Acta Mathematica Sinica, English Series Sep., 201x, Vol. x, No. x, pp. 1–12 Published online: August 15, 201x DOI: 00000000000000000 Http://www.ActaMath.com

Weighted inequalities for fractional type operators with some homogeneous kernels

María Silvina RIVEROS

 $FaMAF-CIEM,\ UNC-CONICET,\ Ciudad\ Universitaria,\ (5000)\ C\'ordoba\ Argentina\\ E-mail:\ sriveros@famaf.unc.edu.ar$

Marta URCIUOLO

FaMAF-CIEM UNC-CONICET, Ciudad Universitaria, (5000) Córdoba Argentina E-mail: urciuolo@famaf.unc.edu.ar

Abstract In this paper we study integral operators of the form

$$T_{\alpha}f(x) = \int_{\mathbb{R}^n} |x - A_1 y|^{-\alpha_1} \dots |x - A_m y|^{-\alpha_m} f(y) dy,$$

where A_i are certain invertible matrices, $\alpha_i > 0$, $1 \le i \le m$, $\alpha_1 + ... + \alpha_m = n - \alpha$, $0 \le \alpha < n$. For $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$ we obtain the $L^p(\mathbb{R}^n, w^p) - L^q(\mathbb{R}^n, w^q)$ boundedness for weights w in A(p,q) satisfying that there exists c > 0 such that $w(A_i x) \le cw(x)$, a.e. $x \in \mathbb{R}^n$, $1 \le i \le m$. Moreover we obtain the appropriate weighted BMO and weak type estimates for certain weights satisfying the above inequality. We also give a Coifman Type estimate for these operators.

Keywords Fractional operators, Calderón-Zygmund operators, BMO, Muckenhoupt weights.

MR(2000) Subject Classification 42B20, 42B25

1 Introduction

In this paper we will study integral operators of the form

$$T_{\alpha}f(x) = \int_{\mathbb{R}^n} |x - A_1 y|^{-\alpha_1} \dots |x - A_m y|^{-\alpha_m} f(y) dy, \tag{1.1}$$

for certain invertible matrices A_i , $\alpha_i > 0$, $1 \le i \le m$, $\alpha_1 + ... + \alpha_m = n - \alpha$, $0 \le \alpha < n$. We observe if $f \in L_c^{\infty}(\mathbb{R}^n, dx)$ then $T_{\alpha}f(x) < \infty$ a.e. $x \in \mathbb{R}^n$.

In [1] Ricci and Sjögren obtained the $L^p(\mathbb{R}, dx)$ boundedness, p > 1, for a family of maximal operators on the three dimensional Heisenberg group. Some of these operators arise in the study of the boundary behavior of Poisson integrals on the symmetric space $SL(\mathbb{R}^3)/SO(3)$. To get the principal result, they studied the boundedness, on $L^2(\mathbb{R}, dx)$ of the integral operator

$$Tf(x) = \int |x - y|^{-\alpha} |x + y|^{\alpha - 1} f(y) dy,$$

 $0<\alpha<1.$

Received x x, 201x, accepted x x, 201x

In [2] Godoy and Urciuolo study integral operators of the form

$$Tf(x) = \int_{\mathbb{R}^n} |x - y|^{-\alpha} |x + y|^{-n+\alpha} f(y) dy,$$

 $0 < \alpha < n$. They obtain the $L^p(\mathbb{R}^n, dx)$ boundedness and the weak type (1,1) of them.

We recall that a weight w is a locally integrable and non negative function. The Muckenhoupt class A_p , 1 is defined as the class of weights <math>w such that

$$\sup_{Q} \left \lceil \left(\frac{1}{|Q|} \int_{Q} w \right) \left(\frac{1}{|Q|} \int_{Q} w^{-\frac{1}{p-1}} \right)^{p-1} \right \rceil < \infty.$$

For p=1, A_1 is the class of weights w satisfying that there exists c>0 such that $Mw(x) \leq cw(x)$ a.e. $x \in \mathbb{R}^n$, where M is the Hardy-Littlewood maximal function. Also $A_{\infty} = \cup_{1 \leq p < \infty} A_p$. In [3] we considered integral operators of the form (1.1) for $\alpha=0$ and $A_i=a_iI$, i=1,...,m. We obtain the $L^p(\mathbb{R}^n,w)$ boundedness of them, and a weighted (1,1) inequality, for weights w in $A_p, p \geq 1$, satisfying that there exists c>0 such that $w(a_ix) \leq cw(x)$, a.e. $x \in \mathbb{R}^n$, $1 \leq i \leq m$. Moreover we prove that $\|Tf\|_{BMO} \leq c \|f\|_{\infty}$ for a wide family of functions $f \in L^{\infty}(\mathbb{R}^n, dx)$, where $BMO = BMO(\mathbb{R}^n)$ is the classical space of function with bounded mean oscillation defined by John and Nirenberg in [4].

In [5] Rocha and Urciuolo consider the operator T_{α} in the case that the matrices A_1, \ldots, A_m satisfy the following hypothesis

(H) A_i is invertible and $A_i - A_j$ is invertible for $i \neq j$, $1 \leq i, j \leq m$.

They obtain that T_{α} is bounded from $H^{p}(\mathbb{R}^{n}, dx)$ into $L^{q}(\mathbb{R}^{n}, dx)$, for $0 and <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$. For $0 \le \alpha < n$ we take the fractional maximal function as

$$M_{\alpha}f(x) = \sup_{Q} \frac{1}{|Q|^{1-\frac{\alpha}{n}}} \int_{Q} |f(x)| dx,$$

where the supremum is taken along all the cubes Q such that x belongs to Q. We observe that $M=M_0$. It is well known (see [6]) that M_{α} is bounded on $L^p(\mathbb{R}^n,w^p)$ into $L^q(\mathbb{R}^n,w^q)$, for $1 and <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$, if and only if

$$\sup_{Q} \left[\left(\frac{1}{|Q|} \int_{Q} w^{q} \right)^{\frac{1}{q}} \left(\frac{1}{|Q|} \int_{Q} w^{-p'} \right)^{\frac{1}{p'}} \right] < \infty. \tag{1.2}$$

The class of functions that satisfy (1.2) is called A(p,q).

