
Appl Intell
DOI 10.1007/s10489-008-0139-6

Building user argumentative models

Ariel Monteserin · Analía Amandi

© Springer Science+Business Media, LLC 2008

Abstract Knowing how a user builds his/her arguments
during a discussion gives useful advantages if we want to as-
sist the user or analyse his/her argumentative skills. This pa-
per presents a novel mechanism to build user argumentative
models, which captures the argumentative style to generate
arguments. To this end, we observe how users generate argu-
ments, and apply a generalised association rules algorithm
to discover rules for argument generation. These rules de-
pict the argumentative style of the user. They are composed
of an antecedent, which represents the conditions to build
an argument, and a consequent, which represents such argu-
ment. To evaluate this proposal, we show results obtained in
the domain of meeting scheduling. We discovered interest-
ing rules from a group of users discussing in that domain,
and checked that about 60% of the arguments that users had
generated in a test situation can be also generated from the
rules previously learnt, at least partially. Finally, although
this work focuses on modelling users’ argumentative style,
we discuss how this promising approach could be applied in
different knowledge domains.

Keywords User modelling · Argumentation · Generalised
association rules

A. Monteserin (�) · A. Amandi
ISISTAN, Facultad de Ciencias Exactas, Universidad Nacional
del Centro de la Pcia. Bs. As., Campus Universitario, Paraje
Arroyo Seco, Tandil, Argentina
e-mail: amontese@exa.unicen.edu.ar

A. Monteserin · A. Amandi
CONICET, Consejo Nacional de Investigaciones Científicas
y Técnicas, Buenos Aires, Argentina

A. Amandi
e-mail: amandi@exa.unicen.edu.ar

1 Introduction

During a discussion, in collaborative and cooperative envi-
ronments as well as in competitive ones, users exchange pro-
posals and arguments1 in order to reach agreements. Propos-
als are motivated by their goals, and arguments are pieces of
information that are generated by the user to justify such
proposals or try to influence the position of the opponent
during the discussion in order to persuade him/her to accept
or resign a proposal. In this context, the ability to generate
“good” arguments is crucial to influence the final result of
the discussion. Nevertheless, all users do not have the same
argumentative abilities. Therefore, if we know these user
abilities we will use that information to take decisions or as-
sist the user in a personalised way. For example, decide how
tasks that demand argumentation must be allocated between
users belonging to an organization, as part of the modelling
of behaviour in it [1–3]; or to assist users by suggesting ar-
guments during a discussion.

For instance, if two users A and B must agree on the
time of a meeting, it will be normal to think that the agree-
ment will not be easily reached, because the preferences
about time are not the same for both users (e.g. a user A

may prefer meeting in the morning, but B in the afternoon).
Hence, user A can try to persuade B to accept a morning
meeting saying that B has scheduled several meetings in the
morning in the past, instead B can try to persuade A to re-
ject a morning meeting because the lab is occupied (suppos-
ing that the lab is the place where A wants them to meet).
Both arguments accomplish the same goal: persuading the

1The term “argument” is not referred to a discussion, often heated, in
which a difference of opinion is expressed, but to a fact or circumstance
that gives logical support to an assertion, claim, or proposal.

mailto:amontese@exa.unicen.edu.ar
mailto:amandi@exa.unicen.edu.ar

A. Monteserin, A. Amandi

opponent to accept his/her proposal, but are built in differ-
ent ways. User A makes use of historical information about
B to build a counter-argument while user B employs cur-
rent information to indicate that A’s proposal is unviable.
Thus, we can preliminarily observe two different argumen-
tative styles: one which uses historical information to attack
the opponent’s refusal, and another one that uses current in-
formation to refuse the opponent’s proposal.

Each user has a personalised style to argue. This style
characterises how the user builds arguments, in what situa-
tions he/she uses a given kind of argument and when not,
and what factors of the context have an influence on these
decisions. We call this style, argumentative style. For this
reason, A and B build similar arguments, but with different
information to support them and taking into account diverse
factors to generate them.

In fact, users take into account the contextual informa-
tion of the discussion (such as past proposals, current goals,
preferences between goals and beliefs about the domain and
users) to generate his/her arguments. To defend or defeat
a proposal, the user evaluates the context of the discussion
and determines which argument can be generated to support
or refuse it. Particularly, the user must find in that context
the information that satisfies the conditions under which an
argument can be generated (e.g. in the previous example,
A must find evidence about past morning meetings of B).
These conditions implicitly form rules for argument gener-
ation. So, if the condition is satisfied in the discussion con-
text, the argument can be built. We argue that the argumen-
tative style of a user is exhibited by the tacit set of rules that
he/she uses to generate arguments.

Therefore, to capture the argumentative style of a user,
we can learn the rules for argument generation and build a
user argumentative model with these, without the necessity
of having a taxonomy or typology of argumentative styles.

These rules are implicitly used by the user in the discus-
sion; whereby we will not be able to access to them directly.
However, we can observe the participation of the user in the
discussion, learn how the user performs the argument gener-
ation and discover the rules that depict his/her argumentative
style.

In this work, we present a mechanism to build a user ar-
gumentative model, which captures the argumentative style
of a user, learning the rules for argument generation that the
user implicitly exhibits during the discussions. To carry out
this idea, we first observe how the user builds his/her argu-
ments during discussions, and store each argument gener-
ated and the information that the user determined as condi-
tion to build them in a knowledge base of observations. Af-
ter that, we transform these observations, which are tuples
of conditions and arguments, in transactions to be processed
by a generalised association rule algorithm [4]. We propose
to use this kind of algorithm because it allows us to obtain

rules, whose antecedent is composed of the conditions to
generate an argument, and whose consequent is this argu-
ment; this is the format of rules for argument generation.
Moreover, in these algorithms, we can use a taxonomy of
conditions and arguments with different levels of specificity
in order to recognise the users’ pattern of argument genera-
tion in a more abstract way (see Sect. 5 for more details).

The evaluation of this proposal was carried out in the sce-
nario of meeting scheduling. We worked with a group of 25
users who have to arrange meetings through a distributed ap-
plication. To carry out this goal, users must reach an agree-
ment in several aspects of the meeting (topics, place, time,
date, etc.), and exchange proposals and arguments through
the application to do this. So, we observed how users gener-
ated their arguments (we gathered 1.234 arguments) in four
different situations, and separate the observations in two
sets: training observations and test observations. Then, we
built an argumentative model for each user from the train-
ing observations. To validate these models, we compared
for each user the arguments that we can obtain using his/her
argumentative model, versus the test arguments stored on
the test observations. From that comparison we found that a
42.95% of test arguments were completely generated by the
argumentative models, a 16.72% were partially generated,
and a 40.33% could not be generated. Also, we compared
the rules obtained with other works in the area of argumenta-
tion based negotiation, for example, we automatically learnt
several rules that had been explicitly defined in [5].

The work focuses on modelling the argumentative style
of the user for several reasons. First, the user model is the
baseline to assist the user in a personalised way, and due to
the fact that there exists a wide variety of possible applica-
tions, we want to keep the modelling independent from its
use.

