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Abstract. Genetic regulatory networks with adaptive responses are widely studied in biology. Usually,
models consisting only of a few nodes have been considered. They present one input receptor for activation
and one output node where the adaptive response is computed. In this work, we design genetic regulatory
networks with many receptors and many output nodes able to produce delayed adaptive responses. This
design is performed by using an evolutionary algorithm of mutations and selections that minimizes an
error function defined by the adaptive response in signal shapes. We present several examples of network
constructions with a predefined required set of adaptive delayed responses. We show that an output node
can have different kinds of responses as a function of the activated receptor. Additionally, complex network
structures are presented since processing nodes can be involved in several input-output pathways.

1 Introduction

Gene regulatory networks of living organisms can present
a particular kind of response, adaptive response, against
environmental changes. This response is important in or-
der to retain the operation and functionality of the bio-
logical systems. The expression levels of some genes inside
the cell show changes as a response to an external stimu-
lus. These changes return later to pre-stimulus values pre-
senting adaptation to the new environmental conditions.
The change on the gene expression level can be an up-
regulation (increment) or a down-regulation (decrement)
as a function of the type of stimulus [1–3]. And in occa-
sions, these adaptive responses can appear delayed with
respect to the activation by the external signal [4].

There have been many theoretical studies for adaptive
responses with simple models composed with a few ele-
ments [5–8]. Especially, detailed analysis of small genetic
networks of three nodes showing adaptive responses has
been performed [9,10]. The identification of these systems
or motifs with adaptive responses is possible by an ex-
haustive searching of all possible combinations of pattern
connections, however, when the number of nodes is not
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small, this combinatorial analysis cannot be performed
in a rational time. In this case, stochastic algorithms of
optimizations as genetic ones have been used to construct
relatively large networks with adaptive responses [5,11].
Moreover, in both small and large network cases, an adap-
tive response between a specific pair of input-output nodes
has been studied, i.e. the input signal is applied to only one
node (receptor) and the adaptive response is computed
only for one output node.

In this work we propose to construct networks with
adaptive responses between several input receptors and
several output nodes. We even study adaptive responses
with time delays; the output nodes show no response
at all for a period of time after stimulus to input re-
ceptors, but then they suddenly start to show adaptive
responses. Such responses with time-delay are observed
ubiquitously [4,12], however, adaptive responses with time
delays have been rarely studied.

We employ relatively large networks with several tens
of nodes. They are not so much large, but enough large to
make it difficult to study a full search as in three nodes
cases. The networks with delayed adaptive responses im-
posed complex architectures that cannot be designed by
trial and error of all possible combinations neither by a ra-
tional design because of its number of nodes. For example,
a network with three types of 20 possible connections has
approximately 320 ≈ 3.48× 109 configurations. Therefore,
we propose to use a version of the Metropolis algorithm.
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In a given network with some actual output we measure its
error with respect to a target set of signals, and we try to
reduce that error. This kind of optimization, Metropolis-
like methods, have been used in the construction of genetic
networks [13–16], and, flow processing networks [17–20].

We show in this article that it is possible to construct
networks with delayed adaptive responses between mul-
tiple input receptors and multiple output nodes. First,
we study adaptive responses without delay but between
multiple input receptors and multiple output nodes. We
show that an output node can present different types of
responses according to the input receptor activated, al-
though the routes connecting each input receptor and the
output node are often overlapped. Next, we studied de-
layed adaptive responses between multiple input and out-
put nodes. We constructed networks not only with differ-
ent delay times for an output node according to different
input receptors but also with ones among different out-
put nodes with respect to an input node. Thus, we could
construct networks with any delayed adaptive responses
using our algorithm.

The paper is organized as follows: in Section 2 we
present the network model, the dynamics of the nodes,
the cost function or error of a network and the annealing
method used in the optimizations. In Section 3 we show
several examples of construction of networks with differ-
ent target adaptive responses and network sizes. Finally,
in Section 4 we present the final discussions and results.

2 Models and methods

The adaptive response of a gene in a regulatory system is
a process where the gene i changes its level of expression
xi(t) when some external signal Ik(t) activates at t = t0
certain receptors of the network. This change in the ex-
pression level can be positive (up-regulation) or negative
(down-regulation) and it has a pulse-like shape as a func-
tion of time, i.e., the expression level returns close to the
pre-activation value before the external signal was applied.
Note that the external signal keeps activating the recep-
tors for any t > t0. The adaptive response can start de-
layed with respect to the activation of the receptor by the
external signal at t0. Figure 1a shows a schematic picture
of an adaptive response.

