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Abstract In this paper we study integral operators of the form

Tuf(z) = / & — Auy]™ oo fo — Ay f(y)dy,
IR’VI

where A; are certain invertible matrices, a; > 0, 1 <i<m, a1+ ..+am =n—a, 0 < a < n.

For é = % — 2 we obtain the LP(R", w”) — LY(R", w?) boundedness for weights w in A(p, ¢) satisfying

that there exists ¢ > 0 such that w (4;z) < cw (z), a.e.x € R", 1 < ¢ < m. Moreover we obtain the
appropriate weighted BMO and weak type estimates for certain weights satisfying the above inequality.

We also give a Coifman Type estimate for these operators.
Keywords Fractional operators, Calderén-Zygmund operators, BMO , Muckenhoupt weights.
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1 Introduction

In this paper we will study integral operators of the form

Tuf(@)= [ o= Al ™ wele = Aug ™" f(0)dy, (1)

for certain invertible matrices A; , a; > 0,1 <i<m, a1 +..+a, =n—a, 0 < a<n. We
observe if f € L°(R"™,dx) then T, f(x) < 0o a.e. © € R™.

In [1] Ricci and Sjogren obtained the LP (R, dx) boundedness, p > 1, for a family of maximal
operators on the three dimensional Heisenberg group. Some of these operators arise in the study
of the boundary behavior of Poisson integrals on the symmetric space SL(R?)/SO(3). To get
the principal result, they studied the boundedness, on L? (R, dx) of the integral operator

Tf(x) = / e — 5™ e + 41 F)dy,

O<a<l.
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In [2] Godoy and Urciuolo study integral operators of the form

R T S e (1

0 < o < n. They obtain the LP(R"™, dx) boundedness and the weak type (1,1) of them.
We recall that a weight w is a locally integrable and non negative function. The Mucken-

houpt class A,, 1 < p < oo is defined as the class of weights w such that

(i o) (i L)

For p = 1, A; is the class of weights w satisfying that there exists ¢ > 0 such that Mw(z) <
cw(x) a.e. x € R”, where M is the Hardy-Littlewood maximal function. Also Ao, = Ui<pcooAp.
In [3] we considered integral operators of the form (1.1) for « =0 and A; = a;1,i=1,...,m. We
obtain the LP(R™ w) boundedness of them, and a weighted (1,1) inequality, for weights w in
Ay, p > 1, satisfying that there exists ¢ > 0 such that w (a;z) < cw (x), a.e. x € R", 1 <i < m.
Moreover we prove that ||Tf|| 5,0 < ¢l fll for a wide family of functions f € L> (R",dx),
where BMO = BMO(R™) is the classical space of function with bounded mean oscillation
defined by John and Nirenberg in [4].

In [5] Rocha and Urciuolo consider the operator T, in the case that the matrices Aq,..., Ay,
satisfy the following hypothesis

(H) A; is invertible and A; — A; is invertible fori#j, 1 <4i,j < m.

They obtain that Ty, is bounded from H?(R",dx) into LI(R™, dx), for 0 < p < 2 and % =

For 0 < a < n we take the fractional maximal function as

1_«a
p n’

1
M, f(z) = sup —— dz,
) =swp o [ @

where the supremum is taken along all the cubes @ such that x belongs to Q. We observe that
M = M. Tt is well known (see [6]) that M, is bounded on L? (R, wP) into L? (R™,w?), for
1<p<%and%:%—%,ifandonlyif

ol @) = o

The class of functions that satisfy (1.2) is called A(p, q).
For p = 1, the class A (1, q) should be interpreted as the class of weights w satisfying

oy ! _
sgp (@'/qu) (Hw_1XQHOO)— < 00, (1.3)

also for p > 1, A (p,00) is the class of weights w satisfying

1 A

- 1 '\
sup _(Ilwxazlloo) <Q|/Qw ) | < 0.




Weighted inequalities for fractional type operators 3

We note that the statement w € A(oo,00) is equivalent to w™! € A;. We recall that
f € L} (R",dz) belongs to BMO if there exist ¢ > 0 such that

loc
é/'f(@@/@lfl

for all cube @ C R™. The smallest bound ¢ for which the above inequality holds is called || f]], .
There is also a weighted version of BMO, this is BMO(w) that is described by the semi

norm
1 1
|||fH|w—Stclzlollwallc>o (QI/Q’f(x)_IQl/Qf

In [6] Muckenhoupt and Wheeden study the classical fractional integral operator I,,. They

dr <c¢

d:v) . (1.4)

obtain the following endpoint results, if w € A (g, oo) then

Hafll, < (/ (flw)z)z , (15)

also if w € A(1, -2~) they obtain the weighted weak type (1, ") estimate.

