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Abstract In this paper we study integral operators of the form

Tαf(x) =

∫
Rn

|x−A1y|−α1 ... |x−Amy|−αm f(y)dy,

where Ai are certain invertible matrices, αi > 0, 1 ≤ i ≤ m, α1 + ... + αm = n − α, 0 ≤ α < n.

For 1
q
= 1

p
− α

n
we obtain the Lp(Rn, wp)−Lq(Rn, wq) boundedness for weights w in A(p, q) satisfying

that there exists c > 0 such that w (Aix) ≤ cw (x) , a.e.x ∈ Rn, 1 ≤ i ≤ m. Moreover we obtain the

appropriate weighted BMO and weak type estimates for certain weights satisfying the above inequality.

We also give a Coifman Type estimate for these operators.
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1 Introduction

In this paper we will study integral operators of the form

Tαf(x) =

∫
Rn

|x−A1y|−α1 ... |x−Amy|−αm f(y)dy, (1.1)

for certain invertible matrices Ai , αi > 0, 1 ≤ i ≤ m, α1 + ... + αm = n − α, 0 ≤ α < n. We

observe if f ∈ L∞
c (Rn, dx) then Tαf(x) < ∞ a.e. x ∈ Rn.

In [1] Ricci and Sjögren obtained the Lp(R, dx) boundedness, p > 1, for a family of maximal

operators on the three dimensional Heisenberg group. Some of these operators arise in the study

of the boundary behavior of Poisson integrals on the symmetric space SL(R3)/SO(3). To get

the principal result, they studied the boundedness, on L2 (R, dx) of the integral operator

Tf(x) =

∫
|x− y|−α |x+ y|α−1

f(y)dy,

0 < α < 1.
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In [2] Godoy and Urciuolo study integral operators of the form

Tf(x) =

∫
Rn

|x− y|−α |x+ y|−n+α
f(y)dy,

0 < α < n. They obtain the Lp(Rn, dx) boundedness and the weak type (1, 1) of them.

We recall that a weight w is a locally integrable and non negative function. The Mucken-

houpt class Ap, 1 < p < ∞ is defined as the class of weights w such that

sup
Q

[(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

w− 1
p−1

)p−1
]
< ∞.

For p = 1, A1 is the class of weights w satisfying that there exists c > 0 such that Mw(x) ≤
cw(x) a.e. x ∈ Rn, whereM is the Hardy-Littlewood maximal function. Also A∞ = ∪1≤p<∞Ap.

In [3] we considered integral operators of the form (1.1) for α = 0 and Ai = aiI, i = 1, ...,m. We

obtain the Lp(Rn, w) boundedness of them, and a weighted (1, 1) inequality, for weights w in

Ap, p ≥ 1, satisfying that there exists c > 0 such that w (aix) ≤ cw (x) , a.e. x ∈ Rn, 1 ≤ i ≤ m.

Moreover we prove that ∥Tf∥BMO ≤ c ∥f∥∞ for a wide family of functions f ∈ L∞ (Rn, dx) ,

where BMO = BMO(Rn) is the classical space of function with bounded mean oscillation

defined by John and Nirenberg in [4].

In [5] Rocha and Urciuolo consider the operator Tα in the case that the matrices A1, . . . , Am

satisfy the following hypothesis

(H) Ai is invertible and Ai −Aj is invertible for i ̸= j, 1 ≤ i, j ≤ m.

They obtain that Tα is bounded from Hp(Rn, dx) into Lq(Rn, dx), for 0 < p < n
α and 1

q = 1
p−

α
n .

For 0 ≤ α < n we take the fractional maximal function as

Mαf(x) = sup
Q

1

|Q|1−
α
n

∫
Q

|f(x)| dx,

where the supremum is taken along all the cubes Q such that x belongs to Q. We observe that

M = M0. It is well known (see [6]) that Mα is bounded on Lp (Rn, wp) into Lq (Rn, wq) , for

1 < p < n
α and 1

q = 1
p − α

n , if and only if

sup
Q

[(
1

|Q|

∫
Q

wq

) 1
q
(

1

|Q|

∫
Q

w−p′
) 1

p′
]
< ∞. (1.2)

The class of functions that satisfy (1.2) is called A(p, q).