An adaptive response can be characterized by its
shape with introducing these three values, Ini, Max, and
V ar [5]. Ini is the steady state value of xi(t) before the
application of an external stimulus. Max is the maximal
absolute change from the Ini value and V ar is the new
steady state value after the application of the stimulus.
It is clear from Figure 1a that an adaptive response is
well defined with larger Max and smaller |Ini − V ar|.
The response starts immediately after the application of
the input signal at t = t0 in Figure 1a, but it can start
delayed as we consider in this paper.

In this work the aim is to design networks with several
input receptors and several output nodes presenting adap-
tive responses. Figure 1b shows an example of these sys-
tems. A network G has N nodes with Nin input receptors,
M middle nodes and Nout output nodes. These networks

(a)

(b)

Fig. 1. (a) Example of an adaptive signal xi(t). At time t0
the external signal I(t) �= 0 is applied and the node i starts its
response. The activity grows a quantity Max from its initial
value Ini and evolves to a value V ar. (b) Representation of our
problem. A network with three input receptors (circular nodes
1, 2 and 3) and three output nodes (squares A, B and C).
Input signal I2(t) activates the network at time t0 and output
signals sA2(t), sB2(t) and sC2(t) are expressed on the output
nodes.

process input signals Ik(t) (k = 1, . . . , Nin) and generate
responses sjk(t) (j = 1, . . . , Nout, k = 1, . . . , Nin) on the
output nodes. We consider the input signals acting only
one at the time, thus, the response matrix R = {sjk(t)}
describes the network response for these input signals by
the network G. Since all the nodes follow the same dy-
namics and the initial conditions of the dynamical system
are fixed, the matrix response is a function of the network
structure, i.e. the pattern of connections.

Generally, with a random connection matrix, output
nodes do not show adaptive responses and often show
monotonic evolutions to fixed points or oscillations. In
addition, response with time delay is hardly realized.

2.1 Network model

The network model we consider is essentially the one used
in reference [11]. However, we extent that previous model
in order to have a layered-like network structure with sev-
eral input receptors and several output nodes (see Fig. 1b).
Following, we present in detail the technical aspect of the
model. The biological interpretation and argumentation
of the validity of this model can be found in the previous
reference.

2.1.1 Network structure

We use a regulatory network model composed with nodes
interacting each other. In a network G, there exist N
nodes in total and the nodes are classified into three types;
Nin input nodes (receptors) receiving the external stimu-
lus, Nout output nodes showing the final responses against
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Fig. 2. Example of network. There are Nin = 4 receptors (red
circular nodes 1, 2, 3 and 4), M = 12 middle nodes (gray oc-
tagons), and Nout = 4 output nodes (blue square nodes 17, 18,
19 and 20). Connections ending in filled arrows are excitatory
and connections ending on white empty squares are inhibitory.

the stimulus, and M middle nodes processing the stimu-
lus from receptors to output nodes. Figure 2 shows an
example of network.

Nodes are connected with the following rules. Input
nodes can be connected only with middle nodes (from in-
put nodes to middle nodes). Middle nodes can be con-
nected with middle nodes (from middle nodes to middle
nodes) and with output nodes (from middle nodes to out-
put nodes). No other types of connections are permitted
and only middle nodes can have self-connections. There-
fore, output nodes have only incoming connections from
middle nodes.

Only one directed link can exist between two nodes
and each connection can be excitatory or inhibitory. To
describe the network architecture, we use a connection
matrix C; the element Cij represents an interaction from
node j to node i. Cij takes 1, −1, or 0 depending
on whether the connection is excitatory, inhibitory, or
non-existent.

2.1.2 Network dynamics

A node i has an internal variable xi(t) for its response
level with a time evolution given by:

dxi

dt
=

1
1 + exp(−βyi)

− γxi + α. (1)

The first term represents interactions with other nodes
and the second term represents degradation, while α is a
small output representing spontaneous response. yi shows
the total input signal to node i (i = 1, . . . , N) and is
given by:

yi = Ik(t)δik +
N∑

j=1

Cijxj , (2)

with δik = 1 (for i = k), 0 (for i �= k) and k = 1, · · · , Nin.
Thus, the external stimulus Ik(t) is applied only to the
input nodes.