However, although in this work we concentrate our ef-
forts on the construction of the user argumentative models,
we will not overlook its applicative side. Once the user argu-
mentative model has been built, we can find several applica-
tions. User argumentative models can be used by a personal
agent to assist the user during a discussion by suggesting
automatically arguments according to his/her argumentative
style. When the user is participating in a discussion, the per-
sonal agent could observe his/her participation and suggest
arguments that help him/her to accomplish his/her goal in
the discussion (e.g. reach a deal). As part of the evaluation
of our proposal, we analyse and show how arguments can be
generated from the user argumentative model. Note that the
personalised assistance is directly performed from the rules,
and it is not necessary to identify the type of the argumenta-
tive style to achieve this.

On the other side, building these models can be useful to
discover and analyse users’ argumentative skills. Knowing
these skills is relevant from several perspectives: (a) to allo-
cate tasks that demand argumentation by prioritising users

Building user argumentative models

with “good” argumentative abilities; (b) to discern faults in
these users’ abilities; (c) since an organizational memory is
defined in the area of knowledge management as a means
by which knowledge from the past is used on present activi-
ties, thus resulting in higher or lower level of organizational
effectiveness [3], we claim that argumentative models ex-
tracted from users can be added to this memory.

We consider that this paper makes a contribution to the
state of the art in user modelling and argumentation based
negotiation, since a mechanism to capture the argumenta-
tive style of users have not been modelled thus far. More-
over, defining how to automatically learn rules for argument
generation through an algorithm of generalised association
rules mining in turn represents an original application of this
kind of algorithm.

The remainder of the paper is organised as follows. Sec-
tion 2 shows a case study to illustrate the idea of learning
rules for argument generation that depict the argumentative
style of a user. Section 3 shows an overview about the im-
portance of building a user argumentative model to represent
his/her argumentative style. Section 4 shows how the user
argumentative model is built. Section 5 shows the experi-
mental results obtained in the domain of meeting schedul-
ing. Section 6 shows the applicative side of our proposal.
Section 7 places this work in the context of previous ones.
Finally, in Sect. 8, we present some concluding remarks and
future works.

2 Case study

With the purpose of illustrating our proposal, we present
a case study where we can see how different users could
generate different arguments in the same situation, and how
the rules to generate them can be found in observations ex-
tracted from past discussions. Let’s see the example. We
have the following conditions and arguments observed from
user A’s discussions:

– A knows that B accepted meeting in the morning last
week, then A argues that B must accept a morning meet-
ing because B accepted this time in the past.

– A knows that C accepted meeting in the afternoon last
month, then A argues that C must accept an afternoon
meeting because C accepted this time in the past.

– A knows that B made the reservation of the lab for last
meeting, then A argues that B must make the reservation
for tomorrow, because B made it in the past.

– A knows that C made the memorandum of the last meet-
ing, then A argues that C must make the memorandum,
because C made it in the past.

In these observations we can intuitively find several patterns
that represent the rules that A use to generate arguments:

– A knows that SOMEBODY accepted TIME in the past,
then A argues that SOMEBODY must accept TIME be-
cause SOMEBODY accepted this TIME in the past.

– A knows that SOMEBODY did SOMETHING for last
meeting, then A argues that SOMEBODY must do SOME-
THING, because SOMEBODY did it in the past.

On the other hand, we have another set of observations
from user B:

– B knows that A wants to discuss about vacations, but not
to discuss about overtime payment, then B argues that if
A accepts to discuss about overtime payment, B will ac-
cept discuss about vacations.

– B knows that C needs to meet in the lab, but not in the
morning; however B can only meet in the lab in the morn-
ing, then B argues that if A accepts a morning meeting,
B will accept to meet in the lab.

And we can also observe the pattern:

– B knows that SOMEBODY wants/needs SOMETHING,
but not SOMETHING ELSE that B wants/needs, then B

argues that if SOMEBODY accepts SOMETHING ELSE,
B will accept SOMETHING.

Now, supposing that the users have to support the same pro-
posal, both of them want to meet in the evening, they have to
generate arguments to persuade user D to accept this time.
Both know the following:

– D accepted evening meetings in the past.
– D does not want to meet in the evening.
– D wants to meet on Monday.

Taking into account the rules and the information about
D, A and B will generate different arguments to support the
same proposal (D accepts an evening meeting):

– As A knows that D (SOMEBODY) accepted evening
(TIME) in the past, then A can argue that D (SOME-
BODY) must accept evening (TIME) because he/she ac-
cepted this time in the past.

– As B knows that D (SOMEBODY) wants to meet on
Monday (SOMETHING), but does not want to meet in
the evening (SOMETHING ELSE) that B wants, then B

can argue that if D (SOMEBODY) accepts to meet in the
evening (SOMETHING ELSE), B will accept to meet on
Monday (SOMETHING).

Now, we can understand how users generate different ar-
guments in the same situation in accordance with their ar-
gumentative style, and how the rules to achieve this can be
extracted from previous arguments observed earlier. For this
reason, we want to learn these rules to build user argumen-
tative models.

A. Monteserin, A. Amandi

3 Argumentative style and user argumentative model

Users have individual traits that can be represented in the
user models [6]. We consider that one of these traits is the
user argumentative style. We can build a user argumentative
model, which extracts the argumentative style of a user, by
observing how he/she argues during a discussion, especially
how he/she builds his/her arguments.

Arguments give logical support to the proposals the user
must defend, or attack proposals uttered by an opponent in
order to defeat them. There are several kinds of arguments.
In researches about psychology of persuasion [7, 8] some
arguments types have been presented: appeals are used to
justify a proposal; rewards to promise a future recompense;
and threats to warn negative consequences if the counter-
part does not accept or resign a proposal. In addition, there
are different ways to build a particular argument for each
argument type. For instance, an appeal can be built in sev-
eral ways: as a counterexample, or appealing to prevailing
practices, past promises or self-interests. However, though
there are a set of well-known argument types, it is not pos-
sible to constitute an exhaustive typology of arguments [5],
due to the fact that argument types are strongly related to a
particular context and domain.

On the other hand, the different types of arguments are
related not only to the context and the domain, but also to
the way in which the arguments are generated. For each type
or subtype of argument, there are a set of preconditions that
must be satisfied in the context of the discussion to be able
to generate it. These preconditions form rules for argument
generation. For instance, in Fig. 1, we show two informal
rules to generate appeals: Fig. 1a depicts a set of precondi-
tions to generate counterexamples and Fig. 1b preconditions
to build appeals to self-interest. So, when the context satis-
fies the argument preconditions, we have the necessary evi-

dence to generate it. Moreover, some conditions may deter-
mine the situation in which the argument can be uttered. For
example, being A and B , employee and boss respectively,
A’s rules should consider the relationship with B as condi-
tion to generate some type of argument, such as threats [9].
In other words, before generating a threat, user A should
check whether his/her opponent is his/her boss or not, due
to the fact that it is not advisable to threat to a boss.

