘If; az
(07 0)7 (17 0)7 (07 1)

(a1,a2) =

I Table 7. Parameters and initial conditions used in the simulation

of system S1.

Parameter/Initial Value Units Ref.
condition

k4 1x10°° st [15]
kp 11 705 L-smol ! [15]
kp, 12 35.25 Lsmol™ [15]
Rp.21 2.4 x10° Lsmol ™t [15]
kp, 22 3600 Lsmol™t [15]
Reg11 1x107 Lsmol™t [15]
Rida12 1x107 Lsmol™t [15]
Rid 21 1x107 L-smol ' [15]
Rid.22 1x 107 Lsmol ! [15]
Ric12 1x 107 L-s-mol*

Ric.21 1x 107 L-s-mol*

Ric.22 1x 107 L-s-mol*

Rep11 0 Lsmol™t [15]
Rep12 0 Lsmol ! [15]
Rep 21 236 x10 *kpo; Lsmol ™t [16]
Rep 22 236 x10 *kpoy Lsmol ™ [16]
f 1 - -
[1](0) 0.06 mol-L ™t -
[M;](0) 4 mol.L™* -
[M,](0) 4 mol.L™* -
)‘(.z,b (0) 0 mol.L7? -
v (21,22) (0) 0 molL™t -

M \110'5
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2 0127102171

ai,a M . . i 2—i, i— i
—dl == 2f kall] 7[ ng[Mz] (2—-D)"(i— 1)“2+ka,ji [(M] Z (?1 % 1>)\511i—152—i’a22—i5i—1

j=1 s=0

(34)

(0,0), (1,0), (0,1) (35)

model was solved for the set of parameters’ values and initial
conditions shown in Table 7. For comparison purposes, the
bivariate MWD was also computed by direct integration of
the population balances shown in Equation (24) and (25). In
order to predict a MWD grid from (n =0, m=0) to (N = Nmax
M = My,,,) With the direct integration method, all points in
the grid need to be computed because the corresponding
balance equations are coupled. On the other hand, the pgf
technique allows fixing the density of the MWD grid and
hence adjusting the size of the mathematical model
according to the preferred level of detail. Although
inefficient, the direct integration is possible in this case
because the molecular weight of the system is low enough
so as to allow a reasonable number of balance equations for
the polymer species.

The direct integration solution can be regarded as a
reference MWD since this method does not perform any
manipulation of the balance equations. Figure 1 shows the

4,0x10°
M2 units = 20 (1) .
o M2 Vunlts =30(0)
5 | N
3.0x10 M units = 10 (&) \ i e} M2 units = 40 (¢)
s, &) o :
/ If O o)
5 - Meunils | o _ e &
g =5 [ \ 3
i 0% A / <
= 20x10° - e\ X \ s &
£ Y o \
o Y \ o
= I ;IA AD .O
x . \ o
105 | : -
L ™ b
i e}
X N /
! \
LA / A
]
X0 o
s i o 4\ .
\ AL [
P VA ST e v G L o S T e
0 200 400 600 800 1000
M? units

Figure 1. Bivariate MWD calculated with the pgf technique (sym-
bols) and by the direct integration method (lines) for Case I.
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average molecular weight calculated from the recovered MWD

Table 8. Comparison between leading moments and number-
and by the method of moments for system S1.

A. Brandolin, M. Asteasuain

bivariate MWD calculated both with the pgf technique and
by the direct integration method. It can be seen that an
accurate prediction is achieved with the pgf technique.

In order to further validate the MWD calculated with the

Moment From the Using ) -
recovered method of pgf technique, the le?dlng mgments and.th(? n}lmb.er—
MWD moments average molecular weight obtained from this distribution
were compared with the ones computed using the method

)Lg o 1.7699 x 10~ % 1.7952 x 10~* of moments. The results are presented in Table 8. It can be

’ - _ that the values computed from the calculated MWD
p 1.3908 x 10 15068 x10* ¢!

M0 8 % are very close to the ones obtained using the method of

AP 7.1036 x 103 74950 x10™®  moments.

M, 82130 87629 It should be remarked that the pgf method is not
efficient for computing moments. These are calculated
from the MWD by applying their definition,

a1 a EO Z p*q™[Spql, already  introduced in
“0a=0
I Table g. Population balances for system Sa.
Species Equation
Initiator d[] (36)
— = —k4[l
r all]
Monomers d[M’] 2 ® [ i}
: J
- Z Rermjirn o [M! i=1,2
=1
Transfer agent djs 2 i (38)
8 J == ktrs‘i[s])‘go
dt i1
Live copolymer d [Ri ] i 5
n.m [Ml} . .
a - 2f kall] WSn,Z—i5m.i—l + ]:Zl kp i [M'] [R]r1+i—2,m+l—l} (1= dn2-idmi-1) (39)
- Z kP-,ij [Mj] [R;Lm] - Z ktcvij)‘go [Rln,m} — Rurs.i [Rlnm} [S]
j=1 =1
- - [M]
- ktrm,ij RI K + ktrS] 0, o[s} 78n72—i8m,i—1
3 bS] 0]+ 3081
2
Zktmﬂxoo[ml]anz dmia 1=1,2n=2—1i...,00;m=i—1,...,00
j=1
Dead copolymer dlp n m-1
[dnt'm] = Ric12 {R 5] [Ri rm— s} (1 —8n,0 — Omo + 5n,05m,0)
r=1 s=0
1 n-1 m
+§ktcll Z [ } [ s] (1= 8no —Sn1)
r=1 s=
40)
1 n m-1 (
+ Ektc,zz {Ris] [Rn — S] (1 —8mo — 5m71)
r=0 s=1
2 2
£ R [Re] [M] (2 = 8n08ia — bmodia)
i=1 j=1
2
+ D Rusi R 1812 = 8n08ia — 6modia) n=0,... 00 m=0,. .00
i=1
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Equation (3). The increment step of this double sum is one,
which requires a full grid of MWD points. Even though
numerical techniques can be used to “fill” missing data, like
gridding or bivariate interpolation techniques, the source of
MWD data (provided by the pgf method) still needs to be
very detailed for a good performance. Therefore, a sparse
grid of points is no longer enough but a quite full grid is
needed, whichresultsinalargenumber of model equations.
The well-known method of moments is more suitable for
this operation.

5.2. Case II

The purpose of the last two case studies, Case Il and Case III,
istoillustrate that the pgftechnique can be easily applied to
systems of different complexity, taking advantage of
previous works on other systems. Case II differs from Case
Iinthat the termination reaction is by combination instead
of disproportionation. Besides, transfer to transfer agent
and transfer to monomer reactions are added. The
population equations that describe this system are shown
in Equation (36)—(40) in Table 9.

