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Abstract

The notion of k-limited packing in a graph is a generalization of 2-packing. For a
given non negative integer k, a subset B of vertices is a k-limited packing if there
are at most k elements of B in the closed neighborhood of every vertex. On the
other side, a k-tuple domination set in a graph is a subset of vertices D such that
every vertex has at least k elements of D in its closed neighborhood. In this work
we first reveal a strong relationship between these notions, and obtain from a result
due to Liao and Chang (2002), the polynomiality of the k-limited packing problem
for strongly chordal graphs.

We also prove that, in coincidence with the case of domination, the k-limited
packing problem is NP-complete for split graphs. Finally, we prove that both prob-
lems are polynomial for the non-perfect class of P4-tidy graphs, including the perfect
classes of P4-sparse graphs and cographs.
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1 Introduction

The concepts of packing and domination in graph theory are good models for
many location problems in operation research. As was introduced in [3], in the
packing case we consider the location of necessary but obnoxious facilities in
specified placements, in such a way that no more than a fixed number k of these
facilities should be placed inside the “neighborhood” of each placement. We
are interested in placing the maximum number of facilities in a given scenario.
In contrast, in the dominating case at least a fixed number k of facilities are
required inside the “neighborhood” of each placement. In this case, we wish
to place the minimum number of facilities that satisfy the requirements.

For both problems it is usual to model the scenario by a graph G, where
the possible locations for the facilities correspond to the subsets of its vertex
set.

In [1] we have presented a linear-time algorithm for the k-limited packing
problem in trees, for any non negative integer k. The proof was based on a
generalized version of a k-limited packing presented in detailed in the next
section.

On the other side, Liao and Chang ([9] and [10]) also provided a linear-
time algorithm for the k-tuple dominating problem for strongly chordal graphs,
which in particular includes trees. The algorithm is also based on a generalized
notion of a k-tuple dominating set. Besides, they showed that the problem is
NP-complete for split graphs and left open the complexity of this problem for
other subclasses of perfect graphs.

In this paper we show that the generalized versions of the k-limited packing
and k-tuple dominating problems mentioned above are equivalent. From this
equivalence and the results by Liao and Chang in [10], we obtain for the
generalized version of the k-limited packing problem, the polynomiality for
strongly chordal graphs and the NP-completeness for split graphs. Besides, we
prove that the problem remains NP-complete for split graphs when restricted
to the particular instances corresponding to the k-limited packing problem.

Finally, we analyze the behavior of the the k-limited packing and k-tuple
domination numbers for the union and join of two given graphs. Our results
allow us to prove the polynomiality of the k-limited packing and k-tuple dom-
ination problems for P4-tidy graphs. Since P4-tidy graphs generalize P4-sparse
graphs, our results provide another class of perfect graphs —P4-sparse— for
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which the k-dominating problem is polynomial, as asked by Liao and Chang
[10].

2 Basic definitions and notation

Graphs in this work are simple and for a graph G, V (G) and E(G) denotes
respectively, its vertex and edge sets. A graph G is trivial if it has at most
one vertex.

For v ∈ V (G), N [v] denotes the closed neighborhood of v in G. The degree
of v in G, denoted by δ(v), is |N [v]| − 1.

Given two graphs G1 and G2, with V (G1)∩V (G2) = ∅, the (disjoint) union
of G1 and G2, denoted by G1 ∪G2, is the graph with V (G) = V (G1)∪ V (G2)
and E(G) = E(G1) ∪ E(G2). The join of G1 and G2, denoted by G1 ∨ G2, is
the graph with V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {ij :
i ∈ V (G1), j ∈ V (G2)}.

Given a graph G and a non negative integer k, B ⊆ V (G) is a k-limited
packing in G if |N [v] ∩ B| ≤ k, for every v ∈ V (G). On the other side,
D ⊆ V (G) is a k-tuple dominating set in G if |N [v] ∩ D| ≥ k, for every
v ∈ V (G).

Both concepts have been generalized in [1] and [9], respectively. The no-
tation for the domination case has been slightly modified in order to make it
consistent with the notation for the packing case.

Definition 2.1 Let G be a graph.

• Given c = (cv) ∈ Z
V (G)
+ and A ⊆ V (G), B ⊆ V (G) is a (c,A)-limited

packing in G if B ⊆ A and |B ∩ N [v]| ≤ cv, for every v ∈ V (G).

• Given r = (rv) ∈ Z
V (G)
+ and R ⊆ V (G), D ⊆ V (G) is a (r,R)-tuple

dominating set in G if R ⊆ D and |D ∩ N [v]| ≥ rv, for every v ∈ V (G).

Given a graph G, a vector c ∈ Z
V (G)
+ , A ⊆ V (G) and b ∈ Z+, the (c,A)-

limited packing problem is to decide if there exists a (c,A)-limited packing in
G of size at least b. The (c,A)-limited packing number, Lc,A(G), is defined as
the maximum cardinality of a (c,A)-limited packing in G. Clearly, if cv ≥ δ(v)
or cv ≥ |A| for every v ∈ V (G) , we have Lc,A(G) = |A|.