A user who is participating in a discussion is constantly
searching for evidence that allows him/her to utter an ar-
gument. In fact, a user checks before uttering an argument
whether its preconditions are part of the contextual informa-
tion of the discussion, and then he/she can decide to generate
or not the argument. Thus, the user implicitly applies a set
of rules for argument generation, which can be different for
each user, depending on his/her personal conduct.

In this context, we claim that the argumentative style is
implicit in the rules for argument generation that the user
uses during a discussion. Moreover, since types of argu-
ments are context and domain-dependent and rules for ar-
gument generation are influenced by user personal trait, it
would be very useful to model these styles. In addition, it is
worth noticing that we work under the assumption that the
typology of argumentative models is unknown. That is, we
have no information a priori about the styles which a user
could have.

To build the user argumentative model, we must first ob-
serve how the user behaves during the discussions in a com-
putational medium. In this medium, the user is involved in
multilateral discussions, whose purpose is to reach agree-
ments that resolve conflicts with other users, who are in this
medium too. For instance, in the domain of meeting schedul-
ing, the computational medium could be a distributed appli-
cation that allows users to keep an agenda and arrange meet-
ings by discussing with other participants: time, date, place,

Fig. 1 Rules for argument
generation

Building user argumentative models

Fig. 2 Graphical representation of our proposal

among other attributes of these. In particular, we observe
and store in a knowledge base of observations (Fig. 2a), the
arguments that the user generates in accordance with his/her
argumentative style, and the information that the user uses
to support the argument.

Once the observations have been stored, we extract the
rules for argument generation, which the user uses in the
discussions, using an algorithm for generalised association
rules mining (Fig. 2b). These rules are filtered and then form
the argumentative model (Fig. 2c).

Finally, we have to determine how we use the argumenta-
tive model. In Fig. 2, the possible applications of the model
are indicated by dotted arrows. We can use the model to
suggest arguments to the user. In this proposal, suggestions
are the arguments that we can build by using the rules for
argument generation that compose the user argumentative
model. For example, a personal agent could observe the dis-
cussion in which the user is arguing, check the rules, and
if the conditions are true in the context of the discussion,
then suggest the argument. On the other hand, we can sim-
ply store the argumentative models in the organizational
memory. An organizational memory is defined in the area
of knowledge management as a means by which knowledge
from the past is used on present activities, thus resulting in
higher or lower level of organizational effectiveness [3]. In
this context, user argumentative models could be stored in
this memory in order to keep the knowledge that a given
user employs in the argumentation, for example, to train the
argumentative skills of futures users belonging to the orga-
nization.

4 Building the user argumentative model

Once we have observed the user in some discussions, we
are in the position of determining which rules, which sum-
marise his/her argumentative style, the user utilises implic-
itly to generate his/her arguments.

We maintain a knowledge base O in which we gather the
observations. Observations in O are tuples with the follow-
ing format: (C,a) where C = {c1, . . . , cn} is the set of con-
ditions that the user determined to generate the argument a

(conditions and arguments are formally expressed). Taking
into account these observations, we want to find the relations
between the conditions observed and the argument gener-
ated, due to the fact that these relations constitute the rules
that materialise the user argumentative style. Thus, we can
learn which conditions are determined by the user to build
the arguments. We think these relations can be discovered
using an algorithm of association rule mining, which allows
us to extract reliable patterns from the observed cases.

As introduced in [10], given a set of transactions, where
each transaction is a set of items, an association rule is an
expression X ⇒ Y , where X and Y are sets of items too.
That is, the transactions in the database which contain the
items of X will also contain the items of Y . That is assured
by computing the support and the confidence of the rule.
Support and confidence are the main measures in association
rule mining algorithm. The support of a rule X ⇒ Y is the
ratio (in percent) of the transactions (T) that contain X ∪ Y

to the total number of transaction in the database (|D|):

Support(X ⇒ Y) = |{T ∈ D | X ∪ Y ⊆ T }|
|D| .

The confidence is the ratio (in percent) of the number of
records that contain X ∪ Y to the number of records that
contain X:

Confidence(X ⇒ Y) = |{T ∈ D | X ∪ Y ⊆ T }|
|{T ∈ D | X ⊆ T }| .

In our work, each transaction represents an observation
(C,a), and we want to discover association rules of the type
XC ⇒ Ya , where XC is composed of items ci (i.e. a set of
conditions), and Ya is composed of an item aj (i.e. only one
argument). In this way, our association rules will take the
format {ci, . . . , cp} ⇒ aj .

However, that is not enough to extract the rules with
which the user generate arguments, due to the fact that ob-
servations are expressed in constant terms. That is, the terms
that compose such observations are constants that depict the
context where the argument was generated.

For example, a condition, expressed informally, ci : “jack
wants (has as goal) to discuss the topic salary”, which is
present in an observation oi , is expressed in constant terms
because it concretely represents Jack’s goal to discuss the

A. Monteserin, A. Amandi

topic salary. Nevertheless, we want that the conditions in
the rules for argument generation are expressed in variable
terms in such a way that we can instance them in any future
discussion. In the example, the same condition expressed in
variable terms could be “U wants (has as goal) to discuss
the topic T ” where U and T are variables that represent any
user and any topic respectively, or to add more generality:
“U wants (has as goal) G”, where G is any goal of U .

In order to circumvent this problem, we employ an al-
gorithm of generalised association rules. These algorithms
use the existence of a hierarchical taxonomy of the data to
generate different association rules at different levels in the
taxonomy [4]. A generalised association rule X ⇒ Y is de-
fined identically to that of regular association rules, except
that no item in Y can be an ancestor of any in X. An ances-
tor of an item is one which is above it in some taxonomy.
In this sense, we build a hierarchical taxonomy of condi-
tions and arguments, in which its leaves are the conditions
and arguments used by the user, and the upper levels are the
same propositions but more general and expressed in vari-
able terms. Then, the generalised association rules algorithm
will especially be able to generate rules at upper levels in the
taxonomy of conditions and argument. Hence, the rules will
be variables.

We determine three steps to learn rules for argument gen-
eration:

1. Taxonomy building.
2. Execution of generalised association rules algorithm.
3. Post-processing of rules.

We discuss these steps below.

4.1 Taxonomy building

To execute the generalised association rules algorithm it is
necessary to build a taxonomy with the facts that shape the
items of the transactions, which will be the input of the
algorithm too. In this work, these facts are the conditions
and arguments that are present in the observations; in con-
sequence, the taxonomy must be composed of the items in
these. First, we define a language L in which conditions and
arguments are expressed. Next, we outline how the taxon-
omy is built.

4.1.1 Language to express conditions and arguments

To build the taxonomy we need to formally express the con-
ditions and arguments. To do this, we define a language L

that is composed of the propositions that represent those
facts.

– user(U): U is one of the users who integrates the compu-
tational environment.

– goal(G): G is a goal in the computational environment.