As in the previous case, the balances of the polymer
species (Equation 39 and 40) have to be transformed into the
pgf domain. However, as the transformation is carried out
term by term, only the contributions of the new reactions
have to be taken into account, while the others are the same

[ Table 10. Pgf equations for system S2.
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asinthetransforms of the balance equations corresponding
to the previous case. Hence, the first three terms of the
transform of the balance equation for the live copolymer
species (Equation 39) are the same as in Equation (26),
because they correspond to the contribution of the
initiation and propagation reactions, which are the same
as in Case I The next three terms in Equation (39),
corresponding to the live copolymer consumption in
termination by combination, transfer to transfer agent
and transfer to monomer belong to the general structure
@[Sy m], whose transform is found in row T2.5 of the
Transform Table. Similarly, the last two terms that
correspond to the production of live copolymer chains by
transfer to transfer agent and to monomer have the general
structure o8, 4,8,y Whose transform is in row T2.3 of the
Transform Table. The final transformed equation for
Equation (39) is shown in Equation (41) in Table 10. In a
similar way, the pgf transform of Equation (40) is obtained,
which is shown in Equation (42) in Table 10. Moment
equations are also needed, which are presented in Table 11.

Figure 2 shows the bivariate MWD calculated using the
pgf technique. It can be seen that the system has shifted to
highermolecular weightsin comparisonto Casel, duetothe
combination process of the termination reaction. A 3D view
of the bivariate MWD is shown in Figure 3. The model was
solved with the same set of parameters and initial
conditions shown in Table 7. Like in Case I, the number
of model equations was approximately 300 per pair of (n,m)

Variable

Equation

Pgf of the live copolymer MWD

— ktrs’i[S]lﬁ Zl 22

+ Z ktrSJ)‘o 0 [S]

j=1

+Zktrm]1 oo

12172;(aab):

Pgf of the dead copolymer MWD dy®(z1,22)

dt

1 2 2
+§ktc,22 (l/f Zl 22 ) +sztrmlj

Z ktrs z[S

M \110'5
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[M'] + ]

( ?
- ktc,lZ‘l’Rl (217 Zz)‘l’Rz (21722) + lk‘tc.ll (lﬁkl (217 22)) ’
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i 2 .
M]  eigiay S kst M) (20) 0¥ (21, 22)

+ [M2] =

j=1

Z ktrm 1] MJ

[Mi]

(zl, z2)
(41)

212—1’221'—1
12 i 21 1

0),(1,0),(0,1)

Iy* (zl z2)

i=1 j=1 (42)

zl ,22)
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1.6x10°
M2 units = 50
M2 units =40, _M? units = 60
- \ M2 units = 70
M2 units = 30 ~\
M2 units = 80
1.2x10° [~ \
units = 90
M units = 20
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=] M2 units = 100
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Figure 2. Bivariate MWD calculated with the pgf technique for
Case Il

points of the MWD grid. As the pgf method allows it, the
MWD was computed sequentially for each of the para-
meterized values of m=M? units, for computational
efficiency. In this way about 9500 equations were
solved per model run. Besides, solving the model
equations presented no difference in complexity compared
to Case I. On the other hand, direct integration of the

[l 7able 11. Moment equations for system S.

A. Brandolin, M. Asteasuain

1.3[5_005 )

1.2E_0':|s

a.thDOB N

Weight fraction

0095

O'UE*UUU :

1033

2
M Units 00p 0

Figure 3. 3D view of the bivariate MWD calculated with the pgf
technique for Case Il.

population balances was not feasible in this case. Firstly, all
combinations of chain lengths values in the significant
ranges for St and MMA had to be computed in a single
model simulation because the population balances are
interdependent. This implied increasing the number of

Variable Equation
Moment of R [ i 2 a12"la, -1
4.4 M] 'SR 2-ig, i-1Y\ . gJ
order (a;,a») Fra 2fkdmm(2 D=1+ ks [M] D (?1 @ )AE, 12t g 2igid
. j=1 s=0
of the live
2 2

copolymer - 2kl M]AE o = D kia g0t a,
MWD j= j=1

—_ ktrs 1 al a Z ktrm l] )\,5; a;

’ (43)
] Sar
+ Z s -5, olS] m@ —)"({i-1)"
j=1
+ Zkﬁmdl)“oo[ T@-i)"(i-1)%  i=1,2;(ai,a) = (0,0),(1,0),(0,1)
j=1
Moment of drb a a ay a
142 _ R1,R2 Rl Rl
order (a;,a,) dt = kie12 IZ%)JX% ( ) ( j ))‘u Aoy -iay—j T 3 Rea1 12%]2(:) ( ) ( ))‘ i May—iayj
of the dead a4 - 2 1
+ k AF AR + Rterm,ij [MV] 2.F

copolymer te 222{;;( )( > ij May—iayj ;J trr,if (W] A, (44)
MWD

Zktm[ ] ay,az
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Species Equation
Initiator d[I] (45)
—— = —ka[l]
dt
Monomers dm] [M] . i [M]
i =-2f dHW Zk JMIAS, — ]z;ktmkgo[s]m
) o (46)
=3 kumjirgo[M]  i=1,2
j=1
Transfer agent d[s 47
g %—_gktrsz[s])\ ( )
Live copolymer dIri ;
n,m M .
[dt ] = 2fkd[1] WSH 2— 13m1 1+ ]2; kp]l } [R]r1+i—2.m+1—i} (1 - 8n,2—i8m,i—1)
2
- k l] MJ { :| Z ktc 1])\0 0 |: } ktrs 1 [ ] [S]
j=1
- i ktrm ij [Ri ] [M } + Z ktrsj)\gjo [S] Lj]an 2-i0m,i-1 (48)
= e = O M M
2 ) 2 )
+ Z R jikg.o [M'] 82 i8mi1 + Z kepjin® 'm A [Prm] — kipijhd S i1 Rl
j=1 =1
i=1,2;n=2—1,...,.ocom=1—1,...,00
Dead copolymer dp n m-1
% = Ric12 Z [Rl } {Ri rme s] (1= 8n0 — 8mo + 8nodmo)
r=1 s=0
1 n-1 m
LTS [RE] [RE_ s ] (2 = 8n0 = 8na)
1 n m-1
+ Ektc,ZZ {Ris} [Rf, 5| (1= 8mo — 8m1)
r=0 s=1 (49)

7
o
I
3
=
—

2
i=1 j=1

simultaneous model equations from approximately 80 000,
for the direct integration approach in Case I, to 660 000 in
Case II. Besides, the extensive double sums involved in
termination by combination reaction terms of the dead
polymer balance equation (first three terms in Equation 40),
caused the evaluation of the derivatives to be prohibitively
time-consuming.