We set the following parameter values: β = 10, γ = 1
and α = 0.01. The external stimulus Ik(t) = 0 for t < t0
and Ik(t) = I∗ for t � t0. I∗ need to be enough large
to activate input nodes and we set I∗ = 5 in this work.
The value t0 indicates the instant when the input node k
is activated. We use same time evolution (Eq. (1)) and
same parameters for all nodes regardless of the type of
nodes. We thus fix the parameter values concerning to the
dynamics of nodes, while we change the number of nodes
(N , Nin, M , and Nout) in each case and study evolution
of the connection matrix C.

All nodes are put at xi(0) = 0.5 as initial conditions
and evolve to a steady state or an oscillatory regimen ac-
cording to equation (1) without external stimulus under
a connection matrix C. We use this initial condition {x0}
for all cases in this paper.

The first term in equation (1) changes from 0 through 1
according to yi. For full inhibitory interaction (y � −1), it
approaches to 0 and therefore xi(t) → α/γ. On the other
hand, for full excitatory interaction (y � 1), it approaches
to 1 and x(t) → (1+α)/γ. As a result, xi(t) varies between
these two values, xi(t) ∈ [0.01, 1.01] as α = 0.01 and γ = 1.
In addition, when there is no interaction (y = 0), x(t) →
(0.5 + α)/γ = 0.51.

We have to note now that an output signal sjk(t)
(j = 1, . . . , Nout and k = 1, . . . , Nin) corresponds to the
variable xi(t) of the output node i, that is, sjk(t) ≡ xi(t)
for i = Nin + M + j, when the input node k is activated.

2.2 Error function

Our task is to generate networks with a specific set of out-
put signals. Thus, we need to define some kind of distance
between the actual output response of a given network and
the target response we desire to construct. We call the set
of target signals T (target pattern). On the other hand, a
given network G with structure C presents an actual set
of output signals R = {sij(t)} (response). The distance ε
between the target pattern and the actual response is de-
fined as the error of the network G with respect to the
target pattern, i.e, ε(G) = |T−R|. Matrices T and R have
elements as temporal signals. Thus, in order to compute
the distance between their elements we measure how dif-
ferent are the actual output signals with respect to target
ones. In order to perform this calculation, we proceed as
follows.

We split the output response sij(t) into several tem-
poral intervals and evaluate each of them (Fig. 3). During
the transient interval τT with t < t0, the external stimulus
Ij(t) = 0 and sij(t) is stabilized, ideally, on a stable fixed
point. At t = t0 the stimulus is applied, and sij(t) starts to
show some response. We call this interval with expected
adaptive response as τA (t � t0) and divide into three
subintervals: a delay interval τd, a response interval τr, and
a post-pulse interval τp. We expect the adaptive response
is realized during the response interval τr and sij(t) stays
almost constant during τd and τp.

http://www.epj.org
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Fig. 3. Schematic representation of an output signal sij(t).
We show the time intervals and their characteristic points p’s.
The time intervals are: transient τT and adaptive response τA,
and, the latter one is divided into delay τd, response τr and
post-response τp subintervals.

For each of these subintervals, we define the initial, the
final, the maximum and the minimum values as shown in
Figure 3 with the points p’s. We now define error function
for realizing a target output response (T) with these val-
ues. We first define the error function for each subinterval
and then we combine them into one final quantity.

During the delay interval τd, the output response must
be constant, thus, we define the error function for this
interval as the difference between the maximum p1 and
minimum p2 values:

εd = |p1 − p2|. (3)

We find a similar situation for the post-pulse interval τp;
the output signal must be constant and the error function
for this interval is defined as the difference between the
maximum p7 and minimum p8 values:

εp = |p7 − p8|. (4)

For the response interval τr, we set the three situations as
already explained: a constant response, a positive adap-
tive response (up-regulation), and a negative adaptive re-
sponse (down-regulation). We set different error functions
for each case.