For p = 1, the class A (1, q) should be interpreted as the class of weights w satisfying

sup
Q

[(
1

|Q|

∫
Q

wq

) 1
q (∥∥w−1χQ

∥∥
∞

)]
< ∞, (1.3)

also for p > 1, A (p,∞) is the class of weights w satisfying

sup
Q

[(
∥wχQ∥∞

)( 1

|Q|

∫
Q

w−p′
) 1

p′
]
< ∞.
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We note that the statement w ∈ A(∞,∞) is equivalent to w−1 ∈ A1. We recall that

f ∈ L1
loc(Rn, dx) belongs to BMO if there exist c > 0 such that

1

|Q|

∫ ∣∣∣∣f (x)− 1

|Q|

∫
Q

|f |
∣∣∣∣ dx ≤ c

for all cube Q ⊂ Rn. The smallest bound c for which the above inequality holds is called ∥f∥∗ .
There is also a weighted version of BMO, this is BMO(w) that is described by the semi

norm

∥|f |∥w = sup
Q

∥wχQ∥∞

(
1

|Q|

∫
Q

∣∣∣∣f(x)− 1

|Q|

∫
Q

f

∣∣∣∣ dx) . (1.4)

In [6] Muckenhoupt and Wheeden study the classical fractional integral operator Iα. They

obtain the following endpoint results, if w ∈ A
(
n
α ,∞

)
then

∥|Iαf |∥w ≤ c

(∫
(|f |w)

n
α

)α
n

, (1.5)

also if w ∈ A(1, n
n−α ) they obtain the weighted weak type (1, n

n−α ) estimate.

In this paper we study the operator Tα defined as in (1.1) for matrices Ai satisfying the

hypothesis (H). Throughout this paper we will consider weights w such that there exists c > 0

with

w(Aix) ≤ cw(x), (1.6)

a.e. x ∈ Rn, 1 ≤ i ≤ m.

In §2 we obtain a Coifman type estimate for this operator, namely we find which is the

maximal operator that controls Tα in weighted p−norms, for any w ∈ A∞ satisfying (1.6). A

fundamental tool to prove this result is the inequality (2.1). As a consequence of this theorem

we get the Lp (Rn, wp) - Lq (Rn, wq) boundedness for 1 < p < n
α and 1

q = 1
p −

α
n , for w in A(p, q)

satisfying (1.6).

In §3 we prove an inequality analogous to (1.5) for the operator Tα and weights w in

A
(
n
α ,∞

)
satisfying (1.6). We also prove a weighted weak type (1, n

n−α ) estimate for Tα and

weights w in A(1, n
n−α ) satisfying (1.6).

Throughout this paper c and C will denote positive constants, not the same at each occur-

rence.

2 Main Results

The following result is a Coifman type estimate for the operator Tα.

Theorem 2.1 Let 0 ≤ α < n and α1, . . . , αm > 0 such that α1 + ... + αm = n − α. Let Tα

be defined as in (1.1) where A1, . . . , Am satisfy the hypothesis (H). If 0 < p < ∞ and w ∈ A∞

satisfies (1.6) then there exists C > 0 such that∫
Rn

|Tαf(x)|pw(x) dx ≤ C

∫
Rn

|Mαf(x)|pw(x) dx, f ∈ L∞
c (Rn, dx)

always holds if the left hand side is finite.
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Proof Let f ∈ L∞
c (Rn, dx), f ≥ 0 and 0 < δ < 1. We prove now that there exists C > 0 such

that

M ♯
δ (Tαf)(x) ≤ C

m∑
i=1

Mαf(A
−1
i x), (2.1)

where M ♯
δf = (M ♯|f |δ)1/δ with

M ♯f(x) = sup
B∋x

inf
a∈R

1

|B|

∫
B

|f(y)− a| dy.

In [5] Rocha and Urciuolo prove that Tα is a bounded operator from Ls(Rn, dx) into

Lq(Rn, dx), for 1 < s < n
α , and 1

q = 1
s − α

n , so Tα(f) ∈ L1
loc(Rn, dx) and M ♯

δ (Tαf)(x) is

well defined for all x ∈ Rn. Let x ∈ Rn and let B = B(xB , r) be a ball that contains x, centered

at xB with radius r, and Tαf(xB) < ∞. We write B̃ = B(xB , 4r), and for 1 ≤ i ≤ m we also

set B̃i = A−1
i B̃. Let f1 = fχ∪

1≤i≤m B̃i
and let f2 = f − f1.