5.3. Case III

In this case study, the reaction step transfer to polymer has
been added to the kinetic mechanism of Case II. The main

M \110'5

www.MaterialsViews.com

+Zktrsx{ ][5](1—5n051—5m0512)
2

<kfpij)‘g—jj—l[Rfmm] — kfpij)\g,onz‘jrnj‘l[PmmD n=0,...,
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ij R;,m] [M7] (1 — 8,081 — 8m0di2)

oo;m=0,...,00

effect of this reaction on the MWD is a broadening of the
distribution. From the point of view of the mathematical
treatment of the system, this kinetic step introduces some
modeling issues that are described below. The population
balance equations that describe this system, designated as
S3, are shown in Table 12. It can be noticed that the
difference between these balances and those of system S2 is
only in the last term of the live and of the dead copolymer
balances, Equation (48) and (49), respectively. These terms
represent the contributions of the transfer to polymer
reaction. Hence, the pgf transform equations of the live and
dead polymer balances are obtained by just adding the pgf
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I Table 13. Pgf equations for system S3.

A. Brandolin, M. Asteasuain

Variable Equation
Pgf of the live dy® (z1,22) [M] o 2 . »
; _ 2—i,ni-1 . i R
copolymer MWD dt = 2f ka[l] [MT] + [M7] 7177727 + ;kp-ﬂ [M'] (zi)y* (21, 22)
2
- 2 koM (21,22)— Y kaaZtF 21.22)

j=

j=1

2
— kus[S|YR (21, 22) ) =) Rty i [ 1y (21,22)
=1

M 1] 2- 1 (50)
+ Rirs it [S] — 7127z
]21: J o 0 M1 + M2
+ Z Rerm itK o [M] 2121221
=1
2 i zid(yP(z1,22) i
+ Zl <kfpji)hgfo % - kfpij)k}za_j_j_ﬁ/’R (21, Z2)>
=
i=1 2; (av b) = (07 0)7 (1>O)7 (07 1)
Pgf of the dead dyr(z1,22) Rl R2 1 &l 2
copolymer MWD —a - Ric12¥" (21,22)y (21,22) +7ktc‘11 (W (Z1322)>
(51)

2 2
+%ktc,22<l// Zl 22) +sztrmzj

1

2 X 2
Z ktrs,i[s]lﬂRz (Zl, 22 + Z

i=1 i=1

transforms of those terms to the pgf equations of system S2.
The resulting pgf balances for the system of Case III are
shown in Table 13. As previously, moment equations are
needed, which are presented in Table 14.

One of the distinct features that introduce the transfer to
polymer reaction is the presence of the derivatives of the
dead polymer pgf with respect to the dummy variables zi
(seelastterm of Equation 50 and 51). These derivatives were
computed using backwards finite differences as follows

3(yP(21,22))

ozl z1y,22;

P P
~ v (Zlk,Z21) - (Z1k+0i—17221+02—1)
Zlpi-1p402-i] — Zloi—1(k+1)+oz—z(1+1)

(55)

where ¥ (21, 22;) is the (k,]) element of the dead polymer
pgf matrix defined as in Equation (29). It should be noted
that, as shown in Equation (29), zi; decreases as j increases.
The boundary condition used is

¥F(0,22) = ¥F(21,0) =0 (56)
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(zl7 z2)
i=1 j=1
AR’ M)

2 :
Z (kfpij)\.gij’jile (21,22) — ke 27

j=1

This condition assumes that [Pg ] =[Pno] =0, which is a
very reasonable approximation for the typical shapes of
copolymer MWDs.

The second particularity that the transfer to polymer
reaction introduces is that moment equations depend on
higher order moments. In order to break-down this
dependence, the “bulk moment” closure method was
applied. According to this closure method,*®*" a “bulk
moment” 38 = A + A¥" 4 ¥ is defined which includes the
contribution of thelive copolymer chains. It should be noted
that the term A8 = A2 + % + 2¥ is approximately equal to
AP due to the very low contribution of A¥" and A¥. Balance
equations corresponding to these “bulk moments” do not
depend on higher order moments and hence provide a
closed system of equations. The actual moment
equations were applied to moments of order (0,0), (1,0),
and (0,1), and “bulk moments” were defined for orders (2,0),
(1,1), and (0,2), as shown in Table 14.

The model was solved with the set of parameters and
initial conditions shown in Table 7. The details of the
numerical solution are the same asin Case II. Figure 4 shows
the bivariate MWD for system S3. It can be seen that, as
expected, the MWD is broader that the one of Case Il as a
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I Table 14. Moment equations for system S3.

Variable Equation
Moment of R ] 2 a?latt
ay .a . . i —i, i— R
order (a;,as) # = 2f ka[l] REE -DTE-1)2+Y kpu[M] > (gl “ >)‘ali—152—i,a22—isi—1
=1 s=0
of the live ) J
copolymer Z Ry /\511 o Z kg U}‘gjo Ky — R 1[5]}»“1 o Z Rirma.ij | }kﬁ'l @
MWD j=1 j=1
: M" s
+ Z Rees 80 S] ][][MZ](Z -)"(i-1)" (52)
j=
2 2
a a
Z ktrm]l 0, 0 (2 —DTI=1)7 + Z (kfpﬂ}”o O)La1+0‘ 1ay+02-1 ka’J 2—jj— 1)‘51 a2)
j=1 j=1
= 1 2 (a17a2) = (070)5(170)7(031)
Moment of drk AP a;_ dap a; ap
1 92 ﬂ1 ay ) 4 R, K2 1 <a2> R, RL
order (al,az) = Ric.12 lz(; ]20: < ))‘IJ }‘a1 i,ap—j ktc11 IZ: 5 )‘z,] )‘al i,ap—j
of the dead 1 a; ay L s
copolymer + Ektc‘zz ; 2 (i) <J“2>)»fj Ay iay Zl Z Rtrrm,ij Aﬁl a (53)
MWD , = L, ==
Rl Rl Rl
+ Z ks, i[S )“al a Tt Z Z (kaU 2—jj- 1)‘111 a kalJ)‘O 0)‘a1+01 1.a,+02- Z)

i=1 j=1

(a1,a2) = (0,0),(1,0),(0,1)

1 2
s ) e
dt - [M1] + [M2]

D) (i — 1)%

9 L2 J
+ Z ktrsi[sp‘g,o Z m (2 ]
Jj=1

2 2
az + Z ktrml] MJ }‘150(2 ])al(.] 1)(12
i=1 j=1

+ (kp,ﬂ [M] (Agfo + 2)\50)8‘11‘28(12‘0 + Ry i [M?] (Agfo + zngl)aal‘oaaﬂ)

M- 20-

]
-

£ (Rpia [MPJA8 + ey [M]35, )8y 18,

2 N SN2 . .
Z ktC«,ii (()‘Iflo) 6111»2(SK42<() + ()‘gxl) 8“1,0&12,2 + )‘IZE:O)‘gjl(SaLlaaz,l)
i=1

1 2 1 2 1 2 1 2
+ ktc,lZ <2)‘§ 0)‘1;0801 25&2 o+ <)‘§,1)‘§,0 + )‘1;,0)‘]5,1>801,15&z~1 + 2)‘5,1)“51501,05&242)

M AR +/\§1 ot xﬁl @i (@1,@2) = (2,0),(1,1),(0,2)

result of the contribution of the transfer to polymer
reaction.