In this paper we study the operator T, defined as in (1.1) for matrices A; satisfying the
hypothesis (H). Throughout this paper we will consider weights w such that there exists ¢ > 0
with

w(A;x) < cw(z), (1.6)

ae. re€R” 1<i<m.

In §2 we obtain a Coifman type estimate for this operator, namely we find which is the
maximal operator that controls T, in weighted p—norms, for any w € Ay satisfying (1.6). A
fundamental tool to prove this result is the inequality (2.1). As a consequence of this theorem
we get the LP (R", wP) - L? (R", w?) boundedness for 1 < p < % and % = %f % for win A(p, q)
satisfying (1.6).

In §3 we prove an inequality analogous to (1.5) for the operator T, and weights w in

A (g, oo) satisfying (1.6). We also prove a weighted weak type (1, -"~) estimate for Ti, and
weights w in A(1, =) satisfying (1.6).
Throughout this paper ¢ and C' will denote positive constants, not the same at each occur-

rence.

2 Main Results
The following result is a Coifman type estimate for the operator T,.

Theorem 2.1 Let0 < a<n and ay,...,0Qy, > 0 such that a1 + ... + ay, = n — . Let T,
be defined as in (1.1) where Ay, ..., Ay satisfy the hypothesis (H). If 0 < p < 0o and w € Ax
satisfies (1.6) then there exists C > 0 such that

/ITaf(x)lpw(x)dxéC’ Maf(@)Pule)de, | (R, dr)
Rn R

always holds if the left hand side is finite.
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Proof Let f € L*(R™,dz), f > 0and 0 < < 1. We prove now that there exists C' > 0 such
that

MATL (@) <O Maf(A7), (2.1)
=1
where M!f = (M¥|f]°)/% with

1
M f(z) = su inf—/ —aldy.
F(@) = swp inf o [ 17(0) —aldy

In [5] Rocha and Urciuolo prove that T, is a bounded operator from L*(R"™, dx) into
LY(R",dx), for 1 < s < 2, and % =12 50 T.(f) € L,.(R",dz) and Mg(Taf)(x) is
well defined for all © € R™. Let x € R™ and let B = B(zp,r) be a ball that contains x, centered
at zp with radius r, and T, f(zp) < co. We write B = B(xp,4r), and for 1 <1i < m we also
set B; = A7 'B. Let fi=fx = and let fo = f — f.

? Ui<i<m Bi

We choose a = Ty, fa(zp). We consider first the case 0 < a < n. By Jensen’s inequality and

from the inequality

10— s° 0 < Jt — s,

which holds for any positive t, s,

(1o [ 1@ —lay) " < (o [ s —alay)

< (g [ratitonin) + (g [ 17tat) = clay)

=I+1I
=2 /Tf()d
= 5 « y)ay
B[ /5"
g Jy 2y o=l ’
< — y—Aiz| "ty — Apz|” T f(2)dzdy

N 1/ ~a —a
< — f(z)/|yfA1z| Ly = Apz| " dydz.
;|B| B; B
IfZ€§7

/ ly — Arz| ™" |y — Az " dy
B

< Z/ ly — Avz| ™" |y — Az dy

j=1 Y {yeB:ly—A;z|<|ly—Aiz|, 1<I<m}

< Z/{ ly — Ajz|" " dy (22)
j=1

yEB:|ly—A;z|<|y—Aiz|, 1<I<m}

< / ly — Ajz|" " dy
B(xzp,6r)

j=1

re,

IN
Q
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the last inequality follows since we take y € B such that |y —A;z| < |y—A;z|, forall1 <1 <m,

so in particular
[Ajz —ap| < |Ajz —yl+ |y —xp| < [Aiz —y| + [y — wB| < [Aiz — wp| + 2|y — x| < 6r,

and so A;z € B(xp,6r). Then

m 1 m )
< C’; B /Ei f(z)dz < CZMaf(Ai 12).