We choose a = Tαf2(xB). We consider first the case 0 < α < n. By Jensen’s inequality and

from the inequality

|tδ − sδ|1/δ ≤ |t− s|,

which holds for any positive t, s,(
1

|B|

∫
B

|(Tαf)
δ(y)− aδ|dy

)1/δ

≤
(

1

|B|

∫
B

|Tαf(y)− a|dy
)

≤
(

1

|B|

∫
B

Tαf1(y)dy

)
+

(
1

|B|

∫
B

|Tαf2(y)− a|dy
)

= I + II.

I =
1

|B|

∫
B

Tαf1(y)dy

≤ 1

|B|

∫
B

m∑
i=1

∫
B̃i

|y −A1z|−α1 ... |y −Amz|−αm f(z)dz dy

≤
m∑
i=1

1

|B|

∫
B̃i

f(z)

∫
B

|y −A1z|−α1 ... |y −Amz|−αm dy dz.

If z ∈ B̃i ∫
B

|y −A1z|−α1 ... |y −Amz|−αm dy

≤
m∑
j=1

∫
{y∈B:|y−Ajz|≤|y−Alz|, 1≤l≤m}

|y −A1z|−α1 ... |y −Amz|−αm dy

≤
m∑
j=1

∫
{y∈B:|y−Ajz|≤|y−Alz|, 1≤l≤m}

|y −Ajz|α−n
dy

≤
m∑
j=1

∫
B(xB ,6r)

|y −Ajz|α−n
dy

≤ Crα,

(2.2)
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the last inequality follows since we take y ∈ B such that |y−Ajz| ≤ |y−Alz|, for all 1 ≤ l ≤ m,

so in particular

|Ajz − xB| ≤ |Ajz − y|+ |y − xB | ≤ |Aiz − y|+ |y − xB | ≤ |Aiz − xB |+ 2|y − xB | ≤ 6r,

and so Ajz ∈ B(xB , 6r). Then

I ≤ C

m∑
i=1

1

|B̃i|1−
α
n

∫
B̃i

f(z) dz ≤ C

m∑
i=1

Mαf(A
−1
i x).

On the other hand

II =
1

|B|

∫
B

|Tαf2 (y)− Tαf2 (xB)| dy

≤ 1

|B|

∫
B

∫( ∪
1≤k≤m

B̃k

)c |K(y, z)−K(xB , z)|f(z)dzdy

≤
m∑
j=1

1

|B|

∫
B

∫
Zj

|K(y, z)−K(xB, z)|f(z)dzdy,

where

K(x, y) = |x−A1y|−α1 ... |x−Amy|−αm (2.3)

and

Zj =

 ∪
1≤k≤m

B̃k

c∩
{z : |xB −Ajz| ≤ |xB −Aiz|, for 1 ≤ i ≤ m} . (2.4)

We estimate now |K(y, z)−K(xB , z)| for y ∈ B and z ∈ Zj . By the mean value theorem

we obtain

|K(y, z)−K(xB , z)| ≤ |xB − y|
m∑
i=1

αi

|ξ −Aiz|αi+1 ∏
l ̸=i

|ξ −Alz|αl
,

for some ξ between xB and y. But

|ξ −Aiz| ≥ |xB −Aiz| − |ξ − xB | ≥
|xB −Aiz|

2
,

for i = 1, . . . ,m, thus

|K(y, z)−K(xB , z)| ≤ c
|xB − y|

|xB −Ajz|n−α+1 . (2.5)
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For 1 ≤ j ≤ m, we denote mj = min{|Ajy| : |y| = 1} and nj = min{|A−1
j y| : |y| = 1}.

1

|B|

∫
B

∫
Zj

|K(y, z)−K(xB , z)| f(z)dzdy

≤ c

|B|

∫
B

∫
Zj

|xB − y|
|xB −Ajz|n−α+1 f(z)dzdy

≤ c

|B|

∫
B

∫
|A−1

j xB−z|≥4njr

|xB − y|
|xB −Ajz|n−α+1 f(z)dzdy

≤ c

(mj)n−α+1 |B|

∫
B

∞∑
k=2

∫
2knjr≤|A−1

j xB−z|<2k+1njr

|xB − y|∣∣A−1
j xB − z

∣∣n−α+1 f(z)dzdy

≤ c

(mj)n−α+1

∞∑
k=2

r

(2knjr)n−α+1

∫
|A−1

j xB−z|<2k+1njr

f(z)dz

≤ c

(mj)n−α+1nj

∞∑
k=2

1

2k
Mαf(A

−1
j x)

≤ CjMαf(A
−1
j x).