6. Conclusion

The transformation step of the 2D pgf method for modeling
bivariate distributions of polymer properties was analyzed
comprehensively. The transformation of the mass balances

M \110'5
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of the polymeric species to the 2D pgf domain was
systematized by the breakdown of this procedure into
the transformation of the individual terms that make up
the balance equations. Individual terms arising from the
kinetic steps most commonly found in different polymer
processes, were classified in common structures from the
point of view of the transformation. This allowed compiling
a collection of balance equation terms along with their
corresponding pgf transforms. The results were presented
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in a way that allows a quick transformation of most new 1.6x10°
balance equations provided that their terms belong to any
of the general expressions summarized in this paper. i
However, if thisis not the case, deductions were intended to MEunits =40 gz unjts = 50
be detailed enough to guide the reader in performing their 1.2x10% |- Moo= M2 units = 60
own transformations without serious difficulties. The _ L Meunis=70
complete 2D pgf technique was applied to three examples g = | M2 units = 80
that showed the potential of this method for modeling B .
) ; : . t . © M2 units = 80
bivariate distributions of polymer properties. = 8.0x10° |- _
.g) | “ M2 units = 100
g i i | M2 units = 110
4.0x10° -
0.0 | I | 1 | 1 |
0 1000 2000 3000
M?* units

Figure 4. Bivariate MWD calculated with the pgf technique for
Case lIl.

Appendix

In this section, we detail the transformation process that leads to the different transform terms shown in Table 1. The
method to carry out the 2D pgf transformation consists in multiplying each term, which is function of the concentration of
polymeric species characterized by two distributed domains n and m, by z1"z22™n*"*m* (a, =0, 1, a, =0, 1), and then
performing a double summation for all possible values of n and m. The result is put in terms of the 2D pgfs by means of the
definitions of the pgf and the different probabilities.

Al oSy m], S" ml Terms

Multiplication of the expression «[S,, ] by z1"z22™n*1m* and summation for n=0,..., coc and m=0,.. ., oo leads to

o0 o0 o0 o0
Z Z az1"22™n m®2 (S, m] = Z Z z1"z22M N m Sy m| (A1)

n=0 m=0 n=0 m=0

Using the 2D pgf definition given in Equation (3), the double sum in Equation (Al) can be substituted in terms of
the double moment and 2D pgf leading to the final transformed term

(AS o, (21, 22)> (A2)

In a similar r way the pgf transform of the term % is obtained, taking into account that Z Z z1"z2Mn%m%

n=0 m=0
oo z1"z22Mn"1m*2 (S
d[Snm| nX::o Eo [Sn.m]

ot ot
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A.2. a[S,_1m], a[Snm_.] Terms

Multiplying «[S,_1m] by 21"22™n%m* and summing for n=0,..., co and m=0,.. ., co leads to

Mz
M

o 21722 " m® [Sp_q m| (A3)
n=0 m=0
Taking n—1 =1 and replacing in Equation (A3),
o0
w0 > z1"z22M0 M2 [S_q ]
03 S A U s =] PO
=m0 £33 1M1 ) S (a4)
=0 m=0

I
)
NgE

z1"z22™ (14 1) m®[Sy ]

S
3

=0
In the previous derivation it was considered that [s_; ,,] = 0 since the species [s_; ,,,] does not exist in the system. Recalling
ax

the binomial formula for (I + 1)%, (I+ 1)" = Y (arl ) I' and replacing in Equation (A4),
r=0

00 00 ay ay o0 00
S S z21Hizom S (“1>1r me (S, = azl 3 (“F) S5 211Z22M I me [S) )
=0 m=0 r=o\ T ' =o \ J / i=om=o0

a; a, (AS)
=zl Zo ( , ) (Afﬂz S @ (21722)>
r=

In a similar way the transform for «[S,, ,,_1] is obtained.

A.3. a[sn+1,m]1 a[Sn,m+1] Terms

Starting with

z1"z22"n"m* [Sp11.m]

i
NgE

(A6)
n=0 m=0
Taking I=n+1 and replacing in Equation (A6),
a Z Z 2171 22™ (1 — 1) m® (S ] (A7)
1=0 m=0
00 00 1 00
ay Z e e R Z 22" m 2 [So ] (A8)
=0 m=0 m=0
Applying the binomial formula to (I — 1)* to the first term and rearranging,
ay oo 0
% (Z (“rl ) D= 2" M ()] — (—1) 4,08 4, (21, 22)> (A9)
r=0 1=0 m=0
Replacing by the pgf definition,
a (~(a _
“ (Z ()0 (Habhan2.2)) - (173 0, 0.2 (a10)
r=0
In a similar way the transform for «[S, ».1] is obtained.
MAL(;“\S Macromolecular
\l|0”5 Macromol. Theory Simul. 2013, 22, 273-308
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LU SR SCACAPERTS 3B ol HIE SN ol oC AL IS b o SIS Sl ot P
i=1 j=0 i=0 j=0 i=0 j=0 i=0 j=1 i=1 j=1
anil % Sij][Sn—im—j], & i El [Sij][Sn_im_j] Terms
i=1 ]:0 i=0 j=1

n m-1
Letus considertheterma Y- - [S} ][ n—im—j|- Multiplying by z1"z2™n"m® and summingforn=0,...,coand m=0,.. ., coit
is obtained =1 =0

n -1

3

ad nm®z1" 22" [S; (S5 ] (A11)
n=0 m=0 i=1 j=0
The sums in i and j can be extended to 0 and m as
o0 o0 m m m
O[Z Z n“tm*z1"z2™ ZZ Sl 531 im ] Z n m ] Z [Sil,mnsfl—i,o] - [S(l)ﬁo][si}m] (A12)
n=0 m=0 i=0 j= j-1 i=1
The last term in Equation (A12) vanishes because [S ;] = 0. For the first term, rearranging sums leads to
o0 n o0 m
ad N N> ntm®" 2™ [SH[S2 (A13)
n=0 i=0 m=1 j=0
oo 1 00
Then, the identity >~ > ... = > 3 ...is applied to the previous expression, giving
1=0 k=0 k=0 1=k