=1

On the other hand
1
= [ el ) = Tafa o)l dy

IB\// K(y.z) — K(zp, 2)| f(2)dzdy
S;IBl/B/zj 1K (y, 2) — K(v5, 2)|f (2)dzdy,

where

K(z,y) = |z — Ay~ ™ . |z — Ay " (2.3)

and
c

Z; = U By ﬂ{z lzg — Ajz| < |xp — A;jz|,for 1 <i < m}. (2.4)

1<k<m

We estimate now |K(y, z) — K(xp, z)| for y € B and z € Z;. By the mean value theorem
we obtain

i

K _ Z
|K(y,2) — K(2p,2)] < o y|Z|5 e A

for some £ between zg and y. But

g — Az
|€ — A;z| > |zp — Aiz| — |E — x| > %7
for i = 1,....m, thus

lzp — ¥l
‘xB B Aj2|nfa+1

|K(y,2) — K(zp,2)| < ¢ (2.5)
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For 1 < j <m, we denote m; = min{|A4;y| : |y| = 1} and n; = min{|A;1y| yl = 1.
1
E/ / (K (y,2) = K(2p,2)| f(2)dzdy
—yl
Ydzd
‘Bl// |£CB—A z|n a+l ( Y
|z — yl
=15 — f(2)dzdy
‘Bl /B/A-1$BZ|>4njr |xp —Az‘n ot (=)

= (my)n—a+l |B|/B 5 |7|L aHf(z)dzdy

h—2 2’“n37<|A TR— z|<2k+1nj7 |A rp — 2

&
< / f(z)dz
(m])n a+l g anj )n a+l |Aj rp— z‘<2k+1n r

c
< ¢ N1y
= (my)n—o+in, kZ:2 ok F(4; )

Thus .
I1<CY Mof(Aj '),

j=1
and so (2.1) follows in the case ac > 0. To prove (2.1) for o = 0, we estimate

(/. |<Tof>6<y>—a6|dy)l/6< (157 [ @i )1/5+(|,f| / |<Tof2>5<y>—a5|dy)l/6

=I+1I.

To estimate I we observe that T} is of weak type (1, 1) with respect to the Lebesgue measure.
To prove this result we perform the classical Calderén-Zygmund decomposition f = g+b. Since
Ty is bounded on L?(R",dx) (see [5]) we obtain that

o Tog@)] > A < S 1l

On the other hand, as above, it is easy to check that the kernel K satisfies the "Hormander
type” inequality

/ |K(y,z) — K(zp,2)|dz < C,
(Br)*
where y € B(xzp,r), By = A,: Band B = B(xzp,4r). As usual we obtain that

C
{2 : [Tob(z)] > AH < [Iflls-

We use now Kolmogorov’s inequality (see exercise 2.1.5. p. 91 in [7]) to get

C
1< )d
5 L <> / e
< CiMf(A;lx).

Jj=1
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To estimate II, we first use Jensen’s inequality and then we proceed just as in the case
0 <a<ntoget

IT1<CY Mf(A; ),
j=1
and so (2.1) follows in this case.
Let w € Ay, then there exists r > 1 such that w € A,.. For 0 < p < oo we take 0 < § < 1,
such that 1 <r < p/d, thus w € A, 5. If || T, f||p,0 < 00 then also ||(Taf)‘5|\§7w < 0. Under
these conditions we can apply Theorem 2.20 in [8], p. 410, and from (2.1) we get

[ Taf@Pu@de < [ (T @) () da
Rn n
< [ Q@) da

< c/n <2Maf(Ai_1x)> w(z) dx
<cy [ rpreee)

<C | (Mof(x)Pw(z)de,

Rn
where the last inequality follows since w satisfies (1.6). O
Lemma 2.2 Let 0 < a <n and a1,...,0,, > 0 such that a1 + ... + oy, = n — . Let T,

be defined as in (1.1) where Ay, ..., Ay, satisfy the hypothesis (H). If 1 <p < 2, % = % -9
w € A(p,q), and f € L (R"™,dx) then T,(f) € LY(R"™, w?).

Proof Let M; = max{|A,y| : |y| = 1}, and let M = max{M; : 1 < j < m}. If suppf C
B(0, R) and |z| > 2MR, then |K(z,y)| < Ir\% and so

q
/ |To f T wide < CR/ % dx
|z|>2MR lz|>2Mmp |z] (M)

e q
SCRZ/ Mdz
k=172

FMR<|z|<2k+1 MR |T] (M7

< Cg Y 27Hn=9yi(B(0,25 MR)) da,
k=1
where w(B) = [ w(z)dz. Since w? € A, with r = 1+ ¢/p’, there exists # < r such that
w? € Az, thus w?(B(0, 2 MR)) < O(R,w,n)2*"" (see Lemma 2.2 in [8], p.396). We observe
that ¢(n — @) = nr > nf and so the last sum is finite. Now by Holder’s inequality, for any