For p = 1, the class A(1, q) should be interpreted as the class of weights w satisfying

$$\sup_{Q} \left[\left(\frac{1}{|Q|} \int_{Q} w^{q} \right)^{\frac{1}{q}} \left(\left\| w^{-1} \chi_{Q} \right\|_{\infty} \right) \right] < \infty, \tag{1.3}$$

also for p > 1, $A(p, \infty)$ is the class of weights w satisfying

$$\sup_{Q} \left[\left(\|w\chi_{Q}\|_{\infty} \right) \left(\frac{1}{|Q|} \int_{Q} w^{-p'} \right)^{\frac{1}{p'}} \right] < \infty.$$

We note that the statement $w \in A(\infty, \infty)$ is equivalent to $w^{-1} \in A_1$. We recall that $f \in L^1_{loc}(\mathbb{R}^n, dx)$ belongs to BMO if there exist c > 0 such that

$$\frac{1}{|Q|} \int \left| f(x) - \frac{1}{|Q|} \int_{Q} |f| \right| dx \le c$$

for all cube $Q \subset \mathbb{R}^n$. The smallest bound c for which the above inequality holds is called $||f||_*$.

There is also a weighted version of BMO, this is BMO(w) that is described by the semi norm

$$|||f|||_{w} = \sup_{Q} ||w\chi_{Q}||_{\infty} \left(\frac{1}{|Q|} \int_{Q} \left| f(x) - \frac{1}{|Q|} \int_{Q} f \right| dx\right).$$
 (1.4)

In [6] Muckenhoupt and Wheeden study the classical fractional integral operator I_{α} . They obtain the following endpoint results, if $w \in A\left(\frac{n}{\alpha}, \infty\right)$ then

$$|||I_{\alpha}f|||_{w} \le c \left(\int (|f|w)^{\frac{n}{\alpha}} \right)^{\frac{\alpha}{n}}, \tag{1.5}$$

also if $w \in A(1, \frac{n}{n-\alpha})$ they obtain the weighted weak type $(1, \frac{n}{n-\alpha})$ estimate.

In this paper we study the operator T_{α} defined as in (1.1) for matrices A_i satisfying the hypothesis (H). Throughout this paper we will consider weights w such that there exists c > 0 with

$$w(A_i x) \le c w(x), \tag{1.6}$$

a.e. $x \in \mathbb{R}^n$, $1 \le i \le m$.

In §2 we obtain a Coifman type estimate for this operator, namely we find which is the maximal operator that controls T_{α} in weighted p-norms, for any $w \in A_{\infty}$ satisfying (1.6). A fundamental tool to prove this result is the inequality (2.1). As a consequence of this theorem we get the $L^p(\mathbb{R}^n, w^p)$ - $L^q(\mathbb{R}^n, w^q)$ boundedness for $1 and <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$, for w in A(p, q) satisfying (1.6).

In §3 we prove an inequality analogous to (1.5) for the operator T_{α} and weights w in $A\left(\frac{n}{\alpha},\infty\right)$ satisfying (1.6). We also prove a weighted weak type $(1,\frac{n}{n-\alpha})$ estimate for T_{α} and weights w in $A(1,\frac{n}{n-\alpha})$ satisfying (1.6).

Throughout this paper c and C will denote positive constants, not the same at each occurrence.

2 Main Results

The following result is a Coifman type estimate for the operator T_{α} .

Theorem 2.1 Let $0 \le \alpha < n$ and $\alpha_1, \ldots, \alpha_m > 0$ such that $\alpha_1 + \ldots + \alpha_m = n - \alpha$. Let T_{α} be defined as in (1.1) where A_1, \ldots, A_m satisfy the hypothesis (H). If $0 and <math>w \in A_{\infty}$ satisfies (1.6) then there exists C > 0 such that

$$\int_{\mathbb{R}^n} |T_{\alpha}f(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} |M_{\alpha}f(x)|^p w(x) \, dx, \qquad f \in L_c^{\infty}(\mathbb{R}^n, dx)$$

always holds if the left hand side is finite.

Proof Let $f \in L_c^{\infty}(\mathbb{R}^n, dx)$, $f \geq 0$ and $0 < \delta < 1$. We prove now that there exists C > 0 such that

$$M_{\delta}^{\sharp}(T_{\alpha}f)(x) \le C \sum_{i=1}^{m} M_{\alpha}f(A_i^{-1}x), \tag{2.1}$$

where $M_{\delta}^{\sharp}f=(M^{\sharp}|f|^{\delta})^{1/\delta}$ with

$$M^{\sharp}f(x) = \sup_{B\ni x} \inf_{a\in\mathbb{R}} \frac{1}{|B|} \int_{B} |f(y) - a| \, dy.$$

In [5] Rocha and Urciuolo prove that T_{α} is a bounded operator from $L^{s}(\mathbb{R}^{n}, dx)$ into $L^{q}(\mathbb{R}^{n}, dx)$, for $1 < s < \frac{n}{\alpha}$, and $\frac{1}{q} = \frac{1}{s} - \frac{\alpha}{n}$, so $T_{\alpha}(f) \in L^{1}_{loc}(\mathbb{R}^{n}, dx)$ and $M^{\sharp}_{\delta}(T_{\alpha}f)(x)$ is well defined for all $x \in \mathbb{R}^{n}$. Let $x \in \mathbb{R}^{n}$ and let $B = B(x_{B}, r)$ be a ball that contains x, centered at x_{B} with radius r, and $T_{\alpha}f(x_{B}) < \infty$. We write $\widetilde{B} = B(x_{B}, 4r)$, and for $1 \le i \le m$ we also set $\widetilde{B}_{i} = A_{i}^{-1}\widetilde{B}$. Let $f_{1} = f\chi_{\bigcup_{1 \le i \le m} \widetilde{B}_{i}}$ and let $f_{2} = f - f_{1}$.