“iiii”“lm”ﬂ"ﬂmﬁl [Sa-im] (A14)

i=0 n=i j=0 m

<.

o i i i i (i+uw)™ (j +v)*= 207227V [S} [ ] (A15)
o i i i i ( a1 <ar1 ) i ual—r> ( a2 <at2 )jtvaz—t> 71Uz Y [Sl MSZ )l (A16)
< £ ;

< 2) S Z Z I'j'21'22) [} Ju™ v t21422(S7 | (A17)
i=0 j=0 u=0 v=0

ay [25) [o°] [o°] o0 oo
@ % <“; SN 530S un e 12Y(s2, ) (a18)
r=0 t=0 r i=0 j=0 u=0 v=0
ai [25)
a a 2
o ( rl>< 2)( t¢ (21722)> <A§1 v t¢a1 v t(zl,zZ)) (A19)
r=0 t=0

The transform of the second term in Equation (A12) is deduced as follows. From

(xz Z nim%z1"z2™m Z (55,1155 ] (A20)

n=0 m=
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Extending the sum in j from 0 since [Sj,] = 0 and operating,

o Z Z n“*m%z1"z2™ Z [S5,1(S%m] (A21)

n=0 m=

aiiin“lmazzl”zzm[s ]][ nm—j] (A22)

a i i i n® (k +j)*21"22" (S |[Sh ] (A23)
o i i i n® (azz (“Z ) kljee ’) 21"22%4[53 ][S2 ] (A24)

a 3 < ) ZZZJ]“2 s3] <ii nklz1" z2k)[s? ]) (A25)

n=0 k=0

Equation (A25) can be put in terms of the pgf definition using Equation (3) and (6):

az
a 1
@y ( : ) (Mar1950s1(0,22) ) (35,185, 1(21,22) ) (A26)
1=0
Following a similar procedure, the transform of the third term in Equation (A12) is
a
a
o (Z (%) (351085 10(22.0)) (3,88, 02,72)) = (45.00510(22.0)) (35, a2<o7zz>)> (127)
1=0

It should be noted that the contribution of Equation (A26) and (A27) is usually zero because species S* and $* can be chosen
so as that [S5;] = 0 and [$7] = 0
The final expression for the pgf transform is

ii( )( t )(Afi@fi(zl’zz)) <A52 r.as— t¢a1 rity t(zl,zZ))
¢ _1;( I2><}‘éla2—l¢0az 1(0722)>< ¢a11(zl,22))— 28]
> (all)( o109 10(71,0)) (a8, (21,22)) + (45, o97,0(23,0)) (1,02, 0.22)

1=

n-1m n m-1
The pgf transform of the remaining expressions, « > > [S}J][ n—im—jl» ocZ Z st }[ neimojl @2 St ][Sn im—jb
n-1m-1 n-1m n m-1 i=0 j=0 i=0 j=0 =0 j=1
ad. [S},j][ noimb @ 20 20 [Sijl[Sn—im—jl, @ >0 > [Sij][Sn-im-j], are deduced likewise.
i=1 j=1 i=1 j=0 i=0 j=1

[eo) o0
A5. o ) Spianda > Sim, Terms

i=m+1 i=n+1

Applying to this term the multiplication by z1"z2™n“m? and summing for n=0,..., co and m=0,.. ., oo it is obtained

o0

o Z Z n“mz1"z2™ E [Sn,i] (A29)
n=0 m= i=m+1
o0 oo oo

@Y Y ntm®z1"z" (Z Sni] — [Snm] ) (A30)
n=0 m=0 1I=m
oo oo o0

O{Z Z n®mi2z1"zom Z [Sn,i] — ()Lgl @ il,ﬂz (zl,z2)> (A31)
n=0 m=0 i=m
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Now, operating with the first term in Equation (A31),

o i i nm2z1"z2m i [Sn.i]

n=0 m=0 i=m

o i n%z1" i [Sn.i] i mz2™m
n=0 =i m=0

i
The sum ) m?z2™ can be shown to yield
m=0

1— 22i+1

i ifa, =0
imazzz”‘— 1-22 ya

Z212f _ Z0iH1j _ zoit1 4 7o
5 Ifaz =1

(1-22)
Replacing the expression for a, =0 in Equation (A35),

e © 1 — z2itt
a) nfz1" Sni| ———
Zo - 50l T2

i=

n=0 i=0 n=0 i=0
(35,085,002, )) — 22 nmz1z25}>
o ( : >3

o

1 (45,08, 0(22.2)) = 2233, 85, o(22.22)) )

A. Brandolin, M. Asteasuain

(A32)

(A33)

(A34)

(A35)

(A36)

(A37)

(A38)

(A39)

(A40)

Now, adding the second term in Equation (A31) and operating, the final expression for the pgf transform of the term

o0
@ Y. Spiwhen a,=0 is obtained:
i=m+1

(g ((oto@.1) = (3,088, 0(2.22) ) )

(A41)

In the case of a, =1, replacing the corresponding expression in Equation (A36) into Equation (A35), it is obtained

o n mz2™M+2 — mz2m+l — z2M+L 4 7D
ern 171 Zo Sn,] (1722)2
1

o0 o0 o0 o0
222 % Y nMz1"mz2™ [Sp;] — 22 Y Y n®z1"mz2™ Sy ]

n=0i=0 n=0i=0
2 00 0 00 0
(1-22) =223 > nMz1" 22" [Sp] +22 3. 3 n®z1"[Sy]
n=0 i=0 n=0i=0
£ Macromolecular
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o 22 (Asl 8 1(21722)> —2 (Asl N 1(z1,z2)) —2 (A§1A0¢§1,0(z1,z2)>

(1- 22)2 +2z2 (AS 5.0(2L, 1)) (aad)

Adding to Equation (A44) the second term in Equation (A31) and operating, the final expression for the pgf transform of
theterm o > S,; when a, =1 is obtained

i=m+1
1 z2
“\-aTm ( S105 l(zl,zz)) T ar (( S oS ol21, 1)) S ofS 0(z1,z2)> (A45)
In a similar way the transform of the term « Z Sim is obtained.
i=n+1
A6.a) > [Si;] Term.
i=nj=m
Starting with
o Z Z n®m®z1"z2™ Z Z [Sn.i] (A46)
n=0 m=0 i=m j=m
Rearranging sums,
o Z E Z Z nm*z1"z2M[S; )] (A47)
n=0 i=n m=0 j=m

oo 1 00 o0
Applying the identity >~ > ... = > > ... to the two first and two second sums,
k=0 1=k

