

# NITRILE HYDROLYSIS IN A RHENIUM(I)– RUTHENIUM(III) DINUCLEAR COMPLEX

# FLORENCIA FAGALDE\*, MARÍA GABRIELA MELLACE, NOEMÍ D. LIS DE KATZ and NÉSTOR E. KATZ

Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, (T4000INI) San Miguel de Tucumán, Argentina

(Received 23 January 2003; Revised 6 October 2003; In final form 27 February 2004)

Kinetic data for the hydrolysis reaction:  $[(CO)_3(bpy)Re^{I}(4-CNpy)Ru^{III}(NH_3)_5]^{4+} + H_2O \rightarrow [(CO)_3(bpy)Re^{I}(4-C(O)NHpy)Ru^{III}(NH_3)_5]^{3+} + H^+ (bpy = 2,2'-bipyridine, 4-CNpy = 4-cyanopyridine and 4-C(O)NHpy = isonicotinamido), that occurs after oxidation with <math>S_2O_8^{2-}$  of the dinuclear species  $[(CO)_3(bpy)Re^{I}(4-CNpy)Ru^{II}(NH_3)_5]^{3+}$ , have been obtained in aqueous solutions by spectrophotometric techniques. The observed rate constant,  $k_h = (8.6 \pm 0.5) \times 10^{-3} s^{-1}$ , at 25°C, pH = 3.0 (CF<sub>3</sub>COOH) and I = 0.1 M (KCl), is *ca.* three times higher than the corresponding one for the mononuclear complex  $[(4-CNpy)Ru^{III}(NH_3)_5]^{3+}$ , indicating that the catalytic effect of the Ru<sup>III</sup>(NH<sub>3</sub>)\_5 moiety is enhanced by coordination of the free N of 4-CNpy to the Re<sup>I</sup>(CO)<sub>3</sub>(bpy) moiety. The value of  $k_h$  is even higher than that of the dinuclear complex  $[(trpy)(bpy)Ru^{II}(4-CNpy)Ru^{III}(NH_3)_5]^{5+}$  (trpy = 2,2':6',2"-terpyridine), reflecting the fact that carbonyls are much stronger  $\pi$ -acceptors than polypyridines.

Keywords: Nitrile hydrolysis; Mixed-valent complexes; 4-cyanopyridine; Catalysis; Dinuclear complexes

# **INTRODUCTION**

The hydrolysis of nitriles to amides catalyzed by transition metals is a subject of considerable interest [1,2]. For some coordinated nitriles, selective hydrolysis is possible, so catalytic hydrolytic systems can be designed. Since the pioneering work by Zanella and Ford [3], ruthenium-catalyzed nitrile hydrolysis reactions have been extensively investigated. Thouni *et al.* [2] have reviewed the chemistry of Ru(II) and Ru(III) ammine complexes with coordinated nitriles.

Recently we studied [4] the preparation and characterization of a new dinuclear complex, of formula  $[(CO)_3(bpy)Re^{I}(4-CNpy)Ru^{II}(NH_3)_5]^{3+}$ , (I), (with bpy=2,2'-bipyridine and 4-CNpy=4-cyanopyridine, coordinated to Ru through the nitrile N). The asymmetric mixed-valent species,  $[(CO)_3(bpy)Re^{I}(4-CNpy)Ru^{III}(NH_3)_5]^{4+}$ , (II),

<sup>\*</sup>Corresponding author. Fax: +54-3814248169. E-mail: ffagald@unt.edu.ar

was obtained "*in situ*" by oxidation of (I) with *p*-fluorobenzene-diazonium hexafluorophosphate in CH<sub>3</sub>CN. In order to extend our knowledge of the catalytic effect of remote metallic sites, we report in this work the hydrolysis reaction that occurs after formation of the mixed-valent complex (II) by oxidizing (I) with  $S_2O_8^{2-}$  in aqueous solutions.

#### **EXPERIMENTAL**

#### Syntheses

The Br<sup>-</sup> salt of (I) was obtained by dissolving 50 mg of the  $PF_6^-$  salt, prepared as in reference [4], in 2 mL of acetone and adding 1 g of Bu<sup>n</sup><sub>4</sub>NBr, previously dissolved in 2 mL of acetone. The precipitate was collected by filtration, washed with cold acetone and dried *in vacuo* over P<sub>4</sub>O<sub>10</sub>. Yield: 67%. (Anal. Calcd. for ReRuC<sub>19</sub>H<sub>27</sub>N<sub>9</sub>O<sub>3</sub>P<sub>3</sub>F<sub>18</sub>: C, 19.8; H, 2.4; N, 10.9%. Found: C, 19.7; H, 2.7; N, 9.7%).