€ >0,
€ 1
Tre Tre
S o v R O ) I
|z|<2MR |z|<2MR |z|<2MR

by reverse Holder’s inequality we can choose € > 0 such the second integral is finite. The first
1+te

one is finite since T, f € L2 (R™,dx) (see [5]). O
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From this Lemma and Theorem 2.1 we get the following

Theorem 2.3 Let0<a<n and ay,...,q,, >0 such that oy + ... + a, =n — . Let Ty, be
defined as in (1.1) where Ay, ..., Ay, satisfy the hypothesis (H). If 1 <p < %, % = % — >, and
w € A(p,q) satisfies (1.6) then there exits C > 0 such that

(/Rn |Tof () "w? (x) dm)é <C (/ | () [Pw? (z) dm); , feELFR", dz). (2.6)

Proof Since w € A(p, q) for % = % — o then w? € Ay 4/ C Ac.Without loss of generality
we take f € L°(R",dx). By Lemma 2.2 we have that T, f € LY(R™, w?). Moreover we recall
that w € A(p,q) implies that M, is bounded from LP(R™ wP) into LI(R™,w?), so we apply

Theorem 2.1 to obtain

(/ |Taf|qwqdq;>q <C (/(Maf)qwqu)q <C (/ |f|Pdex> . O

Remark 2.4 The inequality in (2.6) still holds for f € LP(R™, wP). Indeed if f > 0 we define
IN(T) = fX{a:f(z)<N}X{z:]z|<N}, then (2.6) can be applied to fy. Taking the limit as N — oo
and using the monotone convergence theorem,(2.6) follows for general f.

3 Endpoint results
In this paragraph we obtain an estimation of the type (1.5) for the operator T, and for certain

weights in the class A(Z,00). We also prove that T, satisfies a weighted weak type (1, ")

' n—a

estimate for certain weights in A(1, —2-).

' n—a
n
«@

In the following theorem, if & = 0 we understand that (f (Iflw) ); = ||fw]|oo -

Theorem 3.1 Let0<a<n and aq,...,q, >0 such that a1 + ... + ap, = n — . Let T, be
defined as in (1.1) where Ay, ..., Ay, satisfy the hypothesis (H). If w € A(n/a,c0) and satisfies
(1.6), then there exits C > 0 such that

ITufll, < © (/<f|w>3) e LE®R"d).

Proof  We recall that

1 1
7. 1, = w0 el <Q| /Q T.00) - /Q T.f dy),

without loss of generality we can replace the cubes @ by balls B in (1.3) and in (1.4). Let
B = B(zp,r) be a ball centered at xzp with radius r. We write B = B(xp,4r), and for
1 <i<m we also set B; = A;lé. Let f1 = fXU1<<< B and let fo = f — f1.

1 1
lwxsla (Im [t - o [ Tafldy>

< lwxall (“; / i)~ 13 / Tafldy) (3.)

1 1
+ lwxall <|m [ Tt - o / Taledy> _rsIn
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Ifo<a<n

2 lwx Bl /
I< |To f11(y
- Bl

2
<l [ Z / y= Az ey = Al "

2l [ ) [ L .
< - 1... - m m .
Z B o VE = el ey = Al dy e

If z € B;, as in (2.2) we have

f(2)|dz dy

/ ly — Arz| ™" Ly — Amz|” %™ dy < Cre,
B

Then .
reclile S [ s @) =
i JB

Now we use Holder’s inequality to obtain that

/}§ FAT ) w(2)w Y (2) ds

< (Losaranuens a:) " ([en=e) "

From this inequality and the hypothesis about w, we get that

3R

I< CZ (/ (=) dz)a/ cz (/ 2)w(Asz))/ dz)a/n

<c([ wrenmere dz) "

On the other hand

1 1
17 = sl (|B| / Taa) - 135 /B Tafz(t)dtldy>

- ||w|x];3|lloc/ |B|// |K(y, 2) — K(t,2)||f(2)|dzdtdy

snwanoc;@ /B & /B /Z K, 2) - K17y,

where K (x,y) and Z; are defined in (2.3) and (2.4) respectively.
Now |K(y,z) — K(t,2)| < |K(y,2) — K(zB,2)|+ |K(zB, z) — K(t,z)| and proceeding as in
the proof of (2.5) we get for z € Z; and y,t € B