We choose $a = T_{\alpha} f_2(x_B)$. We consider first the case $0 < \alpha < n$. By Jensen's inequality and from the inequality

$$|t^{\delta} - s^{\delta}|^{1/\delta} \le |t - s|,$$

which holds for any positive t, s,

$$\left(\frac{1}{|B|} \int_{B} |(T_{\alpha}f)^{\delta}(y) - a^{\delta}|dy\right)^{1/\delta} \leq \left(\frac{1}{|B|} \int_{B} |T_{\alpha}f(y) - a|dy\right)
\leq \left(\frac{1}{|B|} \int_{B} |T_{\alpha}f_{1}(y)dy\right) + \left(\frac{1}{|B|} \int_{B} |T_{\alpha}f_{2}(y) - a|dy\right)
= I + II.$$

$$I = \frac{1}{|B|} \int_{B} T_{\alpha} f_{1}(y) dy$$

$$\leq \frac{1}{|B|} \int_{B} \sum_{i=1}^{m} \int_{\widetilde{B}_{i}} |y - A_{1}z|^{-\alpha_{1}} \dots |y - A_{m}z|^{-\alpha_{m}} f(z) dz dy$$

$$\leq \sum_{i=1}^{m} \frac{1}{|B|} \int_{\widetilde{B}_{i}} f(z) \int_{B} |y - A_{1}z|^{-\alpha_{1}} \dots |y - A_{m}z|^{-\alpha_{m}} dy dz.$$

If $z \in \widetilde{B}_i$

$$\int_{B} |y - A_{1}z|^{-\alpha_{1}} \dots |y - A_{m}z|^{-\alpha_{m}} dy$$

$$\leq \sum_{j=1}^{m} \int_{\{y \in B: |y - A_{j}z| \leq |y - A_{l}z|, 1 \leq l \leq m\}} |y - A_{1}z|^{-\alpha_{1}} \dots |y - A_{m}z|^{-\alpha_{m}} dy$$

$$\leq \sum_{j=1}^{m} \int_{\{y \in B: |y - A_{j}z| \leq |y - A_{l}z|, 1 \leq l \leq m\}} |y - A_{j}z|^{\alpha - n} dy$$

$$\leq \sum_{j=1}^{m} \int_{B(x_{B}, 6r)} |y - A_{j}z|^{\alpha - n} dy$$

$$\leq Cr^{\alpha}, \qquad (2.2)$$

the last inequality follows since we take $y \in B$ such that $|y - A_j z| \le |y - A_l z|$, for all $1 \le l \le m$, so in particular

$$|A_j z - x_B| \le |A_j z - y| + |y - x_B| \le |A_i z - y| + |y - x_B| \le |A_i z - x_B| + 2|y - x_B| \le 6r$$

and so $A_j z \in B(x_B, 6r)$. Then

$$I \leq C \sum_{i=1}^m \frac{1}{|\widetilde{B}_i|^{1-\frac{\alpha}{n}}} \int_{\widetilde{B}_i} f(z) \ dz \leq C \sum_{i=1}^m M_{\alpha} f(A_i^{-1}x).$$

On the other hand

$$II = \frac{1}{|B|} \int_{B} |T_{\alpha} f_{2}(y) - T_{\alpha} f_{2}(x_{B})| dy$$

$$\leq \frac{1}{|B|} \int_{B} \int_{\left(\bigcup_{1 \leq k \leq m} \widetilde{B}_{k}\right)^{c}} |K(y, z) - K(x_{B}, z)| f(z) dz dy$$

$$\leq \sum_{j=1}^{m} \frac{1}{|B|} \int_{B} \int_{Z_{j}} |K(y, z) - K(x_{B}, z)| f(z) dz dy,$$

where

$$K(x,y) = |x - A_1 y|^{-\alpha_1} \dots |x - A_m y|^{-\alpha_m}$$
(2.3)

and

$$Z_j = \left(\bigcup_{1 \le k \le m} \widetilde{B}_k\right)^c \bigcap \left\{z : |x_B - A_j z| \le |x_B - A_i z|, \text{ for } 1 \le i \le m\right\}.$$
 (2.4)

We estimate now $|K(y,z) - K(x_B,z)|$ for $y \in B$ and $z \in Z_j$. By the mean value theorem we obtain

$$|K(y,z) - K(x_B,z)| \le |x_B - y| \sum_{i=1}^m \frac{\alpha_i}{|\xi - A_i z|^{\alpha_i + 1} \prod_{l \ne i} |\xi - A_l z|^{\alpha_l}},$$

for some ξ between x_B and y. But

$$|\xi - A_i z| \ge |x_B - A_i z| - |\xi - x_B| \ge \frac{|x_B - A_i z|}{2},$$

for $i = 1, \ldots, m$, thus

$$|K(y,z) - K(x_B,z)| \le c \frac{|x_B - y|}{|x_B - A_j z|^{n-\alpha+1}}.$$
 (2.5)

For $1 \le j \le m$, we denote $m_j = \min\{|A_jy| : |y| = 1\}$ and $n_j = \min\{|A_j^{-1}y| : |y| = 1\}$.