Thus

II ≤ C

m∑
j=1

Mαf(A
−1
j x),

and so (2.1) follows in the case α > 0. To prove (2.1) for α = 0, we estimate

(
1

|B|

∫
B

|(T0f)
δ(y)− aδ|dy

)1/δ

≤
(

C

|B|

∫
B

(T0f1)
δ(y)dy

)1/δ

+

(
C

|B|

∫
B

|(T0f2)
δ(y)− aδ|dy

)1/δ

= I + II.

To estimate I we observe that T0 is of weak type (1, 1) with respect to the Lebesgue measure.

To prove this result we perform the classical Calderón-Zygmund decomposition f = g+b. Since

T0 is bounded on L2(Rn, dx) (see [5]) we obtain that

|{x : |T0g(x)| > λ}| ≤ C

λ
||f ||1.

On the other hand, as above, it is easy to check that the kernel K satisfies the ”Hörmander

type” inequality ∫
(B̃k)

c
|K(y, z)−K(xB , z)|dz ≤ C,

where y ∈ B(xB, r), B̃k = A−1
k B̃ and B̃ = B(xB , 4r). As usual we obtain that

|{x : |T0b(x)| > λ}| ≤ C

λ
||f ||1.

We use now Kolmogorov’s inequality (see exercise 2.1.5. p. 91 in [7]) to get

I ≤ C

|B|

∫
Rn

f1(y)dy ≤
m∑
j=1

C

|B|

∫
B̃j

f(y)dy

≤ C
m∑
j=1

Mf(A−1
j x).
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To estimate II, we first use Jensen’s inequality and then we proceed just as in the case

0 < α < n to get

II ≤ C

m∑
j=1

Mf(A−1
j x),

and so (2.1) follows in this case.

Let w ∈ A∞, then there exists r > 1 such that w ∈ Ar. For 0 < p < ∞ we take 0 < δ < 1,

such that 1 < r < p/δ, thus w ∈ Ap/δ. If ||Tαf ||p,w < ∞ then also ||(Tαf)
δ|| p

δ ,w
< ∞. Under

these conditions we can apply Theorem 2.20 in [8], p. 410, and from (2.1) we get∫
Rn

|Tαf(x)|pw(x) dx ≤
∫
Rn

(M(Tαf)
δ(x))p/δw(x) dx

≤
∫
Rn

(M ♯
δ (Tαf)(x))

pw(x) dx

≤ C

∫
Rn

(
m∑
i=1

Mαf(A
−1
i x)

)p

w(x) dx

≤ C
m∑
i=1

∫
Rn

(Mαf)
p(x)w(Aix) dx

≤ C

∫
Rn

(Mαf(x))
pw(x) dx,

where the last inequality follows since w satisfies (1.6).

Lemma 2.2 Let 0 ≤ α < n and α1, . . . , αm > 0 such that α1 + ... + αm = n − α. Let Tα

be defined as in (1.1) where A1, . . . , Am satisfy the hypothesis (H). If 1 < p < n
α ,

1
q = 1

p − α
n ,

w ∈ A(p, q), and f ∈ L∞
c (Rn, dx) then Tα(f) ∈ Lq(Rn, wq).

Proof Let Mj = max{|Ajy| : |y| = 1}, and let M = max{Mj : 1 ≤ j ≤ m}. If suppf ⊂
B(0, R) and |x| > 2MR, then |K(x, y)| ≤ C

|x|n−α and so∫
|x|>2MR

|Tαf |qwqdx ≤ CR

∫
|x|>2MR

wq(x)

|x|(n−α)q
dx

≤ CR

∞∑
k=1

∫
2kMR≤|x|<2k+1MR

wq(x)

|x|(n−α)q
dx

≤ CR

∞∑
k=1

2−k(n−α)q wq(B(0, 2k+1MR)) dx,

where w(B) =
∫
B
w(x)dx. Since wq ∈ Ar with r = 1 + q/p′, there exists r̃ < r such that

wq ∈ Ar̃, thus w
q(B(0, 2k+1MR)) ≤ C(R,w, n)2knr̃ (see Lemma 2.2 in [8], p.396). We observe

that q(n − α) = nr > nr̃ and so the last sum is finite. Now by Hölder’s inequality, for any