When A = V (G) and cv = k for every v ∈ V (G), (c,A)-limited packings
are k-limited packings and Lc,A(G) is denoted by Lk(G). Notice that L0(G) =
0 for every graph G.

On the other side, given a graph G, a vector r ∈ Z
V (G)
+ , R ⊆ V (G)

and d ∈ Z+, the (r,R)-tuple domination problem is to decide if there exists a
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(r,R)-tuple dominating set in G of size at most d. The (r,R)-tuple dominating
number, γr,R(G), is defined as the minimum cardinality of an (r,R)-tuple
dominating set in G. It is clear that, if rv ≥ δ(v) + 2 for some v ∈ V (G),
there does not exist an (r,R)-tuple dominating set in G; in this case we define
γr,R(G) := +∞.

When R = ∅ and rv = k for every v ∈ V (G), (r,R)-tuple dominating
sets are k-tuple dominating sets and γr,R(G) is denoted by γk(G). Notice that
γ0(G) = 0 for every graph G.

3 The k-limited packing number for strongly chordal
graphs and for split graphs

Let us begin this section by remarking the following, which implies that the
(c,A)-limited packing and (r,R)-tuple domination problems are equivalent:

Remark 3.1 Let G be a graph, A ⊆ V (G) and c ∈ Z
V (G)
+ . Then, B ⊆ A is a

(c,A)-limited packing in G if and only if D := V (G) − B is a (r, V (G) \ A)-
tuple dominating set in G, where rv = max{0, δ(v) + 1 − cv}.

Clearly, from this remark, any algorithm that solves one of the problems
also solves the other. Since the (r,R)-tuple domination problem is linear for
strongly chordal graphs [10], we obtain:

Corollary 3.2 The (c,A)-limited packing problem can be solved in linear time
for strongly chordal graphs.

Let us observe that the polynomiality of both problems on strongly chordal
graphs can be also derived from the total balancedness of their incidence
matrices of the closed neighborhoods (see, for example, [2] and [5]). The step
forward provided by the above corollary is the linearity in the time resolution
of the corresponding algorithms.

A graph is split if its vertex set can be partitioned into a clique Q and
an stable set S. In [10] it is proved that the k-tuple domination problem is
NP-complete for split graphs, via a reduction of the vertex cover problem.
Given a graph G = (V, E), they construct a split graph G′ = (V ′, E ′) with
V ′ = V ∪ S ∪ E, where S = {s1 · · · , sk−1} and E ′ = {uv : u �= v, u, v ∈
V ∪ E} ∪ {ve : v ∈ V, e ∈ E, v endpoint of e} ∪ {sie : si ∈ S, e ∈ E}. It is
not difficult to see that G has a vertex cover of size α if and only if G′ has a
k-tuple dominating set of size α + k − 1.
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As a consequence, the (r,R)-tuple domination problem and the (c,A)-
limited packing problem are NP-complete.

To end this section we show that the (c,A)-limited packing problem re-
mains NP-complete on the particular instances corresponding to a fixed k. We
have:

Theorem 3.3 The k-limited packing problem is NP-complete for split graphs.

The proof is based on a reduction of the stable set problem. Given a
graph G with V (G) = {vj : j = 1 . . . n} and E(G) = {el : l = 1, · · · , m}, we
construct the split graph G′ with V (G′) = Q ∪ S with Q = E(G) and S is
the union of k “copies” of V (G), that is S =

⋃k
i=1{vi

j : 1 ≤ j ≤ n}. For each

vertex e = vpvq ∈ Q, N [e] ∩ S =
⋃k

i=1{vi
p, v

i
q}. We can prove that there exists

a stable set in G of size α if and only if there exists a k-limited packing in G′

of size kα. te

In the next section we study the k-limited packing and the k-tuple domina-
tion numbers on families of graphs where both parameters can be polynomially
obtained.

4 The k-limited packing and the k-tuple domination
numbers of P4-tidy graphs

P4-tidy graphs were introduced by Rusu (see [4]), generalizing cographs and
P4-sparse graphs [6]. Let us take as definition of P4-tidy graphs a characteri-
zation given in [4]. Before presenting it, let us recall the following definitions.
A spider is a graph whose vertex set can be partitioned into S, C and R,
where S = {s1 · · · , sr} is a stable set, C = {c1, · · · , cr} is a clique, r ≥ 2; and
the head R is allowed to be empty. Moreover, all vertices in R are adjacent
to all vertices in C and non-adjacent to all vertices in S. In (a thin spider)
si is adjacent to cj if and only if i = j and in (a thick spider), si is adjacent
to cj if and only if i �= j. It is straightforward that the complement of a thin
spider is a thick spider, and vice-versa. The triple (S,C, R) is called the spider
partition and can be found in linear time [7].