$$\frac{1}{|B|} \int_{B} \int_{Z_{j}} |K(y,z) - K(x_{B},z)| f(z) dz dy
\leq \frac{c}{|B|} \int_{B} \int_{Z_{j}} \frac{|x_{B} - y|}{|x_{B} - A_{j}z|^{n-\alpha+1}} f(z) dz dy
\leq \frac{c}{|B|} \int_{B} \int_{|A_{j}^{-1}x_{B}-z| \geq 4n_{j}r} \frac{|x_{B} - y|}{|x_{B} - A_{j}z|^{n-\alpha+1}} f(z) dz dy
\leq \frac{c}{(m_{j})^{n-\alpha+1} |B|} \int_{B} \sum_{k=2}^{\infty} \int_{2^{k}n_{j}r \leq |A_{j}^{-1}x_{B}-z| < 2^{k+1}n_{j}r} \frac{|x_{B} - y|}{|A_{j}^{-1}x_{B} - z|^{n-\alpha+1}} f(z) dz dy
\leq \frac{c}{(m_{j})^{n-\alpha+1}} \sum_{k=2}^{\infty} \frac{r}{(2^{k}n_{j}r)^{n-\alpha+1}} \int_{|A_{j}^{-1}x_{B}-z| < 2^{k+1}n_{j}r} f(z) dz
\leq \frac{c}{(m_{j})^{n-\alpha+1}n_{j}} \sum_{k=2}^{\infty} \frac{1}{2^{k}} M_{\alpha} f(A_{j}^{-1}x)
\leq C_{j} M_{\alpha} f(A_{j}^{-1}x).$$

Thus

$$II \le C \sum_{j=1}^{m} M_{\alpha} f(A_j^{-1} x),$$

and so (2.1) follows in the case $\alpha > 0$. To prove (2.1) for $\alpha = 0$, we estimate

$$\left(\frac{1}{|B|} \int_{B} |(T_{0}f)^{\delta}(y) - a^{\delta}|dy\right)^{1/\delta} \leq \left(\frac{C}{|B|} \int_{B} (T_{0}f_{1})^{\delta}(y)dy\right)^{1/\delta} + \left(\frac{C}{|B|} \int_{B} |(T_{0}f_{2})^{\delta}(y) - a^{\delta}|dy\right)^{1/\delta} \\
= I + II.$$

To estimate I we observe that T_0 is of weak type (1,1) with respect to the Lebesgue measure. To prove this result we perform the classical Calderón-Zygmund decomposition f = g + b. Since T_0 is bounded on $L^2(\mathbb{R}^n, dx)$ (see [5]) we obtain that

$$|\{x: |T_0g(x)| > \lambda\}| \le \frac{C}{\lambda}||f||_1.$$

On the other hand, as above, it is easy to check that the kernel K satisfies the "Hörmander type" inequality

$$\int_{(\widetilde{B}_k)^c} |K(y,z) - K(x_B,z)| dz \le C,$$

where $y \in B(x_B, r)$, $\widetilde{B}_k = A_k^{-1}\widetilde{B}$ and $\widetilde{B} = B(x_B, 4r)$. As usual we obtain that

$$|\{x: |T_0b(x)| > \lambda\}| \le \frac{C}{\lambda}||f||_1$$

We use now Kolmogorov's inequality (see exercise 2.1.5. p. 91 in [7]) to get

$$I \leq \frac{C}{|B|} \int_{\mathbb{R}^n} f_1(y) dy \leq \sum_{j=1}^m \frac{C}{|B|} \int_{\widetilde{B}_j} f(y) dy$$
$$\leq C \sum_{j=1}^m M f(A_j^{-1} x).$$

To estimate II, we first use Jensen's inequality and then we proceed just as in the case $0 < \alpha < n$ to get

$$II \le C \sum_{j=1}^{m} Mf(A_j^{-1}x),$$

and so (2.1) follows in this case.

Let $w \in A_{\infty}$, then there exists r > 1 such that $w \in A_r$. For $0 we take <math>0 < \delta < 1$, such that $1 < r < p/\delta$, thus $w \in A_{p/\delta}$. If $||T_{\alpha}f||_{p,w} < \infty$ then also $||(T_{\alpha}f)^{\delta}||_{\frac{p}{\delta},w} < \infty$. Under these conditions we can apply Theorem 2.20 in [8], p. 410, and from (2.1) we get

$$\int_{\mathbb{R}^n} |T_{\alpha}f(x)|^p w(x) \, dx \le \int_{\mathbb{R}^n} (M(T_{\alpha}f)^{\delta}(x))^{p/\delta} w(x) \, dx
\le \int_{\mathbb{R}^n} (M_{\delta}^{\sharp}(T_{\alpha}f)(x))^p w(x) \, dx
\le C \int_{\mathbb{R}^n} \left(\sum_{i=1}^m M_{\alpha}f(A_i^{-1}x) \right)^p w(x) \, dx
\le C \sum_{i=1}^m \int_{\mathbb{R}^n} (M_{\alpha}f)^p(x) w(A_ix) \, dx
\le C \int_{\mathbb{R}^n} (M_{\alpha}f(x))^p w(x) \, dx,$$

where the last inequality follows since w satisfies (1.6).

Lemma 2.2 Let $0 \le \alpha < n$ and $\alpha_1, \ldots, \alpha_m > 0$ such that $\alpha_1 + \ldots + \alpha_m = n - \alpha$. Let T_{α} be defined as in (1.1) where A_1, \ldots, A_m satisfy the hypothesis (H). If $1 , <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$, $w \in A(p,q)$, and $f \in L_c^{\infty}(\mathbb{R}^n, dx)$ then $T_{\alpha}(f) \in L^q(\mathbb{R}^n, w^q)$.