ϵ > 0, ∫
|x|<2MR

|Tαf |qwqdx ≤

(∫
|x|<2MR

|Tαf |q
1+ϵ
ϵ

) ϵ
1+ϵ
(∫

|x|<2MR

wq(1+ϵ)

) 1
1+ϵ

,

by reverse Hölder’s inequality we can choose ϵ > 0 such the second integral is finite. The first

one is finite since Tαf ∈ Lq 1+ϵ
ϵ (Rn, dx) (see [5]).
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From this Lemma and Theorem 2.1 we get the following

Theorem 2.3 Let 0 ≤ α < n and α1, . . . , αm > 0 such that α1 + ...+ αm = n− α. Let Tα be

defined as in (1.1) where A1, . . . , Am satisfy the hypothesis (H). If 1 < p < n
α ,

1
q = 1

p − α
n , and

w ∈ A(p, q) satisfies (1.6) then there exits C > 0 such that(∫
Rn

|Tαf(x)|qwq(x) dx

) 1
q

≤ C

(∫
Rn

|f(x)|pwp(x) dx

) 1
p

, f ∈ L∞
c (Rn, dx). (2.6)

Proof Since w ∈ A(p, q) for 1
q = 1

p − α
n then wq ∈ A1+q/p′ ⊂ A∞.Without loss of generality

we take f ∈ L∞
c (Rn, dx). By Lemma 2.2 we have that Tαf ∈ Lq(Rn, wq). Moreover we recall

that w ∈ A(p, q) implies that Mα is bounded from Lp(Rn, wp) into Lq(Rn, wq), so we apply

Theorem 2.1 to obtain(∫
|Tαf |qwqdx

) 1
q

≤ C

(∫
(Mαf)

qwqdx

) 1
q

≤ C

(∫
|f |pwpdx

) 1
p

.

Remark 2.4 The inequality in (2.6) still holds for f ∈ Lp(Rn, wp). Indeed if f ≥ 0 we define

fN (x) = fχ{x:f(x)≤N}χ{x:|x|≤N}, then (2.6) can be applied to fN . Taking the limit as N → ∞
and using the monotone convergence theorem,(2.6) follows for general f .

3 Endpoint results

In this paragraph we obtain an estimation of the type (1.5) for the operator Tα and for certain

weights in the class A(nα ,∞). We also prove that Tα satisfies a weighted weak type (1, n
n−α )

estimate for certain weights in A(1, n
n−α ).

In the following theorem, if α = 0 we understand that
(∫

(|f |w)
n
α

)α
n

= ||fw||∞ .

Theorem 3.1 Let 0 ≤ α < n and α1, . . . , αm > 0 such that α1 + ...+ αm = n− α. Let Tα be

defined as in (1.1) where A1, . . . , Am satisfy the hypothesis (H). If w ∈ A(n/α,∞) and satisfies

(1.6), then there exits C > 0 such that

∥|Tαf |∥w ≤ C

(∫
(|f |w)

n
α

)α
n

, f ∈ L∞
c (Rn, dx).

Proof We recall that

∥|Tαf |∥w = sup
Q

∥wχQ∥∞

(
1

|Q|

∫
Q

∣∣∣∣Tαf(y)−
1

|Q|

∫
Q

Tαf

∣∣∣∣ dy) ,

without loss of generality we can replace the cubes Q by balls B in (1.3) and in (1.4). Let

B = B(xB , r) be a ball centered at xB with radius r. We write B̃ = B(xB, 4r), and for

1 ≤ i ≤ m we also set B̃i = A−1
i B̃. Let f1 = fχ∪

1≤i≤m B̃i
and let f2 = f − f1.

∥wχB∥∞

(
1

|B|

∫
B

|Tαf(y)−
1

|B|

∫
B

Tαf |dy
)

≤ ∥wχB∥∞

(
1

|B|

∫
B

|Tαf1(y)−
1

|B|

∫
B

Tαf1|dy
)

+ ∥wχB∥∞

(
1

|B|

∫
B

|Tαf2(y)−
1

|B|

∫
B

Tαf2|dy
)

= I + II.

(3.1)
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If 0 < α < n

I ≤
2 ∥wχB∥∞

|B|

∫
B

|Tαf1|(y)dy

≤
2 ∥wχB∥∞

|B|

∫
B

m∑
i=1

∫
B̃i

|y −A1z|−α1 ... |y −Amz|−αm |f(z)|dz dy

≤
m∑
i=1

2 ∥wχB∥∞
|B|

∫
B̃i

|f(z)|
∫
B

|y −A1z|−α1 ... |y −Amz|−αm dy dz.