– has_goal(user(U),goal(G)): user U has a goal G.
– believe(user(U),B): user U believes B , in other words

U has B in his/her beliefs.
– prefer(user(U),goal(G1),goal(G2)): user U prefers to

fulfil the goal G1 instead of fulfilling the goal G2.
– proposal(P): P is a proposal uttered in the computational

environment.
– accept(user(U),proposal(P)): user U accepts the pro-

posal P .
– refuse(user(U),proposal(P)): user U refuses the pro-

posal P .
– imply(Q,R): Q implies R, it represents the classical in-

ference.
– action(A): A is an action that can be executed in the en-

vironment.
– can_do(user(U),action(A)): user U is able to perform

the action A.
– promised(user(H),user(U),proposal(P)): user H has

promised to fulfil the proposal P to user U .
– accepted(user(U),proposal(P)): in the past, user U ac-

cepted the proposal P .
– argument(user(H),user(U),accept()|refuse(), [J]): it

represents an argument uttered by the user H to the
user U . The goal of the argument is to support the ac-
ceptance or refusal of a proposal with the list of justifica-
tions J .

Moreover, other propositions strongly related to the do-
main exist, especially those related to goals, proposals and
actions the user can execute. For instance, in the domain of
meeting scheduling, the extra propositions are:

– discuss_topic(T): T is a topic that can be discussed in the
meeting.

– in_place(P): the meeting can take place in P .
– date(D): the meeting can be in date D.
– time(M): the meeting can be at time M .

An example of an observation o = (C,a) expressed in L

could be:

– C: {c1, c2}
– c1: has_goal(user(user_2), goal(not(discuss_topic

(topic_2)))).
– c2: promised(user(user_2), user(user_1), discuss_topic

(topic_2)).
– a: argument(user(user_1), user(user_2), accept(user

(user_2), proposal(discuss_topic(topic_2))), [promised
(user(user_2), user(user_1), discuss_topic(topic_2))]).

The example expresses that user_1 requests user_2 to accept
the discussion of the topic topic_2, because user_2 promised
it, but she does not wish to discuss it at that moment.

Building user argumentative models

Fig. 3 Algorithm to build the
taxonomy of propositions from
the knowledge base of
observations O

Fig. 4 Part of the taxonomy of propositions

4.1.2 Algorithm to build the taxonomy

Once we have defined the language L to build the taxonomy,
we start putting in the leaves the conditions and arguments
present in the observations just as they were generated by the
user (i.e. c1, c2, and a), one condition or argument for each
leaf (Fig. 3 shows the algorithm to build the taxonomy from
the observations stored in O). That is, for each item (con-
dition or argument) of each observation, we build a branch
of the taxonomy by starting in this item (leaf) and ending in
the root of the taxonomy (see Fig. 4).

To build this branch, we take an item and generate all the
ancestors that represent the same condition or argument but
replacing each terminal term (proposition of L that has not
another proposition as parameter that can be generalised) by

the respective most general one (step 15 in Fig. 3). To deter-
mine this, we maintain a data structure (hash table) HT with
propositions and its most general form. For example, for the
proposition has_goal the most general form stored in HT
will be has_goal(user(U), goal(G)); for user, user(U); for
goal, goal(G); for discuss_topic, discuss_topic(T), among
others.

So, given the condition has_goal(user(user_1),
goal(discuss_topic(topic_1))), we add a leaf with this and
create the following ancestors, taking into account that their
terminal terms are user(user_1) and discuss_topic(topic_1):

– anc1: has_goal(user(U), goal(discuss_topic(topic_1)))

by replacing the proposition user(user_1) with user(U),
where user(U) is the most general form of user(user_1).

A. Monteserin, A. Amandi

– anc2: has_goal(user(user_1), goal(discuss_topic(T)))

by replacing the proposition discuss_topic(topic_1) with
discuss_topic(T), where discuss_topic(T) is the most
general form of discuss_topic(topic_1).

Next, we successively perform the same action, but with
each ancestor (steps 17–20), and create a new node in
the taxonomy that represents the item, whose parent are
the ancestors generated previously (step 21). Following the
example, the new ancestor of anc1 is has_goal(user(U),
goal(discuss_topic(T))) (the same for anc2); and finally, we
replace goal(discuss_topic(T)) with goal(G) and obtain the
most general expression of the initial condition. When the
most general expression is found (step 11), a new node is
created in the taxonomy whose parent is the root (step 12).
In Fig. 4, we can observe an example of this part of the tax-
onomy.

4.2 Execution of generalised association rules algorithm

Having just built the taxonomy, we must generate the trans-
actions over which the generalised association rules algo-
rithm will work. As introduced previously, the observations
are tuples with the format: (C,a) where C = {c1, . . . , cn}.
So, for all oi = ({c1

i , c
2
i , . . . , c

n
i }, ai) belonging to O , we cre-

ate a transaction ti that includes the items c1
i , c

2
i , . . . , c

n
i , ai .

After obtaining the transaction ti , we replace each item in
it by the nearest ancestor that has no constants. Therefore,
we eliminate any possible rule with constants2 since we are
interested in those rules that can be instantiated.

The set of transactions that will be obtained after this pre-
processing is the input of the generalised association rule al-
gorithm. It is worth noticing that our proposal is independent
of the algorithm chosen. That is, we can build argumentative
models with any algorithm.

To obtain generalised association rules, we must gener-
ate association rules for all the levels in the taxonomy. One
approach to do this would be to take each transaction and
expand each item to include all items above it in the hier-
archy [4], that is, to add all the ancestors of each item in a
transaction ti to ti . As it would be expected, when rules are
generated for items at a higher level in the taxonomy, both
the support and confidence increase. That is a desirable as-
pect due to the fact that the algorithm of association rules
seeks rules with values of support and confidence higher
than the minimum ones.

Although, this basic approach is quite expensive and
other more efficient algorithms have been proposed, it is
very simple. For this reason, and taking into account that

2Constants are the parameters whose names start with a lower case
character. For example, user_1 is a constant instead of User_I, which
is a variable.

our proposal is independent of the association rules algo-
rithm, we used it in our experiments. Other algorithm that
could be used is Cumulate, which uses several optimiza-
tion strategies to reduce the number of ancestors that need to
be added to each transaction [4]. Another approach, Stratifi-
cation, counts itemsets by their levels in the taxonomy and
uses the relationships about items in a taxonomy to reduce
the number of items to be counted [4]. Several parallel al-
gorithms to generate generalised association rules have also
been proposed [11]. For more detail of implementation and
comparison of performance of generalised association rules
algorithm, we recommend to see [4, 12].

4.3 Post-processing generalised association rules

The post-processing of the generalised association rules can
be divided in two parts. First, we filter out the rules whose
format is not adjusted to {ci, . . . , cp} ⇒ aj . That is, once
all rules have been obtained, we just select the rules whose
antecedent is only composed of conditions and whose con-
sequent is a single argument, and the remainder are filtered
out. Since the association rule algorithm processes all items
of a transaction alike, it does not exist a semantic differ-
ence between conditions and arguments. So, it is possible
to find rules like conditioni ⇒ conditionj or argumentm ⇒
conditionn, which fulfil the minimum levels of support
and confidence, but are irrelevant to build the user argu-
mentative model. For instance, an irrelevant rule could be
has_goal(user(U1),goal(G1)), has_goal(user(U1),

goal(G2)) ⇒ prefer(user(U1),goal(G1),goal(G2)). This
rule is inappropriate because its three items are conditions.