The mixed-valent complex (II) was obtained "*in situ*" by oxidation of (I) with  $S_2O_8^{2-}$  in aqueous solutions.

The hydrolysis product,  $[(CO)_3(bpy)Re^{I}(4-C(O)NHpy)Ru^{III}(NH_3)_5]^{3+}$ , (III), (4-C(O)NHpy=isonicotinamido), was obtained as a PF<sub>6</sub><sup>-</sup> salt by adding ten-fold excess of K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> to (I), previously dissolved in 6 mL of 10<sup>-3</sup> M CF<sub>3</sub>COOH. After 30 min of reaction, NH<sub>4</sub>PF<sub>6</sub> was added to precipitate the complex. The solid was filtered off, washed with water and dried *in vacuo* over P<sub>4</sub>O<sub>10</sub>. (Anal. Calcd. for ReRuC<sub>19</sub>H<sub>28</sub>N<sub>9</sub>O<sub>4</sub>P<sub>3</sub>F<sub>18</sub> · 9NH<sub>4</sub>KS<sub>2</sub>O<sub>8</sub>: C, 6.2; N, 7.3%. Found C, 6.2; N, 7.5%).

#### Materials, Instrumentation and Techniques

All chemicals were reagent grade and used as received. Double distilled water was used for all kinetic determinations. pH measurements were carried out with a precision of  $\pm 0.05$  pH units, using a Mehtrom 744 pHmeter. UV-visible spectra were recorded with a Shimadzu UV-160A spectrophotometer, equipped with a thermostatted cell compartment. IR spectra were measured (as KBr pellets) using a doublebeam Perkin-Elmer 983G spectrophotometer. Chemical analyses were done at INQUIMAE, University of Buenos Aires, Argentina.

The hydrolysis reactions were studied under *pseudo*-first-order conditions, at temperatures between 15 and 30°C, pH = 3 (CF<sub>3</sub>COOH) and pH = 5 (buffer acetic acid/acetate) and I=0.1 M (KCl). Absorbance (A) vs. time (t) data were recorded at  $\lambda = 470 \text{ nm}$ . Duplicate or triplicate runs were made at each temperature and pH. Rate constants were obtained from least-squares fits of ln  $(A_t - A_{\infty})$  vs. t, which were linear up to three half-lives. The errors in rate constants were estimated to be  $\pm 2-5\%$ .

# **RESULTS AND DISCUSSION**

In previous work [4], we demonstrated that 4-CNpy can act as a bridging ligand in the dinuclear species  $[(CO)_3(bpy)Re^{I}(4-CNpy)Ru^{II}(NH_3)_5]^{3+}$  (I), where the pyridine N (of 4-CNpy) is coordinated to a  $Re^{I}(CO)_3(bpy)$  group and the nitrile N (of 4-CNpy) to a  $Ru^{II}(NH_3)_5$  moiety. In aqueous solutions,  $S_2O_8^{2-}$  rapidly oxidizes the ammine ruthenium, as studied previously [5–7]. In this work we have investigated

the hydrolysis of the oxidized cyanopyridine complex  $[(CO)_3(bpy)Re^{I}(4-CNpy)Ru^{III}(NH_3)_5]^{4+}$  (II) by conventional spectrophotometric techniques, to give  $[(CO)_3(bpy)Re^{I}(4-C(O)NHpy)Ru^{III}(NH_3)_5]^{3+}$ , (III), according to equation (1):

$$[(CO)_{3}(bpy)Re^{I}(4-CNpy)Ru^{III}(NH_{3})_{5}]^{4+} + H_{2}O$$

$$\xrightarrow{k_{h}} [(CO)_{3}(bpy)Re^{I}(4-C(O)NHpy)Ru^{III}(NH_{3})_{5}]^{3+} + H^{+}.$$
(1)

The identity of the product is confirmed by comparing the IR spectra of the  $PF_6^-$  salts of (I) and (III). The nitrile stretching band, which appears at 2177 cm<sup>-1</sup> in (I), disappears completely in (III), while the ammonia symmetric deformation frequency,  $\delta_{sym}(NH_3)$ , shifts from 1282 cm<sup>-1</sup> in (I) to 1312 cm<sup>-1</sup> in (III), a clear indication of the oxidation state for the ammine Ru(III) center [4]. A new and intense band appears at 1405 cm<sup>-1</sup>, which can be assigned to stretching vibrations of an amide (–C(O)NH–) group.