=0 k=0
oo i 00 j
o Z Z Z n“m*z1"z2M[S; )] (A48)
i=0 n=0 j=0 m=0

Rearranging sums again,

v
MR

[Sij Z n®z1" Z m?2z2™M (A49)

Il
o
-
Il
o

The last two sums in Equation (A49) yield the following expressions depending on the values of a; and a,:

212221122 — 71211 — 22220 + 1

(1—21)(1 —22) ifa; =0anda, =0

—z1z29%1 4 71 — (7122001 4 71142

i J 4711704 _ Z1HL | DI g il
n%zl" Y m®z2™ = 5 ifa; =1landa, =0 (A50)
; r;) (1-21)°(1-22)

—72717 4 72 — jz1 7170042 | jz00+2
+Zli+lzzj+1 _ 22j+1 +jzli+lz2j+l _j22j+1
(1—2z1)(1—22)°

ifai =0anda, =1
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Replacing Equation (A50) into Equation (A49) and rearranging sums seeking pgf definitions, like in A.5, yields the

following final expressions:

7122 (xg_o¢gﬁo(z17 zz)) —z (Ag,o(pg,o(zL 1))

a\ =ma—n) _m (Xg,oﬁﬁg:o(l,ﬂ)) i }‘g,o
e e (zlzz <Ai,o¢i‘o(zl, zz)) —z (Aiotpi,o(zl 1)) ) +
o . 7122 (3,065,021, 22) ) — 7122 (3 o5,0(1,22) ) -
-’ 1-2) | 51 (xgp(pg’o(zl, 1)) + 2138
i (7122 (38268,(21,22) ) ) - 2238248, (1,22) )+
o 7122 (Agoqﬁw (zl,z2)> — 2122 (Ag,o(p (z1,1) )—

1
(1-21)(1-22)? o <)\'g>0¢30(17 ZZ)) 4 22)%‘0

A7. « i [Sni] and « Xn: [Sim| Terms

i=1 i=1

Starting with

m
ntm%z1"z2™m Z [Sn.i]
0 i—1

ot
Mz

B~
|l
o
i

o
Mz

3
g
3
g}

i=0

m
nim%z1nz2™m (Z [Snil — [Sn o])

m (o] o0
n“mz1"z2™ Z [Sni] —« Z Z nm®z1"z2™M[S, o]

=0 n=0 m=0

)
NgE

3
g
3
g}

Operating with the first term of Equation (A54),

m
Z n“tmz1"z2™(Sy ]
0i=0

o i n®z1" i i mz2™ Sy ]

n=0 m=0 i=0

aZn‘“zl"Z Sn.i Zm‘“zz’”

The sum Z m?2z2™ yields

m=i

ot
Mz

~
|l
o
i

z2!

S 1-22
ap ,Hm __ ]
Zm 227 = 721(22 — iz2 + i)

(1-22)°

ifGQ =0

ifaz =1

ifa; =0anda; =0

ifa; =1landa; =0

ifa; =0anda; =1

(A51)

(A52)

(A53)

(A54)

(A55)

(A56)

(A57)

(A58)

Hence, replacing Equation (A58) in Equation (A57) and rearranging in terms of the pgf definitions, yields

o

(7)) A5 oBs,0(21,22) ifa, =0
1 z2 .
« <(1_) 0100,1(21,22) + — (1-2) K 0P, 0(21722)> ifa, =1
Macromolecular
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On the other hand, the second term of Equation (A54) is rearranged into

- - 72 n“z1"[Syo] ifa, =0
D BRCELCN) SECELES S (A60)
n=0 , m=0 z2 :
(1-22)% 4% S 9z (S,] ifa; =1

o0
Recalling Equation (5), it can be seen that > n%z1"[S,,] = )‘él,o‘Pgl‘o(Zlvo)' Therefore, the final expression for the pgf

m n=0
transform of the term « Y [Sn,] is
w i-1
m( siad,1(21,22) — Ail,oﬁﬁil,o(ﬂ’zz)) ifa,=0
o s s z2 s s s s . (a61)
) 25185, (21,22) +m(}”a110¢a1,0(21’22) — 25, o o(21, 0)) ifa, =1

In a similar way the pgf transform of the term « Z [Si.m] is obtained.
i=1

n m
A8.a) > [Si;] Term
i=0j=0
Applying to this term the multiplication by z1"z2™n“m? and summing for n=0,...,00 and m=0,...,00, and operating,

o Z Z ntm®z1"z2™ Z Z [Si4] (A62)

n=0 m= i=0 j=0

=

o0 o0 m
> >N ntm®z1mz2m (s (A63)
n=0 i=0 m=0 j=0

nm®z1"z2"s;] (A64)

NgE
M
g
HMS

T
o
=S
T
o
I
o
3
A

"
MR

[S,J Z n®z1" Z m®z2™ (A65)

Il
o
-
Il
o

The last two sums in Equation (A65) lead the following expressions according to the values of a; and aj:
71172
(1-21)(1-22)
i n%z1" i m®z2™m = (z1 - 121:— )71’z ifa; =1landa, =0 (A66)
= = (1-21)°(1-22)
(22 — jz2 + j)z1'2
(1—2z1)(1 —22)*

ifa; =a,=0

ifa; =0anda, =1

Replacing Equation (A66) into Equation (A65) and operating seeking for the pgf definitions yield the final expressions for
the pgf transforms:

(105021, 22))
1)1 -22)
1
(1-21)(1-22)
z1
(1 —zl) (1-22)

AR TiR (AS (21 22)>
o 22 ifa; =0anda, =1

()‘o,od’o,o (zl,z2)>

ifa1 =a,=0

(}Lio¢io(zl7z2))
ifa; =1anda, =0

( oo¢oo(21 22)> (A67)

* (1—2z1)(1 —22)?
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A9. an* imi 1S, ], i=1,2 Term

Applying the multiplication by z1"z2"n%m% and summing for n=0,...,00 and m=0,...,00, and operating,

n“m%z1"z2"n?> " "m* (S, n] i=1,2 (A68)

)
NgE

B~
II
o
i

0

nt 2 im@ iz ng Mg, ] i=1,2 (A69)

)
NgE

0

S
Il
o
i

Ot()‘(511+2—i‘ﬂ2+i—1¢21+2—i,az+i—l(217Zz)) i=1,2 (A70)
The previous expression adopts the following outputs for each value of i:
(A'Zl+l az¢a1+lag (21722)) ifi=1

(A71)
(3, 108, a0 (21,22)) i =2
Recalling Equation (10) and (11), the pgf of orders a; + 1 can be put in terms of the derivative of the pgf with respect to their
dummy variables as shown in Equation (A72), which is the final form of the pgf transform.