In case of a constant response, the error function is
given by the difference between the maximum p4 and min-
imum p5 values:

εr = |p4 − p5|. (5)

In case of either adaptive responses, considering the char-
acterization with Ini, Max, and V ar in Figure 1a, we de-
fine the error function as follows. Ini ccorresponds to p3

and V ar to p6. As for Max, it corresponds to p4 − p3

in positive adaptive case and to p3 − p5 in negative
case. Then, in case of a positive adaptive response (up-
regulation), we define the error function as:

εr = 1.0−{
P + (1− |p3− p6|)+ {1− (p3− p5)}}/3.0 (6)

with

P =

{
2(p4 − p3) if (p4 − p3) ≤ 0.5
2(1 − (p4 − p3)) otherwise. (7)

Similarily, in case of a negative adaptive response (down-
regulation), we define as:

εr = 1.0 − {
Q + (1 − |p3 − p6|) + {1 − (p4 − p3)}}/3.0;

(8)

with

Q =

{
2(p3 − p5) if (p3 − p5) ≤ 0.5
2(1 − (p3 − p5)) otherwise. (9)

With these definitions we impose the condition that the
minimum error is reached for adaptive responses with
a pulse amplitude Max = 0.5 (see Fig. 1). We impose
this restriction since the signals sij(t) ∈ [0.01, 1.01] (see
Sect. 2.1.2) and an output node may need to show both
positive and negative adaptive responses as a function of
the stimulated receptors.

The total error εij of an output response sij(t) is
defined as:

εij = adε
d
ij + arε

r
ij + apε

p
ij . (10)

The coefficients ad, ar, ap need to satisfy ad + ar + ap = 1
according to relative importance upon the total error. We
set ad = 1/10, ar = 8/10, and ap = 1/10 throughout the
paper. With this definition, the error during the response
interval (τr) has more importance than the errors during
the other two intervals. We set this election because the
main problem is to generate the pulse in the response in-
terval. The other two errors are mainly added in order
to avoid oscillatory responses. Finally, as we have Nin in-
put receptors and Nout output nodes, the total error of a
network G is given by:

ε(G) =
1

NinNout

Nin∑
i=1

Nout∑
j=1

εji. (11)

2.3 Optimization construction

The process to construct a network G with a predefined
response T seems just an optimization problem where we
need to find a minimum of the error function ε(G). This
optimization can be performed by several different tech-
niques. In our case, we employ an annealing algorithm [21].

The algorithm consists of the following steps:

1. Take a network G with error ε.
2. Apply an evolutionary mutation to G, obtaining G′

with error ε′.
3. Calculate Δε = ε′ − ε.
4. If Δε ≤ 0 accept the mutation making G = G′.

If Δε > 0 accept the mutation with a probability
exp(−(Δε)/(σε))

5. Return to step 1.

This process is repeated during a fixed number of itera-
tions or until we find an error smaller than some given
threshold value. In this algorithm, σε plays the role of
temperature and decreases with the error approaching to

http://www.epj.org
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Fig. 4. Examples of network evolution. (a) Error as a function
of the number of iterations. (b) Output signals of the nodes of
the initial network (see Fig. 5a). (c) Output signals of the nodes
of the final network (see Fig. 5b).

zero. The parameter σ controls the importance of temper-
ature and an optimal value for the convergence exists in
general. In each optimization trial, we start with a random
network connected with a probability of p = 0.1. A link
can be excitatory or inhibitory with the same probability.

Figures 4 and 5 show an example of this process of
network construction for a system with Nin = 1, M = 10
and Nout = 3 nodes. The target output response we con-
sider is:

T =

⎡
⎣A0

R0

0

⎤
⎦ . (12)

The elements of the target matrix T are given with the
notation Xτd

with X = A, R, 0 representing an adaptive
response with up-regulation, an adaptive response with
down-regulation and a constant response respectively.
The subindex represents the delay interval τd. Note that
the column in the target matrix has the input node index
i = 1, . . . , Nin, and the rows show the output node in-
dexes j = 1, . . . , Nout. Therefore, equation (12) indicates
that the first output node (node-12 in Fig. 5) shows an
up-regulation with τd = 0, the second one (node-13 in
Fig. 5) shows a down-regulation with τd = 0, and the last
one (node-14 in Fig. 5) shows a constant signal.

Fig. 5. Initial (a) and final (b) networks from the example
shown in Figure 4.