Figure 1 shows the consecutive spectra obtained at pH = 3.0 (CF<sub>3</sub>COOH), I = 0.1 M (KCl) and 25°C upon mixing aqueous solutions of (I) ( $C = 1.1 \times 10^{-4} \text{ M}$ ) and S<sub>2</sub>O<sub>8</sub><sup>2-</sup> ( $C = 1.1 \times 10^{-3} \text{ M}$ ). During a time scale of 30 min, the oxidized cyanopyridine complex (II), with a shoulder at  $\lambda$  ca. 470 nm (deconvoluted band maximum of the metal-to-metal charge transfer (MMCT) transition Re(I)  $\rightarrow$  Ru(III)) [4], evolved exponentially into that of amido complex (III) (shoulder at  $\lambda$  ca. 440 nm); an isosbestic point at 425 nm being obtained. The spectrum of the final product is coincident with that obtained when dissolving the solid salt (III) in CF<sub>3</sub>COOH (10<sup>-3</sup>M).

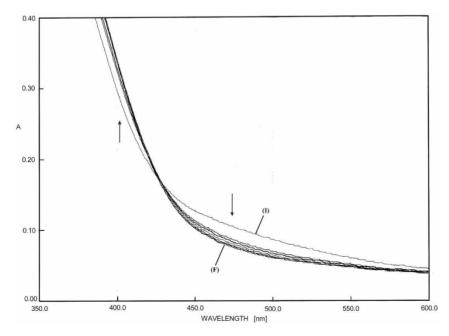



FIGURE 1 Visible spectra of  $[(bpy)(CO)_3 \text{Re}^{I}(4\text{-}CNpy)\text{Ru}^{II}(\text{NH}_3)_5]^{3+}$  and  $S_2O_8^{2-}$  in water at  $[\text{Ru}(\text{II})] = 1.1 \times 10^{-4} \text{ M}, I = 0.1 \text{ M}$  and  $T = 25^{\circ}\text{C}$ . Reactions time were: 0, 90, 150, 300, 600, 900 and 1500 s from the initial (I) to the final (F) spectra.

The MMCT (or intervalence) band of (II) (detected at a similar wavelength in  $CH_3CN$ solution [4]) is shifted to higher energy in (III), as expected from the difference in redox potentials [8], but is masked by the long tail of the metal-to-ligand charge transfer (MLCT) band corresponding to a  $d_{\pi}(Re) \rightarrow \pi^*(bpy)$  transition.

By fixing the measuring wavelength at 470 nm,  $k_h$  values have been determined under *pseudo*-first-order conditions:  $[complex] = 1.3 \times 10^{-4} \text{ M}$  and  $[S_2O_8^{2-}] = 1.3 \times 10^{-3} \text{ M}$ . A value of  $k_h = (8.6 \pm 0.5) \times 10^{-3} \text{ s}^{-1}$  was obtained at 25°C, pH = 3.0 (CF<sub>3</sub>COOH) and I=0.1 M (KCl), which can be compared with other metal-catalysed hydrolysis rate constants, as shown in Table I. A similar value was obtained at pH = 5, so we conclude that the nitrile hydrolysis rate constants are pH-independent.

The value obtained for the complex studied in this work is *ca*. three times *higher* than the corresponding one for the mononuclear complex  $[(4-CNpy)Ru^{III}(NH_3)_5]^{3+}$  [8], indicating that the catalytic effect of a  $Ru^{III}(NH_3)_5$  moiety is enhanced by coordination of the pyridine N of 4-CNpy to a  $\text{Re}^{I}(\text{CO})_{3}(\text{bpy})$  molety, probably due to an inductive effect. Moreover, the value of  $k_h$  is 1.5 times higher than that of the complex  $[(trpy)(bpy)Ru^{II}(4-CNpy)Ru^{III}(NH_3)_5]^{5+} (trpy=2,2':6',2''-terpyridine) [5], in spite of$ lower charge, evidence that  $\pi$ -backbonding of the Re<sup>I</sup>(CO)<sub>3</sub>(bpy) group to 4-CNpy is less than that of the Ru<sup>II</sup>(trpy)(bpy) group to 4-CNpy, a fact which can be explained on the basis that carbonyls are much stronger  $\pi$ -acceptors than polypyridines. However, the measured value of  $k_h$  of  $[(bpy)(CO)_3 \text{Re}^{I}(4-CNpy)\text{Ru}^{III}(NH_3)_5]^{4+}$  is still *lower* (ca. 30 times) than that of  $[(NH_3)_5Ru^{III}(4-NCpy)Ru^{III}(NH_3)_5]^{6+}$  [6], as expected from differences in charge and  $\pi$ -backbonding effects.