The second part consists in determining how representa-
tive the rules are with respect to the argument generated by
the user and gathered in the observations O . To perform this
task, we define a sufficiency metric of an association rule.
This metric represents the relation between the conditions
of the transactions (observations) that support the rule and
the conditions of this rule. It is calculated as the ratio be-
tween the total number of the conditions of a rule over the
average of the conditions of the transactions that support it.
It is defined as:

Sufficiency(r)

= total Conditions(r)

average Conditions(transaction Supporting(r))
.

For example, if we have the transactions t1 = (c1, c3, c5,

a1), t2 = (c1, c2, c4, a1), t3 = (c1, c4, a1), and t4 = (c1, c5,

a2); and we define a minimum support of 0.5 and a mini-
mum confidence of 0.75, we will obtain, after the first post-
processing step, the rules r1: c1 ⇒ a1, r2: c4 ⇒ a1 and r3:
c1, c4 ⇒ a1. Three rules have minimum support and confi-
dence. However, we can see that the rules r1 and r2 are not

Building user argumentative models

Table 1 Metrical comparison of rules

Rules Support Confidence Sufficiency

r1: c1 ⇒ a1 0.75 0.75 0.375

r2: c4 ⇒ a1 0.5 1 0.4

r3: c1, c4 ⇒ a1 0.5 1 0.8

sufficiently representative with regard to the transactions t1,
t2 and t3, because it is improbable that a single condition will
be sufficient to generate the argument a1, due to the fact that
the conditions are not isolated in the transactions. The suf-
ficiency metric aims to filter these rules setting a threshold
that determines how sufficient the conditions (antecedent)
of a rule must be to generate the consequent argument, inde-
pendently of the values of support and confidence.

Table 1 details the values of the three metrics. We can ob-
serve that the rules r1 and r2 have a sufficiency value com-
paratively low with regard to the rule r3. Therefore, a thresh-
old of 75% only allows rule r3 to be valid for the user argu-
mentative model. The value of this metric can also be used
by a personal agent at the moment of assisting the user, pre-
ferring to suggest arguments generated by rules with higher
value of sufficiency.

5 Experimental results

The domain we chose to test our proposal was an applica-
tion for meeting scheduling. In this application, the users can
arrange meetings discussing date, time, place, topics to dis-
cuss during the meeting, and participants. Due to the fact
that users have different goals, they must exchange argu-
ments in order to reach an agreement.

We worked with a group of 25 users who had to generate
arguments to support or defeat a set of proposals. We simu-
lated information about the context of the discussion and we
requested them to generate the greater amount of possible
arguments using common sense. It is worth noticing that the
users had no previous knowledge about argumentation.

The context of the discussion was composed of four par-
ticipants3 (Jack, Kate, Ben and Juliet), and sets of topics
to discuss (salary, vacations, overtime payments and new
employees), places where participants could meet (room 1,
room 2, lab, buffet, coffee-shop and restaurant), periods of
the day (morning, afternoon, evening and night), and days of
the week. Moreover, for each participant we defined a set of
goals, beliefs, preferences, topics that he/she could discuss,

3The term “participant” refers to a simulated person in the context of
the discussion and “user” refers to the person who participates in the
experiments and whose argumentative model is built. That is, “users”
generate arguments for the situations of each “participant”.

and historical information (promises uttered and proposals
accepted in the past). Table 2 shows the information simu-
lated for the participant Jack.

This information was presented to the users in the ap-
plication for meeting scheduling, as if they should schedule
a meeting. They were requested to generate arguments on
four situations, one for each simulated participant, to sup-
port the proposals derived from the goals of each one, or to
persuade another participant to resign theirs. For example,
in the situation of participant Jack, some possible proposals
to be supported by arguments are: accept(user(kate), pro-
posal(discuss_topic(overtime-payments))), refuse(user(ben),
proposal(time(night))), or accept(user(juliet), place(coffee-
shop)), and so on with the others participants.

As a result, we gathered 1,234 observations, with the for-
mat detailed in the previous section, divided in a knowledge
base for each user. All observations were expressed in the
language L. We divided the observations of each user in two
parts. The first part was composed of arguments belonging
to the three first situations, we called it training observa-
tions, and the arguments of the fourth situation was put on
the second part, which we called test observations. Then,
we performed the process to build the user argumentative
models using the training observations. First, we built a tax-
onomy of facts. Second, for each knowledge base of obser-
vations, we converted its content to a set of transactions, and
executed the generalised association rule mining algorithm
with the taxonomy and these transactions as input. Thus, we
obtained a set of association rules. Then, we post-processed
this set and built the argumentative model for each user. In
Table 3, we show information about observations per user,
rules per argumentative model, and a ratio between both pa-
rameters.

As we can see in the Table 3, there is not a relation be-
tween the amount of observations and the amount of rules in
the user argumentative model. User 6 and 19 generated a lot
of arguments, but the algorithm of association rules could
not find relevant rules. We think this can indicate that the
users did not have a well-defined argumentative style. That
is, the user generated arguments but not following a specific
pattern. This fact is denoted by a nil or lower ratio R/O (the
number of rules divided the number of observations). On the
other side, when the ratio increases, the argumentative style
is well defined and the argumentative model is composed of
several rules.

To illustrate the results obtained, we show the rules for
argument generation learnt from the user 1 (see Fig. 5).
From this user, we obtained 5 rules. In rule 5a, the an-
tecedent, or condition for the argument generation, is
has_goal(user(U1), goal(discuss_topic(T 1))))); and the
consequent (the argument) is argument(user(U2), user(U1),
accept(user(U1), proposal(discuss_topic(T 1))), [has_goal
(user(U1), goal(discuss_topic(T 1))))]). That means the

A. Monteserin, A. Amandi

Table 2 Information simulated for the participant Jack

U jack

has_goal(user(U), goal(G)) G

not(place(room1)); not(time(night))

and(not(date(friday)),time(morning))

time(morning); time(evening)

date(wednesday); date(thursday)

discuss_topic(salary); not(date(saturday))

discuss_topic(overtime-payments)

not(discuss_topic(new-employees))

believe(user(U),B) B

imply(place(coffe-shop),time(morning))

imply(place(restaurant),not(time(night)))

imply(discuss_ topic(overtime-payments),user(kate))

imply(discuss_topic(salary),discuss_ topic(overtime-payments))

imply(place(room1),not(projection))

imply(discuss_topic(salary),projection)

prefer(user(U),G1,G2) G1 G2

goal(not(time(night))) goal(not(place(room1)))

goal(date(wednesday)) goal(date(tuesday))

goal(place(coffe-shop)) goal(place(buffet))

goal(discuss_topic(salary)) goal(discuss_topic(overtime-payments))

goal(discuss_topic(salary)) goal(not(discuss_topic(new-employees)))

goal(discuss_topic(overtime-payments)) goal(not(discuss_topic(new-employees)))

can_do(action(A)) A

discuss_topic(salary)

discuss_topic(vacations)

discuss_topic(overtime-payments)

Historical information accepted(user(jack),discuss_topic(new-employees))

accepted(user(jack),discuss_topic(salary))

accepted(user(jack),time(night))

accepted(user(jack),place(lab))

accepted(user(jack),place(room2))

promised(user(jack),user(kate),discuss_ topic(new-employees))

condition the user 1 (in this case U2 because he is the sender
of the argument) finds to express the argument, to support
the proposal discuss_topic(T 1), is the user U1 has the same
goal. Moreover, we can observe some similar rules, but with
different level of detail, such as rules 5d and 5e. Although
these rules are redundant since 5d is included in 5e, are valid
for the argument generation. Note that this difference of gen-
erality is obtained by the generalised association rule algo-
rithm.