Figure 4a presents the error ε as a function of the num-
ber of iterations. Figure 4b presents the output responses
R = {sij(t)} for the initial random network shown in Fig-
ure 5a. We can observe that they are far from adaptive
responses. Figure 4c shows the output responses of the fi-
nal network shown in Figure 5b and the target pattern is
realized. The vertical dashed lines indicates the beginning
and the end of the response interval τr = 30.

2.3.1 Evolutionary mutation

We consider two different schemes of mutations for the
optimization of the networks. The first one is called link
mutation and it consists of adding a new link or removing
an existing one with equal probability in each iteration.
A new link can be excitatory or inhibitory with equal
probability. This scheme has been successfully used in
our previous work of networks with time-programmed re-
sponses [17]. The main characteristic point of this scheme
is that the total number of links cannot be controlled
during the optimization process.

In order to control the total number of links, we use
the second scheme called rewiring mutation. This muta-
tion consists of rewiring of the links. That is, we delete
a link randomly and we create a new one between two
randomly chosen nodes without existing connection be-
tween them. As for the type of the new link, excitatory or
inhibitory, we do not keep the previous type and choose
randomly with equal probability. As a result, the total
number of links is fixed, but the number of excitatory
and inhibitory connections are not preserved during the
optimization course.

The number of nodes is conserved in both schemes.
It can happen that some middle nodes have only input
connections at the end of the optimization. These nodes
can be removed from the network without changing the
responses of the output nodes.

http://www.epj.org
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2.3.2 Numerical integration and evaluation of the error

In order to find the error of a given network with respect
to the target, it is necessary to integrate the system of
differential equations (1) in each iteration of the evolu-
tionary algorithm of optimization. Although, it is a nor-
mal procedure, we need to consider several points given
the particular characteristics of this system.

The system we study shows oscillations quite fre-
quently. This situation cause a problem that oscillatory
responses can be computed like adaptive responses if the
time intervals for computing the error function are shorter
than their periods. To avoid this, we take τp = τd + 3τr,
thus, τA = 2(τd + 2τr) (see Fig. 3). These conditions en-
sure the second pulse occurs before the end of τp in case
of periodic responses. A second pulse set the error εp to
non-zero and increase the total error. Therefore, oscilla-
tory responses are eliminated from the final networks.

It is possible to generate adaptive response with long
delays after the input signal is applied. This indicates that
the dynamics can be quite slow under some conditions.
Therefore, we need to set enough longer transient interval
for the system to relax to the steady state. Then, we set
τT = τd +2τr. This interval is consistent with the requited
delay of the response.

We find that fixing the initial condition and the time
intervals for the signal, it is possible to generate a pulse
(adaptive response) as we require without need the exter-
nal input signal Ik(t). A simple way to avoid this situation
is taking the transient interval τT different in each new in-
tegration. We used an effective transient interval for the
integrations by taking the time interval τT plus a random
extra time chosen between zero and τr.

The construction of a network by this method is de-
manding from the computational point of view since we
need to integrate the system in each iteration of the op-
timization. On the other hand, equation (1) presents a
smooth dynamics without strong changes. For these rea-
sons we employ an Euler algorithm to integrate the system
during the optimization. We use Δt = 0.01. In order to
validate the results, at the end of the simulation we evalu-
ate again the final network dynamics with a Runge-Kutta
method of fourth order with Δt = 0.001. In general, we
do not find any significant change on the results and both
methods give the same time evolution.

3 Numerical results

We present in this section several examples of network
constructions for systems with different sizes and delayed
responses. Since our main goal is to show the effectives of
the algorithm of optimization, we do not analyze in detail
the network properties of the constructed systems, and we
focus on the interesting example that can be constructed.
The obtained networks are collected in the supplemen-
tary data file networks adaptive response.nets by their ad-
jacency matrices and target required patterns. The objec-
tive of this network collection is to provide easy access to
the constructed system for their evaluation.

3.1 Adaptive responses without delays

In our first set of examples we consider adaptive responses
without delays (τd = 0), and we study influences of
network sizes.