K(yvz)—K(t,z)|<c< syl |xB—t|>

Cr

— le —Aj2|n7a+1 .
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Then

IT < Cllwxg|l TZ/ z Az|” T4z
B—

< Cllwxsllq TZ/ |f(z)|n_a+1dz (3.2)

ltp—Ajz|>4r |.’1?B — AJZ|

(A7 )] _
< Cllwxslls TZ/ —Jn w(z)w ! () d.

leg—x|>4r |='17B - 217|

Again from Hoélder’s inequality we obtain

. w2s "
IT < Clwxslls v / % dx
leg—z|>4r \ |TB — 7|

i(/ e >>2dx)ﬁ.

n

w™t(z) e
_ dx
/stx|>4r jop — "7
n

[e'e] 1 n—a
_ Z/ % da (3.3)
iy 2kr<|ep—al<2ktiy \ [TB — T

< G | (™ () 5

|z —z|<2k+1p

Now,

then, since w € A(n/a, 00),

. _n_ o
wxslr | | @ V) <e
lep—z|>ar \ |25 — |

u<cz(/, i) <o [ sepete)

where the last inequality follows from (1.6).
If @« =0, since w € A(oo,00) then there exists r > 1 such that w™" € A;. From Hélder’s
inequality, the L"(R"™, dz) boundedness of Tj and since w satisfies (1.6) we get

SO

r< 2%l [ iyl < 2ol (3 [ onwra)
< Cloxall (57 [ 1900 >|Tdy)r sc*wa||ooj§<|;| A If(y)l’“dy>
< sl (|B| L1 e )

1

1 - :
< Ollfwlloslwxall <|m /B w <y>dy) < Of|ful|m.
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We observe that (3.2) still holds for @ = 0, and since w satisfies (1.6) we get that

11 < Cfuxal lfullr Y |
j:1|x57ﬂ24r

where the last inequality follows from (3.3) and from the condition w € A(co,c0). Taking sup
over all balls B in (3.1) we get the Theorem. O

w” ()

wrrde < Ol fwlloo,

lzp — 2|

Theorem 3.2 Let0<a<n and aq,...,q, >0 such that a1 + ... + a, = n — a. Let Ty, be
defined as in (1.1) where Ay, ..., A, satisfy the hypothesis (H). If w € A(1, -"—) and satisfies
(1.6) then there exists C > 0 such that

n—a

sup Nwa {z : [T f(z)] > A\}) =" < C/ |f(2)|w(z)dz, fe€ LYR" w).

A>0

Proof  Without loss of generality we suppose f € L (R",dz). Given w € A, there exists
0 > 0 and C' > 0 such that

w{z : Mf(x) > 2\, M f(z) <A} < CYw{z : Mf(z) > A},

for any v > 0 (see [9] p.146).

For ¢ > 1,
sup Mw{z :Mf(x) > 22} < sup MNw{z: Mf(z) > 2\, MFf(z) <A}
0<A<N 0<AKN

+ sup MNw{z: M*f(x) > )}
0<A<N

< sup CAYw{z: Mf(z)> A} + sup Nw{z: M*f(z) > )}
0<A<N 0<A<N

< sup CAYw{x: Mf(x) > \}+ sup Mw{x: M*f(z) >\}.
0<A<2N 0<AKN

The left side of the inequality can be written as

sup 27D\w{z : M f(z) > A},
0<A<2N

so we choose 7 such that Cy° < 27971 to obtain

sup Mw{z : M f(z) > A} < Csup MNw{z : M*f(x) > y\}.
A>0 A>0

We observe that (2.1) still holds for § = 1if 0 < o < n, also w € A(1, =) implies w-a € A.

n—«a

So for 0 < a < n, ¢ = ", we obtain

sup )\(wnnfa{x : |To¢f‘($) > /\})nn;a < Csup )\(wnnf’a{m . MTaf($> > )\})n;a
A>0 b
< Cswp Awa {a: MATLf(z) > 925
A>0

< Csup Nww= {x : ZMaf(A;lz) > C’ry)\})%.
A>0 i—1

Since w satisfies (1.6), it is easy to check that

wis {z s Mo f(A;7 ') > A} < Cowea {x: My f(x) > A},
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sup Nwma {z : |Tof|(x) > A\}) 7 < Csup Mwa {z : Mo f(x) > \}) 7
A>0 A>0

<c / (@) () da.

where the last inequality follows since w € A(1, -2~).

The proof for a = 0 is analogous to the proof of Theorem 1 b) in [3].
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