If z ∈ B̃i, as in (2.2) we have∫
B

|y −A1z|−α1 ... |y −Amz|−αm dy ≤ Crα,

Then

I ≤ C
∥wχB∥∞
|B|1−α

n

m∑
i=1

∫
B̃

|f(A−1
i z)|w(z)w−1(z) dz.

Now we use Hölder’s inequality to obtain that∫
B̃

|f(A−1
i z)|w(z)w−1(z) dz

≤
(∫

B̃

(|f(A−1
i z)|w(z))n

α dz

)α
n
(∫

B̃

(w(z))
−n
n−α dz

)n−α
n

.

From this inequality and the hypothesis about w, we get that

I ≤ C

m∑
i=1

(∫
B̃

(|f(A−1
i z)|w(z))n/α dz

)α/n

≤ C

m∑
i=1

(∫
Rn

(|f(z)|w(Aiz))
n/α dz

)α/n

≤ C

(∫
Rn

(|f(z)|w(z))n/α dz

)α/n

.

On the other hand

II = ∥wχB∥∞

(
1

|B|

∫
B

|Tαf2(y)−
1

|B|

∫
B

Tαf2(t)dt|dy
)

≤
∥wχB∥∞

|B|

∫
B

1

|B|

∫
B

∫( ∪
1≤k≤m

B̃k

)c |K(y, z)−K(t, z)||f(z)|dzdtdy

≤ ∥wχB∥∞
m∑
j=1

1

|B|

∫
B

1

|B|

∫
B

∫
Zj

|K(y, z)−K(t, z)||f(z)|dzdtdy,

where K(x, y) and Zj are defined in (2.3) and (2.4) respectively.

Now |K(y, z)−K(t, z)| ≤ |K(y, z)−K(xB , z)|+ |K(xB , z)−K(t, z)| and proceeding as in

the proof of (2.5) we get for z ∈ Zj and y, t ∈ B

|K(y, z)−K(t, z)| ≤ C

(
|xB − y|

|xB −Ajz|n−α+1 +
|xB − t|

|xB −Ajz|n−α+1

)

≤ Cr

|xB −Ajz|n−α+1 .
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Then

II ≤ C ∥wχB∥∞ r
m∑
j=1

∫
Zj

|f(z)|
|xB −Ajz|n−α+1 dz

≤ C ∥wχB∥∞ r

m∑
j=1

∫
|xB−Ajz|≥4r

|f(z)|
|xB −Ajz|n−α+1 dz

≤ C ∥wχB∥∞ r
m∑
j=1

∫
|xB−x|≥4 r

|f(A−1
j x)|

|xB − x|n−α+1w(x)w
−1(x)dx.

(3.2)

Again from Hölder’s inequality we obtain

II ≤ C ∥wχB∥∞ r

∫
|xB−x|≥4 r

(
w−1(x)

|xB − x|n−α+1

) n
n−α

dx


n−α
n

×
m∑
j=1

(∫
Rn

(|f(A−1
j x)|w(x))n

α dx

)α
n

.

Now, ∫
|xB−x|≥4 r

(
w−1(x)

|xB − x|n−α+1

) n
n−α

dx

=
∞∑
k=2

∫
2kr≤|xB−x|<2k+1r

(
w−1(x)

|xB − x|n−α+1

) n
n−α

dx

≤
∞∑
k=2

1

(2kr)(n−α+1) n
n−α

∫
|xB−x|<2k+1r

(w−1(x))
n

n−α dx,

(3.3)

then, since w ∈ A(n/α,∞),

∥wχB∥∞ r

∫
|xB−x|≥4 r

(
w−1(x)

|xB − x|n−α+1

) n
n−α

dx


n−α
n

≤ C,

so

II ≤ C

m∑
j=1

(∫
Rn

(|f(A−1
j x)|w(x))n

α dx

)α
n

≤ C

(∫
Rn

(|f(x)|w(x))n
α dx

)α
n

,

where the last inequality follows from (1.6).