3.1.1 Small networks with one receptor and one output
node

We consider networks with one receptor, three middle
nodes and one output node. These networks are the small-
est ones for which we can find adaptive responses. Our
minimum networks have 5 nodes in total and they are
larger than the smallest adaptive network reported in ref-
erence [9]. This difference on the number of nodes is ba-
sically due to the simple dynamics of each element with
fixed parameters (Eq. (1)) and the layered structure of our
model that imposes restrictions on the connection pattern.
The target signal we consider do not have a delay (T = A0)
and the response interval has a time windows τr = 30
where an adaptive positive pulse must hold. During the
optimization we use the link mutation scheme, thus, the
number of connections can vary. The total number of
iterations is 1 × 104.

We run several realizations in order to create ensem-
bles of 200 networks each by using different values of the
temperature parameter σ. In each realization a random
initial network is considered with a connectivity p = 0.1.
Figure 6a presents the mean error 〈ε〉 of each ensemble as
a function of σ. We observe that there is a minimum for
log(σ) ≈ −1. This value corresponds to the optimum tem-
perature parameter, for larger values the optimizations do
not converge, whereas smaller values stack the systems in
local minima where the solutions are not the best ones.

We find several networks able to perform adaptive re-
sponses. Since the number of links during the evolution
can vary due to the mutation scheme, the successful final
networks have in general different number of links. Fig-
ure 6b presents the mean number of links 〈L〉 as a func-
tion of the temperature parameter σ. We observe that
networks with the higher number of links are located in
log(σ) ≈ −1, where the mean error 〈ε〉 is the minimum.

Figure 6c presents the errors ε’s as a function of the
number of links for all the network constructions with
small error. We observe that the solutions with smaller
errors are located for larger number of links. This result
means that in general it is easier to generate an adaptive
response with dense networks than with sparse ones. Note
that the highest number of links for these networks is 15.

We are particularly interested in solutions with few
links since they are more realistic and can be considered
for implementations from the point of view of synthetic
biology. Examples of output signals are shown in Figure 7
for networks with six (a, b and c) and seven links (d, e
and f). Networks are shown in Figure 8. In all the cases
the adaptive pulse start immediately after the activation
of the receptor. The expression level of the receptor grows
rapidly to the maximum level. Note that the error is not
zero since the pulses have amplitudes smaller than 0.5,
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Fig. 6. (a) Mean error 〈ε〉 as a function of the temperature
parameter σ. (b) Mean number of links 〈L〉 as a function of
the temperature parameter σ. (c) Errors ε as a function of the
number of links.

and because the signals after the pulses do not return to
the pre-stimulus values exactly.

3.1.2 Networks with three input receptors and three output
nodes

For our second example of network constructions we con-
sider systems with Nin = 3 receptors, M = 15 middle
nodes and Nout = 3 output nodes. The required target
pattern is shown in the matrix 13.

T =

⎡
⎣R0 0 A0

0 A0 R0

A0 R0 0

⎤
⎦ . (13)

In this target pattern each output node must produce
three different responses depending on the receptor which
is activated. The responses (pulse) must be located in a
time windows of τr = 30 after the onset of the external
signals Ik(t).

We used the rewiring mutation with 50 connections.
Similarly to the previous example we have run several real-
ization with different values of σ and we find that the best
convergence is for log(σ) ≈ −2. Figure 9 presents the re-
sponses {sij(t)} of the constructed network shown in Fig-
ure 10. We observe that the required target pattern can
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x(
t)

node 1
node 5: network a
node 5: network b
node 5: network c

70 80 90 100 110 120
Time

0.5

1

x(
t)

node 1
node 5: network d
node 5: network e
node 5: network f

a)

b)

Fig. 7. Output signals of networks from Figure 8. Vertical
dashed lines indicate the time windows τr = 30.

Fig. 8. Networks with adaptive responses and few links. The
errors of these networks are: εa = 0.065, εb = 0.070, εc = 0.054,
εd = 0.034, εe = 0.048 and εf = 0.074.

be well reproduced. We present in red dotted lines the
expression of the activated receptor in order to show the
onset of the external activation.

The evolution find a solution where the responses of
all the output nodes after the transient interval stay close
to xi(t) ≈ 0.51, allowing to maximize both pulse am-
plitudes, the up-regulations (activations) and the down-
regulations (repressions). We have performed a similar
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Fig. 9. Output signals (solid blue curves) of the network from
Figure 10 with a target pattern shown in matrix 13. The red
dotted curves present the expression of the activated recep-
tor. The response windows τr = 30 is shown between vertical
dashed lines.