ZlB(/\S & (z1,z2))
PO i ;;:2 i=1,2 (A72)

A.10. a(n-1)[S,,m], &(m=1)[S,,,m] Terms

Let us consider the term «(n—1)[S, ,]. Applying the multiplication by z1"z2™n"*m and summing for n=0,...,c0 and
m=0,...,00, and operating,

oo oo
% E Z nm®z1"z2™(n — 1)[Sp.m) (A73)
n=0 m=0
oo o] o0
o (Z Z N m®2z1"z2™ S, m] Z nu m“zzlnz2m[5nrm]> (A74)
n=0 m=0 n=0 m=0
()‘511+1 a2¢a1+1,a2 (Zl,ZZ) a1 azd)al ay (Zl,ZZ)) (A75)

Finally, expressing the pgf of order a;+1 in terms of the derivative with respect to the dummy variable z1,

aiy,dp Tay,az
o P Moy 0P a0, (21, 22) (A76)

le(AS s (zl,z2)>

Likewise, the transform of the term «(m-1)[S,, ] can be obtained.

A.11. an[S, m], em[Sm-1,m] Terms

Let us consider the term anl[S, m-1]. Applying the multiplication by z1"z2™n**m* and summing for n=0,...,00 and
m=0,...,00, and operating,

oo o @]

o Z Z n“amz1"z2™n|S, ;1] (A77)
n=0 m=0
oo o0

P Z Z n*im®z1"22M (S, m 1] (A78)

n=0 m=

0
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Letting r=m—1 and substituting,

o0

@Y Yt (r 4+ 1)%21" 22" S, ] (A79)

n=0r=-1

Since z2 is independent of the summation variables and [S, ;] =0,

o0 00

@z2 > n® T (r 4 1)%21"22'(S,,,] (A80)
n=0 r=0
oo 00 ap a

02233 ( ( R ) ﬁ) 21722 (55, (a81)
n=0 r=0 t=0

2) iin“l“ r'z1"z2"[S,,] (A82)

~
Il
o
<
|l
o

(¢
w2 ( 2) S e a2l 22)> (A83)
-

a ) zla Asl vy t(szZ))

az2 A84
“ t 0z1 (A84)
a (35 45 (21 zz))
a, ( ay,t¥as,t ’
azlz2tz_;< ; ) =) (A85)

In a similar way, the pgf transform of the term am([S,_; ,,,] is obtained.

m-1

Al2. « Z Sij][Sn—ir1.m—j] Term

T M:

Applying the multiplication by z1"z2"n%m and summing for n=0,...,0o and m=0,...,00, and operating,

oo 00 n m-1
azo Zon“lm”zl"zf" Z Z i) [Sn—i+1,m—j] (A86)
n=0 m= i=1 j=1

330 18i][Sn o1 ] — z 1So7](Sns1.m.]

n“mz1"z2™ [ =0=0 (A87)
- Z ([Si.onsn—wl,m] + [Stm][sn*i‘#l,o})
i=0

o
Mz

3
Il
o
3
Il
o

Taking the first term in Equation (A87) and operating,

=

i
N
Nt

nm®z1"z2"[S;)[Sn-i+1,m—j] (A88)

3
I
<)
3
I
)
Il
<)
-
Il
<)

o0 [o°] [o°] o0
o Z Z Z Z n“mz1"z2™ [Sij] [Sn—i+1‘m—j} (A89)
i=0 n=i j=0 m=j
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Applying the substitutions p=n—i and g = m—s and operating,
@Y D D Y i+ +q) 22 Pz MS][Spiag) (A90)

o0 00 0 00 dy a e u as a oy . ]
o333 (S5 (4 )ew ) (35 (% o | azisis o)
i=0 p=0 j=0 q=0 \u=0 v=0

ay as a a o0 o0 . o0 o0 U gy
o ( ;) ( \/2) ZZZ 121'22/[S;;) ZZZIPZqu g%V [Sp 1 q) (A92)

q=0

Il
o
-
Il
o
“ﬁ
o

o a a ((311) (Ci/z)( uvd)uv Zl 70 >§:§:lezqua17uqazfv [Sp+1,q] (A93)

p=0 g=0

1 /a1—u _
From the derivation in section A.3 of this appendix, it can be seen that Z Z z1Pz29p™4q®2 7V [Sp 1 4] = A ( > (al X u )
p=09=0

(—1)ux (Af( ar vPrar V(zl,zZ)) (-1)n (Ag @ vPo.ar V(O,zz))), and hence the expression in Equation (A93) results

. uaz;éag <aul) (?) (alx_ u)(,1)“17!1”‘()Li’v¢;v(zl,22)>( s vPiay v (21, zZ))

S S ) (R B (0.22))

u=0v=0

(A94)

Following a similar procedure the pgf transforms of the last three terms in Equation (A87) can be obtained, yielding the
final expression

SEE(W) () (M) v (st @1.2) (3, e, 21.72)
3 3 (1 (10, v, 1(0.22)) -
S EE(9)(% ) v (il ) (e, e 0.22) - (195)
85 () (5) 0 (3ot wole1.0)) (3, a1.22)) -
85 () (5) 0 (1ot (e1.0)) (4, ety ver(e1.2)

A.13. adyj, adm,j, j=0,1,2 Terms

Let us consider the term a4, ;, the transform for the term «é,,,; is derived in the same way. Applying the multiplication by
z1"z2Mn"*m? and summing for n=0,...,00 and m=0,.. .,00, and operating,

oo o ¢]
@ ntm®z1"z2" s, (A96)
n=0 m=0
oo o0
@Y n%z1"8,; Y mez2" (A97)
n=0 m=0
X o0
a2 Y " m®z2m (A98)
m=0
ozj“lzlj( 2) ifa,=0
) (A99)
ajzl ifa, =1
S Ay
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\,. Journals Macromol. Theory Simul. 2013, 22, 273-308 M \'|0)§

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.MaterialsViews.com



Macromolecular
Mathematical Modeling of Bivariate Distributions of Polymer Properties Using... Theory and Simulations

www.mts-journal.de

The expression in Equation (A99) can be compacted as function of a, in the following way, which is the final form of the pgf
transform of this term:

M(2+k-1)

ajizl kzll_w (A100)

A14. adnudmyv, ®[Sn_1.m|0nudmy,[Snm-1]0nudmy,u,v=10,1,2, ... Terms

Letus consider the term a8, ,8m,v since the other ones are transformed likewise applying the multiplication by z1"z2™n* m*2
and summing for n=0,...,00 and m=0,

a Zo ZO nm®z1" 228, uSm.y (A101)
n=0 m=

Sincethe only non-zeroterminthe previous sums is that with n equalto u and mequal to vsimultaneously, the expression
yields

autv®z1%z2" (A102)