It is also worth noticing that we cannot be sure that this
set of rules represents completely the argumentative style
of the user, but we claim that it is a good result since the
number of observations for this user was only 25.

To evaluate that the rules of the argumentative models de-
pict the argumentative styles of the users, we compared for
each user the arguments that we can obtain using his/her ar-
gumentative model, versus the arguments stored on the test
observations. The main idea was to validate the rules that
compose the argumentative models by determining if the ar-
guments generated by the user in a new situation (test obser-
vations) could be generated by means of the rules for argu-
ment generation learnt from the training observations. For
each test argument (argument stored in test observations),
we established one of the three values: NO (it cannot be
generated from the argumentative model); PARTIAL (it can
be partially generated, that is, the test argument was gener-

Building user argumentative models

Table 3 Observations and rules obtained by user, and results of the evaluations

User Observations Rules R/O # %

Total Train. Test NO PART YES NO PART YES

1 30 25 5 5 0.2 2 1 2 40 20 40

2 30 24 6 3 0.13 5 1 0 83.33 16.67 0

3 15 12 3 4 0.33 2 0 1 66.67 0 33.33

4 37 33 4 1 0.03 4 0 0 100 0 0

5 119 91 28 16 0.18 9 3 16 32.14 10.71 57.14

6 103 167 12 1 0.01 10 0 2 83.33 0 16.67

7 43 31 12 8 0.26 3 0 9 25 0 75

8 11 10 1 3 0.3 1 0 0 100 0 0

9 13 11 2 3 0.27 2 0 0 100 0 0

10 31 25 6 1 0.04 4 2 0 66.67 33.33 0

11 37 30 7 2 0.07 5 2 0 71.43 28.57 0

12 83 64 19 1 0.02 16 0 3 84.21 0 15.79

13 44 35 9 1 0.03 6 0 3 66.67 0 33.33

14 20 18 2 7 0.39 0 0 2 0 0 100

15 37 30 7 2 0.07 5 2 0 71.43 28.57 0

16 85 67 18 8 0.12 0 0 18 0 0 100

17 21 16 5 4 0.25 3 1 1 60 20 20

18 42 36 6 7 0.19 2 2 2 33.33 33.33 33.33

19 110 151 69 1 0.01 32 12 25 46.38 17.39 36.23

20 37 30 7 2 0.07 6 0 1 85.71 0 14.29

21 58 43 15 2 0.05 2 8 5 13.33 53.33 33.33

22 64 44 20 5 0.11 0 6 14 0 30 70

23 81 66 15 6 0.09 0 1 14 0 6.67 93.33

24 15 8 7 1 0.13 2 2 3 28.57 28.57 42.86

25 68 48 20 4 0.08 2 8 10 10 40 50

Total 1234 1115 305 98 123 51 131 40.33 16.72 42.95

Fig. 5 Rules for argument
generation extracted for user 1

ated with more conclusions or premises that those present
in the rule), and YES (it can be completely generated). For
example, given the rules of user 1 (Fig. 5), the values for the
following test arguments were:

– has_goal(user(juliet), goal(not(place(buffet)))) ⇒
argument(user(juliet), user(ben), refuse(user(ben), pro-
posal(place(buffet)))), [has_goal(user(juliet), goal(not

(place(buffet))))]): this argument cannot be generated,
since no rule of the argumentative model matches this
pattern.

– accepted(user(kate), proposal(discuss_topic(overtime-
payments))), can_do(user(kate), discuss_topic(overtime-
payments)) ⇒ argument(user(juliet), user(kate), accept
(user(kate), proposal(discuss_topic(overtime-payments)))),

A. Monteserin, A. Amandi

Fig. 6 Rules for argument
generation

[accepted(user(kate), proposal(discuss_topic(overtime-
payments)))]): this test argument can be generated, but
partially, because the condition can_do(user(U), dis-
cuss_topic(T)) is not present in the conditions of rule 5d.

– has_goal(user(jack), goal(not(date(saturday)))) ⇒
argument(user(juliet), user(jack), accept(user(jack), pro-
posal(date(friday))), [has_ goal(user(jack), goal(not(date
(saturday))))]): it can be completely generated by rule 5b.

The results of the evaluations are showed in Table 3. In the
last columns, we can see the total (#) and percentage (%) of
NO (123 and 40.33%), PARTIAL (51 and 16.72%) and YES
(131 and 42.95%) observations. As we can observe, a good
percentage of the arguments stored in the test observations
could be generated with the rules that compose the argu-
mentative models. That means that the rules obtained from
the training observations model the argumentative style with
which users generate their arguments, at least partially. Note
that for the 44% of the users, the total of arguments that can
be generated by the argumentative model is higher than the
total of arguments that cannot. In addition, we could, at least
partially, generate some arguments for the 88% of the users.

On the other hand, as we introduced in Sect. 3, in the
area of argumentation-based negotiation [13], rules for argu-
ment generation have been explicitly defined. In the work of
Kraus et al. [5], several rules have been detailed taking into
account the works in the area of psychology of the persua-
sion [7, 8]. The underlying idea is that finding the same rules
that others works have specified from others perspectives
(i.e. psychological theories), shows signs that the proposed
mechanism to learn rules for argument generation works
well. That is, the studies in the area of argumentation-based
negotiation help us to validate our mechanism for build-
ing user argumentative models. For this reason, we show
in Fig. 6 some rules discovered using the process specified

above, which were defined in [5] too. In our work, these
rules were found for several users. We analyse them below:

– Trivial appeal (Fig. 5a): it is a simple appeal: U2 knows
that the place P 1 is occupied (that means not(place(P 1))),
and he/she uses this information to justify the refusal
of P 1 as the place for the meeting (this rule was found
in 12 users).

– Appeal to prevailing practice (Fig. 5b): this is an appeal
that resorts to historical information (accepted(user(U),
proposal(P))) to persuade an opponent to accept a pro-
posal. That is, “if you accepted the proposal P1 in the
past, now you should accept it too”. In this rule, the abil-
ity of abstraction that the generalised association rules
give to our approach can be assessed since all arguments
present in the observation have the proposal instantiated
(rule found in 16 users).