Proof Let $\mathcal{M}_j = \max\{|A_j y| : |y| = 1\}$, and let $\mathcal{M} = \max\{\mathcal{M}_j : 1 \leq j \leq m\}$. If $\sup f \subset B(0,R)$ and $|x| > 2\mathcal{M}R$, then $|K(x,y)| \leq \frac{C}{|x|^{n-\alpha}}$ and so

$$\int_{|x|>2\mathcal{M}R} |T_{\alpha}f|^{q} w^{q} dx \leq C_{R} \int_{|x|>2\mathcal{M}R} \frac{w^{q}(x)}{|x|^{(n-\alpha)q}} dx
\leq C_{R} \sum_{k=1}^{\infty} \int_{2^{k} \mathcal{M}R \leq |x|<2^{k+1} \mathcal{M}R} \frac{w^{q}(x)}{|x|^{(n-\alpha)q}} dx
\leq C_{R} \sum_{k=1}^{\infty} 2^{-k(n-\alpha)q} w^{q} (B(0, 2^{k+1} \mathcal{M}R)) dx,$$

where $w(B) = \int_B w(x)dx$. Since $w^q \in A_r$ with r = 1 + q/p', there exists $\tilde{r} < r$ such that $w^q \in A_{\tilde{r}}$, thus $w^q(B(0, 2^{k+1}\mathcal{M}R)) \le C(R, w, n)2^{kn\tilde{r}}$ (see Lemma 2.2 in [8], p.396). We observe that $q(n-\alpha) = nr > n\tilde{r}$ and so the last sum is finite. Now by Hölder's inequality, for any $\epsilon > 0$.

$$\int_{|x|<2\mathcal{M}R} |T_{\alpha}f|^q w^q dx \leq \left(\int_{|x|<2\mathcal{M}R} |T_{\alpha}f|^{q\frac{1+\epsilon}{\epsilon}}\right)^{\frac{\epsilon}{1+\epsilon}} \left(\int_{|x|<2\mathcal{M}R} w^{q(1+\epsilon)}\right)^{\frac{1}{1+\epsilon}},$$

by reverse Hölder's inequality we can choose $\epsilon > 0$ such the second integral is finite. The first one is finite since $T_{\alpha} f \in L^{q\frac{1+\epsilon}{\epsilon}}(\mathbb{R}^n, dx)$ (see [5]).

From this Lemma and Theorem 2.1 we get the following

Theorem 2.3 Let $0 \le \alpha < n$ and $\alpha_1, \ldots, \alpha_m > 0$ such that $\alpha_1 + \ldots + \alpha_m = n - \alpha$. Let T_α be defined as in (1.1) where A_1, \ldots, A_m satisfy the hypothesis (H). If $1 , <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$, and $w \in A(p,q)$ satisfies (1.6) then there exits C > 0 such that

$$\left(\int_{\mathbb{R}^n} |T_{\alpha}f(x)|^q w^q(x) \, dx\right)^{\frac{1}{q}} \le C\left(\int_{\mathbb{R}^n} |f(x)|^p w^p(x) \, dx\right)^{\frac{1}{p}}, \quad f \in L_c^{\infty}(\mathbb{R}^n, dx). \tag{2.6}$$

Proof Since $w \in A(p,q)$ for $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$ then $w^q \in A_{1+q/p'} \subset A_{\infty}$. Without loss of generality we take $f \in L_c^{\infty}(\mathbb{R}^n, dx)$. By Lemma 2.2 we have that $T_{\alpha}f \in L^q(\mathbb{R}^n, w^q)$. Moreover we recall that $w \in A(p,q)$ implies that M_{α} is bounded from $L^p(\mathbb{R}^n, w^p)$ into $L^q(\mathbb{R}^n, w^q)$, so we apply Theorem 2.1 to obtain

$$\left(\int |T_{\alpha}f|^q w^q dx\right)^{\frac{1}{q}} \le C\left(\int (M_{\alpha}f)^q w^q dx\right)^{\frac{1}{q}} \le C\left(\int |f|^p w^p dx\right)^{\frac{1}{p}}.$$

Remark 2.4 The inequality in (2.6) still holds for $f \in L^p(\mathbb{R}^n, w^p)$. Indeed if $f \geq 0$ we define $f_N(x) = f_{\chi_{\{x:f(x) \leq N\}}} \chi_{\{x:|x| \leq N\}}$, then (2.6) can be applied to f_N . Taking the limit as $N \to \infty$ and using the monotone convergence theorem,(2.6) follows for general f.

3 Endpoint results

In this paragraph we obtain an estimation of the type (1.5) for the operator T_{α} and for certain weights in the class $A(\frac{n}{\alpha}, \infty)$. We also prove that T_{α} satisfies a weighted weak type $(1, \frac{n}{n-\alpha})$ estimate for certain weights in $A(1, \frac{n}{n-\alpha})$.

