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Abstract

Two rhizobial strains, BSA136T and BSA150, related to the genus Mesorhizobium were isolated from root nodules of Lotus

tenuis grown in saline-alkaline lowlands soil from Argentina. These strains showed different repetitive element palindromic

PCR fingerprinting patterns but shared more than 99% sequence similarity for both 16S rRNA and recA genes. Despite the

symbiotic nodC gene sequences of our strains being related to the canonical Lotus biovar species comprising Mesorhizobium

loti and Mesorhizobium japonicum, the 16S rRNA phylogenetic marker suggests that their taxonomical identities are closely

related to Mesorhizobium helmanticense, Mesorhizobium metallidurans, Mesorhizobium thianshanense, Mesorhizobium gobiense

and Mesorhizobium tarimense. Multilocus sequence analysis performed with seven housekeeping genes confirmed that

BSA136T belongs to a separate clade within the genus Mesorhizobium. The results of comparisons for in silico DNA–DNA

hybridization and average nucleotide identity indexes between the genomes of BSA136T and closest-related Mesorhizobium

species were below the threshold for species delineation. Phenotypic features differentiated BSA136T from its closest-

related species. On the basis of our results, BSA136T and BSA150 can be considered to represent a novel species of the

genus Mesorhizobium, for which the name Mesorhizobium sanjuanii sp. nov. is hereby proposed. The type strain of this

species is BSA136T (=CECT 9305T=LMG 30060T), for which the draft genome sequence is available.

Lotus is a genus of legume plants with some species being
used as pasture-forage in North and South America, Europe
and New Zealand [1–3]. Its wide forage potential is partly
due to its high N2-fixing capacity in association with rhizo-
bia. Mesorhizobium loti has traditionally been recognized as
the typical species establishing effective symbiosis with a
group of Lotus species, which include Lotus tenuis, Lotus
corniculatus, Lotus japonicus and Lotus filicaulis [4, 5]. Par-
ticularly, L. tenuis grows in diverse environments, even
under stressed soil conditions such as flooding, drought,
salinity and alkalinity [6].

During a survey of rhizobial strains nodulating L. tenuis
growing in three types of soils from Argentina, 77 unique
isolates mostly associated with the genus Mesorhizobium

were obtained. A total of 24 strains isolated from saline-
alkaline soils were classified in four ribogroups after 16S
rRNA restriction fragment length polymorphism (RFLP)
analysis [7]. Interestingly, none of them appeared to be tax-
onomically related to the canonical L. tenuis symbiont,
M. loti. Strains BSA136T and BSA150 belong to the most
abundant RFLP ribogroup of isolates from high salt and
alkali soil conditions (Chascomús, Buenos Aires, Argentina;
35

�

35¢ S, 58
�

00¢ W; 2004).

DNA from the two isolates was extracted and purified
using an AccuPrep Genomic DNA Extraction Kit (Bion-
eer) according to the manufacturer’s guidelines. Repetitive
element palindromic PCR (rep-PCR) fingerprint profiling
and 16S rRNA and recA gene sequencing was carried out
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as previously described [7]. BSA136T and BSA150 showed
different rep-PCR fingerprinting patterns (Fig. S1, avail-
able in the online version of this article) but shared 100

and 99.53% sequence similarity to each other for both
16S rRNA and recA genes, respectively. To establish the
phylogenetic position of the strains within the genus
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Fig. 1. Maximum-likelihood phylogenetic tree based on Mesorhizobium type strains. 16S rRNA gene sequences (1270 nucleotides)

showing the position of Mesorhizobium sanjuanii sp. nov. used in this study (indicated in bold). The tree was reconstructed using Kimu-

ra’s two-parameter (G+I) model. Bootstrap values (above 50%) calculated for 1000 replications are indicated at the nodes. GenBank

accession numbers are in parentheses. Bar, 1 substitution per 100 nucleotide positions.
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Mesorhizobium, the 16S rRNA and recA gene sequences
of the two strains were aligned with the corresponding
sequences of rhizobia obtained through the Ribosomal
Database Project Release 11.5 [8] and the National
Center for Biotechnology Information (NCBI) Genbank
Database using the CLUSTAL module implemented by the
MEGA software version 7.0 [9]. Distances were calculated
by using a pairwise-deletion procedure and the maxi-
mum-likelihood method was used to reconstruct phyloge-
netic trees by means of the MEGA7 software. The
robustness of the tree topologies was evaluated by boot-
strap analysis (1000 replicates). The L. tenuis-nodulating