– Threat (Fig. 5c): we suppose this rule represents an in-
complete one for threat generation. To be completed, this
rule should have a proposition that represents U2’s inten-
tion to refuse the discussion of topic T 1 in the justification
of the argument. In other words, if U1 does not accept the
date D1, U2 do not accept to discuss the topic T 1. Find-
ing incomplete rules can aid to improve the argumentative
abilities of the user (rule found in 2 users).

– Appeal to past promise (Fig. 5d): it is also a simple ap-
peal, in which U2 reminds U1 that he/she promised to
discuss topic T 1 (rule found in 18 users).

Note that some rules appear more frequently than others.
That happens because some rules are simpler than others.
Simple rules, such as appeals to prevailing practice, are eas-
ily discovered with few observations. Intuitively, this is be-
cause the number of conditions is low, so it is expected that
smaller patterns on the conditions are more frequent than
patterns with a high number of conditions. On the contrary,

Building user argumentative models

some rules, such as threats, are not as common (they were
only discovered from 2 users) as others, because it is struc-
turally more complex.

6 Applications of the user argumentative model

As we said in the introduction, there are several applica-
tions for a user argumentative model. In this section, we
will give an overview about two possible applications: the
personalised suggestion of arguments and the discovery and
analysis of users’ argumentative skills.

6.1 Suggesting personalised arguments

As we introduced above, when a user participates in a dis-
cussion he/she must generate arguments to persuade his/her
opponents. To achieve this, he/she builds these arguments
according to his/her argumentative style. So, if we have a
user argumentative model that depicts that style, we could
automatically generate arguments in a personalised way.

We assume that we can access to the contextual infor-
mation of the discussion in which the user is participating,
and that this information is expressed in the language L de-
scribed before. For example, a personal agent [14], which
observes the computational environment, can detect the in-
tentions [15, 16] of the user or can observe both the proposal
that he/she utters and the additional information of the dis-
cussion. Once the intentions or the proposals are detected
and the information is gathered, the personal agent can use
the rules stored in the user argumentative model to generate
arguments that give support to the intention and proposals
of the user. The argument generation is performed by check-
ing the rules, whose argument matches the proposal that we
want to support, considering the contextual information of
discussion. Then if the conditions of the rule are met, we
will be allowed to generate the argument.

For example, given two users John and Peter, if the pro-
posal of John is that Peter accepts to discuss about salary
(accept(user(peter), proposal(discuss_topic(salary)))), the
rules, whose condition we have to check, must gener-
ate an argument with the format: argument(user(john),
user(peter), accept(user(peter), proposal(discuss_topic
(salary)))), [J]), where J must be instantiated with any jus-
tification.

Once the arguments have been generated, they can be
presented to the user in a graphical interface so that the user
can choose one, modifying or not some of its parts, or re-
ject the suggestions. This can be useful as a feedback for the
correctness of the rules in the user argumentative model too.
The order in which the arguments are presented to the user
can be determined by the values of the metrics of the rule
that generated it.

To exemplify this application, we will show how argu-
ments can be generated using the rules included in the ar-
gumentative model of user 1 (Fig. 5), namely John. No-
tice that the argumentative style of John is modelled by the
rules included in the argumentative model. Given a discus-
sion between John and Peter, we suppose that both want
to arrange a meeting to negotiate a contract. John wants
to meet on Monday morning in his office. This informa-
tion expressed in the language L is: has_goal(user(john),
goal(discuss_topic(contract))), has_goal(user(john), goal
(date(monday))), has_goal(user(john), goal(time(morning))),
has_goal(user(john), goal(place(my_office))). Moreover,
we can access to both the next information about Pe-
ter and the context of the discussion: believe(user(john),
not(place(meeting_room))) (the meeting room is occu-
pied), accepted(user(peter), proposal(and(date(monday),
time(morning)))) (in the past, Peter accepted a morning
meeting on Monday), has_goal(user(peter), goal(not(date
(friday)))) (Peter has the goal of not meeting on Friday),
among others.

In this scenario, we can see several situations to generate
arguments from the perspective of John. For example:

– Peter proposed to meet in the meeting room.

As John wants to meet in his office, he has to generate
an argument that refuses such proposal. So, we can sug-
gest a trivial appeal with rule c (Fig. 5c), saying that the
meeting room is occupied. The argument suggested will
be: argument(user(john), user(peter), refuse(user(peter),
proposal(place(meeting_room)))), [believe(user(john), not
(place(meeting_room)))]).

– John proposed a morning meeting on Monday and Pe-
ter refused it, justifying that he cannot meet on Monday
morning.

In this situation, John should give Peter a justification
in order to persuade him to meet that day at that time.
This justification can be reached with an argument gen-
erated by rule e (Fig. 5e). The argument suggested will
be: argument(user(john), user(peter), accept(user(peter),
proposal(and(date(monday), time(morning)))))), [accepted
(user(peter), proposal(and(date(monday), time(morning))))]),
or argument(user(john), user(peter), accept(user(john), pro-
posal(date(monday))), [has_goal(user(peter), goal(not
(date(friday))))]), which is not a complete argument, but
could be an option.

6.2 Discovering and analysing users’ argumentative skills

As we introduced earlier, modelling the argumentative style
of a user can be interesting in the area of knowledge man-
agement. We keep on focus three perspectives in which user
argumentative models have possible applications. We will
briefly comment these applications:

A. Monteserin, A. Amandi

– Discerning faults in the users’ argumentative abilities: as
we showed in Fig. 5c, we can detect some problems in
users’ argumentative abilities. Another problem could be
seen in Table 3 with the users 6 and 19, they generate a
lot of arguments, but apparently without a defined style.
Once the problems are detected, we can take decisions to
correct them.

– Task allocation: if we have to allocate a task among dif-
ferent users, the information about user’s skills helps us
to take decisions. So, we could analyse the argumenta-
tive models and determine if a user is able to perform a
task that demands argumentation (i.e. to negotiate with a
provider). That is, for example, if the user has no faults in
his/her user’s argumentative abilities, he/she will be able
to perform the task properly.

– Organizational memory: as we said before, it could be
useful to include in the organizational memory the user
argumentative models in order to have this information
for future decisions, or to train the argumentative skills of
future employees in an organization.

7 Related work

It is hard to set this work in the context of the actual litera-
ture. First, we have not found works related to the construc-
tion of user argumentative models, and second, our proposal
is interdisciplinary in its constitution as well as in its appli-
cation.

On the one hand, the rules for argument generation that
are learnt in our proposal and form the user argumentative
model, have been used in the area of argumentation based
negotiation among intelligent agents [13]. Kraus et al. [5]
determine a set of possible argument types, and for each ar-
gument type they define preconditions for its usage. Only if
the preconditions are fulfilled, the argument will be used. In
the work of Ramchurn et al. [17] and Sierra et al. [9], the au-
thors define preconditions for argument generation too, each
one taking into account several factors (authority, utility of
the proposals, etc.). However, these works define these rules
statically, and do not establish a mechanism to learn them.
With regard to the different factors that could be taken into
account in the conditions of the rules, our proposal allows us
to consider all that, storing the information about the context
as a condition in the observations.