1

4

17

2

10

16

3

812 18

14

5

67 9

2021

13

11

19

15

Fig. 10. Designed network with the target responses shown in
matrix 13 and output signals shown in Figure 9. The network
error is ε = 0.01.

study by employing the link mutation scheme where the
number of connections during the evolution is not fixed.
In this case, we also found solutions with small error but
the number of connections were larger.

3.2 Adaptive responses with delays

The second set of examples considers constructions of
networks with delayed responses (τd �= 0) and different
network sizes.
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Fig. 11. Examples of output signals constructed by requiring
different delays τd. The response windows τr = 30 are shown
between dashed lines. The network errors are: εa = 0.001, εb =
0.021, εc = 0.011, εd = 0.036, εe = 0.045, εf = 0.038, εg =
0.033, εh = 0.018 and εi = 0.094.

3.2.1 Small networks with one receptor and one output
node

We consider small networks with one receptor and one out-
put node with delayed responses. We construct networks
with M = 5 middle nodes and L = 15 links. In the opti-
mization we use log(σ) = −2, and, we apply the rewiring
mutation. The total number of iterations is 2 × 105. The
number of middle nodes are set larger than in Section 3.1.1
because larger number of nodes are necessary to generate
time delay. In this section, the target pattern is T = Aτd

and we consider various delay intervals τd. In all cases the
time windows for the response is τr = 30.

We run several realizations and we find networks with
the predefined target pattern. Figure 11 presents output
adaptive signals for several networks, each of them with
a different required delay τd. The obtained networks are
stored in the supplementary material. In general we find
that responses with shorter delays are easier to obtain
than responses with longer delays. In Figure 11 the ex-
ternal signal activates the receptors at t = 0. Despite the
differences in the delays of the signals, all networks have
the same number of nodes and connections.
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Fig. 12. Output signals of a network with one input receptor
and three output nodes (from Fig. 13). The response interval
τr = 30 is shown between vertical dashed lines.

We note that there are many different pulse shapes and
pulse durations. The behavior of these networks is quite
interesting since the characteristic time of the dynamics of
a node is given by the constant γ which has a unit value in
this model, however, very long delays can be constructed.
Thus, the delays with several order of magnitude larger
than the characteristic time γ are realized with M = 5
middle nodes and L = 15 links.

3.2.2 One receptor and three output nodes

In this example we construct a network with one recep-
tor and three output nodes and delayed responses. The
aim is to activate these three output nodes with different
time delays after the activation of the receptor. The target
matrix is the following one:

T =

⎡
⎣ A0

A30

A60

⎤
⎦ . (14)

The optimization has 2 × 105 iterations and the temper-
ature parameter log(σ) = −2. The response windows has
τr = 30. We employ a rewiring scheme of evolutionary
mutation. The network has M = 12 middle nodes and
L = 36 connections.

Figure 12 shows the output signal of the network
(Fig. 13) constructed to produce the required target pat-
tern (matrix 14). The dashed red curve shows the expres-
sion of the receptor. We observe that the three pulses are
located inside their required time windows of response.

In this particular case of target pattern, it is possible
to construct the required responses by merging three net-
works with one receptor and one output node each. For
example taking the networks constructed in Section 3.2.1
with the proper delays. Merging these networks by their
receptor nodes, we have a new network with one re-
ceptor and three output nodes connected through each
independent route. That network should have a quite
different architecture from the one we have found here.
Figure 13 shows how a middle node can be involved in sev-
eral pathways responsive of output signals with different
delays.
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Fig. 13. Network constructed to reproduce the target pattern
of the matrix 14. Its output signals are shown in Figure 12.
The network error is ε = 0.012.
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Fig. 14. Output signals of the network from Figure 15. The
responses intervals τr = 30 are shown between vertical dashed
lines.

3.2.3 Three receptors and one output node

We consider a network with three input receptors and one
output node with delayed responses. In this case the out-
put node must generate three different adaptive responses
with different time delays τd as a function of the activated
receptor. The target matrix is the following:

T =
[
A0 A30 A60

]
. (15)

For the optimization we use M = 12 middle nodes and 36
connections, τr = 30, 2 × 105 iterations and log(σ) = −2.
We employ the rewiring scheme of evolutionary mutation.
In Figure 14 we show the output signal of the solution
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Fig. 15. Constructed network able to reproduce the target
pattern of matrix 15. Its output signals are shown in Figure 14.
The network error is ε = 0.017.

network in Figure 15. We can observe that the three pulses
are generated according to the target pattern. Note that
the final networks has M = 11 middle nodes, since that
at the end of the simulation we find an isolated node and
it was deleted from the network.