strains BSA136T and BSA150 were found to cluster
together with Mesorhizobium metallidurans, Mesorhi-
zobium helmanticense, Mesorhizobium thianshanense, Mes-
orhizobium gobiense and Mesorhizobium tarimense
(Fig. 1), confirming that these strains are not related to
the Lotus canonical microsymbionts, M. loti and Mesorhi-
zobium japonicum, as previously suggested by the 16S
rRNA RFLP results [7]. Moreover, comparison of 16S
rRNA sequences revealed similarity values of 99.8% to M.
metallidurans STM 2683T, M. helmanticense CSLC 115NT

and M. gobiense CCBAU 83330T, 99.7% with M. tari-
mense CCBAU 83306T and 99.6% with M. thianshanense
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Fig. 2. Maximum-likelihood phylogenetic tree based on concatenated dnaK (223 nt), glnII (405 nt), gyrB (578 nt), recA (298 nt), rpoB

(441 nt), thrA (668 nt) and truA (332 nt) gene sequences showing the position of Mesorhizobium sanjuanii sp. nov. used in this study

(indicated in bold) within the genus Mesorhizobium. Genbank accession numbers are detailed in Table S1. The tree was reconstructed

using the general time reversible (G+I) model. Bootstrap values (above 50%) calculated for 1000 replications are indicated at the

nodes. Bar, 5% sequence divergence.
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USDA 3592T. In turn, the recA phylogenetic analysis
groups strains BSA136T and BSA150 in a separate cluster
(Fig. S2), with 96.37 and 95.15% sequence similarity to
M. helmanticense CSLC 115NT and M. metallidurans STM
2683T, respectively. These levels of similarity are below the
proposed threshold range for the species boundary, 98.2–
99.0% [10–12].

Among the two newly isolated strains, BSA136T was desig-
nated as a representative for an extended characterization.
A polyphasic taxonomic approach, including in silico whole
genome comparisons, analysis of housekeeping and nodula-
tion genes, morphological/phenotypic features and major
fatty acids profiles, was followed according to the suggested
recommendations regarding the description of new species
[13]. For genomic comparisons, the genome of BSA136T

strain was sequenced. For total DNA extraction, the strain
was cultured in triptone–yeast (TY) extract broth to early
stationary phase, harvested by centrifugation and DNA was
obtained using an AccuPrep Genomic DNA Extraction Kit
(Bioneer). An Illumina 300 bp insert standard shotgun
library was reconstructed and sequenced using the Illumina
HiSeq 2000-1 TB platform. The resulting reads were quality
trimmed [14] and the draft genome was assembled using
gsAssembler (version 2.8). The obtained genome size was
6.4 Mbp, the DNA G+C ratio was 62.51, the number of con-
tigs was 343, N50 was 64.3 and the sequencing depth of cov-
erage was 14.66. The reference genome sequences used for
whole genome comparisons were retrieved from NCBI
GenBank.

Phylogenetic trees are commonly used to elucidate system-
atic relationships between different species. Although the
16S rRNA gene is widely used as a taxonomic marker, it
often cannot appropriately support species delineation, such
the case of the rhizobial species [15]. For this reason, multi-
locus sequence analysis based on concatenated housekeep-
ing genes is preferred to assign and identify rhizobial
species. The selection and use of housekeeping genes for
taxonomic purposes is a critical step forward and the ad hoc
committee for re-evaluation of species definition has sug-
gested the use of a minimum of five housekeeping genes
[13]. Seven protein-coding genes, recA, glnII, dnaK, rpoB,
gyrB, truA and thrA, were previously shown to produce a
robust phylogeny of the genus Mesorhizobium [16]. Rhizo-
bial reference sequences for all the housekeeping genes were
collected from the NCBI Genbank database and aligned
with the corresponding sequences of BSA136T. Sequences
for each gene in a given species were concatenated and the
MEGA7 package was used to infer the molecular phylogeny
by using the maximum-likelihood method based on a
matrix with the distance correction calculated by the general
time reversible model with 1000 resamplings in the
bootstrap analysis. The phylogenetic tree based on the
concatenated sequences revealed that the novel strain
BSA136T belongs to a monophyletic cluster with 100%
bootstrap support (Fig. 2). Sequence similarities between
BSA136T and most closely phylogenetically related species,

M. helmanticense CSLC 115NT and M. metallidurans STM
2683T, have been calculated for the seven housekeeping
genes (Table 1) and values below the threshold for species
delineation (98.2–93.1% similarity) have been observed.