A.15. oc[S,.,m]é,,J-,a[S,,ym]émJ,oz[S,.,l,,,.]s,,J-,oc[S,,ﬁm,l]Smjj =0,1,2,... Terms

Let us consider the term «[S, )8, since the other ones are transformed likewise. Applying the multiplication by
z1"z22Mn"1m? and summing for n=0,...,00 and m=0,.. .,00, and operating,

@Y > Nt m2z1" 22" [Sn o, (A103)
n=0 m=0
oz Y " m®z2M[S; (A104)
m=0

The sum i m®z2™[S; 1] is the univariate pgf transform of the distribution of the property represented by the second
m=0
subscript, of the polymer molecules with a j value of the first distributed property. Examples of this could be the chain length
distribution of branched macromolecules with j branches, or the distribution of the second comonomer content in a
copolymer with junits of the first comonomer. More details about univariate pgf can be found elsewhere. Besides, in the case
of j=0, this univariate pgf coincides with the bivariate pgf evaluated at z1 = 0. Hence, the final expression of the 2D pgf
transform of the term (S, m]8n; is

ajalzlf(uig*gaf{;) j=0,1,2,...
or (A105)
0™ <}‘g a2¢07a2 (Oa 22)) ] =0

where (ufiz (pijz (zZ)) is the univariate pgf transform mentioned before.

[

m—

n-1m n
[ ij ][ n—im ]} 87L18m,1} o Z Z [Sij][sn—i,m—j] 8"_]/]. = 07 17 o Z 4 [Sij][sn—i,m—j] 8mj7j = 07 1 Terms

Al6. « i
i=1 i=1 j=0 i=0 j=1

||M$

Let us consider the term« Z Z [Sl S, _j18n.18m 1 as example, since the procedure with the other ones s similar. Keeping
i=1 j=

only the nonzero terms in these sums, the result is

0 0
o Z Z [Szlﬂ [5%71317]‘] =0 (A106)
=1 j=1
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Therefore, applying the multiplication by z1"z2™n“1m? and summing for n=0,...,00 and m=0,...,00,
o0 o0
@) > nmm®z1"z2™0 = 0 (A107)
n=0 m=0

which means that the pgf transform of this term is 0.

A17. « Z [Sim]dno, Z [Sn.i] 8mo Terms

i=n+1 i=m+1

Let us consider the term « ) [Sim]dno. Applying the multiplication by z1"z2"n“*m“ and summing for n=0,.. .,co
i=n+1
and m=0,...,00, and operating,

o Z Z n®tm®z1"z2™ Z [Sim)8n.0 (A108)

n=0 m= i=n+1
00 o0 0 if a, =1
o Z 01 m*221%22™ Z [Sim] = i mazzom i [Sim] ifa; =0 (A109)
m=0 i=1 m=0 i

Additional operation with the expression Y m?2z2™ > [S; ] gives
m=0 i=1

i f: M222™[S; ] — i m®22™ [So ] (A110)

m=0 i=0 m=0

Recalling the 2D-pgf definition given in Equation (3), it can be seen that the previous expression results

( 0a2¢0a2(1 22)) ( Oaz(pOaz(O 22)) (A111)

Therefore, the pgf transform of the term is
0 if a =1

( 022 P, (L, z2)> ( 0.a,%.a, (0, 22)) ifa; =0 (A112)

The pgf transform of the other term is deduced likewise.

A.18. « i i [S,‘j] Sno0, & i": § [Sij] dmo Terms

i=nj=m i=nj=m

oo o0

Let us consider the term o ) >~ [S;;] 850, the other one is deduced likewise. Applying the multiplication by z1"z2™n% m®
i=nj=m

and summing for n=0,..., oo and m=0,..., oo, and operating,

o0
aZZnalm“2z1” 2’“22 1] 8n0 (A113)
n=0 m= i=n j=m
0 ifal =1
0
aZO“l e S SICTE @ ¥ me2n Y S 5] fa=0 (a114)
=0 j=m =0 j=m

Proceeding with the expression for a; =0,

(A115)
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. _
> ISl > mz2m (A116)
j=0 m=0

o

Mx

Il
o

i

The sum in m in the previous expression has the following results according to the value of a,:
1-z2"t .
_— ifa, =0

! 1-22
3 meazom — I — iz g 4 g (A117)
= J J ifaz =1

(1—22)?

Replacing these expressions into Equation (A116) and using the pgf definition, the following expression is obtained for the
pgf transform of this term:

0 ifal =1
1
o (M0~ 22 (M 6950(1,22)) ) far — 0andas — 0
A=z (o~ 2(15otho1.2) ifa = 0anda; a119
z2 72
-2 (25,45 1722)-1—_ (As s 1,22> fFa —oandas — 1
(1722)< 01%0.( ) (1-22)7 0.0%0.0( )) fa 2
A.19. an?imSp 1m8n0, an?*imi T [Sp m|8mo0, i—1,2 Terms

Let us consider the term an?-'m =[S, u|8n0, since the other one is derived likewise. Applying the multiplication by
z1"z2"n"tm? and summing for n=0,..., co and m=0,. .., co, and operating,

o0 o0

@Y > nmmz1" 22 m' (S ] 80 (A119)
n=0 m=0

@0™ 271210y " m® 22 (S ] (A120)

m=0

00" 21210 (35 1 i 108 0,114(0.22)) (A121)

0 ifi=lora; =1
( 00, 9%, (0722)) (A122)

a<)‘g,az+l¢é,az+l(oa22)> =az2 = 3;22 iffi=0anda; =0

A.20. a(n —1)[Spm|0n1, a(Mm — 1) [Sy.m|0m1 Terms

Any of these terms are always zero for any value of n or m. For instance, the term «(n — 1)[S, m]én 1 is 0 for n= 1 because of the
Kronecker delta factor, and also for n =1 because of the (n—-1) factor. Therefore, the pgf transform of this term is 0.

A.21. om[S,.‘m,l]S,.‘oBm‘o, otm[S,.,lrm]S,,_,oSm‘o Terms

As inthe previous case, these terms are always zero for any value of n or m. For the first one, the multiplication of Kronecker
deltas extract as the only potentially nonzero expression, among all the possible ones for the different combinations of nand
m, the one «0[So _1] = 0. Therefore, the pgf transform of this term is 0.

A22. o

T M:

m— n m-1
Z (Si][Sn—i+1m—jlno, @ 2 > [Sij][Sn—i+1m—j|0m1 Terms
= == n(=0)  m-1(=0)

The pgf transforms of these terms are zero because the Kronecker deltas determine meaningless sums,ie, % or 3
i=1 j=1
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