With respect to user models, they have been applied in
the field of argument interpretation. Zukerman et al. [18] in-
corporate a user model in the process of argument evalua-
tion, that is arguments that a user receives from other ones;
but this work excludes the argument generation. The user
model is represented by a Bayesian network. This network
represents the users’ beliefs, which are born in mind by an
argument-interpretation mechanism. In addition to the dif-
ferences between the user model representations (we use

associations rules and they use Bayesian networks), both
works are focused on different mechanisms of the argumen-
tation process. Zukerman et al.’s work focuses on argument
evaluation and we focus on argument generation.

8 Conclusions and future work

This paper contributes to the areas of user modelling and ar-
gumentation based negotiation. We have been presented a
original mechanism to build user argumentative models that
captures the argumentative styles of the users, which have
not been modelled to date. For this task, we observe how
the users generate his/her argument during a discussion in
a computational medium, and on the basis of these obser-
vations, we apply a generalised association rules algorithm
to extract rules for argument generation. The rules obtained
are composed of an antecedent and a consequent. The an-
tecedent is a set of conditions that the context of the discus-
sion has to fulfil in order to be able to generate an argument,
which form the consequent of the rule. We defined some fil-
ters to select the most interesting rules. First we select the
rules whose format is interesting for our goals, and then we
calculate a metric to determine if the conditions of the rule
are sufficient to generate the argument.

The evaluation of this proposal was carried out in the sce-
nario of meeting scheduling. We worked with a group of 25
users who have to arrange meetings in a distributed appli-
cation. We observed how users generated their arguments,
we learnt the rules for argument generation that they use
tacitly, and built an argumentative model for each of them.
We learnt several rules for each user though the number of
observations was limited, with the exception of some users
with a high number of observation, but with a low number
of rules discovered.

To validate this result, we found that a 42.95% of the ar-
guments generated by users in a test situation, can be com-
pletely generated using the user argumentative models and
a 16.72% can be partially generated. This indicates that the
rules in the argumentative model represent the argumenta-
tive style of the user, at least partially.

In addition, we compared the rules obtained with other
works in the area of argumentation based negotiation. We
found several coincidences between the rules obtained by
our proposal and the rules defined explicitly in the work of
Kraus et al. [5]. Moreover, we showed for several situations
how arguments can be generated from the user argumenta-
tive model, and gave an overview about the applicative scope
of our work.

There are a number of future research directions, such as
determining how to analyse the user argumentative model
to detect flaws in the argumentative skill of the users, and
which corrective actions take to solve this. In addition, we

Building user argumentative models

can apply the argumentative model to evaluate the argu-
ments that the user receives. Most importantly, future re-
search will assess how the users respond to the suggestion
of a personal agent, and how this interaction between user
and agent could be taken into account in the suggestion of
arguments.

References

1. Ilgen DR, Hulin CL (2000) Computational modeling of behavior
organizations: the third scientific discipline. American Psycholog-
ical Association, Washington. Chap. 1

2. Hedberg B (1981) How organizations learn and unlearn. In: Nys-
tron PC, Starbuck WH (eds) Handbook of organizational design.
Oxford University Press, New York, pp 3–27

3. Stein E, Zwass V (1995) Actualizing organizational memory with
information systems. Inform Syst Res 6(2):85–117

4. Srikant R, Agrawal R (1997) Mining generalized association rules.
Future Gener Comput Syst 13(2–3):161–180

5. Kraus S, Sycara K, Evenchik A (1998) Reaching agreements
through argumentation: a logical model and implementation. Artif
Intell 104(1–2):1–69

6. Brusilovsky P, Millán E (2007) User models for adaptive hyper-
media and adaptive educational systems. In: The adaptive web.
Springer, Berlin, pp 3–53

7. Karlins M, Abelson HI (1970) Persuasion: how opinions and atti-
tudes are changed. Springer, Berlin

8. O’Keefe D (1990) Persuasion: theory and research. SAGE, Lon-
don

9. Sierra C, Jennings NR, Noriega P, Parsons S (1998) A framework
for argumentation-based negotiation. In: Proceedings of the 4th
international workshop on agent theories, architectures and lan-
guages, Rode Island, USA, pp 177–192

10. Agrawal R, Imieliński T, Swami A (1993) Mining association
rules between sets of items in large databases. In: Proceedings
of the 1993 ACM SIGMOD international conference on manage-
ment of data, Washington, DC, pp 207–216

11. Shintani T, Kitsuregawa M (1998) Parallel mining algorithms for
generalized association rules with classification hierarchy. In Pro-
ceedings of the ACM SIGMOD international conference on man-
agement of data, SIGMOD 1998, Seattle, WA, pp 25–36

12. Agrawal R, Srikant R (1994) Fast algorithms for mining associ-
ation rules. In: Proceedings of the 20th international conference
very large data bases, Santiago de Chile, Chile, pp 487–499

13. Rahwan I, Ramchurn SD, Jennings NR, McBurney P, Parsons
S, Sonenberg L (2003) Argumentation-based negotiation. Knowl
Eng Rev 18(4):343–375

14. Maes P (1994) Agents that reduce work and information overload.
Commun ACM 37(7):30–40

15. Kautz H (1987) A formal theory of plan recognition. PhD thesis,
Department of Computer Science, University of Rochester

16. Charniak E, Goldman RP (1993) A Bayesian model of plan recog-
nition. Artif Intell 64(1):53–79

17. Ramchurn SD, Jennings R, Sierra C (2003) Persuasive negotiation
for autonomous agents: a rhetorical approach. In: Proceedings of
the IJCAIl workshop on computational models of natural argu-
ment, Acapulco, Mexico, pp 9–17

18. Zukerman I, George S, George M (2003) Incorporating a user
model into an information theoretic framework for argument in-
terpretation. In: Proceedings of the ninth international conference
on user modeling, Johnstown, PA, pp 106–116

Ariel Monteserin is a PhD student
at ISISTAN Research Institute at
Univ. Nac. del Centro de la Pcia.
de Bs. As. (UNCPBA), Argentina.
His main interests are negotiation
and argumentation among intelli-
gent agents. He received his Bache-
lor degree in Systems in 2003. He is
a teaching assistant in the Computer
Science Department at UNCPBA.

Analía Amandi is a professor in
the Computer Science Department
at Univ. Nac. del Centro de la Pcia.
de Bs. As. (UNCPBA), where she
leads the ISISTAN Research In-
stitute’s Knowledge Management
Group. She received her PhD in
1997. Her research interests include
personal assistants and knowledge
management.

	Building user argumentative models
	Abstract
	Introduction
	Case study
	Argumentative style and user argumentative model
	Building the user argumentative model
	Taxonomy building
	Language to express conditions and arguments
	Algorithm to build the taxonomy

	Execution of generalised association rules algorithm
	Post-processing generalised association rules

	Experimental results
	Applications of the user argumentative model
	Suggesting personalised arguments
	Discovering and analysing users' argumentative skills

	Related work
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