Average nucleotide identity (ANI) has recently been
accepted as an alternative to the traditional DNA–DNA
hybridization (DDH) method and similarity values >95–
96% are considered as the threshold to determine if two
bacterial strains belong to the same species [17]. ANI calcu-
lations between strain BSA136T and its closest type strains,
M. helmanticense CSLC 115NT [18] and M. metallidurans
STM 2683T [19], were performed using the JSpeciesWS
(http://jspecies.ribohost.com/jspeciesws) web server [20]
based on pairwise alignment of the genomes using the
BLAST+ (ANIb) or MUMmer (ANIm) tools. ANIb of 93.92
and 90.26% and ANIm values of 94.90 and 92.02% resulted
from comparison with M. helmanticense CSLC 115NT and
M. metallidurans STM 2683T genomes, respectively. There-
fore, values obtained for the two indexes were consistent
and below the proposed cut-off for species boundary [17].
In silico DDH values were determined online using the
Genome-to-Genome Distance Calculation (GGDC 2.1) ser-
vice (http://ggdc.dsmz.de/distcalc2.php) as described by
Meier-Kolthoff et al. [21] using the recommended BLAST+
method. Results of the GGDC are based on the recommended
formula 2 [sum of all identities found in high-scoring seg-
ment pairs (HSPs) divided by overall HSP length], which is
independent of genome length and is thus robust against
the use of incomplete draft genomes [21, 22]. In silico DDH
values were 58.8 and 44.8% for comparisons between the
BSA136T strain and the type strains of the M. helmanticense
and M. metallidurans genomes, respectively; values that are
well below the threshold of 70% for species delineation.
Taken together, these results confirm that the newly isolated
strains belong to a new species in the genusMesorhizobium.

Although housekeeping genes are useful for the establish-
ment of the rhizobial taxonomic status, they do not offer
information regarding the bacterial symbiotic behaviour in
terms of the legume hosts. The analysis of the symbiotic

Table 1. Housekeeping genes sequence similarities (%) between

M. sanjuanii BSA136T and closest phylogenetically related species

Housekeeping

gene

M. helmanticense

CSLC115NT*

M. metallidurans

STM2683T†

dnaK 98.12 96.97

glnII 94.13 93.10

gyrB 97.45 95.15

recA 96.37 96.90

rpoB 98.19 97.29

thrA 96.72 94.52

truA 95.69 95.69

*GenBank accession number: CAUM00000000.1.

†GenBank accession number: PZJX00000000.1.
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gene nodC, located in interchangeable elements (plasmids
or symbiotic islands), has been proposed for the identifica-
tion of strains at symbiovar level [15, 23, 24]. The nodC

sequences for the strains BSA136T and BSA150 were
compared with other Mesorhizobium nodC genes in a maxi-
mum-likelihood tree using the Tamura 3 (G+I) model
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Fig. 3. Maximum-likelihood tree based on partial sequences of nodC gene (383 nucleotides) showing the relationships between Meso-

rhizobium sanjuanii sp. nov. (in bold) and other Mesorhizobium strains, indicating the different symbiovars (sv.) defined within the genus.

The tree was reconstructed using the Tamura 3 (G+I) model. Bootstrap values (above 50%) calculated for 1000 replications are indi-

cated at the nodes. Bar, five substitutions per 100 nucleotides. Original host legumes are given for unknown symbiovars.
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(Fig. 3). Both strains, isolated from L. tenuis nodules,
grouped with the reference strains belonging to the symbio-
var loti, confirming the capacity of different Mesorhizobium
species to share a same symbiovar [24–26]. Interestingly,
BSA136T branched separately (100% bootstrap support)
from the strains isolated from other Lotus species (such as
L. corniculatus, L. japonicus and Lotus divaricatus), with
similarity values in this cluster ranging from 97.7% with
Mesorhizobium erdmanii USDA 3471T to 93.2% to M. loti
NZP 2037.