One one hand, given a graph G which is not a spider, it is P4-tidy if and
only if, in case G and its complementary graph G are connected, then G is
a trivial graph, P5, P 5, or C5. On the other hand, given a spider G with
partition (S,C, R), G is P4-tidy if and only if the subgraph induced by R is
P4-tidy.

It is not difficult to prove that the family of P4-tidy graphs is hereditary
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and self-complementary (for details see [4], [6] and [8]).

Therefore, given a non trivial P4-tidy graph G distinct from P5, P 5, C5 and
a spider, G is the union or the join of two P4-tidy graphs strictly “smaller”
that G.

This fact leads us to study the packing and domination parameters under
the graph union and join operations. We obtain the following result:

Proposition 4.1 Let G1 and G2 two graphs and k a non negative integer
number. Then,

(i) Lk(G1 ∪ G2) = Lk(G1) + Lk(G2) and γk(G1 ∪ G2) = γk(G1) + γk(G2).

(ii) Lk(G1 ∨ G2) = max{s + r : s, r ≤ k, s, r ∈ Z+, s ≤ Lk−r(G1), r ≤
Lk−s(G2)}.

(iii) γk(G1 ∨ G2) = min{s + r : s, r ≤ k, s, r ∈ Z+, γk−r(G1) ≤ s ≤
|V (G1)|, γk−s(G2) ≤ r ≤ |V (G2)|}.

The result for the union is straightforward. For the join, the proof is
based on the following fact: if B ⊂ V (G1) ∪ V (G2) with |B ∩ V (G1)| = s
and |B ∩ V (G2)| = r, then B is a k-limited packing in G1 ∨ G2 if and only if
B∩V (G1) is a (k−r)-limited packing in G1 and B∩V (G2) is a (k−s)-limited
packing in G2. The same remark is valid for the behavior of γk(G1 ∨ G2) on
the join.

Let us recall that, given k, if we are able to calculate in polynomial time
Ls(G), for s ≤ k for P5, P 5, C5 and spiders, we can calculate in polynomial
time Lk(G) for every P4-tidy graph. The same can be said for the k-tuple
dominating number. Let us recall that L0(G) = γ0(G) = 0 for every G. We
list some easily verified facts:

(i) L1(C5) = 1, L2(C5) = 3 and Lk(C5) = 5 for every k ≥ 3.
γ1(C5) = 2, γ2(C5) = 4, γ3(C5) = 5 and γk(C5) = +∞ for every k ≥ 4.

(ii) L1(P5) = 2, L2(P5) = 4 and Lk(P5) = 5 for every k ≥ 3.
γ1(P5) = 2, γ2(P5) = 4 and γk(P5) = +∞ for every k ≥ 3.

(iii) L1(P 5) = 1; L2(P 5) = 3, L3(P 5) = 4 and Lk(P 5) = 5 for every k ≥ 4.
γ1(P 5) = 2; γ2(P 5) = 3, γ3(P 5) = 5 and γk(P 5) = +∞ for every k ≥ 4.

It remains to obtain the parameters for spiders. We obtain that:

Proposition 4.2 Let G a spider with spider partition (S,C, R). If k ≥ 2|S|+
|R|, then Lk(G) = 2|S| + |R|. Moreover, if 1 ≤ k ≤ 2|S| + |R| − 1, we have:

(i) If G is thin, then Lk(G) = |S| + min{k − 1, |S| + |R|}.
(ii) If G is thick, then Lk(G) = k + 1 if k ≥ |S| − 1, and Lk(G) = k, if
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1 ≤ k ≤ |S| − 2.

Proposition 4.3 Let k be a non negative integer and G a spider with spider
partition (S,C, R).

(i) If G is thin, then γ1(G) = |S|, γ2(G) = 2|S| and γk(G) = +∞ for every
k ≥ 3.

(ii) If G is thick, then γk(G) = k + 1 for 1 ≤ k ≤ |S|, γ|S|(G) = 2|S| and
γk(G) = +∞ for every k ≥ |S| + 1.

The proofs for thin spiders are almost straightforward. For thick spiders,
the key is to focus on the neighborhood of vertices of the stable set S.

As a corollary of the above results we obtain:

Theorem 4.4 The k-limited packing and the k-tuple domination numbers can
be calculated in polynomial time for P4-tidy graphs, for any k.

5 Final remarks

In relation with the question raised by Liao and Chang in [10] we remark that,
from theorem 4.4, the k-tuple domination number —and also the k-limited
packing number— may be calculated in polynomial time for the class of P4-
sparse graphs, for any k, providing in this way another class of perfect graphs
where the k-tuple domination problem becomes polynomial-time solvable.

Finally, our guiding intuition is that the results concerning the union and
join operations presented in this work (proposition 4.1) may be extended to
the generalized versions of both problems treated in this work, and therefore,
following remark 3.1, one of the related parameters may be obtained from the
other.
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