Contrary to the previous case (Sect. 3.2.2), here the
solution cannot be constructed by merging networks. In
effect, we can take three networks designed for the proper
delayed adaptive responses with one receptor and one out-
put node, and merge them by their output nodes. How-
ever, the new output signal is in general different from the
superposition of individual network signals since the non
linearities of the dynamical system.

3.2.4 Three receptors and three output nodes with delayed
responses

In this last example, we construct a relatively big network
with three input receptors, three output nodes, and, differ-
ent delayed responses. The target pattern is the following
one:

T =

⎡
⎣R0 0 A60

0 A30 R60

A0 R30 0

⎤
⎦ . (16)

Note that this target pattern is similar to the one of the
previous example in Section 3.1.2, with the matrix 13.
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Fig. 16. Output pattern of a network constructed with M =
25 middle nodes and L = 80 links (Fig. 17). The response
intervals (τr = 30) are shown between vertical dashed lines.

However, now we require that the responses as a con-
sequece of the activation of a receptor have the same
delay, and these delays are different for each receptor.
For the construction we use M = 25 middle nodes and
L = 80 connections. The time windows for the response
is τr = 30. The optimization was performed with the
rewiring scheme of mutation and we use as temperature
parameter log(σ) = −2. The total number of iterations is
2 × 105.

Figure 16 shows the ouput signals of the constructed
network, and the network is shown in Figure 17. We
observe that each receptor generates three different re-
sponses on the output nodes with the same delay. Red
dashed curves indicates the epression level of the recep-
tors and the blue continue curves the adaptive responses
on the output nodes. In this network, all the responses are
correctly performed and the network presents a small er-
ror. The example shows that relatively big networks with
delayed responses can be constructed by our method.

4 Discussions and conclusions

In this work we have presented a method to construct
networks with several receptors and output nodes able to
generate adaptive delayed responses. We show several ex-
amples of network constructions and statistical analysis of
ensembles of functional networks.

The annealing algorithm used in this work is a powerful
tool in order to construct systems with a required target.
Although we can find solutions for a proposed problem,
we cannot know in advance if a given number of nodes
and links are enough in order to solve the required prob-
lem, and even to guarantee the existence of a solution. For
this reason, the examples we presented are the networks
constructed with the smaller number of nodes and links
as we could that can reproduce the target pattern.

Different from previous works [9–11], our networks can
generate several responses as a function of the activated
receptor. One important characteristic of these networks is
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Fig. 17. Network with the output shown in Figure 16.
The network error is ε = 0.001.

that a middle node is in general involved in the activation
of many output nodes, and it can be used as processing
unit for many receptors. This characteristic implies com-
plex structures for the constructed networks.

The architecture by layers and the connection rules be-
tween nodes allow us to define specific functions for the
nodes (receptors, middle nodes, output nodes). Thus, this
structure helps to study the functionality of big networks.
On the other hand, the layered-like structure differs from
the classical architectures [9–11] of networks with adap-
tive response with three nodes. In effect, we cannot obtain
adaptive responses with only one middle node. However,
our algorithm can apply to any architecture where a cost
function is well defined.

In this work the main objective is to construct func-
tional networks with delayed responses. We do not analyze
the mechanism involved in the delay generation. However,
we can mention that the generation of delayed responses
by chaining small subnetworks which already present de-
lays, is known [12]. In our results, this kind of solution is
not found, as we can observe from the network structures.
Our hypothesis is that the delays are related to a slow
dynamics generated by setting the system close to a bi-
furcation point as a function of the activation signal. Thus,
after the transient the system settle down on a stable fixed
point. When the input signal is turned on, the fixed point
disappear, the remained vector field has small velocity,
and, the system moves slowly to the new attractor. This
situation is well known for saddle-node bifurcation and

its bottle neck effects on the dynamics. This hypothesis is
current work in progress of the authors.
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