Phenotypic features of the strain BSA136T were determined
using the API 20NE (bioM�erieux) and BIOLOG GENIII
(Biolog) kits following the manufacturers’ instructions. Dis-
tinctive features of BSA136T compared with representative
strains of the most phylogenetically related Mesorhizobium
species are depicted in Table 2.

Chemotaxonomic characterization was performed on a
BSA136T culture grown aerobically on TY extract agar
plates at 28

�

C for 48 h. The cellular fatty acids were
extracted and analysed according to the recommendations
of the commercial Microbial Identification System (MIDI)
and whole-cell fatty acid composition was determined by
gas chromatography (Agilent Technologies 6890N) using
the peak-naming table MIDI TSBA 5.0. The fatty acid profile of
strain BSA136T comprised C18 : 1!7c (37.6 %), C12 : 0

(19.7%), C16 : 0 (11.1 %), C16 : 1 ISO H (7.9%), C18 : 1!7c 11-
methyl (7.5%), C16 : 0N OH (6.9%), C19 : 0 CYCLO !8c
(5.2%) and C17 : 0 ISO (4.1%).

The genotypic and phenotypic features described in this
work reveal that the strain BSA136T isolated from L. tenuis
nodules represents a novel species within the Mesorhi-
zobium clade for which the name Mesorhizobium sanjuanii
sp. nov. is hereby proposed.

DESCRIPTION OF MESORHIZOBIUM SANJUANII

SP. NOV.

Mesorhizobium sanjuanii (san.ju.a¢ni.i N.L. gen. masc. n.
sanjuanii, named after Dr Juan Sanju�an Pinilla of the Zaidin
Experimental Station, Granada, Spain, for his valuable con-
tribution to the development of rhizobial research in Spain
and Latin America).

Gram-negative, aerobic, non-spore-forming rods. Colonies
appearing on yeast extract–mannitol agar within 3–5 days
incubation at 28

�

C are circular, opaque, convex and cream-
coloured. Generation time ranges between 5–7 h when
grown in TY broth at 28

�

C and 150 r.p.m.

The optimum temperature for aerobic growth is 28
�

C, no
growth is observed at 10 or 37

�

C; all strains tolerate 1%
NaCl and grow over a pH range of pH 7–10. Strains are
resistant to ampicillin, gentamicin and neomycin, suscepti-
ble to tetracyclin, cloramphenicol and kanamycin. Utilizes
arabinose, D-fructose, D-fucose, D-fructose 6-phosphate, D-
aspartic acid, maltose, trehalose, cellobiose, sucrose, lactose,
methyl b-D-glucoside, N-acetyl-D-glucosamine, N-acetyl-D-
mannosamine, N-acetyl-D-galactosamine, D-glucuronic
acid, mucic acid, citric acid, a-D-glucose, D-mannose, L-
rhamnose, inosine, D-sorbitol, D-mannitol, D-arabitol, myo-
inositol, glicerol, glycyl-L-proline, L-aspartic acid, L-alanine,
L-glutamic acid, L-pyroglutamic acid, L-lactic acid, D-galac-
turonic acid, D-galactonic acid lactone, pectin, D-gluconic
acid, quinic acid, a-ketobutyric acid, acetoacetic acid, pro-
pionic acid, acetic acid, formic acid, D-lactic acid methyl
ester, a-ketoglutaric acid, L-malic acid, Br-succinic acid, gel-
atin and Tween 40 as asole carbon source. No growth is
observed with dextrin, D-serine, L-serine, L-pyroglutamic
acid, L-histidine, methyl piruvate, p-hydroxyphenylacetic
acid, adipic acid, capric acid or potassium gluconate. No
reduction of nitrates to nitrite or nitrates to nitrogen is
observed. No indol production or arginine dihydrolase,
gelatinase and b-galactosidase activities is detected. Urease
activity and aesculin hydrolysis are positive. The most abun-
dant fatty acids are C18 : 1!7c, C12 : 0 and C16 : 0. The DNA
G+C content of the type strain is 62.51mol%.

The type strain, BSA136T (=CECT 9305T=LMG 30060T),
was isolated from nodules of Lotus tenuis.
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