Table II shows the value of  $k_h$  at different temperatures. From Eyring's rate equation [9], values of  $\Delta H^{\#} = 39 \pm 3 \text{ kJ mol}^{-1}$  and  $\Delta S^{\#} = -95 \pm 14 \text{ J mol}^{-1} \text{ K}^{-1}$  have been determined, which are consistent with activation parameters obtained for similar nitrile hydrolysis reactions and indicate an associative mechanism.

We conclude that the Re<sup>I</sup>(CO)<sub>3</sub>(bpy) group enhances the catalytic effect of  $Ru(NH_3)_5^{3+}$  on the hydrolysis of coordinated 4-CNpy by a factor of three. The measured rate constant at acidic conditions is even higher than that of the Ru<sup>II</sup>(trpy)(bpy) group, due to the fact that carbonyls are much better  $\pi$ -acceptors than polypyridines.

| comptenes                                                                                              |                       |           |
|--------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| Complex                                                                                                | $k_{h}, s^{-1}$       | Ref.      |
| $[(NH_3)_5 Ru(4-NCpy)]^{3+}$                                                                           | $2.9 \times 10^{-3}$  | 8         |
| [(trpy)(bpy)Ru <sup>II</sup> (4-NCpy)Ru <sup>III</sup> (NH <sub>3</sub> ) <sub>5</sub> ] <sup>5+</sup> | $5.8 \times 10^{-3}$  | 5         |
| $[(bpy)(CO)_3 Re^{I}(4-CNpy)Ru^{III}(NH_3)_5]^{4+}$                                                    | $8.6 \times 10^{-3}$  | This work |
| $[(NH_3)_5Ru^{III}(4-NCpy)Ru^{III}(NH_3)_5]^{6+}$                                                      | $25.0 \times 10^{-2}$ | 6         |

TABLE I Hydrolysis rate constants for coordinated nitriles in some ruthenium complexes

|             |        | Hydrolysis           |                     |                  |
|-------------|--------|----------------------|---------------------|------------------|
| for [(bp    | y)(C   | $O)_3 Re^{I} (4-CN)$ | py)Ru <sup>11</sup> | $(NH_3)_5]^{4+}$ |
| at differen | nt ter | mperatures           |                     |                  |

| Т, К                             | $k_h, s^{-1}$                                                                                                                                           |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 288.2<br>293.2<br>298.2<br>303.2 | $\begin{array}{c} (4.6\pm 0.2) \times 10^{-3} \\ (6.2\pm 0.5) \times 10^{-3} \\ (8.6\pm 0.5) \times 10^{-3} \\ (1.1\pm 0.3) \times 10^{-2} \end{array}$ |  |  |

### Acknowledgments

We thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT, Argentina), Agencia Nacional de Promoción Científica y Técnica (ANPCyT, Argentina) and Fundación Antorchas for financial help. M.G.M. thanks CONICET for a graduate fellowship. F.F. and N.E.K are Members of the Research Career (CONICET).

## References

- Y.N. Belokon', V.I. Tararov, T.F. Savel'eva, S.V. Vitt, E.A. Paskonova, S.Ch Dotdayev, Y.A. Borisov, Y.T. Struchkov, A.S. Batasanov and V.M. Belikov, *Inorg. Chem.* 27, 4046 (1988).
- [2] Z.N. da Rocha, G. Chiericato Jr. and E. Tfouni, Adv. Chem. Ser. ACS 297 (1997).
- [3] A.W. Zanella and P.C. Ford, Inorg. Chem. 14, 42 (1975).
- [4] M.G. Mellace, F. Fagalde and N.E. Katz, Polyhedron 22, 369 (2003).
- [5] N.D. Lis de Katz, F. Fagalde and N.E. Katz, Polyhedron 14, 3111 (1995).
- [6] M.H. Chou, C. Creutz and N. Sutin, Inorg. Chem. 31, 2318 (1992).
- [7] F. Fagalde, N.E. Katz, V. Povse and J.A. Olabe, Polyhedron 18, 25 (1998).
- [8] M.Y. Huang, W.J. Chen, C.C. Yang and A. Yeh, Inorg. Chem. 30, 1862 (1991).
- [9] R.G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes (VCH, Weinheim, 1991) 2nd Edn., p. 88.