In the following theorem, if $\alpha = 0$ we understand that $\left(\int (|f|w)^{\frac{n}{\alpha}}\right)^{\frac{\alpha}{n}} = ||fw||_{\infty}$

Theorem 3.1 Let $0 \le \alpha < n$ and $\alpha_1, \ldots, \alpha_m > 0$ such that $\alpha_1 + \ldots + \alpha_m = n - \alpha$. Let T_α be defined as in (1.1) where A_1, \ldots, A_m satisfy the hypothesis (H). If $w \in A(n/\alpha, \infty)$ and satisfies (1.6), then there exist C > 0 such that

$$|||T_{\alpha}f|||_{w} \leq C \left(\int (|f|w)^{\frac{n}{\alpha}} \right)^{\frac{\alpha}{n}}, \quad f \in L_{c}^{\infty}(\mathbb{R}^{n}, dx).$$

Proof We recall that

$$\left\|\left|T_{\alpha}f\right|\right\|_{w} = \sup_{Q} \left\|w\chi_{Q}\right\|_{\infty} \left(\frac{1}{|Q|} \int_{Q} \left|T_{\alpha}f(y) - \frac{1}{|Q|} \int_{Q} T_{\alpha}f\right| dy\right),$$

without loss of generality we can replace the cubes Q by balls B in (1.3) and in (1.4). Let $B = B(x_B, r)$ be a ball centered at x_B with radius r. We write $\widetilde{B} = B(x_B, 4r)$, and for $1 \le i \le m$ we also set $\widetilde{B}_i = A_i^{-1}\widetilde{B}$. Let $f_1 = f\chi_{\bigcup_{1 \le i \le m} \widetilde{B}_i}$ and let $f_2 = f - f_1$.

$$||w\chi_{B}||_{\infty} \left(\frac{1}{|B|} \int_{B} |T_{\alpha}f(y) - \frac{1}{|B|} \int_{B} T_{\alpha}f|dy\right)$$

$$\leq ||w\chi_{B}||_{\infty} \left(\frac{1}{|B|} \int_{B} |T_{\alpha}f_{1}(y) - \frac{1}{|B|} \int_{B} T_{\alpha}f_{1}|dy\right)$$

$$+ ||w\chi_{B}||_{\infty} \left(\frac{1}{|B|} \int_{B} |T_{\alpha}f_{2}(y) - \frac{1}{|B|} \int_{B} T_{\alpha}f_{2}|dy\right) = I + II.$$
(3.1)

If $0 < \alpha < n$

$$I \leq \frac{2 \|w\chi_B\|_{\infty}}{|B|} \int_B |T_{\alpha}f_1|(y)dy$$

$$\leq \frac{2 \|w\chi_B\|_{\infty}}{|B|} \int_B \sum_{i=1}^m \int_{\widetilde{B}_i} |y - A_1 z|^{-\alpha_1} \dots |y - A_m z|^{-\alpha_m} |f(z)| dz dy$$

$$\leq \sum_{i=1}^m \frac{2 \|w\chi_B\|_{\infty}}{|B|} \int_{\widetilde{B}_i} |f(z)| \int_B |y - A_1 z|^{-\alpha_1} \dots |y - A_m z|^{-\alpha_m} dy dz.$$

If $z \in \widetilde{B}_i$, as in (2.2) we have

$$\int_{B} |y - A_1 z|^{-\alpha_1} \dots |y - A_m z|^{-\alpha_m} dy \le Cr^{\alpha},$$

Then

$$I \le C \frac{\|w\chi_B\|_{\infty}}{|B|^{1-\frac{\alpha}{n}}} \sum_{i=1}^m \int_{\widetilde{B}} |f(A_i^{-1}z)| w(z) w^{-1}(z) \ dz.$$

Now we use Hölder's inequality to obtain that

$$\begin{split} &\int_{\widetilde{B}} |f(A_i^{-1}z)|w(z)w^{-1}(z)|\,dz\\ &\leq \left(\int_{\widetilde{B}} (|f(A_i^{-1}z)|w(z))^{\frac{n}{\alpha}}|\,dz\right)^{\frac{\alpha}{n}} \left(\int_{\widetilde{B}} (w(z))^{\frac{-n}{n-\alpha}}dz\right)^{\frac{n-\alpha}{n}}. \end{split}$$

From this inequality and the hypothesis about w, we get that

$$\begin{split} &I \leq C \sum_{i=1}^m \left(\int_{\widetilde{B}} (|f(A_i^{-1}z)| w(z))^{n/\alpha} \ dz \right)^{\alpha/n} \leq C \sum_{i=1}^m \left(\int_{\mathbb{R}^n} (|f(z)| w(A_iz))^{n/\alpha} \ dz \right)^{\alpha/n} \\ &\leq C \left(\int_{\mathbb{R}^n} (|f(z)| w(z))^{n/\alpha} \ dz \right)^{\alpha/n} \ . \end{split}$$

On the other hand

$$\begin{split} II &= \|w\chi_B\|_{\infty} \left(\frac{1}{|B|} \int_B |T_{\alpha}f_2(y) - \frac{1}{|B|} \int_B T_{\alpha}f_2(t)dt|dy\right) \\ &\leq \frac{\|w\chi_B\|_{\infty}}{|B|} \int_B \frac{1}{|B|} \int_B \int_{\left(\bigcup\limits_{1 \leq k \leq m} \widetilde{B}_k\right)^c} |K(y,z) - K(t,z)||f(z)|dzdtdy \\ &\leq \|w\chi_B\|_{\infty} \sum_{j=1}^m \frac{1}{|B|} \int_B \frac{1}{|B|} \int_B \int_{Z_j} |K(y,z) - K(t,z)||f(z)|dzdtdy, \end{split}$$

where K(x,y) and Z_j are defined in (2.3) and (2.4) respectively.