If α = 0, since w ∈ A(∞,∞) then there exists r > 1 such that w−r ∈ A1. From Hölder’s

inequality, the Lr(Rn, dx) boundedness of T0 and since w satisfies (1.6) we get

I ≤
2 ∥wχB∥∞

|B|

∫
B

|T0f1(y)|dy ≤ 2 ∥wχB∥∞

(
1

|B|

∫
B

|T0f1(y)|rdy
) 1

r

≤ C∥wχB∥∞

(
1

|B|

∫
Rn

|f1(y)|rdy
) 1

r

≤ C∥wχB∥∞
m∑
j=1

(
1

|B|

∫
B̃j

|f(y)|rdy

) 1
r

≤ C∥wχB∥∞
m∑
j=1

(
1

|B|

∫
B

|f(A−1
j y)|rwr(y)w−r(y)dy

) 1
r

≤ C||fw||∞∥wχB∥∞

(
1

|B|

∫
B

w−r(y)dy

) 1
r

≤ C||fw||∞.
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We observe that (3.2) still holds for α = 0, and since w satisfies (1.6) we get that

II ≤ C ∥wχB∥∞ ||fw||∞ r
m∑
j=1

∫
|xB−x|≥4 r

w−1(x)

|xB − x|n+1 dx ≤ C||fw||∞,

where the last inequality follows from (3.3) and from the condition w ∈ A(∞,∞). Taking sup

over all balls B in (3.1) we get the Theorem.

Theorem 3.2 Let 0 ≤ α < n and α1, . . . , αm > 0 such that α1 + ...+ αm = n− α. Let Tα be

defined as in (1.1) where A1, . . . , Am satisfy the hypothesis (H). If w ∈ A(1, n
n−α ) and satisfies

(1.6) then there exists C > 0 such that

sup
λ>0

λ(w
n

n−α {x : |Tαf(x)| > λ})
n−α
n ≤ C

∫
|f(x)|w(x)dx, f ∈ L1(Rn, w).

Proof Without loss of generality we suppose f ∈ L∞
c (Rn, dx). Given w ∈ A∞ there exists

δ > 0 and C > 0 such that

w{x : Mf(x) > 2λ,M ♯f(x) ≤ γλ} ≤ Cγδw{x : Mf(x) > λ},

for any γ > 0 (see [9] p.146).

For q ≥ 1,

sup
0<λ<N

λqw{x :Mf(x) > 2λ} ≤ sup
0<λ<N

λqw{x : Mf(x) > 2λ,M ♯f(x) ≤ γλ}

+ sup
0<λ<N

λqw{x : M ♯f(x) > γλ}

≤ sup
0<λ<N

Cλqγδw{x : Mf(x) > λ}+ sup
0<λ<N

λqw{x : M ♯f(x) > γλ}

≤ sup
0<λ<2N

Cλqγδw{x : Mf(x) > λ}+ sup
0<λ<N

λqw{x : M ♯f(x) > γλ}.

The left side of the inequality can be written as

sup
0<λ<2N

2−qλqw{x : Mf(x) > λ},

so we choose γ such that Cγδ < 2−q−1 to obtain

sup
λ>0

λqw{x : Mf(x) > λ} ≤ C sup
λ>0

λqw{x : M ♯f(x) > γλ}.

We observe that (2.1) still holds for δ = 1 if 0 < α < n, also w ∈ A(1, n
n−α ) implies w

n
n−α ∈ A∞.

So for 0 < α < n, q = n
n−α , we obtain

sup
λ>0

λ(w
n

n−α {x : |Tαf |(x) > λ})
n−α
n ≤ C sup

λ>0
λ(w

n
n−α {x : MTαf(x) > λ})

n−α
n

≤ C sup
λ>0

λ(w
n

n−α {x : M ♯Tαf(x) > γλ})
n−α
n

≤ C sup
λ>0

λ(w
n

n−α {x :

m∑
i=1

Mαf(A
−1
i x) > Cγλ})

n−α
n .

Since w satisfies (1.6), it is easy to check that

w
n

n−α {x : Mαf(A
−1
i x) > λ} ≤ Ciw

n
n−α {x : Mαf(x) > λ},
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so
sup
λ>0

λ(w
n

n−α {x : |Tαf |(x) > λ})
n−α
n ≤ C sup

λ>0
λ(w

n
n−α {x : Mαf(x) > λ})

n−α
n

≤ C

∫
|f(x)|w(x)dx.

where the last inequality follows since w ∈ A(1, n
n−α ).

The proof for α = 0 is analogous to the proof of Theorem 1 b) in [3].
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