Now $|K(y,z) - K(t,z)| \le |K(y,z) - K(x_B,z)| + |K(x_B,z) - K(t,z)|$ and proceeding as in the proof of (2.5) we get for $z \in Z_j$ and $y,t \in B$

$$|K(y,z) - K(t,z)| \le C \left(\frac{|x_B - y|}{|x_B - A_j z|^{n-\alpha+1}} + \frac{|x_B - t|}{|x_B - A_j z|^{n-\alpha+1}} \right)$$

$$\le \frac{Cr}{|x_B - A_j z|^{n-\alpha+1}} .$$

Then

$$II \leq C \|w\chi_{B}\|_{\infty} r \sum_{j=1}^{m} \int_{Z_{j}} \frac{|f(z)|}{|x_{B} - A_{j}z|^{n-\alpha+1}} dz$$

$$\leq C \|w\chi_{B}\|_{\infty} r \sum_{j=1}^{m} \int_{|x_{B} - A_{j}z| \geq 4r} \frac{|f(z)|}{|x_{B} - A_{j}z|^{n-\alpha+1}} dz$$

$$\leq C \|w\chi_{B}\|_{\infty} r \sum_{j=1}^{m} \int_{|x_{B} - x| \geq 4r} \frac{|f(A_{j}^{-1}x)|}{|x_{B} - x|^{n-\alpha+1}} w(x) w^{-1}(x) dx.$$

$$(3.2)$$

Again from Hölder's inequality we obtain

$$II \le C \|w\chi_B\|_{\infty} r \left(\int_{|x_B - x| \ge 4r} \left(\frac{w^{-1}(x)}{|x_B - x|^{n - \alpha + 1}} \right)^{\frac{n}{n - \alpha}} dx \right)^{\frac{n - \alpha}{n}}$$

$$\times \sum_{j=1}^m \left(\int_{\mathbb{R}^n} (|f(A_j^{-1}x)| w(x))^{\frac{n}{\alpha}} dx \right)^{\frac{\alpha}{n}}.$$

Now,

$$\int_{|x_B - x| \ge 4r} \left(\frac{w^{-1}(x)}{|x_B - x|^{n - \alpha + 1}} \right)^{\frac{n}{n - \alpha}} dx$$

$$= \sum_{k=2}^{\infty} \int_{2^k r \le |x_B - x| < 2^{k+1}r} \left(\frac{w^{-1}(x)}{|x_B - x|^{n - \alpha + 1}} \right)^{\frac{n}{n - \alpha}} dx$$

$$\le \sum_{k=2}^{\infty} \frac{1}{(2^k r)^{(n - \alpha + 1)\frac{n}{n - \alpha}}} \int_{|x_B - x| < 2^{k+1}r} (w^{-1}(x))^{\frac{n}{n - \alpha}} dx,$$
(3.3)

then, since $w \in A(n/\alpha, \infty)$.

$$\|w\chi_B\|_{\infty} r \left(\int_{|x_B - x| \ge 4r} \left(\frac{w^{-1}(x)}{|x_B - x|^{n - \alpha + 1}} \right)^{\frac{n}{n - \alpha}} dx \right)^{\frac{n}{n - \alpha}} \le C,$$

so

$$II \le C \sum_{i=1}^m \left(\int_{\mathbb{R}^n} (|f(A_j^{-1}x)| w(x))^{\frac{n}{\alpha}} dx \right)^{\frac{\alpha}{n}} \le C \left(\int_{\mathbb{R}^n} (|f(x)| w(x))^{\frac{n}{\alpha}} dx \right)^{\frac{\alpha}{n}},$$

where the last inequality follows from (1.6).

If $\alpha = 0$, since $w \in A(\infty, \infty)$ then there exists r > 1 such that $w^{-r} \in A_1$. From Hölder's inequality, the $L^r(\mathbb{R}^n, dx)$ boundedness of T_0 and since w satisfies (1.6) we get

$$I \leq \frac{2 \|w\chi_B\|_{\infty}}{|B|} \int_{B} |T_0 f_1(y)| dy \leq 2 \|w\chi_B\|_{\infty} \left(\frac{1}{|B|} \int_{B} |T_0 f_1(y)|^r dy\right)^{\frac{1}{r}}$$

$$\leq C \|w\chi_B\|_{\infty} \left(\frac{1}{|B|} \int_{\mathbb{R}^n} |f_1(y)|^r dy\right)^{\frac{1}{r}} \leq C \|w\chi_B\|_{\infty} \sum_{j=1}^m \left(\frac{1}{|B|} \int_{\widetilde{B}_j} |f(y)|^r dy\right)^{\frac{1}{r}}$$

$$\leq C \|w\chi_B\|_{\infty} \sum_{j=1}^m \left(\frac{1}{|B|} \int_{B} |f(A_j^{-1}y)|^r w^r(y) w^{-r}(y) dy\right)^{\frac{1}{r}}$$

$$\leq C \|fw\|_{\infty} \|w\chi_B\|_{\infty} \left(\frac{1}{|B|} \int_{B} w^{-r}(y) dy\right)^{\frac{1}{r}} \leq C \|fw\|_{\infty}.$$

We observe that (3.2) still holds for $\alpha = 0$, and since w satisfies (1.6) we get that

$$II \le C \|w\chi_B\|_{\infty} \|fw\|_{\infty} r \sum_{j=1}^m \int_{|x_B - x| \ge 4r} \frac{w^{-1}(x)}{|x_B - x|^{n+1}} dx \le C \|fw\|_{\infty},$$

where the last inequality follows from (3.3) and from the condition $w \in A(\infty, \infty)$. Taking sup over all balls B in (3.1) we get the Theorem.

Theorem 3.2 Let $0 \le \alpha < n$ and $\alpha_1, \ldots, \alpha_m > 0$ such that $\alpha_1 + \ldots + \alpha_m = n - \alpha$. Let T_α be defined as in (1.1) where A_1, \ldots, A_m satisfy the hypothesis (H). If $w \in A(1, \frac{n}{n-\alpha})$ and satisfies (1.6) then there exists C > 0 such that

$$\sup_{\lambda>0} \lambda \left(w^{\frac{n}{n-\alpha}} \left\{ x : |T_{\alpha}f(x)| > \lambda \right\} \right)^{\frac{n-\alpha}{n}} \le C \int |f(x)| w(x) dx, \quad f \in L^{1}(\mathbb{R}^{n}, w).$$

Proof Without loss of generality we suppose $f \in L_c^{\infty}(\mathbb{R}^n, dx)$. Given $w \in A_{\infty}$ there exists $\delta > 0$ and C > 0 such that

$$w\{x: Mf(x) > 2\lambda, M^{\sharp}f(x) \le \gamma\lambda\} \le C\gamma^{\delta}w\{x: Mf(x) > \lambda\},$$

for any $\gamma > 0$ (see [9] p.146).

For $q \geq 1$,

$$\begin{split} \sup_{0<\lambda< N} \lambda^q w\{x: & Mf(x) > 2\lambda\} \leq \sup_{0<\lambda< N} \lambda^q w\{x: Mf(x) > 2\lambda, M^\sharp f(x) \leq \gamma\lambda\} \\ &+ \sup_{0<\lambda< N} \lambda^q w\{x: M^\sharp f(x) > \gamma\lambda\} \\ &\leq \sup_{0<\lambda< N} C\lambda^q \gamma^\delta w\{x: Mf(x) > \lambda\} + \sup_{0<\lambda< N} \lambda^q w\{x: M^\sharp f(x) > \gamma\lambda\} \\ &\leq \sup_{0<\lambda< N} C\lambda^q \gamma^\delta w\{x: Mf(x) > \lambda\} + \sup_{0<\lambda< N} \lambda^q w\{x: M^\sharp f(x) > \gamma\lambda\}. \end{split}$$

The left side of the inequality can be written as

$$\sup_{0<\lambda<2N} 2^{-q} \lambda^q w\{x : Mf(x) > \lambda\},\,$$

so we choose γ such that $C\gamma^{\delta} < 2^{-q-1}$ to obtain

$$\sup_{\lambda>0} \lambda^q w\{x: Mf(x) > \lambda\} \le C \sup_{\lambda>0} \lambda^q w\{x: M^{\sharp}f(x) > \gamma\lambda\}.$$

We observe that (2.1) still holds for $\delta = 1$ if $0 < \alpha < n$, also $w \in A(1, \frac{n}{n-\alpha})$ implies $w^{\frac{n}{n-\alpha}} \in A_{\infty}$. So for $0 < \alpha < n$, $q = \frac{n}{n-\alpha}$, we obtain

$$\begin{split} \sup_{\lambda>0} \lambda \big(w^{\frac{n}{n-\alpha}}\big\{x:|T_{\alpha}f|(x)>\lambda\big\}\big)^{\frac{n-\alpha}{n}} &\leq C \sup_{\lambda>0} \lambda \big(w^{\frac{n}{n-\alpha}}\big\{x:MT_{\alpha}f(x)>\lambda\big\}\big)^{\frac{n-\alpha}{n}} \\ &\leq C \sup_{\lambda>0} \lambda \big(w^{\frac{n}{n-\alpha}}\big\{x:M^{\sharp}T_{\alpha}f(x)>\gamma\lambda\big\}\big)^{\frac{n-\alpha}{n}} \\ &\leq C \sup_{\lambda>0} \lambda \big(w^{\frac{n}{n-\alpha}}\big\{x:\sum_{i=1}^m M_{\alpha}f(A_i^{-1}x)>C\gamma\lambda\big\}\big)^{\frac{n-\alpha}{n}}. \end{split}$$

Since w satisfies (1.6), it is easy to check that

$$w^{\frac{n}{n-\alpha}}\{x: M_{\alpha}f(A_i^{-1}x) > \lambda\} < C_i w^{\frac{n}{n-\alpha}}\{x: M_{\alpha}f(x) > \lambda\},$$

$$\sup_{\lambda>0} \lambda \left(w^{\frac{n}{n-\alpha}} \left\{x : |T_{\alpha}f|(x) > \lambda\right\}\right)^{\frac{n-\alpha}{n}} \le C \sup_{\lambda>0} \lambda \left(w^{\frac{n}{n-\alpha}} \left\{x : M_{\alpha}f(x) > \lambda\right\}\right)^{\frac{n-\alpha}{n}} \\
\le C \int_{-\infty}^{\infty} |f(x)| w(x) dx.$$

where the last inequality follows since $w \in A(1, \frac{n}{n-\alpha})$.

The proof for $\alpha = 0$ is analogous to the proof of Theorem 1 b) in [3].

References

- [1] Ricci, F, Sjögren, P., Two parameter maximal functions in the Heisenberg group, *Math. Z.* **199-4**, 565–575, (1988).
- [2] Godoy T., Urciuolo M., About the L^p boundedness of some integral operators, Revista de la UMA 38, 192–195, (1993).
- [3] Riveros, M. S., Urciuolo, M., Weighted inequalities for integral operators with some homogeneous kernels, Czech. Math. J., 55 (130), 423–432, (2005).
- [4] John, F. Nirenberg, L., On functions of bounded mean oscilation, Comm. Pure Appl. Math. 14, 415–426, (1961).
- [5] Rocha, P., Urciuolo, M., On the $H^p L^q$ boundedness of some fractional integral operators. To appear in Czech. Math. J.
- [6] Muckenhoupt B., Wheeden R., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192, 261–274, (1974).
- [7] Grafakos, L., Clasical Fourier Analysis, Second Edition, Springer Science+Business Media, LLC, (2008).
- [8] García Cuerva J., Rubio de Francia J.L., Weighted Norm Inequalities and Related Topics, North-Holland Elseviers Science publishers B.V. (1985).
- [9] Duoandikoetxea J., Análisis de Fourier. Ediciones de la Universidad Autónoma de Madrid, Editorial Siglo XXI, (1990).